Merge tag 'leds-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16
17 #define PIPE_PARANOIA /* for now */
18
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {          \
21         size_t __maybe_unused off = 0;                          \
22         len = n;                                                \
23         base = __p + i->iov_offset;                             \
24         len -= (STEP);                                          \
25         i->iov_offset += len;                                   \
26         n = len;                                                \
27 }
28
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {        \
31         size_t off = 0;                                         \
32         size_t skip = i->iov_offset;                            \
33         do {                                                    \
34                 len = min(n, __p->iov_len - skip);              \
35                 if (likely(len)) {                              \
36                         base = __p->iov_base + skip;            \
37                         len -= (STEP);                          \
38                         off += len;                             \
39                         skip += len;                            \
40                         n -= len;                               \
41                         if (skip < __p->iov_len)                \
42                                 break;                          \
43                 }                                               \
44                 __p++;                                          \
45                 skip = 0;                                       \
46         } while (n);                                            \
47         i->iov_offset = skip;                                   \
48         n = off;                                                \
49 }
50
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {           \
52         size_t off = 0;                                         \
53         unsigned skip = i->iov_offset;                          \
54         while (n) {                                             \
55                 unsigned offset = p->bv_offset + skip;          \
56                 unsigned left;                                  \
57                 void *kaddr = kmap_local_page(p->bv_page +      \
58                                         offset / PAGE_SIZE);    \
59                 base = kaddr + offset % PAGE_SIZE;              \
60                 len = min(min(n, (size_t)(p->bv_len - skip)),   \
61                      (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
62                 left = (STEP);                                  \
63                 kunmap_local(kaddr);                            \
64                 len -= left;                                    \
65                 off += len;                                     \
66                 skip += len;                                    \
67                 if (skip == p->bv_len) {                        \
68                         skip = 0;                               \
69                         p++;                                    \
70                 }                                               \
71                 n -= len;                                       \
72                 if (left)                                       \
73                         break;                                  \
74         }                                                       \
75         i->iov_offset = skip;                                   \
76         n = off;                                                \
77 }
78
79 #define iterate_xarray(i, n, base, len, __off, STEP) {          \
80         __label__ __out;                                        \
81         size_t __off = 0;                                       \
82         struct folio *folio;                                    \
83         loff_t start = i->xarray_start + i->iov_offset;         \
84         pgoff_t index = start / PAGE_SIZE;                      \
85         XA_STATE(xas, i->xarray, index);                        \
86                                                                 \
87         len = PAGE_SIZE - offset_in_page(start);                \
88         rcu_read_lock();                                        \
89         xas_for_each(&xas, folio, ULONG_MAX) {                  \
90                 unsigned left;                                  \
91                 size_t offset;                                  \
92                 if (xas_retry(&xas, folio))                     \
93                         continue;                               \
94                 if (WARN_ON(xa_is_value(folio)))                \
95                         break;                                  \
96                 if (WARN_ON(folio_test_hugetlb(folio)))         \
97                         break;                                  \
98                 offset = offset_in_folio(folio, start + __off); \
99                 while (offset < folio_size(folio)) {            \
100                         base = kmap_local_folio(folio, offset); \
101                         len = min(n, len);                      \
102                         left = (STEP);                          \
103                         kunmap_local(base);                     \
104                         len -= left;                            \
105                         __off += len;                           \
106                         n -= len;                               \
107                         if (left || n == 0)                     \
108                                 goto __out;                     \
109                         offset += len;                          \
110                         len = PAGE_SIZE;                        \
111                 }                                               \
112         }                                                       \
113 __out:                                                          \
114         rcu_read_unlock();                                      \
115         i->iov_offset += __off;                                 \
116         n = __off;                                              \
117 }
118
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {     \
120         if (unlikely(i->count < n))                             \
121                 n = i->count;                                   \
122         if (likely(n)) {                                        \
123                 if (likely(iter_is_ubuf(i))) {                  \
124                         void __user *base;                      \
125                         size_t len;                             \
126                         iterate_buf(i, n, base, len, off,       \
127                                                 i->ubuf, (I))   \
128                 } else if (likely(iter_is_iovec(i))) {          \
129                         const struct iovec *iov = i->iov;       \
130                         void __user *base;                      \
131                         size_t len;                             \
132                         iterate_iovec(i, n, base, len, off,     \
133                                                 iov, (I))       \
134                         i->nr_segs -= iov - i->iov;             \
135                         i->iov = iov;                           \
136                 } else if (iov_iter_is_bvec(i)) {               \
137                         const struct bio_vec *bvec = i->bvec;   \
138                         void *base;                             \
139                         size_t len;                             \
140                         iterate_bvec(i, n, base, len, off,      \
141                                                 bvec, (K))      \
142                         i->nr_segs -= bvec - i->bvec;           \
143                         i->bvec = bvec;                         \
144                 } else if (iov_iter_is_kvec(i)) {               \
145                         const struct kvec *kvec = i->kvec;      \
146                         void *base;                             \
147                         size_t len;                             \
148                         iterate_iovec(i, n, base, len, off,     \
149                                                 kvec, (K))      \
150                         i->nr_segs -= kvec - i->kvec;           \
151                         i->kvec = kvec;                         \
152                 } else if (iov_iter_is_xarray(i)) {             \
153                         void *base;                             \
154                         size_t len;                             \
155                         iterate_xarray(i, n, base, len, off,    \
156                                                         (K))    \
157                 }                                               \
158                 i->count -= n;                                  \
159         }                                                       \
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162         __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166         if (should_fail_usercopy())
167                 return n;
168         if (access_ok(to, n)) {
169                 instrument_copy_to_user(to, from, n);
170                 n = raw_copy_to_user(to, from, n);
171         }
172         return n;
173 }
174
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177         size_t res = n;
178
179         if (should_fail_usercopy())
180                 return n;
181         if (access_ok(from, n)) {
182                 instrument_copy_from_user_before(to, from, n);
183                 res = raw_copy_from_user(to, from, n);
184                 instrument_copy_from_user_after(to, from, n, res);
185         }
186         return res;
187 }
188
189 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
190                                            unsigned int slot)
191 {
192         return &pipe->bufs[slot & (pipe->ring_size - 1)];
193 }
194
195 #ifdef PIPE_PARANOIA
196 static bool sanity(const struct iov_iter *i)
197 {
198         struct pipe_inode_info *pipe = i->pipe;
199         unsigned int p_head = pipe->head;
200         unsigned int p_tail = pipe->tail;
201         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
202         unsigned int i_head = i->head;
203         unsigned int idx;
204
205         if (i->last_offset) {
206                 struct pipe_buffer *p;
207                 if (unlikely(p_occupancy == 0))
208                         goto Bad;       // pipe must be non-empty
209                 if (unlikely(i_head != p_head - 1))
210                         goto Bad;       // must be at the last buffer...
211
212                 p = pipe_buf(pipe, i_head);
213                 if (unlikely(p->offset + p->len != abs(i->last_offset)))
214                         goto Bad;       // ... at the end of segment
215         } else {
216                 if (i_head != p_head)
217                         goto Bad;       // must be right after the last buffer
218         }
219         return true;
220 Bad:
221         printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
222         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
223                         p_head, p_tail, pipe->ring_size);
224         for (idx = 0; idx < pipe->ring_size; idx++)
225                 printk(KERN_ERR "[%p %p %d %d]\n",
226                         pipe->bufs[idx].ops,
227                         pipe->bufs[idx].page,
228                         pipe->bufs[idx].offset,
229                         pipe->bufs[idx].len);
230         WARN_ON(1);
231         return false;
232 }
233 #else
234 #define sanity(i) true
235 #endif
236
237 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
238 {
239         struct page *page = alloc_page(GFP_USER);
240         if (page) {
241                 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
242                 *buf = (struct pipe_buffer) {
243                         .ops = &default_pipe_buf_ops,
244                         .page = page,
245                         .offset = 0,
246                         .len = size
247                 };
248         }
249         return page;
250 }
251
252 static void push_page(struct pipe_inode_info *pipe, struct page *page,
253                         unsigned int offset, unsigned int size)
254 {
255         struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
256         *buf = (struct pipe_buffer) {
257                 .ops = &page_cache_pipe_buf_ops,
258                 .page = page,
259                 .offset = offset,
260                 .len = size
261         };
262         get_page(page);
263 }
264
265 static inline int last_offset(const struct pipe_buffer *buf)
266 {
267         if (buf->ops == &default_pipe_buf_ops)
268                 return buf->len;        // buf->offset is 0 for those
269         else
270                 return -(buf->offset + buf->len);
271 }
272
273 static struct page *append_pipe(struct iov_iter *i, size_t size,
274                                 unsigned int *off)
275 {
276         struct pipe_inode_info *pipe = i->pipe;
277         int offset = i->last_offset;
278         struct pipe_buffer *buf;
279         struct page *page;
280
281         if (offset > 0 && offset < PAGE_SIZE) {
282                 // some space in the last buffer; add to it
283                 buf = pipe_buf(pipe, pipe->head - 1);
284                 size = min_t(size_t, size, PAGE_SIZE - offset);
285                 buf->len += size;
286                 i->last_offset += size;
287                 i->count -= size;
288                 *off = offset;
289                 return buf->page;
290         }
291         // OK, we need a new buffer
292         *off = 0;
293         size = min_t(size_t, size, PAGE_SIZE);
294         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
295                 return NULL;
296         page = push_anon(pipe, size);
297         if (!page)
298                 return NULL;
299         i->head = pipe->head - 1;
300         i->last_offset = size;
301         i->count -= size;
302         return page;
303 }
304
305 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
306                          struct iov_iter *i)
307 {
308         struct pipe_inode_info *pipe = i->pipe;
309         unsigned int head = pipe->head;
310
311         if (unlikely(bytes > i->count))
312                 bytes = i->count;
313
314         if (unlikely(!bytes))
315                 return 0;
316
317         if (!sanity(i))
318                 return 0;
319
320         if (offset && i->last_offset == -offset) { // could we merge it?
321                 struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
322                 if (buf->page == page) {
323                         buf->len += bytes;
324                         i->last_offset -= bytes;
325                         i->count -= bytes;
326                         return bytes;
327                 }
328         }
329         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
330                 return 0;
331
332         push_page(pipe, page, offset, bytes);
333         i->last_offset = -(offset + bytes);
334         i->head = head;
335         i->count -= bytes;
336         return bytes;
337 }
338
339 /*
340  * fault_in_iov_iter_readable - fault in iov iterator for reading
341  * @i: iterator
342  * @size: maximum length
343  *
344  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
345  * @size.  For each iovec, fault in each page that constitutes the iovec.
346  *
347  * Returns the number of bytes not faulted in (like copy_to_user() and
348  * copy_from_user()).
349  *
350  * Always returns 0 for non-userspace iterators.
351  */
352 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
353 {
354         if (iter_is_ubuf(i)) {
355                 size_t n = min(size, iov_iter_count(i));
356                 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
357                 return size - n;
358         } else if (iter_is_iovec(i)) {
359                 size_t count = min(size, iov_iter_count(i));
360                 const struct iovec *p;
361                 size_t skip;
362
363                 size -= count;
364                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
365                         size_t len = min(count, p->iov_len - skip);
366                         size_t ret;
367
368                         if (unlikely(!len))
369                                 continue;
370                         ret = fault_in_readable(p->iov_base + skip, len);
371                         count -= len - ret;
372                         if (ret)
373                                 break;
374                 }
375                 return count + size;
376         }
377         return 0;
378 }
379 EXPORT_SYMBOL(fault_in_iov_iter_readable);
380
381 /*
382  * fault_in_iov_iter_writeable - fault in iov iterator for writing
383  * @i: iterator
384  * @size: maximum length
385  *
386  * Faults in the iterator using get_user_pages(), i.e., without triggering
387  * hardware page faults.  This is primarily useful when we already know that
388  * some or all of the pages in @i aren't in memory.
389  *
390  * Returns the number of bytes not faulted in, like copy_to_user() and
391  * copy_from_user().
392  *
393  * Always returns 0 for non-user-space iterators.
394  */
395 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
396 {
397         if (iter_is_ubuf(i)) {
398                 size_t n = min(size, iov_iter_count(i));
399                 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
400                 return size - n;
401         } else if (iter_is_iovec(i)) {
402                 size_t count = min(size, iov_iter_count(i));
403                 const struct iovec *p;
404                 size_t skip;
405
406                 size -= count;
407                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
408                         size_t len = min(count, p->iov_len - skip);
409                         size_t ret;
410
411                         if (unlikely(!len))
412                                 continue;
413                         ret = fault_in_safe_writeable(p->iov_base + skip, len);
414                         count -= len - ret;
415                         if (ret)
416                                 break;
417                 }
418                 return count + size;
419         }
420         return 0;
421 }
422 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
423
424 void iov_iter_init(struct iov_iter *i, unsigned int direction,
425                         const struct iovec *iov, unsigned long nr_segs,
426                         size_t count)
427 {
428         WARN_ON(direction & ~(READ | WRITE));
429         *i = (struct iov_iter) {
430                 .iter_type = ITER_IOVEC,
431                 .nofault = false,
432                 .user_backed = true,
433                 .data_source = direction,
434                 .iov = iov,
435                 .nr_segs = nr_segs,
436                 .iov_offset = 0,
437                 .count = count
438         };
439 }
440 EXPORT_SYMBOL(iov_iter_init);
441
442 // returns the offset in partial buffer (if any)
443 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
444 {
445         struct pipe_inode_info *pipe = i->pipe;
446         int used = pipe->head - pipe->tail;
447         int off = i->last_offset;
448
449         *npages = max((int)pipe->max_usage - used, 0);
450
451         if (off > 0 && off < PAGE_SIZE) { // anon and not full
452                 (*npages)++;
453                 return off;
454         }
455         return 0;
456 }
457
458 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
459                                 struct iov_iter *i)
460 {
461         unsigned int off, chunk;
462
463         if (unlikely(bytes > i->count))
464                 bytes = i->count;
465         if (unlikely(!bytes))
466                 return 0;
467
468         if (!sanity(i))
469                 return 0;
470
471         for (size_t n = bytes; n; n -= chunk) {
472                 struct page *page = append_pipe(i, n, &off);
473                 chunk = min_t(size_t, n, PAGE_SIZE - off);
474                 if (!page)
475                         return bytes - n;
476                 memcpy_to_page(page, off, addr, chunk);
477                 addr += chunk;
478         }
479         return bytes;
480 }
481
482 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
483                               __wsum sum, size_t off)
484 {
485         __wsum next = csum_partial_copy_nocheck(from, to, len);
486         return csum_block_add(sum, next, off);
487 }
488
489 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
490                                          struct iov_iter *i, __wsum *sump)
491 {
492         __wsum sum = *sump;
493         size_t off = 0;
494         unsigned int chunk, r;
495
496         if (unlikely(bytes > i->count))
497                 bytes = i->count;
498         if (unlikely(!bytes))
499                 return 0;
500
501         if (!sanity(i))
502                 return 0;
503
504         while (bytes) {
505                 struct page *page = append_pipe(i, bytes, &r);
506                 char *p;
507
508                 if (!page)
509                         break;
510                 chunk = min_t(size_t, bytes, PAGE_SIZE - r);
511                 p = kmap_local_page(page);
512                 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
513                 kunmap_local(p);
514                 off += chunk;
515                 bytes -= chunk;
516         }
517         *sump = sum;
518         return off;
519 }
520
521 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
522 {
523         if (WARN_ON_ONCE(i->data_source))
524                 return 0;
525         if (unlikely(iov_iter_is_pipe(i)))
526                 return copy_pipe_to_iter(addr, bytes, i);
527         if (user_backed_iter(i))
528                 might_fault();
529         iterate_and_advance(i, bytes, base, len, off,
530                 copyout(base, addr + off, len),
531                 memcpy(base, addr + off, len)
532         )
533
534         return bytes;
535 }
536 EXPORT_SYMBOL(_copy_to_iter);
537
538 #ifdef CONFIG_ARCH_HAS_COPY_MC
539 static int copyout_mc(void __user *to, const void *from, size_t n)
540 {
541         if (access_ok(to, n)) {
542                 instrument_copy_to_user(to, from, n);
543                 n = copy_mc_to_user((__force void *) to, from, n);
544         }
545         return n;
546 }
547
548 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
549                                 struct iov_iter *i)
550 {
551         size_t xfer = 0;
552         unsigned int off, chunk;
553
554         if (unlikely(bytes > i->count))
555                 bytes = i->count;
556         if (unlikely(!bytes))
557                 return 0;
558
559         if (!sanity(i))
560                 return 0;
561
562         while (bytes) {
563                 struct page *page = append_pipe(i, bytes, &off);
564                 unsigned long rem;
565                 char *p;
566
567                 if (!page)
568                         break;
569                 chunk = min_t(size_t, bytes, PAGE_SIZE - off);
570                 p = kmap_local_page(page);
571                 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
572                 chunk -= rem;
573                 kunmap_local(p);
574                 xfer += chunk;
575                 bytes -= chunk;
576                 if (rem) {
577                         iov_iter_revert(i, rem);
578                         break;
579                 }
580         }
581         return xfer;
582 }
583
584 /**
585  * _copy_mc_to_iter - copy to iter with source memory error exception handling
586  * @addr: source kernel address
587  * @bytes: total transfer length
588  * @i: destination iterator
589  *
590  * The pmem driver deploys this for the dax operation
591  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
592  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
593  * successfully copied.
594  *
595  * The main differences between this and typical _copy_to_iter().
596  *
597  * * Typical tail/residue handling after a fault retries the copy
598  *   byte-by-byte until the fault happens again. Re-triggering machine
599  *   checks is potentially fatal so the implementation uses source
600  *   alignment and poison alignment assumptions to avoid re-triggering
601  *   hardware exceptions.
602  *
603  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
604  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
605  *   a short copy.
606  *
607  * Return: number of bytes copied (may be %0)
608  */
609 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
610 {
611         if (WARN_ON_ONCE(i->data_source))
612                 return 0;
613         if (unlikely(iov_iter_is_pipe(i)))
614                 return copy_mc_pipe_to_iter(addr, bytes, i);
615         if (user_backed_iter(i))
616                 might_fault();
617         __iterate_and_advance(i, bytes, base, len, off,
618                 copyout_mc(base, addr + off, len),
619                 copy_mc_to_kernel(base, addr + off, len)
620         )
621
622         return bytes;
623 }
624 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
625 #endif /* CONFIG_ARCH_HAS_COPY_MC */
626
627 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
628 {
629         if (WARN_ON_ONCE(!i->data_source))
630                 return 0;
631
632         if (user_backed_iter(i))
633                 might_fault();
634         iterate_and_advance(i, bytes, base, len, off,
635                 copyin(addr + off, base, len),
636                 memcpy(addr + off, base, len)
637         )
638
639         return bytes;
640 }
641 EXPORT_SYMBOL(_copy_from_iter);
642
643 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
644 {
645         if (WARN_ON_ONCE(!i->data_source))
646                 return 0;
647
648         iterate_and_advance(i, bytes, base, len, off,
649                 __copy_from_user_inatomic_nocache(addr + off, base, len),
650                 memcpy(addr + off, base, len)
651         )
652
653         return bytes;
654 }
655 EXPORT_SYMBOL(_copy_from_iter_nocache);
656
657 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
658 /**
659  * _copy_from_iter_flushcache - write destination through cpu cache
660  * @addr: destination kernel address
661  * @bytes: total transfer length
662  * @i: source iterator
663  *
664  * The pmem driver arranges for filesystem-dax to use this facility via
665  * dax_copy_from_iter() for ensuring that writes to persistent memory
666  * are flushed through the CPU cache. It is differentiated from
667  * _copy_from_iter_nocache() in that guarantees all data is flushed for
668  * all iterator types. The _copy_from_iter_nocache() only attempts to
669  * bypass the cache for the ITER_IOVEC case, and on some archs may use
670  * instructions that strand dirty-data in the cache.
671  *
672  * Return: number of bytes copied (may be %0)
673  */
674 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
675 {
676         if (WARN_ON_ONCE(!i->data_source))
677                 return 0;
678
679         iterate_and_advance(i, bytes, base, len, off,
680                 __copy_from_user_flushcache(addr + off, base, len),
681                 memcpy_flushcache(addr + off, base, len)
682         )
683
684         return bytes;
685 }
686 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
687 #endif
688
689 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
690 {
691         struct page *head;
692         size_t v = n + offset;
693
694         /*
695          * The general case needs to access the page order in order
696          * to compute the page size.
697          * However, we mostly deal with order-0 pages and thus can
698          * avoid a possible cache line miss for requests that fit all
699          * page orders.
700          */
701         if (n <= v && v <= PAGE_SIZE)
702                 return true;
703
704         head = compound_head(page);
705         v += (page - head) << PAGE_SHIFT;
706
707         if (WARN_ON(n > v || v > page_size(head)))
708                 return false;
709         return true;
710 }
711
712 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
713                          struct iov_iter *i)
714 {
715         size_t res = 0;
716         if (!page_copy_sane(page, offset, bytes))
717                 return 0;
718         if (WARN_ON_ONCE(i->data_source))
719                 return 0;
720         if (unlikely(iov_iter_is_pipe(i)))
721                 return copy_page_to_iter_pipe(page, offset, bytes, i);
722         page += offset / PAGE_SIZE; // first subpage
723         offset %= PAGE_SIZE;
724         while (1) {
725                 void *kaddr = kmap_local_page(page);
726                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
727                 n = _copy_to_iter(kaddr + offset, n, i);
728                 kunmap_local(kaddr);
729                 res += n;
730                 bytes -= n;
731                 if (!bytes || !n)
732                         break;
733                 offset += n;
734                 if (offset == PAGE_SIZE) {
735                         page++;
736                         offset = 0;
737                 }
738         }
739         return res;
740 }
741 EXPORT_SYMBOL(copy_page_to_iter);
742
743 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
744                          struct iov_iter *i)
745 {
746         size_t res = 0;
747         if (!page_copy_sane(page, offset, bytes))
748                 return 0;
749         page += offset / PAGE_SIZE; // first subpage
750         offset %= PAGE_SIZE;
751         while (1) {
752                 void *kaddr = kmap_local_page(page);
753                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
754                 n = _copy_from_iter(kaddr + offset, n, i);
755                 kunmap_local(kaddr);
756                 res += n;
757                 bytes -= n;
758                 if (!bytes || !n)
759                         break;
760                 offset += n;
761                 if (offset == PAGE_SIZE) {
762                         page++;
763                         offset = 0;
764                 }
765         }
766         return res;
767 }
768 EXPORT_SYMBOL(copy_page_from_iter);
769
770 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
771 {
772         unsigned int chunk, off;
773
774         if (unlikely(bytes > i->count))
775                 bytes = i->count;
776         if (unlikely(!bytes))
777                 return 0;
778
779         if (!sanity(i))
780                 return 0;
781
782         for (size_t n = bytes; n; n -= chunk) {
783                 struct page *page = append_pipe(i, n, &off);
784                 char *p;
785
786                 if (!page)
787                         return bytes - n;
788                 chunk = min_t(size_t, n, PAGE_SIZE - off);
789                 p = kmap_local_page(page);
790                 memset(p + off, 0, chunk);
791                 kunmap_local(p);
792         }
793         return bytes;
794 }
795
796 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
797 {
798         if (unlikely(iov_iter_is_pipe(i)))
799                 return pipe_zero(bytes, i);
800         iterate_and_advance(i, bytes, base, len, count,
801                 clear_user(base, len),
802                 memset(base, 0, len)
803         )
804
805         return bytes;
806 }
807 EXPORT_SYMBOL(iov_iter_zero);
808
809 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
810                                   struct iov_iter *i)
811 {
812         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
813         if (!page_copy_sane(page, offset, bytes)) {
814                 kunmap_atomic(kaddr);
815                 return 0;
816         }
817         if (WARN_ON_ONCE(!i->data_source)) {
818                 kunmap_atomic(kaddr);
819                 return 0;
820         }
821         iterate_and_advance(i, bytes, base, len, off,
822                 copyin(p + off, base, len),
823                 memcpy(p + off, base, len)
824         )
825         kunmap_atomic(kaddr);
826         return bytes;
827 }
828 EXPORT_SYMBOL(copy_page_from_iter_atomic);
829
830 static void pipe_advance(struct iov_iter *i, size_t size)
831 {
832         struct pipe_inode_info *pipe = i->pipe;
833         int off = i->last_offset;
834
835         if (!off && !size) {
836                 pipe_discard_from(pipe, i->start_head); // discard everything
837                 return;
838         }
839         i->count -= size;
840         while (1) {
841                 struct pipe_buffer *buf = pipe_buf(pipe, i->head);
842                 if (off) /* make it relative to the beginning of buffer */
843                         size += abs(off) - buf->offset;
844                 if (size <= buf->len) {
845                         buf->len = size;
846                         i->last_offset = last_offset(buf);
847                         break;
848                 }
849                 size -= buf->len;
850                 i->head++;
851                 off = 0;
852         }
853         pipe_discard_from(pipe, i->head + 1); // discard everything past this one
854 }
855
856 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
857 {
858         const struct bio_vec *bvec, *end;
859
860         if (!i->count)
861                 return;
862         i->count -= size;
863
864         size += i->iov_offset;
865
866         for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
867                 if (likely(size < bvec->bv_len))
868                         break;
869                 size -= bvec->bv_len;
870         }
871         i->iov_offset = size;
872         i->nr_segs -= bvec - i->bvec;
873         i->bvec = bvec;
874 }
875
876 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
877 {
878         const struct iovec *iov, *end;
879
880         if (!i->count)
881                 return;
882         i->count -= size;
883
884         size += i->iov_offset; // from beginning of current segment
885         for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
886                 if (likely(size < iov->iov_len))
887                         break;
888                 size -= iov->iov_len;
889         }
890         i->iov_offset = size;
891         i->nr_segs -= iov - i->iov;
892         i->iov = iov;
893 }
894
895 void iov_iter_advance(struct iov_iter *i, size_t size)
896 {
897         if (unlikely(i->count < size))
898                 size = i->count;
899         if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
900                 i->iov_offset += size;
901                 i->count -= size;
902         } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
903                 /* iovec and kvec have identical layouts */
904                 iov_iter_iovec_advance(i, size);
905         } else if (iov_iter_is_bvec(i)) {
906                 iov_iter_bvec_advance(i, size);
907         } else if (iov_iter_is_pipe(i)) {
908                 pipe_advance(i, size);
909         } else if (iov_iter_is_discard(i)) {
910                 i->count -= size;
911         }
912 }
913 EXPORT_SYMBOL(iov_iter_advance);
914
915 void iov_iter_revert(struct iov_iter *i, size_t unroll)
916 {
917         if (!unroll)
918                 return;
919         if (WARN_ON(unroll > MAX_RW_COUNT))
920                 return;
921         i->count += unroll;
922         if (unlikely(iov_iter_is_pipe(i))) {
923                 struct pipe_inode_info *pipe = i->pipe;
924                 unsigned int head = pipe->head;
925
926                 while (head > i->start_head) {
927                         struct pipe_buffer *b = pipe_buf(pipe, --head);
928                         if (unroll < b->len) {
929                                 b->len -= unroll;
930                                 i->last_offset = last_offset(b);
931                                 i->head = head;
932                                 return;
933                         }
934                         unroll -= b->len;
935                         pipe_buf_release(pipe, b);
936                         pipe->head--;
937                 }
938                 i->last_offset = 0;
939                 i->head = head;
940                 return;
941         }
942         if (unlikely(iov_iter_is_discard(i)))
943                 return;
944         if (unroll <= i->iov_offset) {
945                 i->iov_offset -= unroll;
946                 return;
947         }
948         unroll -= i->iov_offset;
949         if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
950                 BUG(); /* We should never go beyond the start of the specified
951                         * range since we might then be straying into pages that
952                         * aren't pinned.
953                         */
954         } else if (iov_iter_is_bvec(i)) {
955                 const struct bio_vec *bvec = i->bvec;
956                 while (1) {
957                         size_t n = (--bvec)->bv_len;
958                         i->nr_segs++;
959                         if (unroll <= n) {
960                                 i->bvec = bvec;
961                                 i->iov_offset = n - unroll;
962                                 return;
963                         }
964                         unroll -= n;
965                 }
966         } else { /* same logics for iovec and kvec */
967                 const struct iovec *iov = i->iov;
968                 while (1) {
969                         size_t n = (--iov)->iov_len;
970                         i->nr_segs++;
971                         if (unroll <= n) {
972                                 i->iov = iov;
973                                 i->iov_offset = n - unroll;
974                                 return;
975                         }
976                         unroll -= n;
977                 }
978         }
979 }
980 EXPORT_SYMBOL(iov_iter_revert);
981
982 /*
983  * Return the count of just the current iov_iter segment.
984  */
985 size_t iov_iter_single_seg_count(const struct iov_iter *i)
986 {
987         if (i->nr_segs > 1) {
988                 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
989                         return min(i->count, i->iov->iov_len - i->iov_offset);
990                 if (iov_iter_is_bvec(i))
991                         return min(i->count, i->bvec->bv_len - i->iov_offset);
992         }
993         return i->count;
994 }
995 EXPORT_SYMBOL(iov_iter_single_seg_count);
996
997 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
998                         const struct kvec *kvec, unsigned long nr_segs,
999                         size_t count)
1000 {
1001         WARN_ON(direction & ~(READ | WRITE));
1002         *i = (struct iov_iter){
1003                 .iter_type = ITER_KVEC,
1004                 .data_source = direction,
1005                 .kvec = kvec,
1006                 .nr_segs = nr_segs,
1007                 .iov_offset = 0,
1008                 .count = count
1009         };
1010 }
1011 EXPORT_SYMBOL(iov_iter_kvec);
1012
1013 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1014                         const struct bio_vec *bvec, unsigned long nr_segs,
1015                         size_t count)
1016 {
1017         WARN_ON(direction & ~(READ | WRITE));
1018         *i = (struct iov_iter){
1019                 .iter_type = ITER_BVEC,
1020                 .data_source = direction,
1021                 .bvec = bvec,
1022                 .nr_segs = nr_segs,
1023                 .iov_offset = 0,
1024                 .count = count
1025         };
1026 }
1027 EXPORT_SYMBOL(iov_iter_bvec);
1028
1029 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1030                         struct pipe_inode_info *pipe,
1031                         size_t count)
1032 {
1033         BUG_ON(direction != READ);
1034         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1035         *i = (struct iov_iter){
1036                 .iter_type = ITER_PIPE,
1037                 .data_source = false,
1038                 .pipe = pipe,
1039                 .head = pipe->head,
1040                 .start_head = pipe->head,
1041                 .last_offset = 0,
1042                 .count = count
1043         };
1044 }
1045 EXPORT_SYMBOL(iov_iter_pipe);
1046
1047 /**
1048  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1049  * @i: The iterator to initialise.
1050  * @direction: The direction of the transfer.
1051  * @xarray: The xarray to access.
1052  * @start: The start file position.
1053  * @count: The size of the I/O buffer in bytes.
1054  *
1055  * Set up an I/O iterator to either draw data out of the pages attached to an
1056  * inode or to inject data into those pages.  The pages *must* be prevented
1057  * from evaporation, either by taking a ref on them or locking them by the
1058  * caller.
1059  */
1060 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1061                      struct xarray *xarray, loff_t start, size_t count)
1062 {
1063         BUG_ON(direction & ~1);
1064         *i = (struct iov_iter) {
1065                 .iter_type = ITER_XARRAY,
1066                 .data_source = direction,
1067                 .xarray = xarray,
1068                 .xarray_start = start,
1069                 .count = count,
1070                 .iov_offset = 0
1071         };
1072 }
1073 EXPORT_SYMBOL(iov_iter_xarray);
1074
1075 /**
1076  * iov_iter_discard - Initialise an I/O iterator that discards data
1077  * @i: The iterator to initialise.
1078  * @direction: The direction of the transfer.
1079  * @count: The size of the I/O buffer in bytes.
1080  *
1081  * Set up an I/O iterator that just discards everything that's written to it.
1082  * It's only available as a READ iterator.
1083  */
1084 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1085 {
1086         BUG_ON(direction != READ);
1087         *i = (struct iov_iter){
1088                 .iter_type = ITER_DISCARD,
1089                 .data_source = false,
1090                 .count = count,
1091                 .iov_offset = 0
1092         };
1093 }
1094 EXPORT_SYMBOL(iov_iter_discard);
1095
1096 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1097                                    unsigned len_mask)
1098 {
1099         size_t size = i->count;
1100         size_t skip = i->iov_offset;
1101         unsigned k;
1102
1103         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1104                 size_t len = i->iov[k].iov_len - skip;
1105
1106                 if (len > size)
1107                         len = size;
1108                 if (len & len_mask)
1109                         return false;
1110                 if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1111                         return false;
1112
1113                 size -= len;
1114                 if (!size)
1115                         break;
1116         }
1117         return true;
1118 }
1119
1120 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1121                                   unsigned len_mask)
1122 {
1123         size_t size = i->count;
1124         unsigned skip = i->iov_offset;
1125         unsigned k;
1126
1127         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1128                 size_t len = i->bvec[k].bv_len - skip;
1129
1130                 if (len > size)
1131                         len = size;
1132                 if (len & len_mask)
1133                         return false;
1134                 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1135                         return false;
1136
1137                 size -= len;
1138                 if (!size)
1139                         break;
1140         }
1141         return true;
1142 }
1143
1144 /**
1145  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1146  *      are aligned to the parameters.
1147  *
1148  * @i: &struct iov_iter to restore
1149  * @addr_mask: bit mask to check against the iov element's addresses
1150  * @len_mask: bit mask to check against the iov element's lengths
1151  *
1152  * Return: false if any addresses or lengths intersect with the provided masks
1153  */
1154 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1155                          unsigned len_mask)
1156 {
1157         if (likely(iter_is_ubuf(i))) {
1158                 if (i->count & len_mask)
1159                         return false;
1160                 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1161                         return false;
1162                 return true;
1163         }
1164
1165         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1166                 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1167
1168         if (iov_iter_is_bvec(i))
1169                 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1170
1171         if (iov_iter_is_pipe(i)) {
1172                 size_t size = i->count;
1173
1174                 if (size & len_mask)
1175                         return false;
1176                 if (size && i->last_offset > 0) {
1177                         if (i->last_offset & addr_mask)
1178                                 return false;
1179                 }
1180
1181                 return true;
1182         }
1183
1184         if (iov_iter_is_xarray(i)) {
1185                 if (i->count & len_mask)
1186                         return false;
1187                 if ((i->xarray_start + i->iov_offset) & addr_mask)
1188                         return false;
1189         }
1190
1191         return true;
1192 }
1193 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1194
1195 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1196 {
1197         unsigned long res = 0;
1198         size_t size = i->count;
1199         size_t skip = i->iov_offset;
1200         unsigned k;
1201
1202         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1203                 size_t len = i->iov[k].iov_len - skip;
1204                 if (len) {
1205                         res |= (unsigned long)i->iov[k].iov_base + skip;
1206                         if (len > size)
1207                                 len = size;
1208                         res |= len;
1209                         size -= len;
1210                         if (!size)
1211                                 break;
1212                 }
1213         }
1214         return res;
1215 }
1216
1217 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1218 {
1219         unsigned res = 0;
1220         size_t size = i->count;
1221         unsigned skip = i->iov_offset;
1222         unsigned k;
1223
1224         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1225                 size_t len = i->bvec[k].bv_len - skip;
1226                 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1227                 if (len > size)
1228                         len = size;
1229                 res |= len;
1230                 size -= len;
1231                 if (!size)
1232                         break;
1233         }
1234         return res;
1235 }
1236
1237 unsigned long iov_iter_alignment(const struct iov_iter *i)
1238 {
1239         if (likely(iter_is_ubuf(i))) {
1240                 size_t size = i->count;
1241                 if (size)
1242                         return ((unsigned long)i->ubuf + i->iov_offset) | size;
1243                 return 0;
1244         }
1245
1246         /* iovec and kvec have identical layouts */
1247         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1248                 return iov_iter_alignment_iovec(i);
1249
1250         if (iov_iter_is_bvec(i))
1251                 return iov_iter_alignment_bvec(i);
1252
1253         if (iov_iter_is_pipe(i)) {
1254                 size_t size = i->count;
1255
1256                 if (size && i->last_offset > 0)
1257                         return size | i->last_offset;
1258                 return size;
1259         }
1260
1261         if (iov_iter_is_xarray(i))
1262                 return (i->xarray_start + i->iov_offset) | i->count;
1263
1264         return 0;
1265 }
1266 EXPORT_SYMBOL(iov_iter_alignment);
1267
1268 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1269 {
1270         unsigned long res = 0;
1271         unsigned long v = 0;
1272         size_t size = i->count;
1273         unsigned k;
1274
1275         if (iter_is_ubuf(i))
1276                 return 0;
1277
1278         if (WARN_ON(!iter_is_iovec(i)))
1279                 return ~0U;
1280
1281         for (k = 0; k < i->nr_segs; k++) {
1282                 if (i->iov[k].iov_len) {
1283                         unsigned long base = (unsigned long)i->iov[k].iov_base;
1284                         if (v) // if not the first one
1285                                 res |= base | v; // this start | previous end
1286                         v = base + i->iov[k].iov_len;
1287                         if (size <= i->iov[k].iov_len)
1288                                 break;
1289                         size -= i->iov[k].iov_len;
1290                 }
1291         }
1292         return res;
1293 }
1294 EXPORT_SYMBOL(iov_iter_gap_alignment);
1295
1296 static int want_pages_array(struct page ***res, size_t size,
1297                             size_t start, unsigned int maxpages)
1298 {
1299         unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1300
1301         if (count > maxpages)
1302                 count = maxpages;
1303         WARN_ON(!count);        // caller should've prevented that
1304         if (!*res) {
1305                 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1306                 if (!*res)
1307                         return 0;
1308         }
1309         return count;
1310 }
1311
1312 static ssize_t pipe_get_pages(struct iov_iter *i,
1313                    struct page ***pages, size_t maxsize, unsigned maxpages,
1314                    size_t *start)
1315 {
1316         unsigned int npages, count, off, chunk;
1317         struct page **p;
1318         size_t left;
1319
1320         if (!sanity(i))
1321                 return -EFAULT;
1322
1323         *start = off = pipe_npages(i, &npages);
1324         if (!npages)
1325                 return -EFAULT;
1326         count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1327         if (!count)
1328                 return -ENOMEM;
1329         p = *pages;
1330         for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1331                 struct page *page = append_pipe(i, left, &off);
1332                 if (!page)
1333                         break;
1334                 chunk = min_t(size_t, left, PAGE_SIZE - off);
1335                 get_page(*p++ = page);
1336         }
1337         if (!npages)
1338                 return -EFAULT;
1339         return maxsize - left;
1340 }
1341
1342 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1343                                           pgoff_t index, unsigned int nr_pages)
1344 {
1345         XA_STATE(xas, xa, index);
1346         struct page *page;
1347         unsigned int ret = 0;
1348
1349         rcu_read_lock();
1350         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1351                 if (xas_retry(&xas, page))
1352                         continue;
1353
1354                 /* Has the page moved or been split? */
1355                 if (unlikely(page != xas_reload(&xas))) {
1356                         xas_reset(&xas);
1357                         continue;
1358                 }
1359
1360                 pages[ret] = find_subpage(page, xas.xa_index);
1361                 get_page(pages[ret]);
1362                 if (++ret == nr_pages)
1363                         break;
1364         }
1365         rcu_read_unlock();
1366         return ret;
1367 }
1368
1369 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1370                                      struct page ***pages, size_t maxsize,
1371                                      unsigned maxpages, size_t *_start_offset)
1372 {
1373         unsigned nr, offset, count;
1374         pgoff_t index;
1375         loff_t pos;
1376
1377         pos = i->xarray_start + i->iov_offset;
1378         index = pos >> PAGE_SHIFT;
1379         offset = pos & ~PAGE_MASK;
1380         *_start_offset = offset;
1381
1382         count = want_pages_array(pages, maxsize, offset, maxpages);
1383         if (!count)
1384                 return -ENOMEM;
1385         nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1386         if (nr == 0)
1387                 return 0;
1388
1389         maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1390         i->iov_offset += maxsize;
1391         i->count -= maxsize;
1392         return maxsize;
1393 }
1394
1395 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1396 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1397 {
1398         size_t skip;
1399         long k;
1400
1401         if (iter_is_ubuf(i))
1402                 return (unsigned long)i->ubuf + i->iov_offset;
1403
1404         for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1405                 size_t len = i->iov[k].iov_len - skip;
1406
1407                 if (unlikely(!len))
1408                         continue;
1409                 if (*size > len)
1410                         *size = len;
1411                 return (unsigned long)i->iov[k].iov_base + skip;
1412         }
1413         BUG(); // if it had been empty, we wouldn't get called
1414 }
1415
1416 /* must be done on non-empty ITER_BVEC one */
1417 static struct page *first_bvec_segment(const struct iov_iter *i,
1418                                        size_t *size, size_t *start)
1419 {
1420         struct page *page;
1421         size_t skip = i->iov_offset, len;
1422
1423         len = i->bvec->bv_len - skip;
1424         if (*size > len)
1425                 *size = len;
1426         skip += i->bvec->bv_offset;
1427         page = i->bvec->bv_page + skip / PAGE_SIZE;
1428         *start = skip % PAGE_SIZE;
1429         return page;
1430 }
1431
1432 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1433                    struct page ***pages, size_t maxsize,
1434                    unsigned int maxpages, size_t *start,
1435                    unsigned int gup_flags)
1436 {
1437         unsigned int n;
1438
1439         if (maxsize > i->count)
1440                 maxsize = i->count;
1441         if (!maxsize)
1442                 return 0;
1443         if (maxsize > MAX_RW_COUNT)
1444                 maxsize = MAX_RW_COUNT;
1445
1446         if (likely(user_backed_iter(i))) {
1447                 unsigned long addr;
1448                 int res;
1449
1450                 if (iov_iter_rw(i) != WRITE)
1451                         gup_flags |= FOLL_WRITE;
1452                 if (i->nofault)
1453                         gup_flags |= FOLL_NOFAULT;
1454
1455                 addr = first_iovec_segment(i, &maxsize);
1456                 *start = addr % PAGE_SIZE;
1457                 addr &= PAGE_MASK;
1458                 n = want_pages_array(pages, maxsize, *start, maxpages);
1459                 if (!n)
1460                         return -ENOMEM;
1461                 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1462                 if (unlikely(res <= 0))
1463                         return res;
1464                 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1465                 iov_iter_advance(i, maxsize);
1466                 return maxsize;
1467         }
1468         if (iov_iter_is_bvec(i)) {
1469                 struct page **p;
1470                 struct page *page;
1471
1472                 page = first_bvec_segment(i, &maxsize, start);
1473                 n = want_pages_array(pages, maxsize, *start, maxpages);
1474                 if (!n)
1475                         return -ENOMEM;
1476                 p = *pages;
1477                 for (int k = 0; k < n; k++)
1478                         get_page(p[k] = page + k);
1479                 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1480                 i->count -= maxsize;
1481                 i->iov_offset += maxsize;
1482                 if (i->iov_offset == i->bvec->bv_len) {
1483                         i->iov_offset = 0;
1484                         i->bvec++;
1485                         i->nr_segs--;
1486                 }
1487                 return maxsize;
1488         }
1489         if (iov_iter_is_pipe(i))
1490                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1491         if (iov_iter_is_xarray(i))
1492                 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1493         return -EFAULT;
1494 }
1495
1496 ssize_t iov_iter_get_pages(struct iov_iter *i,
1497                    struct page **pages, size_t maxsize, unsigned maxpages,
1498                    size_t *start, unsigned gup_flags)
1499 {
1500         if (!maxpages)
1501                 return 0;
1502         BUG_ON(!pages);
1503
1504         return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages,
1505                                           start, gup_flags);
1506 }
1507 EXPORT_SYMBOL_GPL(iov_iter_get_pages);
1508
1509 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1510                 size_t maxsize, unsigned maxpages, size_t *start)
1511 {
1512         return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0);
1513 }
1514 EXPORT_SYMBOL(iov_iter_get_pages2);
1515
1516 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1517                    struct page ***pages, size_t maxsize,
1518                    size_t *start, unsigned gup_flags)
1519 {
1520         ssize_t len;
1521
1522         *pages = NULL;
1523
1524         len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start,
1525                                          gup_flags);
1526         if (len <= 0) {
1527                 kvfree(*pages);
1528                 *pages = NULL;
1529         }
1530         return len;
1531 }
1532 EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc);
1533
1534 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1535                 struct page ***pages, size_t maxsize, size_t *start)
1536 {
1537         return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0);
1538 }
1539 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1540
1541 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1542                                struct iov_iter *i)
1543 {
1544         __wsum sum, next;
1545         sum = *csum;
1546         if (WARN_ON_ONCE(!i->data_source))
1547                 return 0;
1548
1549         iterate_and_advance(i, bytes, base, len, off, ({
1550                 next = csum_and_copy_from_user(base, addr + off, len);
1551                 sum = csum_block_add(sum, next, off);
1552                 next ? 0 : len;
1553         }), ({
1554                 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1555         })
1556         )
1557         *csum = sum;
1558         return bytes;
1559 }
1560 EXPORT_SYMBOL(csum_and_copy_from_iter);
1561
1562 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1563                              struct iov_iter *i)
1564 {
1565         struct csum_state *csstate = _csstate;
1566         __wsum sum, next;
1567
1568         if (WARN_ON_ONCE(i->data_source))
1569                 return 0;
1570         if (unlikely(iov_iter_is_discard(i))) {
1571                 // can't use csum_memcpy() for that one - data is not copied
1572                 csstate->csum = csum_block_add(csstate->csum,
1573                                                csum_partial(addr, bytes, 0),
1574                                                csstate->off);
1575                 csstate->off += bytes;
1576                 return bytes;
1577         }
1578
1579         sum = csum_shift(csstate->csum, csstate->off);
1580         if (unlikely(iov_iter_is_pipe(i)))
1581                 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1582         else iterate_and_advance(i, bytes, base, len, off, ({
1583                 next = csum_and_copy_to_user(addr + off, base, len);
1584                 sum = csum_block_add(sum, next, off);
1585                 next ? 0 : len;
1586         }), ({
1587                 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1588         })
1589         )
1590         csstate->csum = csum_shift(sum, csstate->off);
1591         csstate->off += bytes;
1592         return bytes;
1593 }
1594 EXPORT_SYMBOL(csum_and_copy_to_iter);
1595
1596 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1597                 struct iov_iter *i)
1598 {
1599 #ifdef CONFIG_CRYPTO_HASH
1600         struct ahash_request *hash = hashp;
1601         struct scatterlist sg;
1602         size_t copied;
1603
1604         copied = copy_to_iter(addr, bytes, i);
1605         sg_init_one(&sg, addr, copied);
1606         ahash_request_set_crypt(hash, &sg, NULL, copied);
1607         crypto_ahash_update(hash);
1608         return copied;
1609 #else
1610         return 0;
1611 #endif
1612 }
1613 EXPORT_SYMBOL(hash_and_copy_to_iter);
1614
1615 static int iov_npages(const struct iov_iter *i, int maxpages)
1616 {
1617         size_t skip = i->iov_offset, size = i->count;
1618         const struct iovec *p;
1619         int npages = 0;
1620
1621         for (p = i->iov; size; skip = 0, p++) {
1622                 unsigned offs = offset_in_page(p->iov_base + skip);
1623                 size_t len = min(p->iov_len - skip, size);
1624
1625                 if (len) {
1626                         size -= len;
1627                         npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1628                         if (unlikely(npages > maxpages))
1629                                 return maxpages;
1630                 }
1631         }
1632         return npages;
1633 }
1634
1635 static int bvec_npages(const struct iov_iter *i, int maxpages)
1636 {
1637         size_t skip = i->iov_offset, size = i->count;
1638         const struct bio_vec *p;
1639         int npages = 0;
1640
1641         for (p = i->bvec; size; skip = 0, p++) {
1642                 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1643                 size_t len = min(p->bv_len - skip, size);
1644
1645                 size -= len;
1646                 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1647                 if (unlikely(npages > maxpages))
1648                         return maxpages;
1649         }
1650         return npages;
1651 }
1652
1653 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1654 {
1655         if (unlikely(!i->count))
1656                 return 0;
1657         if (likely(iter_is_ubuf(i))) {
1658                 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1659                 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1660                 return min(npages, maxpages);
1661         }
1662         /* iovec and kvec have identical layouts */
1663         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1664                 return iov_npages(i, maxpages);
1665         if (iov_iter_is_bvec(i))
1666                 return bvec_npages(i, maxpages);
1667         if (iov_iter_is_pipe(i)) {
1668                 int npages;
1669
1670                 if (!sanity(i))
1671                         return 0;
1672
1673                 pipe_npages(i, &npages);
1674                 return min(npages, maxpages);
1675         }
1676         if (iov_iter_is_xarray(i)) {
1677                 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1678                 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1679                 return min(npages, maxpages);
1680         }
1681         return 0;
1682 }
1683 EXPORT_SYMBOL(iov_iter_npages);
1684
1685 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1686 {
1687         *new = *old;
1688         if (unlikely(iov_iter_is_pipe(new))) {
1689                 WARN_ON(1);
1690                 return NULL;
1691         }
1692         if (iov_iter_is_bvec(new))
1693                 return new->bvec = kmemdup(new->bvec,
1694                                     new->nr_segs * sizeof(struct bio_vec),
1695                                     flags);
1696         else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1697                 /* iovec and kvec have identical layout */
1698                 return new->iov = kmemdup(new->iov,
1699                                    new->nr_segs * sizeof(struct iovec),
1700                                    flags);
1701         return NULL;
1702 }
1703 EXPORT_SYMBOL(dup_iter);
1704
1705 static int copy_compat_iovec_from_user(struct iovec *iov,
1706                 const struct iovec __user *uvec, unsigned long nr_segs)
1707 {
1708         const struct compat_iovec __user *uiov =
1709                 (const struct compat_iovec __user *)uvec;
1710         int ret = -EFAULT, i;
1711
1712         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1713                 return -EFAULT;
1714
1715         for (i = 0; i < nr_segs; i++) {
1716                 compat_uptr_t buf;
1717                 compat_ssize_t len;
1718
1719                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1720                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1721
1722                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1723                 if (len < 0) {
1724                         ret = -EINVAL;
1725                         goto uaccess_end;
1726                 }
1727                 iov[i].iov_base = compat_ptr(buf);
1728                 iov[i].iov_len = len;
1729         }
1730
1731         ret = 0;
1732 uaccess_end:
1733         user_access_end();
1734         return ret;
1735 }
1736
1737 static int copy_iovec_from_user(struct iovec *iov,
1738                 const struct iovec __user *uvec, unsigned long nr_segs)
1739 {
1740         unsigned long seg;
1741
1742         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1743                 return -EFAULT;
1744         for (seg = 0; seg < nr_segs; seg++) {
1745                 if ((ssize_t)iov[seg].iov_len < 0)
1746                         return -EINVAL;
1747         }
1748
1749         return 0;
1750 }
1751
1752 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1753                 unsigned long nr_segs, unsigned long fast_segs,
1754                 struct iovec *fast_iov, bool compat)
1755 {
1756         struct iovec *iov = fast_iov;
1757         int ret;
1758
1759         /*
1760          * SuS says "The readv() function *may* fail if the iovcnt argument was
1761          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1762          * traditionally returned zero for zero segments, so...
1763          */
1764         if (nr_segs == 0)
1765                 return iov;
1766         if (nr_segs > UIO_MAXIOV)
1767                 return ERR_PTR(-EINVAL);
1768         if (nr_segs > fast_segs) {
1769                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1770                 if (!iov)
1771                         return ERR_PTR(-ENOMEM);
1772         }
1773
1774         if (compat)
1775                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1776         else
1777                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1778         if (ret) {
1779                 if (iov != fast_iov)
1780                         kfree(iov);
1781                 return ERR_PTR(ret);
1782         }
1783
1784         return iov;
1785 }
1786
1787 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1788                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1789                  struct iov_iter *i, bool compat)
1790 {
1791         ssize_t total_len = 0;
1792         unsigned long seg;
1793         struct iovec *iov;
1794
1795         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1796         if (IS_ERR(iov)) {
1797                 *iovp = NULL;
1798                 return PTR_ERR(iov);
1799         }
1800
1801         /*
1802          * According to the Single Unix Specification we should return EINVAL if
1803          * an element length is < 0 when cast to ssize_t or if the total length
1804          * would overflow the ssize_t return value of the system call.
1805          *
1806          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1807          * overflow case.
1808          */
1809         for (seg = 0; seg < nr_segs; seg++) {
1810                 ssize_t len = (ssize_t)iov[seg].iov_len;
1811
1812                 if (!access_ok(iov[seg].iov_base, len)) {
1813                         if (iov != *iovp)
1814                                 kfree(iov);
1815                         *iovp = NULL;
1816                         return -EFAULT;
1817                 }
1818
1819                 if (len > MAX_RW_COUNT - total_len) {
1820                         len = MAX_RW_COUNT - total_len;
1821                         iov[seg].iov_len = len;
1822                 }
1823                 total_len += len;
1824         }
1825
1826         iov_iter_init(i, type, iov, nr_segs, total_len);
1827         if (iov == *iovp)
1828                 *iovp = NULL;
1829         else
1830                 *iovp = iov;
1831         return total_len;
1832 }
1833
1834 /**
1835  * import_iovec() - Copy an array of &struct iovec from userspace
1836  *     into the kernel, check that it is valid, and initialize a new
1837  *     &struct iov_iter iterator to access it.
1838  *
1839  * @type: One of %READ or %WRITE.
1840  * @uvec: Pointer to the userspace array.
1841  * @nr_segs: Number of elements in userspace array.
1842  * @fast_segs: Number of elements in @iov.
1843  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1844  *     on-stack) kernel array.
1845  * @i: Pointer to iterator that will be initialized on success.
1846  *
1847  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1848  * then this function places %NULL in *@iov on return. Otherwise, a new
1849  * array will be allocated and the result placed in *@iov. This means that
1850  * the caller may call kfree() on *@iov regardless of whether the small
1851  * on-stack array was used or not (and regardless of whether this function
1852  * returns an error or not).
1853  *
1854  * Return: Negative error code on error, bytes imported on success
1855  */
1856 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1857                  unsigned nr_segs, unsigned fast_segs,
1858                  struct iovec **iovp, struct iov_iter *i)
1859 {
1860         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1861                               in_compat_syscall());
1862 }
1863 EXPORT_SYMBOL(import_iovec);
1864
1865 int import_single_range(int rw, void __user *buf, size_t len,
1866                  struct iovec *iov, struct iov_iter *i)
1867 {
1868         if (len > MAX_RW_COUNT)
1869                 len = MAX_RW_COUNT;
1870         if (unlikely(!access_ok(buf, len)))
1871                 return -EFAULT;
1872
1873         iov->iov_base = buf;
1874         iov->iov_len = len;
1875         iov_iter_init(i, rw, iov, 1, len);
1876         return 0;
1877 }
1878 EXPORT_SYMBOL(import_single_range);
1879
1880 /**
1881  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1882  *     iov_iter_save_state() was called.
1883  *
1884  * @i: &struct iov_iter to restore
1885  * @state: state to restore from
1886  *
1887  * Used after iov_iter_save_state() to bring restore @i, if operations may
1888  * have advanced it.
1889  *
1890  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1891  */
1892 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1893 {
1894         if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1895                          !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1896                 return;
1897         i->iov_offset = state->iov_offset;
1898         i->count = state->count;
1899         if (iter_is_ubuf(i))
1900                 return;
1901         /*
1902          * For the *vec iters, nr_segs + iov is constant - if we increment
1903          * the vec, then we also decrement the nr_segs count. Hence we don't
1904          * need to track both of these, just one is enough and we can deduct
1905          * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1906          * size, so we can just increment the iov pointer as they are unionzed.
1907          * ITER_BVEC _may_ be the same size on some archs, but on others it is
1908          * not. Be safe and handle it separately.
1909          */
1910         BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1911         if (iov_iter_is_bvec(i))
1912                 i->bvec -= state->nr_segs - i->nr_segs;
1913         else
1914                 i->iov -= state->nr_segs - i->nr_segs;
1915         i->nr_segs = state->nr_segs;
1916 }