Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[platform/kernel/linux-starfive.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <net/checksum.h>
13 #include <linux/scatterlist.h>
14 #include <linux/instrumented.h>
15
16 #define PIPE_PARANOIA /* for now */
17
18 #define iterate_iovec(i, n, __v, __p, skip, STEP) {     \
19         size_t left;                                    \
20         size_t wanted = n;                              \
21         __p = i->iov;                                   \
22         __v.iov_len = min(n, __p->iov_len - skip);      \
23         if (likely(__v.iov_len)) {                      \
24                 __v.iov_base = __p->iov_base + skip;    \
25                 left = (STEP);                          \
26                 __v.iov_len -= left;                    \
27                 skip += __v.iov_len;                    \
28                 n -= __v.iov_len;                       \
29         } else {                                        \
30                 left = 0;                               \
31         }                                               \
32         while (unlikely(!left && n)) {                  \
33                 __p++;                                  \
34                 __v.iov_len = min(n, __p->iov_len);     \
35                 if (unlikely(!__v.iov_len))             \
36                         continue;                       \
37                 __v.iov_base = __p->iov_base;           \
38                 left = (STEP);                          \
39                 __v.iov_len -= left;                    \
40                 skip = __v.iov_len;                     \
41                 n -= __v.iov_len;                       \
42         }                                               \
43         n = wanted - n;                                 \
44 }
45
46 #define iterate_kvec(i, n, __v, __p, skip, STEP) {      \
47         size_t wanted = n;                              \
48         __p = i->kvec;                                  \
49         __v.iov_len = min(n, __p->iov_len - skip);      \
50         if (likely(__v.iov_len)) {                      \
51                 __v.iov_base = __p->iov_base + skip;    \
52                 (void)(STEP);                           \
53                 skip += __v.iov_len;                    \
54                 n -= __v.iov_len;                       \
55         }                                               \
56         while (unlikely(n)) {                           \
57                 __p++;                                  \
58                 __v.iov_len = min(n, __p->iov_len);     \
59                 if (unlikely(!__v.iov_len))             \
60                         continue;                       \
61                 __v.iov_base = __p->iov_base;           \
62                 (void)(STEP);                           \
63                 skip = __v.iov_len;                     \
64                 n -= __v.iov_len;                       \
65         }                                               \
66         n = wanted;                                     \
67 }
68
69 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {     \
70         struct bvec_iter __start;                       \
71         __start.bi_size = n;                            \
72         __start.bi_bvec_done = skip;                    \
73         __start.bi_idx = 0;                             \
74         for_each_bvec(__v, i->bvec, __bi, __start) {    \
75                 if (!__v.bv_len)                        \
76                         continue;                       \
77                 (void)(STEP);                           \
78         }                                               \
79 }
80
81 #define iterate_all_kinds(i, n, v, I, B, K) {                   \
82         if (likely(n)) {                                        \
83                 size_t skip = i->iov_offset;                    \
84                 if (unlikely(i->type & ITER_BVEC)) {            \
85                         struct bio_vec v;                       \
86                         struct bvec_iter __bi;                  \
87                         iterate_bvec(i, n, v, __bi, skip, (B))  \
88                 } else if (unlikely(i->type & ITER_KVEC)) {     \
89                         const struct kvec *kvec;                \
90                         struct kvec v;                          \
91                         iterate_kvec(i, n, v, kvec, skip, (K))  \
92                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
93                 } else {                                        \
94                         const struct iovec *iov;                \
95                         struct iovec v;                         \
96                         iterate_iovec(i, n, v, iov, skip, (I))  \
97                 }                                               \
98         }                                                       \
99 }
100
101 #define iterate_and_advance(i, n, v, I, B, K) {                 \
102         if (unlikely(i->count < n))                             \
103                 n = i->count;                                   \
104         if (i->count) {                                         \
105                 size_t skip = i->iov_offset;                    \
106                 if (unlikely(i->type & ITER_BVEC)) {            \
107                         const struct bio_vec *bvec = i->bvec;   \
108                         struct bio_vec v;                       \
109                         struct bvec_iter __bi;                  \
110                         iterate_bvec(i, n, v, __bi, skip, (B))  \
111                         i->bvec = __bvec_iter_bvec(i->bvec, __bi);      \
112                         i->nr_segs -= i->bvec - bvec;           \
113                         skip = __bi.bi_bvec_done;               \
114                 } else if (unlikely(i->type & ITER_KVEC)) {     \
115                         const struct kvec *kvec;                \
116                         struct kvec v;                          \
117                         iterate_kvec(i, n, v, kvec, skip, (K))  \
118                         if (skip == kvec->iov_len) {            \
119                                 kvec++;                         \
120                                 skip = 0;                       \
121                         }                                       \
122                         i->nr_segs -= kvec - i->kvec;           \
123                         i->kvec = kvec;                         \
124                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
125                         skip += n;                              \
126                 } else {                                        \
127                         const struct iovec *iov;                \
128                         struct iovec v;                         \
129                         iterate_iovec(i, n, v, iov, skip, (I))  \
130                         if (skip == iov->iov_len) {             \
131                                 iov++;                          \
132                                 skip = 0;                       \
133                         }                                       \
134                         i->nr_segs -= iov - i->iov;             \
135                         i->iov = iov;                           \
136                 }                                               \
137                 i->count -= n;                                  \
138                 i->iov_offset = skip;                           \
139         }                                                       \
140 }
141
142 static int copyout(void __user *to, const void *from, size_t n)
143 {
144         if (should_fail_usercopy())
145                 return n;
146         if (access_ok(to, n)) {
147                 instrument_copy_to_user(to, from, n);
148                 n = raw_copy_to_user(to, from, n);
149         }
150         return n;
151 }
152
153 static int copyin(void *to, const void __user *from, size_t n)
154 {
155         if (should_fail_usercopy())
156                 return n;
157         if (access_ok(from, n)) {
158                 instrument_copy_from_user(to, from, n);
159                 n = raw_copy_from_user(to, from, n);
160         }
161         return n;
162 }
163
164 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
165                          struct iov_iter *i)
166 {
167         size_t skip, copy, left, wanted;
168         const struct iovec *iov;
169         char __user *buf;
170         void *kaddr, *from;
171
172         if (unlikely(bytes > i->count))
173                 bytes = i->count;
174
175         if (unlikely(!bytes))
176                 return 0;
177
178         might_fault();
179         wanted = bytes;
180         iov = i->iov;
181         skip = i->iov_offset;
182         buf = iov->iov_base + skip;
183         copy = min(bytes, iov->iov_len - skip);
184
185         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
186                 kaddr = kmap_atomic(page);
187                 from = kaddr + offset;
188
189                 /* first chunk, usually the only one */
190                 left = copyout(buf, from, copy);
191                 copy -= left;
192                 skip += copy;
193                 from += copy;
194                 bytes -= copy;
195
196                 while (unlikely(!left && bytes)) {
197                         iov++;
198                         buf = iov->iov_base;
199                         copy = min(bytes, iov->iov_len);
200                         left = copyout(buf, from, copy);
201                         copy -= left;
202                         skip = copy;
203                         from += copy;
204                         bytes -= copy;
205                 }
206                 if (likely(!bytes)) {
207                         kunmap_atomic(kaddr);
208                         goto done;
209                 }
210                 offset = from - kaddr;
211                 buf += copy;
212                 kunmap_atomic(kaddr);
213                 copy = min(bytes, iov->iov_len - skip);
214         }
215         /* Too bad - revert to non-atomic kmap */
216
217         kaddr = kmap(page);
218         from = kaddr + offset;
219         left = copyout(buf, from, copy);
220         copy -= left;
221         skip += copy;
222         from += copy;
223         bytes -= copy;
224         while (unlikely(!left && bytes)) {
225                 iov++;
226                 buf = iov->iov_base;
227                 copy = min(bytes, iov->iov_len);
228                 left = copyout(buf, from, copy);
229                 copy -= left;
230                 skip = copy;
231                 from += copy;
232                 bytes -= copy;
233         }
234         kunmap(page);
235
236 done:
237         if (skip == iov->iov_len) {
238                 iov++;
239                 skip = 0;
240         }
241         i->count -= wanted - bytes;
242         i->nr_segs -= iov - i->iov;
243         i->iov = iov;
244         i->iov_offset = skip;
245         return wanted - bytes;
246 }
247
248 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
249                          struct iov_iter *i)
250 {
251         size_t skip, copy, left, wanted;
252         const struct iovec *iov;
253         char __user *buf;
254         void *kaddr, *to;
255
256         if (unlikely(bytes > i->count))
257                 bytes = i->count;
258
259         if (unlikely(!bytes))
260                 return 0;
261
262         might_fault();
263         wanted = bytes;
264         iov = i->iov;
265         skip = i->iov_offset;
266         buf = iov->iov_base + skip;
267         copy = min(bytes, iov->iov_len - skip);
268
269         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
270                 kaddr = kmap_atomic(page);
271                 to = kaddr + offset;
272
273                 /* first chunk, usually the only one */
274                 left = copyin(to, buf, copy);
275                 copy -= left;
276                 skip += copy;
277                 to += copy;
278                 bytes -= copy;
279
280                 while (unlikely(!left && bytes)) {
281                         iov++;
282                         buf = iov->iov_base;
283                         copy = min(bytes, iov->iov_len);
284                         left = copyin(to, buf, copy);
285                         copy -= left;
286                         skip = copy;
287                         to += copy;
288                         bytes -= copy;
289                 }
290                 if (likely(!bytes)) {
291                         kunmap_atomic(kaddr);
292                         goto done;
293                 }
294                 offset = to - kaddr;
295                 buf += copy;
296                 kunmap_atomic(kaddr);
297                 copy = min(bytes, iov->iov_len - skip);
298         }
299         /* Too bad - revert to non-atomic kmap */
300
301         kaddr = kmap(page);
302         to = kaddr + offset;
303         left = copyin(to, buf, copy);
304         copy -= left;
305         skip += copy;
306         to += copy;
307         bytes -= copy;
308         while (unlikely(!left && bytes)) {
309                 iov++;
310                 buf = iov->iov_base;
311                 copy = min(bytes, iov->iov_len);
312                 left = copyin(to, buf, copy);
313                 copy -= left;
314                 skip = copy;
315                 to += copy;
316                 bytes -= copy;
317         }
318         kunmap(page);
319
320 done:
321         if (skip == iov->iov_len) {
322                 iov++;
323                 skip = 0;
324         }
325         i->count -= wanted - bytes;
326         i->nr_segs -= iov - i->iov;
327         i->iov = iov;
328         i->iov_offset = skip;
329         return wanted - bytes;
330 }
331
332 #ifdef PIPE_PARANOIA
333 static bool sanity(const struct iov_iter *i)
334 {
335         struct pipe_inode_info *pipe = i->pipe;
336         unsigned int p_head = pipe->head;
337         unsigned int p_tail = pipe->tail;
338         unsigned int p_mask = pipe->ring_size - 1;
339         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
340         unsigned int i_head = i->head;
341         unsigned int idx;
342
343         if (i->iov_offset) {
344                 struct pipe_buffer *p;
345                 if (unlikely(p_occupancy == 0))
346                         goto Bad;       // pipe must be non-empty
347                 if (unlikely(i_head != p_head - 1))
348                         goto Bad;       // must be at the last buffer...
349
350                 p = &pipe->bufs[i_head & p_mask];
351                 if (unlikely(p->offset + p->len != i->iov_offset))
352                         goto Bad;       // ... at the end of segment
353         } else {
354                 if (i_head != p_head)
355                         goto Bad;       // must be right after the last buffer
356         }
357         return true;
358 Bad:
359         printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
360         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
361                         p_head, p_tail, pipe->ring_size);
362         for (idx = 0; idx < pipe->ring_size; idx++)
363                 printk(KERN_ERR "[%p %p %d %d]\n",
364                         pipe->bufs[idx].ops,
365                         pipe->bufs[idx].page,
366                         pipe->bufs[idx].offset,
367                         pipe->bufs[idx].len);
368         WARN_ON(1);
369         return false;
370 }
371 #else
372 #define sanity(i) true
373 #endif
374
375 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
376                          struct iov_iter *i)
377 {
378         struct pipe_inode_info *pipe = i->pipe;
379         struct pipe_buffer *buf;
380         unsigned int p_tail = pipe->tail;
381         unsigned int p_mask = pipe->ring_size - 1;
382         unsigned int i_head = i->head;
383         size_t off;
384
385         if (unlikely(bytes > i->count))
386                 bytes = i->count;
387
388         if (unlikely(!bytes))
389                 return 0;
390
391         if (!sanity(i))
392                 return 0;
393
394         off = i->iov_offset;
395         buf = &pipe->bufs[i_head & p_mask];
396         if (off) {
397                 if (offset == off && buf->page == page) {
398                         /* merge with the last one */
399                         buf->len += bytes;
400                         i->iov_offset += bytes;
401                         goto out;
402                 }
403                 i_head++;
404                 buf = &pipe->bufs[i_head & p_mask];
405         }
406         if (pipe_full(i_head, p_tail, pipe->max_usage))
407                 return 0;
408
409         buf->ops = &page_cache_pipe_buf_ops;
410         get_page(page);
411         buf->page = page;
412         buf->offset = offset;
413         buf->len = bytes;
414
415         pipe->head = i_head + 1;
416         i->iov_offset = offset + bytes;
417         i->head = i_head;
418 out:
419         i->count -= bytes;
420         return bytes;
421 }
422
423 /*
424  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
425  * bytes.  For each iovec, fault in each page that constitutes the iovec.
426  *
427  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
428  * because it is an invalid address).
429  */
430 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
431 {
432         size_t skip = i->iov_offset;
433         const struct iovec *iov;
434         int err;
435         struct iovec v;
436
437         if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
438                 iterate_iovec(i, bytes, v, iov, skip, ({
439                         err = fault_in_pages_readable(v.iov_base, v.iov_len);
440                         if (unlikely(err))
441                         return err;
442                 0;}))
443         }
444         return 0;
445 }
446 EXPORT_SYMBOL(iov_iter_fault_in_readable);
447
448 void iov_iter_init(struct iov_iter *i, unsigned int direction,
449                         const struct iovec *iov, unsigned long nr_segs,
450                         size_t count)
451 {
452         WARN_ON(direction & ~(READ | WRITE));
453         direction &= READ | WRITE;
454
455         /* It will get better.  Eventually... */
456         if (uaccess_kernel()) {
457                 i->type = ITER_KVEC | direction;
458                 i->kvec = (struct kvec *)iov;
459         } else {
460                 i->type = ITER_IOVEC | direction;
461                 i->iov = iov;
462         }
463         i->nr_segs = nr_segs;
464         i->iov_offset = 0;
465         i->count = count;
466 }
467 EXPORT_SYMBOL(iov_iter_init);
468
469 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
470 {
471         char *from = kmap_atomic(page);
472         memcpy(to, from + offset, len);
473         kunmap_atomic(from);
474 }
475
476 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
477 {
478         char *to = kmap_atomic(page);
479         memcpy(to + offset, from, len);
480         kunmap_atomic(to);
481 }
482
483 static void memzero_page(struct page *page, size_t offset, size_t len)
484 {
485         char *addr = kmap_atomic(page);
486         memset(addr + offset, 0, len);
487         kunmap_atomic(addr);
488 }
489
490 static inline bool allocated(struct pipe_buffer *buf)
491 {
492         return buf->ops == &default_pipe_buf_ops;
493 }
494
495 static inline void data_start(const struct iov_iter *i,
496                               unsigned int *iter_headp, size_t *offp)
497 {
498         unsigned int p_mask = i->pipe->ring_size - 1;
499         unsigned int iter_head = i->head;
500         size_t off = i->iov_offset;
501
502         if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
503                     off == PAGE_SIZE)) {
504                 iter_head++;
505                 off = 0;
506         }
507         *iter_headp = iter_head;
508         *offp = off;
509 }
510
511 static size_t push_pipe(struct iov_iter *i, size_t size,
512                         int *iter_headp, size_t *offp)
513 {
514         struct pipe_inode_info *pipe = i->pipe;
515         unsigned int p_tail = pipe->tail;
516         unsigned int p_mask = pipe->ring_size - 1;
517         unsigned int iter_head;
518         size_t off;
519         ssize_t left;
520
521         if (unlikely(size > i->count))
522                 size = i->count;
523         if (unlikely(!size))
524                 return 0;
525
526         left = size;
527         data_start(i, &iter_head, &off);
528         *iter_headp = iter_head;
529         *offp = off;
530         if (off) {
531                 left -= PAGE_SIZE - off;
532                 if (left <= 0) {
533                         pipe->bufs[iter_head & p_mask].len += size;
534                         return size;
535                 }
536                 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
537                 iter_head++;
538         }
539         while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
540                 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
541                 struct page *page = alloc_page(GFP_USER);
542                 if (!page)
543                         break;
544
545                 buf->ops = &default_pipe_buf_ops;
546                 buf->page = page;
547                 buf->offset = 0;
548                 buf->len = min_t(ssize_t, left, PAGE_SIZE);
549                 left -= buf->len;
550                 iter_head++;
551                 pipe->head = iter_head;
552
553                 if (left == 0)
554                         return size;
555         }
556         return size - left;
557 }
558
559 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
560                                 struct iov_iter *i)
561 {
562         struct pipe_inode_info *pipe = i->pipe;
563         unsigned int p_mask = pipe->ring_size - 1;
564         unsigned int i_head;
565         size_t n, off;
566
567         if (!sanity(i))
568                 return 0;
569
570         bytes = n = push_pipe(i, bytes, &i_head, &off);
571         if (unlikely(!n))
572                 return 0;
573         do {
574                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
575                 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
576                 i->head = i_head;
577                 i->iov_offset = off + chunk;
578                 n -= chunk;
579                 addr += chunk;
580                 off = 0;
581                 i_head++;
582         } while (n);
583         i->count -= bytes;
584         return bytes;
585 }
586
587 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
588                               __wsum sum, size_t off)
589 {
590         __wsum next = csum_partial_copy_nocheck(from, to, len);
591         return csum_block_add(sum, next, off);
592 }
593
594 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
595                                 __wsum *csum, struct iov_iter *i)
596 {
597         struct pipe_inode_info *pipe = i->pipe;
598         unsigned int p_mask = pipe->ring_size - 1;
599         unsigned int i_head;
600         size_t n, r;
601         size_t off = 0;
602         __wsum sum = *csum;
603
604         if (!sanity(i))
605                 return 0;
606
607         bytes = n = push_pipe(i, bytes, &i_head, &r);
608         if (unlikely(!n))
609                 return 0;
610         do {
611                 size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
612                 char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
613                 sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
614                 kunmap_atomic(p);
615                 i->head = i_head;
616                 i->iov_offset = r + chunk;
617                 n -= chunk;
618                 off += chunk;
619                 addr += chunk;
620                 r = 0;
621                 i_head++;
622         } while (n);
623         i->count -= bytes;
624         *csum = sum;
625         return bytes;
626 }
627
628 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
629 {
630         const char *from = addr;
631         if (unlikely(iov_iter_is_pipe(i)))
632                 return copy_pipe_to_iter(addr, bytes, i);
633         if (iter_is_iovec(i))
634                 might_fault();
635         iterate_and_advance(i, bytes, v,
636                 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
637                 memcpy_to_page(v.bv_page, v.bv_offset,
638                                (from += v.bv_len) - v.bv_len, v.bv_len),
639                 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
640         )
641
642         return bytes;
643 }
644 EXPORT_SYMBOL(_copy_to_iter);
645
646 #ifdef CONFIG_ARCH_HAS_COPY_MC
647 static int copyout_mc(void __user *to, const void *from, size_t n)
648 {
649         if (access_ok(to, n)) {
650                 instrument_copy_to_user(to, from, n);
651                 n = copy_mc_to_user((__force void *) to, from, n);
652         }
653         return n;
654 }
655
656 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
657                 const char *from, size_t len)
658 {
659         unsigned long ret;
660         char *to;
661
662         to = kmap_atomic(page);
663         ret = copy_mc_to_kernel(to + offset, from, len);
664         kunmap_atomic(to);
665
666         return ret;
667 }
668
669 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
670                                 struct iov_iter *i)
671 {
672         struct pipe_inode_info *pipe = i->pipe;
673         unsigned int p_mask = pipe->ring_size - 1;
674         unsigned int i_head;
675         size_t n, off, xfer = 0;
676
677         if (!sanity(i))
678                 return 0;
679
680         bytes = n = push_pipe(i, bytes, &i_head, &off);
681         if (unlikely(!n))
682                 return 0;
683         do {
684                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
685                 unsigned long rem;
686
687                 rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
688                                             off, addr, chunk);
689                 i->head = i_head;
690                 i->iov_offset = off + chunk - rem;
691                 xfer += chunk - rem;
692                 if (rem)
693                         break;
694                 n -= chunk;
695                 addr += chunk;
696                 off = 0;
697                 i_head++;
698         } while (n);
699         i->count -= xfer;
700         return xfer;
701 }
702
703 /**
704  * _copy_mc_to_iter - copy to iter with source memory error exception handling
705  * @addr: source kernel address
706  * @bytes: total transfer length
707  * @iter: destination iterator
708  *
709  * The pmem driver deploys this for the dax operation
710  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
711  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
712  * successfully copied.
713  *
714  * The main differences between this and typical _copy_to_iter().
715  *
716  * * Typical tail/residue handling after a fault retries the copy
717  *   byte-by-byte until the fault happens again. Re-triggering machine
718  *   checks is potentially fatal so the implementation uses source
719  *   alignment and poison alignment assumptions to avoid re-triggering
720  *   hardware exceptions.
721  *
722  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
723  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
724  *   a short copy.
725  */
726 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
727 {
728         const char *from = addr;
729         unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
730
731         if (unlikely(iov_iter_is_pipe(i)))
732                 return copy_mc_pipe_to_iter(addr, bytes, i);
733         if (iter_is_iovec(i))
734                 might_fault();
735         iterate_and_advance(i, bytes, v,
736                 copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
737                            v.iov_len),
738                 ({
739                 rem = copy_mc_to_page(v.bv_page, v.bv_offset,
740                                       (from += v.bv_len) - v.bv_len, v.bv_len);
741                 if (rem) {
742                         curr_addr = (unsigned long) from;
743                         bytes = curr_addr - s_addr - rem;
744                         return bytes;
745                 }
746                 }),
747                 ({
748                 rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
749                                         - v.iov_len, v.iov_len);
750                 if (rem) {
751                         curr_addr = (unsigned long) from;
752                         bytes = curr_addr - s_addr - rem;
753                         return bytes;
754                 }
755                 })
756         )
757
758         return bytes;
759 }
760 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
761 #endif /* CONFIG_ARCH_HAS_COPY_MC */
762
763 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
764 {
765         char *to = addr;
766         if (unlikely(iov_iter_is_pipe(i))) {
767                 WARN_ON(1);
768                 return 0;
769         }
770         if (iter_is_iovec(i))
771                 might_fault();
772         iterate_and_advance(i, bytes, v,
773                 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
774                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
775                                  v.bv_offset, v.bv_len),
776                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
777         )
778
779         return bytes;
780 }
781 EXPORT_SYMBOL(_copy_from_iter);
782
783 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
784 {
785         char *to = addr;
786         if (unlikely(iov_iter_is_pipe(i))) {
787                 WARN_ON(1);
788                 return false;
789         }
790         if (unlikely(i->count < bytes))
791                 return false;
792
793         if (iter_is_iovec(i))
794                 might_fault();
795         iterate_all_kinds(i, bytes, v, ({
796                 if (copyin((to += v.iov_len) - v.iov_len,
797                                       v.iov_base, v.iov_len))
798                         return false;
799                 0;}),
800                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
801                                  v.bv_offset, v.bv_len),
802                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
803         )
804
805         iov_iter_advance(i, bytes);
806         return true;
807 }
808 EXPORT_SYMBOL(_copy_from_iter_full);
809
810 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
811 {
812         char *to = addr;
813         if (unlikely(iov_iter_is_pipe(i))) {
814                 WARN_ON(1);
815                 return 0;
816         }
817         iterate_and_advance(i, bytes, v,
818                 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
819                                          v.iov_base, v.iov_len),
820                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
821                                  v.bv_offset, v.bv_len),
822                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
823         )
824
825         return bytes;
826 }
827 EXPORT_SYMBOL(_copy_from_iter_nocache);
828
829 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
830 /**
831  * _copy_from_iter_flushcache - write destination through cpu cache
832  * @addr: destination kernel address
833  * @bytes: total transfer length
834  * @iter: source iterator
835  *
836  * The pmem driver arranges for filesystem-dax to use this facility via
837  * dax_copy_from_iter() for ensuring that writes to persistent memory
838  * are flushed through the CPU cache. It is differentiated from
839  * _copy_from_iter_nocache() in that guarantees all data is flushed for
840  * all iterator types. The _copy_from_iter_nocache() only attempts to
841  * bypass the cache for the ITER_IOVEC case, and on some archs may use
842  * instructions that strand dirty-data in the cache.
843  */
844 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
845 {
846         char *to = addr;
847         if (unlikely(iov_iter_is_pipe(i))) {
848                 WARN_ON(1);
849                 return 0;
850         }
851         iterate_and_advance(i, bytes, v,
852                 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
853                                          v.iov_base, v.iov_len),
854                 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
855                                  v.bv_offset, v.bv_len),
856                 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
857                         v.iov_len)
858         )
859
860         return bytes;
861 }
862 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
863 #endif
864
865 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
866 {
867         char *to = addr;
868         if (unlikely(iov_iter_is_pipe(i))) {
869                 WARN_ON(1);
870                 return false;
871         }
872         if (unlikely(i->count < bytes))
873                 return false;
874         iterate_all_kinds(i, bytes, v, ({
875                 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
876                                              v.iov_base, v.iov_len))
877                         return false;
878                 0;}),
879                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
880                                  v.bv_offset, v.bv_len),
881                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
882         )
883
884         iov_iter_advance(i, bytes);
885         return true;
886 }
887 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
888
889 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
890 {
891         struct page *head;
892         size_t v = n + offset;
893
894         /*
895          * The general case needs to access the page order in order
896          * to compute the page size.
897          * However, we mostly deal with order-0 pages and thus can
898          * avoid a possible cache line miss for requests that fit all
899          * page orders.
900          */
901         if (n <= v && v <= PAGE_SIZE)
902                 return true;
903
904         head = compound_head(page);
905         v += (page - head) << PAGE_SHIFT;
906
907         if (likely(n <= v && v <= (page_size(head))))
908                 return true;
909         WARN_ON(1);
910         return false;
911 }
912
913 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
914                          struct iov_iter *i)
915 {
916         if (unlikely(!page_copy_sane(page, offset, bytes)))
917                 return 0;
918         if (i->type & (ITER_BVEC|ITER_KVEC)) {
919                 void *kaddr = kmap_atomic(page);
920                 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
921                 kunmap_atomic(kaddr);
922                 return wanted;
923         } else if (unlikely(iov_iter_is_discard(i)))
924                 return bytes;
925         else if (likely(!iov_iter_is_pipe(i)))
926                 return copy_page_to_iter_iovec(page, offset, bytes, i);
927         else
928                 return copy_page_to_iter_pipe(page, offset, bytes, i);
929 }
930 EXPORT_SYMBOL(copy_page_to_iter);
931
932 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
933                          struct iov_iter *i)
934 {
935         if (unlikely(!page_copy_sane(page, offset, bytes)))
936                 return 0;
937         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
938                 WARN_ON(1);
939                 return 0;
940         }
941         if (i->type & (ITER_BVEC|ITER_KVEC)) {
942                 void *kaddr = kmap_atomic(page);
943                 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
944                 kunmap_atomic(kaddr);
945                 return wanted;
946         } else
947                 return copy_page_from_iter_iovec(page, offset, bytes, i);
948 }
949 EXPORT_SYMBOL(copy_page_from_iter);
950
951 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
952 {
953         struct pipe_inode_info *pipe = i->pipe;
954         unsigned int p_mask = pipe->ring_size - 1;
955         unsigned int i_head;
956         size_t n, off;
957
958         if (!sanity(i))
959                 return 0;
960
961         bytes = n = push_pipe(i, bytes, &i_head, &off);
962         if (unlikely(!n))
963                 return 0;
964
965         do {
966                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
967                 memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
968                 i->head = i_head;
969                 i->iov_offset = off + chunk;
970                 n -= chunk;
971                 off = 0;
972                 i_head++;
973         } while (n);
974         i->count -= bytes;
975         return bytes;
976 }
977
978 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
979 {
980         if (unlikely(iov_iter_is_pipe(i)))
981                 return pipe_zero(bytes, i);
982         iterate_and_advance(i, bytes, v,
983                 clear_user(v.iov_base, v.iov_len),
984                 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
985                 memset(v.iov_base, 0, v.iov_len)
986         )
987
988         return bytes;
989 }
990 EXPORT_SYMBOL(iov_iter_zero);
991
992 size_t iov_iter_copy_from_user_atomic(struct page *page,
993                 struct iov_iter *i, unsigned long offset, size_t bytes)
994 {
995         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
996         if (unlikely(!page_copy_sane(page, offset, bytes))) {
997                 kunmap_atomic(kaddr);
998                 return 0;
999         }
1000         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1001                 kunmap_atomic(kaddr);
1002                 WARN_ON(1);
1003                 return 0;
1004         }
1005         iterate_all_kinds(i, bytes, v,
1006                 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1007                 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1008                                  v.bv_offset, v.bv_len),
1009                 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1010         )
1011         kunmap_atomic(kaddr);
1012         return bytes;
1013 }
1014 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1015
1016 static inline void pipe_truncate(struct iov_iter *i)
1017 {
1018         struct pipe_inode_info *pipe = i->pipe;
1019         unsigned int p_tail = pipe->tail;
1020         unsigned int p_head = pipe->head;
1021         unsigned int p_mask = pipe->ring_size - 1;
1022
1023         if (!pipe_empty(p_head, p_tail)) {
1024                 struct pipe_buffer *buf;
1025                 unsigned int i_head = i->head;
1026                 size_t off = i->iov_offset;
1027
1028                 if (off) {
1029                         buf = &pipe->bufs[i_head & p_mask];
1030                         buf->len = off - buf->offset;
1031                         i_head++;
1032                 }
1033                 while (p_head != i_head) {
1034                         p_head--;
1035                         pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1036                 }
1037
1038                 pipe->head = p_head;
1039         }
1040 }
1041
1042 static void pipe_advance(struct iov_iter *i, size_t size)
1043 {
1044         struct pipe_inode_info *pipe = i->pipe;
1045         if (unlikely(i->count < size))
1046                 size = i->count;
1047         if (size) {
1048                 struct pipe_buffer *buf;
1049                 unsigned int p_mask = pipe->ring_size - 1;
1050                 unsigned int i_head = i->head;
1051                 size_t off = i->iov_offset, left = size;
1052
1053                 if (off) /* make it relative to the beginning of buffer */
1054                         left += off - pipe->bufs[i_head & p_mask].offset;
1055                 while (1) {
1056                         buf = &pipe->bufs[i_head & p_mask];
1057                         if (left <= buf->len)
1058                                 break;
1059                         left -= buf->len;
1060                         i_head++;
1061                 }
1062                 i->head = i_head;
1063                 i->iov_offset = buf->offset + left;
1064         }
1065         i->count -= size;
1066         /* ... and discard everything past that point */
1067         pipe_truncate(i);
1068 }
1069
1070 void iov_iter_advance(struct iov_iter *i, size_t size)
1071 {
1072         if (unlikely(iov_iter_is_pipe(i))) {
1073                 pipe_advance(i, size);
1074                 return;
1075         }
1076         if (unlikely(iov_iter_is_discard(i))) {
1077                 i->count -= size;
1078                 return;
1079         }
1080         iterate_and_advance(i, size, v, 0, 0, 0)
1081 }
1082 EXPORT_SYMBOL(iov_iter_advance);
1083
1084 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1085 {
1086         if (!unroll)
1087                 return;
1088         if (WARN_ON(unroll > MAX_RW_COUNT))
1089                 return;
1090         i->count += unroll;
1091         if (unlikely(iov_iter_is_pipe(i))) {
1092                 struct pipe_inode_info *pipe = i->pipe;
1093                 unsigned int p_mask = pipe->ring_size - 1;
1094                 unsigned int i_head = i->head;
1095                 size_t off = i->iov_offset;
1096                 while (1) {
1097                         struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1098                         size_t n = off - b->offset;
1099                         if (unroll < n) {
1100                                 off -= unroll;
1101                                 break;
1102                         }
1103                         unroll -= n;
1104                         if (!unroll && i_head == i->start_head) {
1105                                 off = 0;
1106                                 break;
1107                         }
1108                         i_head--;
1109                         b = &pipe->bufs[i_head & p_mask];
1110                         off = b->offset + b->len;
1111                 }
1112                 i->iov_offset = off;
1113                 i->head = i_head;
1114                 pipe_truncate(i);
1115                 return;
1116         }
1117         if (unlikely(iov_iter_is_discard(i)))
1118                 return;
1119         if (unroll <= i->iov_offset) {
1120                 i->iov_offset -= unroll;
1121                 return;
1122         }
1123         unroll -= i->iov_offset;
1124         if (iov_iter_is_bvec(i)) {
1125                 const struct bio_vec *bvec = i->bvec;
1126                 while (1) {
1127                         size_t n = (--bvec)->bv_len;
1128                         i->nr_segs++;
1129                         if (unroll <= n) {
1130                                 i->bvec = bvec;
1131                                 i->iov_offset = n - unroll;
1132                                 return;
1133                         }
1134                         unroll -= n;
1135                 }
1136         } else { /* same logics for iovec and kvec */
1137                 const struct iovec *iov = i->iov;
1138                 while (1) {
1139                         size_t n = (--iov)->iov_len;
1140                         i->nr_segs++;
1141                         if (unroll <= n) {
1142                                 i->iov = iov;
1143                                 i->iov_offset = n - unroll;
1144                                 return;
1145                         }
1146                         unroll -= n;
1147                 }
1148         }
1149 }
1150 EXPORT_SYMBOL(iov_iter_revert);
1151
1152 /*
1153  * Return the count of just the current iov_iter segment.
1154  */
1155 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1156 {
1157         if (unlikely(iov_iter_is_pipe(i)))
1158                 return i->count;        // it is a silly place, anyway
1159         if (i->nr_segs == 1)
1160                 return i->count;
1161         if (unlikely(iov_iter_is_discard(i)))
1162                 return i->count;
1163         else if (iov_iter_is_bvec(i))
1164                 return min(i->count, i->bvec->bv_len - i->iov_offset);
1165         else
1166                 return min(i->count, i->iov->iov_len - i->iov_offset);
1167 }
1168 EXPORT_SYMBOL(iov_iter_single_seg_count);
1169
1170 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1171                         const struct kvec *kvec, unsigned long nr_segs,
1172                         size_t count)
1173 {
1174         WARN_ON(direction & ~(READ | WRITE));
1175         i->type = ITER_KVEC | (direction & (READ | WRITE));
1176         i->kvec = kvec;
1177         i->nr_segs = nr_segs;
1178         i->iov_offset = 0;
1179         i->count = count;
1180 }
1181 EXPORT_SYMBOL(iov_iter_kvec);
1182
1183 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1184                         const struct bio_vec *bvec, unsigned long nr_segs,
1185                         size_t count)
1186 {
1187         WARN_ON(direction & ~(READ | WRITE));
1188         i->type = ITER_BVEC | (direction & (READ | WRITE));
1189         i->bvec = bvec;
1190         i->nr_segs = nr_segs;
1191         i->iov_offset = 0;
1192         i->count = count;
1193 }
1194 EXPORT_SYMBOL(iov_iter_bvec);
1195
1196 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1197                         struct pipe_inode_info *pipe,
1198                         size_t count)
1199 {
1200         BUG_ON(direction != READ);
1201         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1202         i->type = ITER_PIPE | READ;
1203         i->pipe = pipe;
1204         i->head = pipe->head;
1205         i->iov_offset = 0;
1206         i->count = count;
1207         i->start_head = i->head;
1208 }
1209 EXPORT_SYMBOL(iov_iter_pipe);
1210
1211 /**
1212  * iov_iter_discard - Initialise an I/O iterator that discards data
1213  * @i: The iterator to initialise.
1214  * @direction: The direction of the transfer.
1215  * @count: The size of the I/O buffer in bytes.
1216  *
1217  * Set up an I/O iterator that just discards everything that's written to it.
1218  * It's only available as a READ iterator.
1219  */
1220 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1221 {
1222         BUG_ON(direction != READ);
1223         i->type = ITER_DISCARD | READ;
1224         i->count = count;
1225         i->iov_offset = 0;
1226 }
1227 EXPORT_SYMBOL(iov_iter_discard);
1228
1229 unsigned long iov_iter_alignment(const struct iov_iter *i)
1230 {
1231         unsigned long res = 0;
1232         size_t size = i->count;
1233
1234         if (unlikely(iov_iter_is_pipe(i))) {
1235                 unsigned int p_mask = i->pipe->ring_size - 1;
1236
1237                 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1238                         return size | i->iov_offset;
1239                 return size;
1240         }
1241         iterate_all_kinds(i, size, v,
1242                 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1243                 res |= v.bv_offset | v.bv_len,
1244                 res |= (unsigned long)v.iov_base | v.iov_len
1245         )
1246         return res;
1247 }
1248 EXPORT_SYMBOL(iov_iter_alignment);
1249
1250 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1251 {
1252         unsigned long res = 0;
1253         size_t size = i->count;
1254
1255         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1256                 WARN_ON(1);
1257                 return ~0U;
1258         }
1259
1260         iterate_all_kinds(i, size, v,
1261                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1262                         (size != v.iov_len ? size : 0), 0),
1263                 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1264                         (size != v.bv_len ? size : 0)),
1265                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1266                         (size != v.iov_len ? size : 0))
1267                 );
1268         return res;
1269 }
1270 EXPORT_SYMBOL(iov_iter_gap_alignment);
1271
1272 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1273                                 size_t maxsize,
1274                                 struct page **pages,
1275                                 int iter_head,
1276                                 size_t *start)
1277 {
1278         struct pipe_inode_info *pipe = i->pipe;
1279         unsigned int p_mask = pipe->ring_size - 1;
1280         ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1281         if (!n)
1282                 return -EFAULT;
1283
1284         maxsize = n;
1285         n += *start;
1286         while (n > 0) {
1287                 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1288                 iter_head++;
1289                 n -= PAGE_SIZE;
1290         }
1291
1292         return maxsize;
1293 }
1294
1295 static ssize_t pipe_get_pages(struct iov_iter *i,
1296                    struct page **pages, size_t maxsize, unsigned maxpages,
1297                    size_t *start)
1298 {
1299         unsigned int iter_head, npages;
1300         size_t capacity;
1301
1302         if (!maxsize)
1303                 return 0;
1304
1305         if (!sanity(i))
1306                 return -EFAULT;
1307
1308         data_start(i, &iter_head, start);
1309         /* Amount of free space: some of this one + all after this one */
1310         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1311         capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1312
1313         return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1314 }
1315
1316 ssize_t iov_iter_get_pages(struct iov_iter *i,
1317                    struct page **pages, size_t maxsize, unsigned maxpages,
1318                    size_t *start)
1319 {
1320         if (maxsize > i->count)
1321                 maxsize = i->count;
1322
1323         if (unlikely(iov_iter_is_pipe(i)))
1324                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1325         if (unlikely(iov_iter_is_discard(i)))
1326                 return -EFAULT;
1327
1328         iterate_all_kinds(i, maxsize, v, ({
1329                 unsigned long addr = (unsigned long)v.iov_base;
1330                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1331                 int n;
1332                 int res;
1333
1334                 if (len > maxpages * PAGE_SIZE)
1335                         len = maxpages * PAGE_SIZE;
1336                 addr &= ~(PAGE_SIZE - 1);
1337                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1338                 res = get_user_pages_fast(addr, n,
1339                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1340                                 pages);
1341                 if (unlikely(res < 0))
1342                         return res;
1343                 return (res == n ? len : res * PAGE_SIZE) - *start;
1344         0;}),({
1345                 /* can't be more than PAGE_SIZE */
1346                 *start = v.bv_offset;
1347                 get_page(*pages = v.bv_page);
1348                 return v.bv_len;
1349         }),({
1350                 return -EFAULT;
1351         })
1352         )
1353         return 0;
1354 }
1355 EXPORT_SYMBOL(iov_iter_get_pages);
1356
1357 static struct page **get_pages_array(size_t n)
1358 {
1359         return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1360 }
1361
1362 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1363                    struct page ***pages, size_t maxsize,
1364                    size_t *start)
1365 {
1366         struct page **p;
1367         unsigned int iter_head, npages;
1368         ssize_t n;
1369
1370         if (!maxsize)
1371                 return 0;
1372
1373         if (!sanity(i))
1374                 return -EFAULT;
1375
1376         data_start(i, &iter_head, start);
1377         /* Amount of free space: some of this one + all after this one */
1378         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1379         n = npages * PAGE_SIZE - *start;
1380         if (maxsize > n)
1381                 maxsize = n;
1382         else
1383                 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1384         p = get_pages_array(npages);
1385         if (!p)
1386                 return -ENOMEM;
1387         n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1388         if (n > 0)
1389                 *pages = p;
1390         else
1391                 kvfree(p);
1392         return n;
1393 }
1394
1395 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1396                    struct page ***pages, size_t maxsize,
1397                    size_t *start)
1398 {
1399         struct page **p;
1400
1401         if (maxsize > i->count)
1402                 maxsize = i->count;
1403
1404         if (unlikely(iov_iter_is_pipe(i)))
1405                 return pipe_get_pages_alloc(i, pages, maxsize, start);
1406         if (unlikely(iov_iter_is_discard(i)))
1407                 return -EFAULT;
1408
1409         iterate_all_kinds(i, maxsize, v, ({
1410                 unsigned long addr = (unsigned long)v.iov_base;
1411                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1412                 int n;
1413                 int res;
1414
1415                 addr &= ~(PAGE_SIZE - 1);
1416                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1417                 p = get_pages_array(n);
1418                 if (!p)
1419                         return -ENOMEM;
1420                 res = get_user_pages_fast(addr, n,
1421                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1422                 if (unlikely(res < 0)) {
1423                         kvfree(p);
1424                         return res;
1425                 }
1426                 *pages = p;
1427                 return (res == n ? len : res * PAGE_SIZE) - *start;
1428         0;}),({
1429                 /* can't be more than PAGE_SIZE */
1430                 *start = v.bv_offset;
1431                 *pages = p = get_pages_array(1);
1432                 if (!p)
1433                         return -ENOMEM;
1434                 get_page(*p = v.bv_page);
1435                 return v.bv_len;
1436         }),({
1437                 return -EFAULT;
1438         })
1439         )
1440         return 0;
1441 }
1442 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1443
1444 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1445                                struct iov_iter *i)
1446 {
1447         char *to = addr;
1448         __wsum sum, next;
1449         size_t off = 0;
1450         sum = *csum;
1451         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1452                 WARN_ON(1);
1453                 return 0;
1454         }
1455         iterate_and_advance(i, bytes, v, ({
1456                 next = csum_and_copy_from_user(v.iov_base,
1457                                                (to += v.iov_len) - v.iov_len,
1458                                                v.iov_len);
1459                 if (next) {
1460                         sum = csum_block_add(sum, next, off);
1461                         off += v.iov_len;
1462                 }
1463                 next ? 0 : v.iov_len;
1464         }), ({
1465                 char *p = kmap_atomic(v.bv_page);
1466                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1467                                       p + v.bv_offset, v.bv_len,
1468                                       sum, off);
1469                 kunmap_atomic(p);
1470                 off += v.bv_len;
1471         }),({
1472                 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1473                                       v.iov_base, v.iov_len,
1474                                       sum, off);
1475                 off += v.iov_len;
1476         })
1477         )
1478         *csum = sum;
1479         return bytes;
1480 }
1481 EXPORT_SYMBOL(csum_and_copy_from_iter);
1482
1483 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1484                                struct iov_iter *i)
1485 {
1486         char *to = addr;
1487         __wsum sum, next;
1488         size_t off = 0;
1489         sum = *csum;
1490         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1491                 WARN_ON(1);
1492                 return false;
1493         }
1494         if (unlikely(i->count < bytes))
1495                 return false;
1496         iterate_all_kinds(i, bytes, v, ({
1497                 next = csum_and_copy_from_user(v.iov_base,
1498                                                (to += v.iov_len) - v.iov_len,
1499                                                v.iov_len);
1500                 if (!next)
1501                         return false;
1502                 sum = csum_block_add(sum, next, off);
1503                 off += v.iov_len;
1504                 0;
1505         }), ({
1506                 char *p = kmap_atomic(v.bv_page);
1507                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1508                                       p + v.bv_offset, v.bv_len,
1509                                       sum, off);
1510                 kunmap_atomic(p);
1511                 off += v.bv_len;
1512         }),({
1513                 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1514                                       v.iov_base, v.iov_len,
1515                                       sum, off);
1516                 off += v.iov_len;
1517         })
1518         )
1519         *csum = sum;
1520         iov_iter_advance(i, bytes);
1521         return true;
1522 }
1523 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1524
1525 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1526                              struct iov_iter *i)
1527 {
1528         const char *from = addr;
1529         __wsum *csum = csump;
1530         __wsum sum, next;
1531         size_t off = 0;
1532
1533         if (unlikely(iov_iter_is_pipe(i)))
1534                 return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1535
1536         sum = *csum;
1537         if (unlikely(iov_iter_is_discard(i))) {
1538                 WARN_ON(1);     /* for now */
1539                 return 0;
1540         }
1541         iterate_and_advance(i, bytes, v, ({
1542                 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1543                                              v.iov_base,
1544                                              v.iov_len);
1545                 if (next) {
1546                         sum = csum_block_add(sum, next, off);
1547                         off += v.iov_len;
1548                 }
1549                 next ? 0 : v.iov_len;
1550         }), ({
1551                 char *p = kmap_atomic(v.bv_page);
1552                 sum = csum_and_memcpy(p + v.bv_offset,
1553                                       (from += v.bv_len) - v.bv_len,
1554                                       v.bv_len, sum, off);
1555                 kunmap_atomic(p);
1556                 off += v.bv_len;
1557         }),({
1558                 sum = csum_and_memcpy(v.iov_base,
1559                                      (from += v.iov_len) - v.iov_len,
1560                                      v.iov_len, sum, off);
1561                 off += v.iov_len;
1562         })
1563         )
1564         *csum = sum;
1565         return bytes;
1566 }
1567 EXPORT_SYMBOL(csum_and_copy_to_iter);
1568
1569 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1570                 struct iov_iter *i)
1571 {
1572 #ifdef CONFIG_CRYPTO_HASH
1573         struct ahash_request *hash = hashp;
1574         struct scatterlist sg;
1575         size_t copied;
1576
1577         copied = copy_to_iter(addr, bytes, i);
1578         sg_init_one(&sg, addr, copied);
1579         ahash_request_set_crypt(hash, &sg, NULL, copied);
1580         crypto_ahash_update(hash);
1581         return copied;
1582 #else
1583         return 0;
1584 #endif
1585 }
1586 EXPORT_SYMBOL(hash_and_copy_to_iter);
1587
1588 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1589 {
1590         size_t size = i->count;
1591         int npages = 0;
1592
1593         if (!size)
1594                 return 0;
1595         if (unlikely(iov_iter_is_discard(i)))
1596                 return 0;
1597
1598         if (unlikely(iov_iter_is_pipe(i))) {
1599                 struct pipe_inode_info *pipe = i->pipe;
1600                 unsigned int iter_head;
1601                 size_t off;
1602
1603                 if (!sanity(i))
1604                         return 0;
1605
1606                 data_start(i, &iter_head, &off);
1607                 /* some of this one + all after this one */
1608                 npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1609                 if (npages >= maxpages)
1610                         return maxpages;
1611         } else iterate_all_kinds(i, size, v, ({
1612                 unsigned long p = (unsigned long)v.iov_base;
1613                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1614                         - p / PAGE_SIZE;
1615                 if (npages >= maxpages)
1616                         return maxpages;
1617         0;}),({
1618                 npages++;
1619                 if (npages >= maxpages)
1620                         return maxpages;
1621         }),({
1622                 unsigned long p = (unsigned long)v.iov_base;
1623                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1624                         - p / PAGE_SIZE;
1625                 if (npages >= maxpages)
1626                         return maxpages;
1627         })
1628         )
1629         return npages;
1630 }
1631 EXPORT_SYMBOL(iov_iter_npages);
1632
1633 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1634 {
1635         *new = *old;
1636         if (unlikely(iov_iter_is_pipe(new))) {
1637                 WARN_ON(1);
1638                 return NULL;
1639         }
1640         if (unlikely(iov_iter_is_discard(new)))
1641                 return NULL;
1642         if (iov_iter_is_bvec(new))
1643                 return new->bvec = kmemdup(new->bvec,
1644                                     new->nr_segs * sizeof(struct bio_vec),
1645                                     flags);
1646         else
1647                 /* iovec and kvec have identical layout */
1648                 return new->iov = kmemdup(new->iov,
1649                                    new->nr_segs * sizeof(struct iovec),
1650                                    flags);
1651 }
1652 EXPORT_SYMBOL(dup_iter);
1653
1654 static int copy_compat_iovec_from_user(struct iovec *iov,
1655                 const struct iovec __user *uvec, unsigned long nr_segs)
1656 {
1657         const struct compat_iovec __user *uiov =
1658                 (const struct compat_iovec __user *)uvec;
1659         int ret = -EFAULT, i;
1660
1661         if (!user_access_begin(uvec, nr_segs * sizeof(*uvec)))
1662                 return -EFAULT;
1663
1664         for (i = 0; i < nr_segs; i++) {
1665                 compat_uptr_t buf;
1666                 compat_ssize_t len;
1667
1668                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1669                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1670
1671                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1672                 if (len < 0) {
1673                         ret = -EINVAL;
1674                         goto uaccess_end;
1675                 }
1676                 iov[i].iov_base = compat_ptr(buf);
1677                 iov[i].iov_len = len;
1678         }
1679
1680         ret = 0;
1681 uaccess_end:
1682         user_access_end();
1683         return ret;
1684 }
1685
1686 static int copy_iovec_from_user(struct iovec *iov,
1687                 const struct iovec __user *uvec, unsigned long nr_segs)
1688 {
1689         unsigned long seg;
1690
1691         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1692                 return -EFAULT;
1693         for (seg = 0; seg < nr_segs; seg++) {
1694                 if ((ssize_t)iov[seg].iov_len < 0)
1695                         return -EINVAL;
1696         }
1697
1698         return 0;
1699 }
1700
1701 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1702                 unsigned long nr_segs, unsigned long fast_segs,
1703                 struct iovec *fast_iov, bool compat)
1704 {
1705         struct iovec *iov = fast_iov;
1706         int ret;
1707
1708         /*
1709          * SuS says "The readv() function *may* fail if the iovcnt argument was
1710          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1711          * traditionally returned zero for zero segments, so...
1712          */
1713         if (nr_segs == 0)
1714                 return iov;
1715         if (nr_segs > UIO_MAXIOV)
1716                 return ERR_PTR(-EINVAL);
1717         if (nr_segs > fast_segs) {
1718                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1719                 if (!iov)
1720                         return ERR_PTR(-ENOMEM);
1721         }
1722
1723         if (compat)
1724                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1725         else
1726                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1727         if (ret) {
1728                 if (iov != fast_iov)
1729                         kfree(iov);
1730                 return ERR_PTR(ret);
1731         }
1732
1733         return iov;
1734 }
1735
1736 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1737                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1738                  struct iov_iter *i, bool compat)
1739 {
1740         ssize_t total_len = 0;
1741         unsigned long seg;
1742         struct iovec *iov;
1743
1744         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1745         if (IS_ERR(iov)) {
1746                 *iovp = NULL;
1747                 return PTR_ERR(iov);
1748         }
1749
1750         /*
1751          * According to the Single Unix Specification we should return EINVAL if
1752          * an element length is < 0 when cast to ssize_t or if the total length
1753          * would overflow the ssize_t return value of the system call.
1754          *
1755          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1756          * overflow case.
1757          */
1758         for (seg = 0; seg < nr_segs; seg++) {
1759                 ssize_t len = (ssize_t)iov[seg].iov_len;
1760
1761                 if (!access_ok(iov[seg].iov_base, len)) {
1762                         if (iov != *iovp)
1763                                 kfree(iov);
1764                         *iovp = NULL;
1765                         return -EFAULT;
1766                 }
1767
1768                 if (len > MAX_RW_COUNT - total_len) {
1769                         len = MAX_RW_COUNT - total_len;
1770                         iov[seg].iov_len = len;
1771                 }
1772                 total_len += len;
1773         }
1774
1775         iov_iter_init(i, type, iov, nr_segs, total_len);
1776         if (iov == *iovp)
1777                 *iovp = NULL;
1778         else
1779                 *iovp = iov;
1780         return total_len;
1781 }
1782
1783 /**
1784  * import_iovec() - Copy an array of &struct iovec from userspace
1785  *     into the kernel, check that it is valid, and initialize a new
1786  *     &struct iov_iter iterator to access it.
1787  *
1788  * @type: One of %READ or %WRITE.
1789  * @uvec: Pointer to the userspace array.
1790  * @nr_segs: Number of elements in userspace array.
1791  * @fast_segs: Number of elements in @iov.
1792  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1793  *     on-stack) kernel array.
1794  * @i: Pointer to iterator that will be initialized on success.
1795  *
1796  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1797  * then this function places %NULL in *@iov on return. Otherwise, a new
1798  * array will be allocated and the result placed in *@iov. This means that
1799  * the caller may call kfree() on *@iov regardless of whether the small
1800  * on-stack array was used or not (and regardless of whether this function
1801  * returns an error or not).
1802  *
1803  * Return: Negative error code on error, bytes imported on success
1804  */
1805 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1806                  unsigned nr_segs, unsigned fast_segs,
1807                  struct iovec **iovp, struct iov_iter *i)
1808 {
1809         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1810                               in_compat_syscall());
1811 }
1812 EXPORT_SYMBOL(import_iovec);
1813
1814 int import_single_range(int rw, void __user *buf, size_t len,
1815                  struct iovec *iov, struct iov_iter *i)
1816 {
1817         if (len > MAX_RW_COUNT)
1818                 len = MAX_RW_COUNT;
1819         if (unlikely(!access_ok(buf, len)))
1820                 return -EFAULT;
1821
1822         iov->iov_base = buf;
1823         iov->iov_len = len;
1824         iov_iter_init(i, rw, iov, 1, len);
1825         return 0;
1826 }
1827 EXPORT_SYMBOL(import_single_range);
1828
1829 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1830                             int (*f)(struct kvec *vec, void *context),
1831                             void *context)
1832 {
1833         struct kvec w;
1834         int err = -EINVAL;
1835         if (!bytes)
1836                 return 0;
1837
1838         iterate_all_kinds(i, bytes, v, -EINVAL, ({
1839                 w.iov_base = kmap(v.bv_page) + v.bv_offset;
1840                 w.iov_len = v.bv_len;
1841                 err = f(&w, context);
1842                 kunmap(v.bv_page);
1843                 err;}), ({
1844                 w = v;
1845                 err = f(&w, context);})
1846         )
1847         return err;
1848 }
1849 EXPORT_SYMBOL(iov_iter_for_each_range);