Merge tag 'libnvdimm-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[platform/kernel/linux-starfive.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16
17 /* covers ubuf and kbuf alike */
18 #define iterate_buf(i, n, base, len, off, __p, STEP) {          \
19         size_t __maybe_unused off = 0;                          \
20         len = n;                                                \
21         base = __p + i->iov_offset;                             \
22         len -= (STEP);                                          \
23         i->iov_offset += len;                                   \
24         n = len;                                                \
25 }
26
27 /* covers iovec and kvec alike */
28 #define iterate_iovec(i, n, base, len, off, __p, STEP) {        \
29         size_t off = 0;                                         \
30         size_t skip = i->iov_offset;                            \
31         do {                                                    \
32                 len = min(n, __p->iov_len - skip);              \
33                 if (likely(len)) {                              \
34                         base = __p->iov_base + skip;            \
35                         len -= (STEP);                          \
36                         off += len;                             \
37                         skip += len;                            \
38                         n -= len;                               \
39                         if (skip < __p->iov_len)                \
40                                 break;                          \
41                 }                                               \
42                 __p++;                                          \
43                 skip = 0;                                       \
44         } while (n);                                            \
45         i->iov_offset = skip;                                   \
46         n = off;                                                \
47 }
48
49 #define iterate_bvec(i, n, base, len, off, p, STEP) {           \
50         size_t off = 0;                                         \
51         unsigned skip = i->iov_offset;                          \
52         while (n) {                                             \
53                 unsigned offset = p->bv_offset + skip;          \
54                 unsigned left;                                  \
55                 void *kaddr = kmap_local_page(p->bv_page +      \
56                                         offset / PAGE_SIZE);    \
57                 base = kaddr + offset % PAGE_SIZE;              \
58                 len = min(min(n, (size_t)(p->bv_len - skip)),   \
59                      (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
60                 left = (STEP);                                  \
61                 kunmap_local(kaddr);                            \
62                 len -= left;                                    \
63                 off += len;                                     \
64                 skip += len;                                    \
65                 if (skip == p->bv_len) {                        \
66                         skip = 0;                               \
67                         p++;                                    \
68                 }                                               \
69                 n -= len;                                       \
70                 if (left)                                       \
71                         break;                                  \
72         }                                                       \
73         i->iov_offset = skip;                                   \
74         n = off;                                                \
75 }
76
77 #define iterate_xarray(i, n, base, len, __off, STEP) {          \
78         __label__ __out;                                        \
79         size_t __off = 0;                                       \
80         struct folio *folio;                                    \
81         loff_t start = i->xarray_start + i->iov_offset;         \
82         pgoff_t index = start / PAGE_SIZE;                      \
83         XA_STATE(xas, i->xarray, index);                        \
84                                                                 \
85         len = PAGE_SIZE - offset_in_page(start);                \
86         rcu_read_lock();                                        \
87         xas_for_each(&xas, folio, ULONG_MAX) {                  \
88                 unsigned left;                                  \
89                 size_t offset;                                  \
90                 if (xas_retry(&xas, folio))                     \
91                         continue;                               \
92                 if (WARN_ON(xa_is_value(folio)))                \
93                         break;                                  \
94                 if (WARN_ON(folio_test_hugetlb(folio)))         \
95                         break;                                  \
96                 offset = offset_in_folio(folio, start + __off); \
97                 while (offset < folio_size(folio)) {            \
98                         base = kmap_local_folio(folio, offset); \
99                         len = min(n, len);                      \
100                         left = (STEP);                          \
101                         kunmap_local(base);                     \
102                         len -= left;                            \
103                         __off += len;                           \
104                         n -= len;                               \
105                         if (left || n == 0)                     \
106                                 goto __out;                     \
107                         offset += len;                          \
108                         len = PAGE_SIZE;                        \
109                 }                                               \
110         }                                                       \
111 __out:                                                          \
112         rcu_read_unlock();                                      \
113         i->iov_offset += __off;                                 \
114         n = __off;                                              \
115 }
116
117 #define __iterate_and_advance(i, n, base, len, off, I, K) {     \
118         if (unlikely(i->count < n))                             \
119                 n = i->count;                                   \
120         if (likely(n)) {                                        \
121                 if (likely(iter_is_ubuf(i))) {                  \
122                         void __user *base;                      \
123                         size_t len;                             \
124                         iterate_buf(i, n, base, len, off,       \
125                                                 i->ubuf, (I))   \
126                 } else if (likely(iter_is_iovec(i))) {          \
127                         const struct iovec *iov = iter_iov(i);  \
128                         void __user *base;                      \
129                         size_t len;                             \
130                         iterate_iovec(i, n, base, len, off,     \
131                                                 iov, (I))       \
132                         i->nr_segs -= iov - iter_iov(i);        \
133                         i->__iov = iov;                         \
134                 } else if (iov_iter_is_bvec(i)) {               \
135                         const struct bio_vec *bvec = i->bvec;   \
136                         void *base;                             \
137                         size_t len;                             \
138                         iterate_bvec(i, n, base, len, off,      \
139                                                 bvec, (K))      \
140                         i->nr_segs -= bvec - i->bvec;           \
141                         i->bvec = bvec;                         \
142                 } else if (iov_iter_is_kvec(i)) {               \
143                         const struct kvec *kvec = i->kvec;      \
144                         void *base;                             \
145                         size_t len;                             \
146                         iterate_iovec(i, n, base, len, off,     \
147                                                 kvec, (K))      \
148                         i->nr_segs -= kvec - i->kvec;           \
149                         i->kvec = kvec;                         \
150                 } else if (iov_iter_is_xarray(i)) {             \
151                         void *base;                             \
152                         size_t len;                             \
153                         iterate_xarray(i, n, base, len, off,    \
154                                                         (K))    \
155                 }                                               \
156                 i->count -= n;                                  \
157         }                                                       \
158 }
159 #define iterate_and_advance(i, n, base, len, off, I, K) \
160         __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
161
162 static int copyout(void __user *to, const void *from, size_t n)
163 {
164         if (should_fail_usercopy())
165                 return n;
166         if (access_ok(to, n)) {
167                 instrument_copy_to_user(to, from, n);
168                 n = raw_copy_to_user(to, from, n);
169         }
170         return n;
171 }
172
173 static int copyout_nofault(void __user *to, const void *from, size_t n)
174 {
175         long res;
176
177         if (should_fail_usercopy())
178                 return n;
179
180         res = copy_to_user_nofault(to, from, n);
181
182         return res < 0 ? n : res;
183 }
184
185 static int copyin(void *to, const void __user *from, size_t n)
186 {
187         size_t res = n;
188
189         if (should_fail_usercopy())
190                 return n;
191         if (access_ok(from, n)) {
192                 instrument_copy_from_user_before(to, from, n);
193                 res = raw_copy_from_user(to, from, n);
194                 instrument_copy_from_user_after(to, from, n, res);
195         }
196         return res;
197 }
198
199 /*
200  * fault_in_iov_iter_readable - fault in iov iterator for reading
201  * @i: iterator
202  * @size: maximum length
203  *
204  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
205  * @size.  For each iovec, fault in each page that constitutes the iovec.
206  *
207  * Returns the number of bytes not faulted in (like copy_to_user() and
208  * copy_from_user()).
209  *
210  * Always returns 0 for non-userspace iterators.
211  */
212 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
213 {
214         if (iter_is_ubuf(i)) {
215                 size_t n = min(size, iov_iter_count(i));
216                 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
217                 return size - n;
218         } else if (iter_is_iovec(i)) {
219                 size_t count = min(size, iov_iter_count(i));
220                 const struct iovec *p;
221                 size_t skip;
222
223                 size -= count;
224                 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
225                         size_t len = min(count, p->iov_len - skip);
226                         size_t ret;
227
228                         if (unlikely(!len))
229                                 continue;
230                         ret = fault_in_readable(p->iov_base + skip, len);
231                         count -= len - ret;
232                         if (ret)
233                                 break;
234                 }
235                 return count + size;
236         }
237         return 0;
238 }
239 EXPORT_SYMBOL(fault_in_iov_iter_readable);
240
241 /*
242  * fault_in_iov_iter_writeable - fault in iov iterator for writing
243  * @i: iterator
244  * @size: maximum length
245  *
246  * Faults in the iterator using get_user_pages(), i.e., without triggering
247  * hardware page faults.  This is primarily useful when we already know that
248  * some or all of the pages in @i aren't in memory.
249  *
250  * Returns the number of bytes not faulted in, like copy_to_user() and
251  * copy_from_user().
252  *
253  * Always returns 0 for non-user-space iterators.
254  */
255 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
256 {
257         if (iter_is_ubuf(i)) {
258                 size_t n = min(size, iov_iter_count(i));
259                 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
260                 return size - n;
261         } else if (iter_is_iovec(i)) {
262                 size_t count = min(size, iov_iter_count(i));
263                 const struct iovec *p;
264                 size_t skip;
265
266                 size -= count;
267                 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
268                         size_t len = min(count, p->iov_len - skip);
269                         size_t ret;
270
271                         if (unlikely(!len))
272                                 continue;
273                         ret = fault_in_safe_writeable(p->iov_base + skip, len);
274                         count -= len - ret;
275                         if (ret)
276                                 break;
277                 }
278                 return count + size;
279         }
280         return 0;
281 }
282 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
283
284 void iov_iter_init(struct iov_iter *i, unsigned int direction,
285                         const struct iovec *iov, unsigned long nr_segs,
286                         size_t count)
287 {
288         WARN_ON(direction & ~(READ | WRITE));
289         *i = (struct iov_iter) {
290                 .iter_type = ITER_IOVEC,
291                 .copy_mc = false,
292                 .nofault = false,
293                 .user_backed = true,
294                 .data_source = direction,
295                 .__iov = iov,
296                 .nr_segs = nr_segs,
297                 .iov_offset = 0,
298                 .count = count
299         };
300 }
301 EXPORT_SYMBOL(iov_iter_init);
302
303 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
304                               __wsum sum, size_t off)
305 {
306         __wsum next = csum_partial_copy_nocheck(from, to, len);
307         return csum_block_add(sum, next, off);
308 }
309
310 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
311 {
312         if (WARN_ON_ONCE(i->data_source))
313                 return 0;
314         if (user_backed_iter(i))
315                 might_fault();
316         iterate_and_advance(i, bytes, base, len, off,
317                 copyout(base, addr + off, len),
318                 memcpy(base, addr + off, len)
319         )
320
321         return bytes;
322 }
323 EXPORT_SYMBOL(_copy_to_iter);
324
325 #ifdef CONFIG_ARCH_HAS_COPY_MC
326 static int copyout_mc(void __user *to, const void *from, size_t n)
327 {
328         if (access_ok(to, n)) {
329                 instrument_copy_to_user(to, from, n);
330                 n = copy_mc_to_user((__force void *) to, from, n);
331         }
332         return n;
333 }
334
335 /**
336  * _copy_mc_to_iter - copy to iter with source memory error exception handling
337  * @addr: source kernel address
338  * @bytes: total transfer length
339  * @i: destination iterator
340  *
341  * The pmem driver deploys this for the dax operation
342  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
343  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
344  * successfully copied.
345  *
346  * The main differences between this and typical _copy_to_iter().
347  *
348  * * Typical tail/residue handling after a fault retries the copy
349  *   byte-by-byte until the fault happens again. Re-triggering machine
350  *   checks is potentially fatal so the implementation uses source
351  *   alignment and poison alignment assumptions to avoid re-triggering
352  *   hardware exceptions.
353  *
354  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
355  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
356  *
357  * Return: number of bytes copied (may be %0)
358  */
359 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
360 {
361         if (WARN_ON_ONCE(i->data_source))
362                 return 0;
363         if (user_backed_iter(i))
364                 might_fault();
365         __iterate_and_advance(i, bytes, base, len, off,
366                 copyout_mc(base, addr + off, len),
367                 copy_mc_to_kernel(base, addr + off, len)
368         )
369
370         return bytes;
371 }
372 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
373 #endif /* CONFIG_ARCH_HAS_COPY_MC */
374
375 static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from,
376                                  size_t size)
377 {
378         if (iov_iter_is_copy_mc(i))
379                 return (void *)copy_mc_to_kernel(to, from, size);
380         return memcpy(to, from, size);
381 }
382
383 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
384 {
385         if (WARN_ON_ONCE(!i->data_source))
386                 return 0;
387
388         if (user_backed_iter(i))
389                 might_fault();
390         iterate_and_advance(i, bytes, base, len, off,
391                 copyin(addr + off, base, len),
392                 memcpy_from_iter(i, addr + off, base, len)
393         )
394
395         return bytes;
396 }
397 EXPORT_SYMBOL(_copy_from_iter);
398
399 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
400 {
401         if (WARN_ON_ONCE(!i->data_source))
402                 return 0;
403
404         iterate_and_advance(i, bytes, base, len, off,
405                 __copy_from_user_inatomic_nocache(addr + off, base, len),
406                 memcpy(addr + off, base, len)
407         )
408
409         return bytes;
410 }
411 EXPORT_SYMBOL(_copy_from_iter_nocache);
412
413 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
414 /**
415  * _copy_from_iter_flushcache - write destination through cpu cache
416  * @addr: destination kernel address
417  * @bytes: total transfer length
418  * @i: source iterator
419  *
420  * The pmem driver arranges for filesystem-dax to use this facility via
421  * dax_copy_from_iter() for ensuring that writes to persistent memory
422  * are flushed through the CPU cache. It is differentiated from
423  * _copy_from_iter_nocache() in that guarantees all data is flushed for
424  * all iterator types. The _copy_from_iter_nocache() only attempts to
425  * bypass the cache for the ITER_IOVEC case, and on some archs may use
426  * instructions that strand dirty-data in the cache.
427  *
428  * Return: number of bytes copied (may be %0)
429  */
430 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
431 {
432         if (WARN_ON_ONCE(!i->data_source))
433                 return 0;
434
435         iterate_and_advance(i, bytes, base, len, off,
436                 __copy_from_user_flushcache(addr + off, base, len),
437                 memcpy_flushcache(addr + off, base, len)
438         )
439
440         return bytes;
441 }
442 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
443 #endif
444
445 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
446 {
447         struct page *head;
448         size_t v = n + offset;
449
450         /*
451          * The general case needs to access the page order in order
452          * to compute the page size.
453          * However, we mostly deal with order-0 pages and thus can
454          * avoid a possible cache line miss for requests that fit all
455          * page orders.
456          */
457         if (n <= v && v <= PAGE_SIZE)
458                 return true;
459
460         head = compound_head(page);
461         v += (page - head) << PAGE_SHIFT;
462
463         if (WARN_ON(n > v || v > page_size(head)))
464                 return false;
465         return true;
466 }
467
468 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
469                          struct iov_iter *i)
470 {
471         size_t res = 0;
472         if (!page_copy_sane(page, offset, bytes))
473                 return 0;
474         if (WARN_ON_ONCE(i->data_source))
475                 return 0;
476         page += offset / PAGE_SIZE; // first subpage
477         offset %= PAGE_SIZE;
478         while (1) {
479                 void *kaddr = kmap_local_page(page);
480                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
481                 n = _copy_to_iter(kaddr + offset, n, i);
482                 kunmap_local(kaddr);
483                 res += n;
484                 bytes -= n;
485                 if (!bytes || !n)
486                         break;
487                 offset += n;
488                 if (offset == PAGE_SIZE) {
489                         page++;
490                         offset = 0;
491                 }
492         }
493         return res;
494 }
495 EXPORT_SYMBOL(copy_page_to_iter);
496
497 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
498                                  struct iov_iter *i)
499 {
500         size_t res = 0;
501
502         if (!page_copy_sane(page, offset, bytes))
503                 return 0;
504         if (WARN_ON_ONCE(i->data_source))
505                 return 0;
506         page += offset / PAGE_SIZE; // first subpage
507         offset %= PAGE_SIZE;
508         while (1) {
509                 void *kaddr = kmap_local_page(page);
510                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
511
512                 iterate_and_advance(i, n, base, len, off,
513                         copyout_nofault(base, kaddr + offset + off, len),
514                         memcpy(base, kaddr + offset + off, len)
515                 )
516                 kunmap_local(kaddr);
517                 res += n;
518                 bytes -= n;
519                 if (!bytes || !n)
520                         break;
521                 offset += n;
522                 if (offset == PAGE_SIZE) {
523                         page++;
524                         offset = 0;
525                 }
526         }
527         return res;
528 }
529 EXPORT_SYMBOL(copy_page_to_iter_nofault);
530
531 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
532                          struct iov_iter *i)
533 {
534         size_t res = 0;
535         if (!page_copy_sane(page, offset, bytes))
536                 return 0;
537         page += offset / PAGE_SIZE; // first subpage
538         offset %= PAGE_SIZE;
539         while (1) {
540                 void *kaddr = kmap_local_page(page);
541                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
542                 n = _copy_from_iter(kaddr + offset, n, i);
543                 kunmap_local(kaddr);
544                 res += n;
545                 bytes -= n;
546                 if (!bytes || !n)
547                         break;
548                 offset += n;
549                 if (offset == PAGE_SIZE) {
550                         page++;
551                         offset = 0;
552                 }
553         }
554         return res;
555 }
556 EXPORT_SYMBOL(copy_page_from_iter);
557
558 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
559 {
560         iterate_and_advance(i, bytes, base, len, count,
561                 clear_user(base, len),
562                 memset(base, 0, len)
563         )
564
565         return bytes;
566 }
567 EXPORT_SYMBOL(iov_iter_zero);
568
569 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
570                                   struct iov_iter *i)
571 {
572         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
573         if (!page_copy_sane(page, offset, bytes)) {
574                 kunmap_atomic(kaddr);
575                 return 0;
576         }
577         if (WARN_ON_ONCE(!i->data_source)) {
578                 kunmap_atomic(kaddr);
579                 return 0;
580         }
581         iterate_and_advance(i, bytes, base, len, off,
582                 copyin(p + off, base, len),
583                 memcpy_from_iter(i, p + off, base, len)
584         )
585         kunmap_atomic(kaddr);
586         return bytes;
587 }
588 EXPORT_SYMBOL(copy_page_from_iter_atomic);
589
590 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
591 {
592         const struct bio_vec *bvec, *end;
593
594         if (!i->count)
595                 return;
596         i->count -= size;
597
598         size += i->iov_offset;
599
600         for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
601                 if (likely(size < bvec->bv_len))
602                         break;
603                 size -= bvec->bv_len;
604         }
605         i->iov_offset = size;
606         i->nr_segs -= bvec - i->bvec;
607         i->bvec = bvec;
608 }
609
610 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
611 {
612         const struct iovec *iov, *end;
613
614         if (!i->count)
615                 return;
616         i->count -= size;
617
618         size += i->iov_offset; // from beginning of current segment
619         for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
620                 if (likely(size < iov->iov_len))
621                         break;
622                 size -= iov->iov_len;
623         }
624         i->iov_offset = size;
625         i->nr_segs -= iov - iter_iov(i);
626         i->__iov = iov;
627 }
628
629 void iov_iter_advance(struct iov_iter *i, size_t size)
630 {
631         if (unlikely(i->count < size))
632                 size = i->count;
633         if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
634                 i->iov_offset += size;
635                 i->count -= size;
636         } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
637                 /* iovec and kvec have identical layouts */
638                 iov_iter_iovec_advance(i, size);
639         } else if (iov_iter_is_bvec(i)) {
640                 iov_iter_bvec_advance(i, size);
641         } else if (iov_iter_is_discard(i)) {
642                 i->count -= size;
643         }
644 }
645 EXPORT_SYMBOL(iov_iter_advance);
646
647 void iov_iter_revert(struct iov_iter *i, size_t unroll)
648 {
649         if (!unroll)
650                 return;
651         if (WARN_ON(unroll > MAX_RW_COUNT))
652                 return;
653         i->count += unroll;
654         if (unlikely(iov_iter_is_discard(i)))
655                 return;
656         if (unroll <= i->iov_offset) {
657                 i->iov_offset -= unroll;
658                 return;
659         }
660         unroll -= i->iov_offset;
661         if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
662                 BUG(); /* We should never go beyond the start of the specified
663                         * range since we might then be straying into pages that
664                         * aren't pinned.
665                         */
666         } else if (iov_iter_is_bvec(i)) {
667                 const struct bio_vec *bvec = i->bvec;
668                 while (1) {
669                         size_t n = (--bvec)->bv_len;
670                         i->nr_segs++;
671                         if (unroll <= n) {
672                                 i->bvec = bvec;
673                                 i->iov_offset = n - unroll;
674                                 return;
675                         }
676                         unroll -= n;
677                 }
678         } else { /* same logics for iovec and kvec */
679                 const struct iovec *iov = iter_iov(i);
680                 while (1) {
681                         size_t n = (--iov)->iov_len;
682                         i->nr_segs++;
683                         if (unroll <= n) {
684                                 i->__iov = iov;
685                                 i->iov_offset = n - unroll;
686                                 return;
687                         }
688                         unroll -= n;
689                 }
690         }
691 }
692 EXPORT_SYMBOL(iov_iter_revert);
693
694 /*
695  * Return the count of just the current iov_iter segment.
696  */
697 size_t iov_iter_single_seg_count(const struct iov_iter *i)
698 {
699         if (i->nr_segs > 1) {
700                 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
701                         return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
702                 if (iov_iter_is_bvec(i))
703                         return min(i->count, i->bvec->bv_len - i->iov_offset);
704         }
705         return i->count;
706 }
707 EXPORT_SYMBOL(iov_iter_single_seg_count);
708
709 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
710                         const struct kvec *kvec, unsigned long nr_segs,
711                         size_t count)
712 {
713         WARN_ON(direction & ~(READ | WRITE));
714         *i = (struct iov_iter){
715                 .iter_type = ITER_KVEC,
716                 .copy_mc = false,
717                 .data_source = direction,
718                 .kvec = kvec,
719                 .nr_segs = nr_segs,
720                 .iov_offset = 0,
721                 .count = count
722         };
723 }
724 EXPORT_SYMBOL(iov_iter_kvec);
725
726 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
727                         const struct bio_vec *bvec, unsigned long nr_segs,
728                         size_t count)
729 {
730         WARN_ON(direction & ~(READ | WRITE));
731         *i = (struct iov_iter){
732                 .iter_type = ITER_BVEC,
733                 .copy_mc = false,
734                 .data_source = direction,
735                 .bvec = bvec,
736                 .nr_segs = nr_segs,
737                 .iov_offset = 0,
738                 .count = count
739         };
740 }
741 EXPORT_SYMBOL(iov_iter_bvec);
742
743 /**
744  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
745  * @i: The iterator to initialise.
746  * @direction: The direction of the transfer.
747  * @xarray: The xarray to access.
748  * @start: The start file position.
749  * @count: The size of the I/O buffer in bytes.
750  *
751  * Set up an I/O iterator to either draw data out of the pages attached to an
752  * inode or to inject data into those pages.  The pages *must* be prevented
753  * from evaporation, either by taking a ref on them or locking them by the
754  * caller.
755  */
756 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
757                      struct xarray *xarray, loff_t start, size_t count)
758 {
759         BUG_ON(direction & ~1);
760         *i = (struct iov_iter) {
761                 .iter_type = ITER_XARRAY,
762                 .copy_mc = false,
763                 .data_source = direction,
764                 .xarray = xarray,
765                 .xarray_start = start,
766                 .count = count,
767                 .iov_offset = 0
768         };
769 }
770 EXPORT_SYMBOL(iov_iter_xarray);
771
772 /**
773  * iov_iter_discard - Initialise an I/O iterator that discards data
774  * @i: The iterator to initialise.
775  * @direction: The direction of the transfer.
776  * @count: The size of the I/O buffer in bytes.
777  *
778  * Set up an I/O iterator that just discards everything that's written to it.
779  * It's only available as a READ iterator.
780  */
781 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
782 {
783         BUG_ON(direction != READ);
784         *i = (struct iov_iter){
785                 .iter_type = ITER_DISCARD,
786                 .copy_mc = false,
787                 .data_source = false,
788                 .count = count,
789                 .iov_offset = 0
790         };
791 }
792 EXPORT_SYMBOL(iov_iter_discard);
793
794 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
795                                    unsigned len_mask)
796 {
797         size_t size = i->count;
798         size_t skip = i->iov_offset;
799         unsigned k;
800
801         for (k = 0; k < i->nr_segs; k++, skip = 0) {
802                 const struct iovec *iov = iter_iov(i) + k;
803                 size_t len = iov->iov_len - skip;
804
805                 if (len > size)
806                         len = size;
807                 if (len & len_mask)
808                         return false;
809                 if ((unsigned long)(iov->iov_base + skip) & addr_mask)
810                         return false;
811
812                 size -= len;
813                 if (!size)
814                         break;
815         }
816         return true;
817 }
818
819 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
820                                   unsigned len_mask)
821 {
822         size_t size = i->count;
823         unsigned skip = i->iov_offset;
824         unsigned k;
825
826         for (k = 0; k < i->nr_segs; k++, skip = 0) {
827                 size_t len = i->bvec[k].bv_len - skip;
828
829                 if (len > size)
830                         len = size;
831                 if (len & len_mask)
832                         return false;
833                 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
834                         return false;
835
836                 size -= len;
837                 if (!size)
838                         break;
839         }
840         return true;
841 }
842
843 /**
844  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
845  *      are aligned to the parameters.
846  *
847  * @i: &struct iov_iter to restore
848  * @addr_mask: bit mask to check against the iov element's addresses
849  * @len_mask: bit mask to check against the iov element's lengths
850  *
851  * Return: false if any addresses or lengths intersect with the provided masks
852  */
853 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
854                          unsigned len_mask)
855 {
856         if (likely(iter_is_ubuf(i))) {
857                 if (i->count & len_mask)
858                         return false;
859                 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
860                         return false;
861                 return true;
862         }
863
864         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
865                 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
866
867         if (iov_iter_is_bvec(i))
868                 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
869
870         if (iov_iter_is_xarray(i)) {
871                 if (i->count & len_mask)
872                         return false;
873                 if ((i->xarray_start + i->iov_offset) & addr_mask)
874                         return false;
875         }
876
877         return true;
878 }
879 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
880
881 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
882 {
883         unsigned long res = 0;
884         size_t size = i->count;
885         size_t skip = i->iov_offset;
886         unsigned k;
887
888         for (k = 0; k < i->nr_segs; k++, skip = 0) {
889                 const struct iovec *iov = iter_iov(i) + k;
890                 size_t len = iov->iov_len - skip;
891                 if (len) {
892                         res |= (unsigned long)iov->iov_base + skip;
893                         if (len > size)
894                                 len = size;
895                         res |= len;
896                         size -= len;
897                         if (!size)
898                                 break;
899                 }
900         }
901         return res;
902 }
903
904 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
905 {
906         unsigned res = 0;
907         size_t size = i->count;
908         unsigned skip = i->iov_offset;
909         unsigned k;
910
911         for (k = 0; k < i->nr_segs; k++, skip = 0) {
912                 size_t len = i->bvec[k].bv_len - skip;
913                 res |= (unsigned long)i->bvec[k].bv_offset + skip;
914                 if (len > size)
915                         len = size;
916                 res |= len;
917                 size -= len;
918                 if (!size)
919                         break;
920         }
921         return res;
922 }
923
924 unsigned long iov_iter_alignment(const struct iov_iter *i)
925 {
926         if (likely(iter_is_ubuf(i))) {
927                 size_t size = i->count;
928                 if (size)
929                         return ((unsigned long)i->ubuf + i->iov_offset) | size;
930                 return 0;
931         }
932
933         /* iovec and kvec have identical layouts */
934         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
935                 return iov_iter_alignment_iovec(i);
936
937         if (iov_iter_is_bvec(i))
938                 return iov_iter_alignment_bvec(i);
939
940         if (iov_iter_is_xarray(i))
941                 return (i->xarray_start + i->iov_offset) | i->count;
942
943         return 0;
944 }
945 EXPORT_SYMBOL(iov_iter_alignment);
946
947 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
948 {
949         unsigned long res = 0;
950         unsigned long v = 0;
951         size_t size = i->count;
952         unsigned k;
953
954         if (iter_is_ubuf(i))
955                 return 0;
956
957         if (WARN_ON(!iter_is_iovec(i)))
958                 return ~0U;
959
960         for (k = 0; k < i->nr_segs; k++) {
961                 const struct iovec *iov = iter_iov(i) + k;
962                 if (iov->iov_len) {
963                         unsigned long base = (unsigned long)iov->iov_base;
964                         if (v) // if not the first one
965                                 res |= base | v; // this start | previous end
966                         v = base + iov->iov_len;
967                         if (size <= iov->iov_len)
968                                 break;
969                         size -= iov->iov_len;
970                 }
971         }
972         return res;
973 }
974 EXPORT_SYMBOL(iov_iter_gap_alignment);
975
976 static int want_pages_array(struct page ***res, size_t size,
977                             size_t start, unsigned int maxpages)
978 {
979         unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
980
981         if (count > maxpages)
982                 count = maxpages;
983         WARN_ON(!count);        // caller should've prevented that
984         if (!*res) {
985                 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
986                 if (!*res)
987                         return 0;
988         }
989         return count;
990 }
991
992 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
993                                           pgoff_t index, unsigned int nr_pages)
994 {
995         XA_STATE(xas, xa, index);
996         struct page *page;
997         unsigned int ret = 0;
998
999         rcu_read_lock();
1000         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1001                 if (xas_retry(&xas, page))
1002                         continue;
1003
1004                 /* Has the page moved or been split? */
1005                 if (unlikely(page != xas_reload(&xas))) {
1006                         xas_reset(&xas);
1007                         continue;
1008                 }
1009
1010                 pages[ret] = find_subpage(page, xas.xa_index);
1011                 get_page(pages[ret]);
1012                 if (++ret == nr_pages)
1013                         break;
1014         }
1015         rcu_read_unlock();
1016         return ret;
1017 }
1018
1019 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1020                                      struct page ***pages, size_t maxsize,
1021                                      unsigned maxpages, size_t *_start_offset)
1022 {
1023         unsigned nr, offset, count;
1024         pgoff_t index;
1025         loff_t pos;
1026
1027         pos = i->xarray_start + i->iov_offset;
1028         index = pos >> PAGE_SHIFT;
1029         offset = pos & ~PAGE_MASK;
1030         *_start_offset = offset;
1031
1032         count = want_pages_array(pages, maxsize, offset, maxpages);
1033         if (!count)
1034                 return -ENOMEM;
1035         nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1036         if (nr == 0)
1037                 return 0;
1038
1039         maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1040         i->iov_offset += maxsize;
1041         i->count -= maxsize;
1042         return maxsize;
1043 }
1044
1045 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1046 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1047 {
1048         size_t skip;
1049         long k;
1050
1051         if (iter_is_ubuf(i))
1052                 return (unsigned long)i->ubuf + i->iov_offset;
1053
1054         for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1055                 const struct iovec *iov = iter_iov(i) + k;
1056                 size_t len = iov->iov_len - skip;
1057
1058                 if (unlikely(!len))
1059                         continue;
1060                 if (*size > len)
1061                         *size = len;
1062                 return (unsigned long)iov->iov_base + skip;
1063         }
1064         BUG(); // if it had been empty, we wouldn't get called
1065 }
1066
1067 /* must be done on non-empty ITER_BVEC one */
1068 static struct page *first_bvec_segment(const struct iov_iter *i,
1069                                        size_t *size, size_t *start)
1070 {
1071         struct page *page;
1072         size_t skip = i->iov_offset, len;
1073
1074         len = i->bvec->bv_len - skip;
1075         if (*size > len)
1076                 *size = len;
1077         skip += i->bvec->bv_offset;
1078         page = i->bvec->bv_page + skip / PAGE_SIZE;
1079         *start = skip % PAGE_SIZE;
1080         return page;
1081 }
1082
1083 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1084                    struct page ***pages, size_t maxsize,
1085                    unsigned int maxpages, size_t *start)
1086 {
1087         unsigned int n, gup_flags = 0;
1088
1089         if (maxsize > i->count)
1090                 maxsize = i->count;
1091         if (!maxsize)
1092                 return 0;
1093         if (maxsize > MAX_RW_COUNT)
1094                 maxsize = MAX_RW_COUNT;
1095
1096         if (likely(user_backed_iter(i))) {
1097                 unsigned long addr;
1098                 int res;
1099
1100                 if (iov_iter_rw(i) != WRITE)
1101                         gup_flags |= FOLL_WRITE;
1102                 if (i->nofault)
1103                         gup_flags |= FOLL_NOFAULT;
1104
1105                 addr = first_iovec_segment(i, &maxsize);
1106                 *start = addr % PAGE_SIZE;
1107                 addr &= PAGE_MASK;
1108                 n = want_pages_array(pages, maxsize, *start, maxpages);
1109                 if (!n)
1110                         return -ENOMEM;
1111                 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1112                 if (unlikely(res <= 0))
1113                         return res;
1114                 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1115                 iov_iter_advance(i, maxsize);
1116                 return maxsize;
1117         }
1118         if (iov_iter_is_bvec(i)) {
1119                 struct page **p;
1120                 struct page *page;
1121
1122                 page = first_bvec_segment(i, &maxsize, start);
1123                 n = want_pages_array(pages, maxsize, *start, maxpages);
1124                 if (!n)
1125                         return -ENOMEM;
1126                 p = *pages;
1127                 for (int k = 0; k < n; k++)
1128                         get_page(p[k] = page + k);
1129                 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1130                 i->count -= maxsize;
1131                 i->iov_offset += maxsize;
1132                 if (i->iov_offset == i->bvec->bv_len) {
1133                         i->iov_offset = 0;
1134                         i->bvec++;
1135                         i->nr_segs--;
1136                 }
1137                 return maxsize;
1138         }
1139         if (iov_iter_is_xarray(i))
1140                 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1141         return -EFAULT;
1142 }
1143
1144 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1145                 size_t maxsize, unsigned maxpages, size_t *start)
1146 {
1147         if (!maxpages)
1148                 return 0;
1149         BUG_ON(!pages);
1150
1151         return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1152 }
1153 EXPORT_SYMBOL(iov_iter_get_pages2);
1154
1155 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1156                 struct page ***pages, size_t maxsize, size_t *start)
1157 {
1158         ssize_t len;
1159
1160         *pages = NULL;
1161
1162         len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1163         if (len <= 0) {
1164                 kvfree(*pages);
1165                 *pages = NULL;
1166         }
1167         return len;
1168 }
1169 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1170
1171 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1172                                struct iov_iter *i)
1173 {
1174         __wsum sum, next;
1175         sum = *csum;
1176         if (WARN_ON_ONCE(!i->data_source))
1177                 return 0;
1178
1179         iterate_and_advance(i, bytes, base, len, off, ({
1180                 next = csum_and_copy_from_user(base, addr + off, len);
1181                 sum = csum_block_add(sum, next, off);
1182                 next ? 0 : len;
1183         }), ({
1184                 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1185         })
1186         )
1187         *csum = sum;
1188         return bytes;
1189 }
1190 EXPORT_SYMBOL(csum_and_copy_from_iter);
1191
1192 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1193                              struct iov_iter *i)
1194 {
1195         struct csum_state *csstate = _csstate;
1196         __wsum sum, next;
1197
1198         if (WARN_ON_ONCE(i->data_source))
1199                 return 0;
1200         if (unlikely(iov_iter_is_discard(i))) {
1201                 // can't use csum_memcpy() for that one - data is not copied
1202                 csstate->csum = csum_block_add(csstate->csum,
1203                                                csum_partial(addr, bytes, 0),
1204                                                csstate->off);
1205                 csstate->off += bytes;
1206                 return bytes;
1207         }
1208
1209         sum = csum_shift(csstate->csum, csstate->off);
1210         iterate_and_advance(i, bytes, base, len, off, ({
1211                 next = csum_and_copy_to_user(addr + off, base, len);
1212                 sum = csum_block_add(sum, next, off);
1213                 next ? 0 : len;
1214         }), ({
1215                 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1216         })
1217         )
1218         csstate->csum = csum_shift(sum, csstate->off);
1219         csstate->off += bytes;
1220         return bytes;
1221 }
1222 EXPORT_SYMBOL(csum_and_copy_to_iter);
1223
1224 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1225                 struct iov_iter *i)
1226 {
1227 #ifdef CONFIG_CRYPTO_HASH
1228         struct ahash_request *hash = hashp;
1229         struct scatterlist sg;
1230         size_t copied;
1231
1232         copied = copy_to_iter(addr, bytes, i);
1233         sg_init_one(&sg, addr, copied);
1234         ahash_request_set_crypt(hash, &sg, NULL, copied);
1235         crypto_ahash_update(hash);
1236         return copied;
1237 #else
1238         return 0;
1239 #endif
1240 }
1241 EXPORT_SYMBOL(hash_and_copy_to_iter);
1242
1243 static int iov_npages(const struct iov_iter *i, int maxpages)
1244 {
1245         size_t skip = i->iov_offset, size = i->count;
1246         const struct iovec *p;
1247         int npages = 0;
1248
1249         for (p = iter_iov(i); size; skip = 0, p++) {
1250                 unsigned offs = offset_in_page(p->iov_base + skip);
1251                 size_t len = min(p->iov_len - skip, size);
1252
1253                 if (len) {
1254                         size -= len;
1255                         npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1256                         if (unlikely(npages > maxpages))
1257                                 return maxpages;
1258                 }
1259         }
1260         return npages;
1261 }
1262
1263 static int bvec_npages(const struct iov_iter *i, int maxpages)
1264 {
1265         size_t skip = i->iov_offset, size = i->count;
1266         const struct bio_vec *p;
1267         int npages = 0;
1268
1269         for (p = i->bvec; size; skip = 0, p++) {
1270                 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1271                 size_t len = min(p->bv_len - skip, size);
1272
1273                 size -= len;
1274                 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1275                 if (unlikely(npages > maxpages))
1276                         return maxpages;
1277         }
1278         return npages;
1279 }
1280
1281 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1282 {
1283         if (unlikely(!i->count))
1284                 return 0;
1285         if (likely(iter_is_ubuf(i))) {
1286                 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1287                 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1288                 return min(npages, maxpages);
1289         }
1290         /* iovec and kvec have identical layouts */
1291         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1292                 return iov_npages(i, maxpages);
1293         if (iov_iter_is_bvec(i))
1294                 return bvec_npages(i, maxpages);
1295         if (iov_iter_is_xarray(i)) {
1296                 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1297                 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1298                 return min(npages, maxpages);
1299         }
1300         return 0;
1301 }
1302 EXPORT_SYMBOL(iov_iter_npages);
1303
1304 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1305 {
1306         *new = *old;
1307         if (iov_iter_is_bvec(new))
1308                 return new->bvec = kmemdup(new->bvec,
1309                                     new->nr_segs * sizeof(struct bio_vec),
1310                                     flags);
1311         else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1312                 /* iovec and kvec have identical layout */
1313                 return new->__iov = kmemdup(new->__iov,
1314                                    new->nr_segs * sizeof(struct iovec),
1315                                    flags);
1316         return NULL;
1317 }
1318 EXPORT_SYMBOL(dup_iter);
1319
1320 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1321                 const struct iovec __user *uvec, unsigned long nr_segs)
1322 {
1323         const struct compat_iovec __user *uiov =
1324                 (const struct compat_iovec __user *)uvec;
1325         int ret = -EFAULT, i;
1326
1327         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1328                 return -EFAULT;
1329
1330         for (i = 0; i < nr_segs; i++) {
1331                 compat_uptr_t buf;
1332                 compat_ssize_t len;
1333
1334                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1335                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1336
1337                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1338                 if (len < 0) {
1339                         ret = -EINVAL;
1340                         goto uaccess_end;
1341                 }
1342                 iov[i].iov_base = compat_ptr(buf);
1343                 iov[i].iov_len = len;
1344         }
1345
1346         ret = 0;
1347 uaccess_end:
1348         user_access_end();
1349         return ret;
1350 }
1351
1352 static int copy_iovec_from_user(struct iovec *iov,
1353                 const struct iovec __user *uiov, unsigned long nr_segs)
1354 {
1355         int ret = -EFAULT;
1356
1357         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1358                 return -EFAULT;
1359
1360         do {
1361                 void __user *buf;
1362                 ssize_t len;
1363
1364                 unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1365                 unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1366
1367                 /* check for size_t not fitting in ssize_t .. */
1368                 if (unlikely(len < 0)) {
1369                         ret = -EINVAL;
1370                         goto uaccess_end;
1371                 }
1372                 iov->iov_base = buf;
1373                 iov->iov_len = len;
1374
1375                 uiov++; iov++;
1376         } while (--nr_segs);
1377
1378         ret = 0;
1379 uaccess_end:
1380         user_access_end();
1381         return ret;
1382 }
1383
1384 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1385                 unsigned long nr_segs, unsigned long fast_segs,
1386                 struct iovec *fast_iov, bool compat)
1387 {
1388         struct iovec *iov = fast_iov;
1389         int ret;
1390
1391         /*
1392          * SuS says "The readv() function *may* fail if the iovcnt argument was
1393          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1394          * traditionally returned zero for zero segments, so...
1395          */
1396         if (nr_segs == 0)
1397                 return iov;
1398         if (nr_segs > UIO_MAXIOV)
1399                 return ERR_PTR(-EINVAL);
1400         if (nr_segs > fast_segs) {
1401                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1402                 if (!iov)
1403                         return ERR_PTR(-ENOMEM);
1404         }
1405
1406         if (unlikely(compat))
1407                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1408         else
1409                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1410         if (ret) {
1411                 if (iov != fast_iov)
1412                         kfree(iov);
1413                 return ERR_PTR(ret);
1414         }
1415
1416         return iov;
1417 }
1418
1419 /*
1420  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1421  */
1422 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1423                                    struct iovec **iovp, struct iov_iter *i,
1424                                    bool compat)
1425 {
1426         struct iovec *iov = *iovp;
1427         ssize_t ret;
1428
1429         if (compat)
1430                 ret = copy_compat_iovec_from_user(iov, uvec, 1);
1431         else
1432                 ret = copy_iovec_from_user(iov, uvec, 1);
1433         if (unlikely(ret))
1434                 return ret;
1435
1436         ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1437         if (unlikely(ret))
1438                 return ret;
1439         *iovp = NULL;
1440         return i->count;
1441 }
1442
1443 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1444                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1445                  struct iov_iter *i, bool compat)
1446 {
1447         ssize_t total_len = 0;
1448         unsigned long seg;
1449         struct iovec *iov;
1450
1451         if (nr_segs == 1)
1452                 return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1453
1454         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1455         if (IS_ERR(iov)) {
1456                 *iovp = NULL;
1457                 return PTR_ERR(iov);
1458         }
1459
1460         /*
1461          * According to the Single Unix Specification we should return EINVAL if
1462          * an element length is < 0 when cast to ssize_t or if the total length
1463          * would overflow the ssize_t return value of the system call.
1464          *
1465          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1466          * overflow case.
1467          */
1468         for (seg = 0; seg < nr_segs; seg++) {
1469                 ssize_t len = (ssize_t)iov[seg].iov_len;
1470
1471                 if (!access_ok(iov[seg].iov_base, len)) {
1472                         if (iov != *iovp)
1473                                 kfree(iov);
1474                         *iovp = NULL;
1475                         return -EFAULT;
1476                 }
1477
1478                 if (len > MAX_RW_COUNT - total_len) {
1479                         len = MAX_RW_COUNT - total_len;
1480                         iov[seg].iov_len = len;
1481                 }
1482                 total_len += len;
1483         }
1484
1485         iov_iter_init(i, type, iov, nr_segs, total_len);
1486         if (iov == *iovp)
1487                 *iovp = NULL;
1488         else
1489                 *iovp = iov;
1490         return total_len;
1491 }
1492
1493 /**
1494  * import_iovec() - Copy an array of &struct iovec from userspace
1495  *     into the kernel, check that it is valid, and initialize a new
1496  *     &struct iov_iter iterator to access it.
1497  *
1498  * @type: One of %READ or %WRITE.
1499  * @uvec: Pointer to the userspace array.
1500  * @nr_segs: Number of elements in userspace array.
1501  * @fast_segs: Number of elements in @iov.
1502  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1503  *     on-stack) kernel array.
1504  * @i: Pointer to iterator that will be initialized on success.
1505  *
1506  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1507  * then this function places %NULL in *@iov on return. Otherwise, a new
1508  * array will be allocated and the result placed in *@iov. This means that
1509  * the caller may call kfree() on *@iov regardless of whether the small
1510  * on-stack array was used or not (and regardless of whether this function
1511  * returns an error or not).
1512  *
1513  * Return: Negative error code on error, bytes imported on success
1514  */
1515 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1516                  unsigned nr_segs, unsigned fast_segs,
1517                  struct iovec **iovp, struct iov_iter *i)
1518 {
1519         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1520                               in_compat_syscall());
1521 }
1522 EXPORT_SYMBOL(import_iovec);
1523
1524 int import_single_range(int rw, void __user *buf, size_t len,
1525                  struct iovec *iov, struct iov_iter *i)
1526 {
1527         if (len > MAX_RW_COUNT)
1528                 len = MAX_RW_COUNT;
1529         if (unlikely(!access_ok(buf, len)))
1530                 return -EFAULT;
1531
1532         iov_iter_ubuf(i, rw, buf, len);
1533         return 0;
1534 }
1535 EXPORT_SYMBOL(import_single_range);
1536
1537 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1538 {
1539         if (len > MAX_RW_COUNT)
1540                 len = MAX_RW_COUNT;
1541         if (unlikely(!access_ok(buf, len)))
1542                 return -EFAULT;
1543
1544         iov_iter_ubuf(i, rw, buf, len);
1545         return 0;
1546 }
1547
1548 /**
1549  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1550  *     iov_iter_save_state() was called.
1551  *
1552  * @i: &struct iov_iter to restore
1553  * @state: state to restore from
1554  *
1555  * Used after iov_iter_save_state() to bring restore @i, if operations may
1556  * have advanced it.
1557  *
1558  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1559  */
1560 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1561 {
1562         if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1563                          !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1564                 return;
1565         i->iov_offset = state->iov_offset;
1566         i->count = state->count;
1567         if (iter_is_ubuf(i))
1568                 return;
1569         /*
1570          * For the *vec iters, nr_segs + iov is constant - if we increment
1571          * the vec, then we also decrement the nr_segs count. Hence we don't
1572          * need to track both of these, just one is enough and we can deduct
1573          * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1574          * size, so we can just increment the iov pointer as they are unionzed.
1575          * ITER_BVEC _may_ be the same size on some archs, but on others it is
1576          * not. Be safe and handle it separately.
1577          */
1578         BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1579         if (iov_iter_is_bvec(i))
1580                 i->bvec -= state->nr_segs - i->nr_segs;
1581         else
1582                 i->__iov -= state->nr_segs - i->nr_segs;
1583         i->nr_segs = state->nr_segs;
1584 }
1585
1586 /*
1587  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1588  * get references on the pages, nor does it get a pin on them.
1589  */
1590 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1591                                              struct page ***pages, size_t maxsize,
1592                                              unsigned int maxpages,
1593                                              iov_iter_extraction_t extraction_flags,
1594                                              size_t *offset0)
1595 {
1596         struct page *page, **p;
1597         unsigned int nr = 0, offset;
1598         loff_t pos = i->xarray_start + i->iov_offset;
1599         pgoff_t index = pos >> PAGE_SHIFT;
1600         XA_STATE(xas, i->xarray, index);
1601
1602         offset = pos & ~PAGE_MASK;
1603         *offset0 = offset;
1604
1605         maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1606         if (!maxpages)
1607                 return -ENOMEM;
1608         p = *pages;
1609
1610         rcu_read_lock();
1611         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1612                 if (xas_retry(&xas, page))
1613                         continue;
1614
1615                 /* Has the page moved or been split? */
1616                 if (unlikely(page != xas_reload(&xas))) {
1617                         xas_reset(&xas);
1618                         continue;
1619                 }
1620
1621                 p[nr++] = find_subpage(page, xas.xa_index);
1622                 if (nr == maxpages)
1623                         break;
1624         }
1625         rcu_read_unlock();
1626
1627         maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1628         iov_iter_advance(i, maxsize);
1629         return maxsize;
1630 }
1631
1632 /*
1633  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1634  * not get references on the pages, nor does it get a pin on them.
1635  */
1636 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1637                                            struct page ***pages, size_t maxsize,
1638                                            unsigned int maxpages,
1639                                            iov_iter_extraction_t extraction_flags,
1640                                            size_t *offset0)
1641 {
1642         struct page **p, *page;
1643         size_t skip = i->iov_offset, offset;
1644         int k;
1645
1646         for (;;) {
1647                 if (i->nr_segs == 0)
1648                         return 0;
1649                 maxsize = min(maxsize, i->bvec->bv_len - skip);
1650                 if (maxsize)
1651                         break;
1652                 i->iov_offset = 0;
1653                 i->nr_segs--;
1654                 i->bvec++;
1655                 skip = 0;
1656         }
1657
1658         skip += i->bvec->bv_offset;
1659         page = i->bvec->bv_page + skip / PAGE_SIZE;
1660         offset = skip % PAGE_SIZE;
1661         *offset0 = offset;
1662
1663         maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1664         if (!maxpages)
1665                 return -ENOMEM;
1666         p = *pages;
1667         for (k = 0; k < maxpages; k++)
1668                 p[k] = page + k;
1669
1670         maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
1671         iov_iter_advance(i, maxsize);
1672         return maxsize;
1673 }
1674
1675 /*
1676  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1677  * This does not get references on the pages, nor does it get a pin on them.
1678  */
1679 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1680                                            struct page ***pages, size_t maxsize,
1681                                            unsigned int maxpages,
1682                                            iov_iter_extraction_t extraction_flags,
1683                                            size_t *offset0)
1684 {
1685         struct page **p, *page;
1686         const void *kaddr;
1687         size_t skip = i->iov_offset, offset, len;
1688         int k;
1689
1690         for (;;) {
1691                 if (i->nr_segs == 0)
1692                         return 0;
1693                 maxsize = min(maxsize, i->kvec->iov_len - skip);
1694                 if (maxsize)
1695                         break;
1696                 i->iov_offset = 0;
1697                 i->nr_segs--;
1698                 i->kvec++;
1699                 skip = 0;
1700         }
1701
1702         kaddr = i->kvec->iov_base + skip;
1703         offset = (unsigned long)kaddr & ~PAGE_MASK;
1704         *offset0 = offset;
1705
1706         maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1707         if (!maxpages)
1708                 return -ENOMEM;
1709         p = *pages;
1710
1711         kaddr -= offset;
1712         len = offset + maxsize;
1713         for (k = 0; k < maxpages; k++) {
1714                 size_t seg = min_t(size_t, len, PAGE_SIZE);
1715
1716                 if (is_vmalloc_or_module_addr(kaddr))
1717                         page = vmalloc_to_page(kaddr);
1718                 else
1719                         page = virt_to_page(kaddr);
1720
1721                 p[k] = page;
1722                 len -= seg;
1723                 kaddr += PAGE_SIZE;
1724         }
1725
1726         maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
1727         iov_iter_advance(i, maxsize);
1728         return maxsize;
1729 }
1730
1731 /*
1732  * Extract a list of contiguous pages from a user iterator and get a pin on
1733  * each of them.  This should only be used if the iterator is user-backed
1734  * (IOBUF/UBUF).
1735  *
1736  * It does not get refs on the pages, but the pages must be unpinned by the
1737  * caller once the transfer is complete.
1738  *
1739  * This is safe to be used where background IO/DMA *is* going to be modifying
1740  * the buffer; using a pin rather than a ref makes forces fork() to give the
1741  * child a copy of the page.
1742  */
1743 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1744                                            struct page ***pages,
1745                                            size_t maxsize,
1746                                            unsigned int maxpages,
1747                                            iov_iter_extraction_t extraction_flags,
1748                                            size_t *offset0)
1749 {
1750         unsigned long addr;
1751         unsigned int gup_flags = 0;
1752         size_t offset;
1753         int res;
1754
1755         if (i->data_source == ITER_DEST)
1756                 gup_flags |= FOLL_WRITE;
1757         if (extraction_flags & ITER_ALLOW_P2PDMA)
1758                 gup_flags |= FOLL_PCI_P2PDMA;
1759         if (i->nofault)
1760                 gup_flags |= FOLL_NOFAULT;
1761
1762         addr = first_iovec_segment(i, &maxsize);
1763         *offset0 = offset = addr % PAGE_SIZE;
1764         addr &= PAGE_MASK;
1765         maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1766         if (!maxpages)
1767                 return -ENOMEM;
1768         res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1769         if (unlikely(res <= 0))
1770                 return res;
1771         maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1772         iov_iter_advance(i, maxsize);
1773         return maxsize;
1774 }
1775
1776 /**
1777  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1778  * @i: The iterator to extract from
1779  * @pages: Where to return the list of pages
1780  * @maxsize: The maximum amount of iterator to extract
1781  * @maxpages: The maximum size of the list of pages
1782  * @extraction_flags: Flags to qualify request
1783  * @offset0: Where to return the starting offset into (*@pages)[0]
1784  *
1785  * Extract a list of contiguous pages from the current point of the iterator,
1786  * advancing the iterator.  The maximum number of pages and the maximum amount
1787  * of page contents can be set.
1788  *
1789  * If *@pages is NULL, a page list will be allocated to the required size and
1790  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1791  * that the caller allocated a page list at least @maxpages in size and this
1792  * will be filled in.
1793  *
1794  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1795  * be allowed on the pages extracted.
1796  *
1797  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1798  * should be performed.
1799  *
1800  * Extra refs or pins on the pages may be obtained as follows:
1801  *
1802  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1803  *      added to the pages, but refs will not be taken.
1804  *      iov_iter_extract_will_pin() will return true.
1805  *
1806  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1807  *      merely listed; no extra refs or pins are obtained.
1808  *      iov_iter_extract_will_pin() will return 0.
1809  *
1810  * Note also:
1811  *
1812  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1813  *
1814  * On success, the function sets *@pages to the new pagelist, if allocated, and
1815  * sets *offset0 to the offset into the first page.
1816  *
1817  * It may also return -ENOMEM and -EFAULT.
1818  */
1819 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1820                                struct page ***pages,
1821                                size_t maxsize,
1822                                unsigned int maxpages,
1823                                iov_iter_extraction_t extraction_flags,
1824                                size_t *offset0)
1825 {
1826         maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1827         if (!maxsize)
1828                 return 0;
1829
1830         if (likely(user_backed_iter(i)))
1831                 return iov_iter_extract_user_pages(i, pages, maxsize,
1832                                                    maxpages, extraction_flags,
1833                                                    offset0);
1834         if (iov_iter_is_kvec(i))
1835                 return iov_iter_extract_kvec_pages(i, pages, maxsize,
1836                                                    maxpages, extraction_flags,
1837                                                    offset0);
1838         if (iov_iter_is_bvec(i))
1839                 return iov_iter_extract_bvec_pages(i, pages, maxsize,
1840                                                    maxpages, extraction_flags,
1841                                                    offset0);
1842         if (iov_iter_is_xarray(i))
1843                 return iov_iter_extract_xarray_pages(i, pages, maxsize,
1844                                                      maxpages, extraction_flags,
1845                                                      offset0);
1846         return -EFAULT;
1847 }
1848 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);