Linux 6.1.66
[platform/kernel/linux-starfive.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16
17 #define PIPE_PARANOIA /* for now */
18
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {          \
21         size_t __maybe_unused off = 0;                          \
22         len = n;                                                \
23         base = __p + i->iov_offset;                             \
24         len -= (STEP);                                          \
25         i->iov_offset += len;                                   \
26         n = len;                                                \
27 }
28
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {        \
31         size_t off = 0;                                         \
32         size_t skip = i->iov_offset;                            \
33         do {                                                    \
34                 len = min(n, __p->iov_len - skip);              \
35                 if (likely(len)) {                              \
36                         base = __p->iov_base + skip;            \
37                         len -= (STEP);                          \
38                         off += len;                             \
39                         skip += len;                            \
40                         n -= len;                               \
41                         if (skip < __p->iov_len)                \
42                                 break;                          \
43                 }                                               \
44                 __p++;                                          \
45                 skip = 0;                                       \
46         } while (n);                                            \
47         i->iov_offset = skip;                                   \
48         n = off;                                                \
49 }
50
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {           \
52         size_t off = 0;                                         \
53         unsigned skip = i->iov_offset;                          \
54         while (n) {                                             \
55                 unsigned offset = p->bv_offset + skip;          \
56                 unsigned left;                                  \
57                 void *kaddr = kmap_local_page(p->bv_page +      \
58                                         offset / PAGE_SIZE);    \
59                 base = kaddr + offset % PAGE_SIZE;              \
60                 len = min(min(n, (size_t)(p->bv_len - skip)),   \
61                      (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
62                 left = (STEP);                                  \
63                 kunmap_local(kaddr);                            \
64                 len -= left;                                    \
65                 off += len;                                     \
66                 skip += len;                                    \
67                 if (skip == p->bv_len) {                        \
68                         skip = 0;                               \
69                         p++;                                    \
70                 }                                               \
71                 n -= len;                                       \
72                 if (left)                                       \
73                         break;                                  \
74         }                                                       \
75         i->iov_offset = skip;                                   \
76         n = off;                                                \
77 }
78
79 #define iterate_xarray(i, n, base, len, __off, STEP) {          \
80         __label__ __out;                                        \
81         size_t __off = 0;                                       \
82         struct folio *folio;                                    \
83         loff_t start = i->xarray_start + i->iov_offset;         \
84         pgoff_t index = start / PAGE_SIZE;                      \
85         XA_STATE(xas, i->xarray, index);                        \
86                                                                 \
87         len = PAGE_SIZE - offset_in_page(start);                \
88         rcu_read_lock();                                        \
89         xas_for_each(&xas, folio, ULONG_MAX) {                  \
90                 unsigned left;                                  \
91                 size_t offset;                                  \
92                 if (xas_retry(&xas, folio))                     \
93                         continue;                               \
94                 if (WARN_ON(xa_is_value(folio)))                \
95                         break;                                  \
96                 if (WARN_ON(folio_test_hugetlb(folio)))         \
97                         break;                                  \
98                 offset = offset_in_folio(folio, start + __off); \
99                 while (offset < folio_size(folio)) {            \
100                         base = kmap_local_folio(folio, offset); \
101                         len = min(n, len);                      \
102                         left = (STEP);                          \
103                         kunmap_local(base);                     \
104                         len -= left;                            \
105                         __off += len;                           \
106                         n -= len;                               \
107                         if (left || n == 0)                     \
108                                 goto __out;                     \
109                         offset += len;                          \
110                         len = PAGE_SIZE;                        \
111                 }                                               \
112         }                                                       \
113 __out:                                                          \
114         rcu_read_unlock();                                      \
115         i->iov_offset += __off;                                 \
116         n = __off;                                              \
117 }
118
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {     \
120         if (unlikely(i->count < n))                             \
121                 n = i->count;                                   \
122         if (likely(n)) {                                        \
123                 if (likely(iter_is_ubuf(i))) {                  \
124                         void __user *base;                      \
125                         size_t len;                             \
126                         iterate_buf(i, n, base, len, off,       \
127                                                 i->ubuf, (I))   \
128                 } else if (likely(iter_is_iovec(i))) {          \
129                         const struct iovec *iov = i->iov;       \
130                         void __user *base;                      \
131                         size_t len;                             \
132                         iterate_iovec(i, n, base, len, off,     \
133                                                 iov, (I))       \
134                         i->nr_segs -= iov - i->iov;             \
135                         i->iov = iov;                           \
136                 } else if (iov_iter_is_bvec(i)) {               \
137                         const struct bio_vec *bvec = i->bvec;   \
138                         void *base;                             \
139                         size_t len;                             \
140                         iterate_bvec(i, n, base, len, off,      \
141                                                 bvec, (K))      \
142                         i->nr_segs -= bvec - i->bvec;           \
143                         i->bvec = bvec;                         \
144                 } else if (iov_iter_is_kvec(i)) {               \
145                         const struct kvec *kvec = i->kvec;      \
146                         void *base;                             \
147                         size_t len;                             \
148                         iterate_iovec(i, n, base, len, off,     \
149                                                 kvec, (K))      \
150                         i->nr_segs -= kvec - i->kvec;           \
151                         i->kvec = kvec;                         \
152                 } else if (iov_iter_is_xarray(i)) {             \
153                         void *base;                             \
154                         size_t len;                             \
155                         iterate_xarray(i, n, base, len, off,    \
156                                                         (K))    \
157                 }                                               \
158                 i->count -= n;                                  \
159         }                                                       \
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162         __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166         if (should_fail_usercopy())
167                 return n;
168         if (access_ok(to, n)) {
169                 instrument_copy_to_user(to, from, n);
170                 n = raw_copy_to_user(to, from, n);
171         }
172         return n;
173 }
174
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177         size_t res = n;
178
179         if (should_fail_usercopy())
180                 return n;
181         if (access_ok(from, n)) {
182                 instrument_copy_from_user_before(to, from, n);
183                 res = raw_copy_from_user(to, from, n);
184                 instrument_copy_from_user_after(to, from, n, res);
185         }
186         return res;
187 }
188
189 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
190                                            unsigned int slot)
191 {
192         return &pipe->bufs[slot & (pipe->ring_size - 1)];
193 }
194
195 #ifdef PIPE_PARANOIA
196 static bool sanity(const struct iov_iter *i)
197 {
198         struct pipe_inode_info *pipe = i->pipe;
199         unsigned int p_head = pipe->head;
200         unsigned int p_tail = pipe->tail;
201         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
202         unsigned int i_head = i->head;
203         unsigned int idx;
204
205         if (i->last_offset) {
206                 struct pipe_buffer *p;
207                 if (unlikely(p_occupancy == 0))
208                         goto Bad;       // pipe must be non-empty
209                 if (unlikely(i_head != p_head - 1))
210                         goto Bad;       // must be at the last buffer...
211
212                 p = pipe_buf(pipe, i_head);
213                 if (unlikely(p->offset + p->len != abs(i->last_offset)))
214                         goto Bad;       // ... at the end of segment
215         } else {
216                 if (i_head != p_head)
217                         goto Bad;       // must be right after the last buffer
218         }
219         return true;
220 Bad:
221         printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
222         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
223                         p_head, p_tail, pipe->ring_size);
224         for (idx = 0; idx < pipe->ring_size; idx++)
225                 printk(KERN_ERR "[%p %p %d %d]\n",
226                         pipe->bufs[idx].ops,
227                         pipe->bufs[idx].page,
228                         pipe->bufs[idx].offset,
229                         pipe->bufs[idx].len);
230         WARN_ON(1);
231         return false;
232 }
233 #else
234 #define sanity(i) true
235 #endif
236
237 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
238 {
239         struct page *page = alloc_page(GFP_USER);
240         if (page) {
241                 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
242                 *buf = (struct pipe_buffer) {
243                         .ops = &default_pipe_buf_ops,
244                         .page = page,
245                         .offset = 0,
246                         .len = size
247                 };
248         }
249         return page;
250 }
251
252 static void push_page(struct pipe_inode_info *pipe, struct page *page,
253                         unsigned int offset, unsigned int size)
254 {
255         struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
256         *buf = (struct pipe_buffer) {
257                 .ops = &page_cache_pipe_buf_ops,
258                 .page = page,
259                 .offset = offset,
260                 .len = size
261         };
262         get_page(page);
263 }
264
265 static inline int last_offset(const struct pipe_buffer *buf)
266 {
267         if (buf->ops == &default_pipe_buf_ops)
268                 return buf->len;        // buf->offset is 0 for those
269         else
270                 return -(buf->offset + buf->len);
271 }
272
273 static struct page *append_pipe(struct iov_iter *i, size_t size,
274                                 unsigned int *off)
275 {
276         struct pipe_inode_info *pipe = i->pipe;
277         int offset = i->last_offset;
278         struct pipe_buffer *buf;
279         struct page *page;
280
281         if (offset > 0 && offset < PAGE_SIZE) {
282                 // some space in the last buffer; add to it
283                 buf = pipe_buf(pipe, pipe->head - 1);
284                 size = min_t(size_t, size, PAGE_SIZE - offset);
285                 buf->len += size;
286                 i->last_offset += size;
287                 i->count -= size;
288                 *off = offset;
289                 return buf->page;
290         }
291         // OK, we need a new buffer
292         *off = 0;
293         size = min_t(size_t, size, PAGE_SIZE);
294         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
295                 return NULL;
296         page = push_anon(pipe, size);
297         if (!page)
298                 return NULL;
299         i->head = pipe->head - 1;
300         i->last_offset = size;
301         i->count -= size;
302         return page;
303 }
304
305 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
306                          struct iov_iter *i)
307 {
308         struct pipe_inode_info *pipe = i->pipe;
309         unsigned int head = pipe->head;
310
311         if (unlikely(bytes > i->count))
312                 bytes = i->count;
313
314         if (unlikely(!bytes))
315                 return 0;
316
317         if (!sanity(i))
318                 return 0;
319
320         if (offset && i->last_offset == -offset) { // could we merge it?
321                 struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
322                 if (buf->page == page) {
323                         buf->len += bytes;
324                         i->last_offset -= bytes;
325                         i->count -= bytes;
326                         return bytes;
327                 }
328         }
329         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
330                 return 0;
331
332         push_page(pipe, page, offset, bytes);
333         i->last_offset = -(offset + bytes);
334         i->head = head;
335         i->count -= bytes;
336         return bytes;
337 }
338
339 /*
340  * fault_in_iov_iter_readable - fault in iov iterator for reading
341  * @i: iterator
342  * @size: maximum length
343  *
344  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
345  * @size.  For each iovec, fault in each page that constitutes the iovec.
346  *
347  * Returns the number of bytes not faulted in (like copy_to_user() and
348  * copy_from_user()).
349  *
350  * Always returns 0 for non-userspace iterators.
351  */
352 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
353 {
354         if (iter_is_ubuf(i)) {
355                 size_t n = min(size, iov_iter_count(i));
356                 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
357                 return size - n;
358         } else if (iter_is_iovec(i)) {
359                 size_t count = min(size, iov_iter_count(i));
360                 const struct iovec *p;
361                 size_t skip;
362
363                 size -= count;
364                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
365                         size_t len = min(count, p->iov_len - skip);
366                         size_t ret;
367
368                         if (unlikely(!len))
369                                 continue;
370                         ret = fault_in_readable(p->iov_base + skip, len);
371                         count -= len - ret;
372                         if (ret)
373                                 break;
374                 }
375                 return count + size;
376         }
377         return 0;
378 }
379 EXPORT_SYMBOL(fault_in_iov_iter_readable);
380
381 /*
382  * fault_in_iov_iter_writeable - fault in iov iterator for writing
383  * @i: iterator
384  * @size: maximum length
385  *
386  * Faults in the iterator using get_user_pages(), i.e., without triggering
387  * hardware page faults.  This is primarily useful when we already know that
388  * some or all of the pages in @i aren't in memory.
389  *
390  * Returns the number of bytes not faulted in, like copy_to_user() and
391  * copy_from_user().
392  *
393  * Always returns 0 for non-user-space iterators.
394  */
395 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
396 {
397         if (iter_is_ubuf(i)) {
398                 size_t n = min(size, iov_iter_count(i));
399                 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
400                 return size - n;
401         } else if (iter_is_iovec(i)) {
402                 size_t count = min(size, iov_iter_count(i));
403                 const struct iovec *p;
404                 size_t skip;
405
406                 size -= count;
407                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
408                         size_t len = min(count, p->iov_len - skip);
409                         size_t ret;
410
411                         if (unlikely(!len))
412                                 continue;
413                         ret = fault_in_safe_writeable(p->iov_base + skip, len);
414                         count -= len - ret;
415                         if (ret)
416                                 break;
417                 }
418                 return count + size;
419         }
420         return 0;
421 }
422 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
423
424 void iov_iter_init(struct iov_iter *i, unsigned int direction,
425                         const struct iovec *iov, unsigned long nr_segs,
426                         size_t count)
427 {
428         WARN_ON(direction & ~(READ | WRITE));
429         *i = (struct iov_iter) {
430                 .iter_type = ITER_IOVEC,
431                 .nofault = false,
432                 .user_backed = true,
433                 .data_source = direction,
434                 .iov = iov,
435                 .nr_segs = nr_segs,
436                 .iov_offset = 0,
437                 .count = count
438         };
439 }
440 EXPORT_SYMBOL(iov_iter_init);
441
442 // returns the offset in partial buffer (if any)
443 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
444 {
445         struct pipe_inode_info *pipe = i->pipe;
446         int used = pipe->head - pipe->tail;
447         int off = i->last_offset;
448
449         *npages = max((int)pipe->max_usage - used, 0);
450
451         if (off > 0 && off < PAGE_SIZE) { // anon and not full
452                 (*npages)++;
453                 return off;
454         }
455         return 0;
456 }
457
458 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
459                                 struct iov_iter *i)
460 {
461         unsigned int off, chunk;
462
463         if (unlikely(bytes > i->count))
464                 bytes = i->count;
465         if (unlikely(!bytes))
466                 return 0;
467
468         if (!sanity(i))
469                 return 0;
470
471         for (size_t n = bytes; n; n -= chunk) {
472                 struct page *page = append_pipe(i, n, &off);
473                 chunk = min_t(size_t, n, PAGE_SIZE - off);
474                 if (!page)
475                         return bytes - n;
476                 memcpy_to_page(page, off, addr, chunk);
477                 addr += chunk;
478         }
479         return bytes;
480 }
481
482 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
483                               __wsum sum, size_t off)
484 {
485         __wsum next = csum_partial_copy_nocheck(from, to, len);
486         return csum_block_add(sum, next, off);
487 }
488
489 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
490                                          struct iov_iter *i, __wsum *sump)
491 {
492         __wsum sum = *sump;
493         size_t off = 0;
494         unsigned int chunk, r;
495
496         if (unlikely(bytes > i->count))
497                 bytes = i->count;
498         if (unlikely(!bytes))
499                 return 0;
500
501         if (!sanity(i))
502                 return 0;
503
504         while (bytes) {
505                 struct page *page = append_pipe(i, bytes, &r);
506                 char *p;
507
508                 if (!page)
509                         break;
510                 chunk = min_t(size_t, bytes, PAGE_SIZE - r);
511                 p = kmap_local_page(page);
512                 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
513                 kunmap_local(p);
514                 off += chunk;
515                 bytes -= chunk;
516         }
517         *sump = sum;
518         return off;
519 }
520
521 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
522 {
523         if (unlikely(iov_iter_is_pipe(i)))
524                 return copy_pipe_to_iter(addr, bytes, i);
525         if (user_backed_iter(i))
526                 might_fault();
527         iterate_and_advance(i, bytes, base, len, off,
528                 copyout(base, addr + off, len),
529                 memcpy(base, addr + off, len)
530         )
531
532         return bytes;
533 }
534 EXPORT_SYMBOL(_copy_to_iter);
535
536 #ifdef CONFIG_ARCH_HAS_COPY_MC
537 static int copyout_mc(void __user *to, const void *from, size_t n)
538 {
539         if (access_ok(to, n)) {
540                 instrument_copy_to_user(to, from, n);
541                 n = copy_mc_to_user((__force void *) to, from, n);
542         }
543         return n;
544 }
545
546 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
547                                 struct iov_iter *i)
548 {
549         size_t xfer = 0;
550         unsigned int off, chunk;
551
552         if (unlikely(bytes > i->count))
553                 bytes = i->count;
554         if (unlikely(!bytes))
555                 return 0;
556
557         if (!sanity(i))
558                 return 0;
559
560         while (bytes) {
561                 struct page *page = append_pipe(i, bytes, &off);
562                 unsigned long rem;
563                 char *p;
564
565                 if (!page)
566                         break;
567                 chunk = min_t(size_t, bytes, PAGE_SIZE - off);
568                 p = kmap_local_page(page);
569                 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
570                 chunk -= rem;
571                 kunmap_local(p);
572                 xfer += chunk;
573                 bytes -= chunk;
574                 if (rem) {
575                         iov_iter_revert(i, rem);
576                         break;
577                 }
578         }
579         return xfer;
580 }
581
582 /**
583  * _copy_mc_to_iter - copy to iter with source memory error exception handling
584  * @addr: source kernel address
585  * @bytes: total transfer length
586  * @i: destination iterator
587  *
588  * The pmem driver deploys this for the dax operation
589  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
590  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
591  * successfully copied.
592  *
593  * The main differences between this and typical _copy_to_iter().
594  *
595  * * Typical tail/residue handling after a fault retries the copy
596  *   byte-by-byte until the fault happens again. Re-triggering machine
597  *   checks is potentially fatal so the implementation uses source
598  *   alignment and poison alignment assumptions to avoid re-triggering
599  *   hardware exceptions.
600  *
601  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
602  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
603  *   a short copy.
604  *
605  * Return: number of bytes copied (may be %0)
606  */
607 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
608 {
609         if (unlikely(iov_iter_is_pipe(i)))
610                 return copy_mc_pipe_to_iter(addr, bytes, i);
611         if (user_backed_iter(i))
612                 might_fault();
613         __iterate_and_advance(i, bytes, base, len, off,
614                 copyout_mc(base, addr + off, len),
615                 copy_mc_to_kernel(base, addr + off, len)
616         )
617
618         return bytes;
619 }
620 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
621 #endif /* CONFIG_ARCH_HAS_COPY_MC */
622
623 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
624 {
625         if (unlikely(iov_iter_is_pipe(i))) {
626                 WARN_ON(1);
627                 return 0;
628         }
629         if (user_backed_iter(i))
630                 might_fault();
631         iterate_and_advance(i, bytes, base, len, off,
632                 copyin(addr + off, base, len),
633                 memcpy(addr + off, base, len)
634         )
635
636         return bytes;
637 }
638 EXPORT_SYMBOL(_copy_from_iter);
639
640 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
641 {
642         if (unlikely(iov_iter_is_pipe(i))) {
643                 WARN_ON(1);
644                 return 0;
645         }
646         iterate_and_advance(i, bytes, base, len, off,
647                 __copy_from_user_inatomic_nocache(addr + off, base, len),
648                 memcpy(addr + off, base, len)
649         )
650
651         return bytes;
652 }
653 EXPORT_SYMBOL(_copy_from_iter_nocache);
654
655 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
656 /**
657  * _copy_from_iter_flushcache - write destination through cpu cache
658  * @addr: destination kernel address
659  * @bytes: total transfer length
660  * @i: source iterator
661  *
662  * The pmem driver arranges for filesystem-dax to use this facility via
663  * dax_copy_from_iter() for ensuring that writes to persistent memory
664  * are flushed through the CPU cache. It is differentiated from
665  * _copy_from_iter_nocache() in that guarantees all data is flushed for
666  * all iterator types. The _copy_from_iter_nocache() only attempts to
667  * bypass the cache for the ITER_IOVEC case, and on some archs may use
668  * instructions that strand dirty-data in the cache.
669  *
670  * Return: number of bytes copied (may be %0)
671  */
672 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
673 {
674         if (unlikely(iov_iter_is_pipe(i))) {
675                 WARN_ON(1);
676                 return 0;
677         }
678         iterate_and_advance(i, bytes, base, len, off,
679                 __copy_from_user_flushcache(addr + off, base, len),
680                 memcpy_flushcache(addr + off, base, len)
681         )
682
683         return bytes;
684 }
685 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
686 #endif
687
688 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
689 {
690         struct page *head;
691         size_t v = n + offset;
692
693         /*
694          * The general case needs to access the page order in order
695          * to compute the page size.
696          * However, we mostly deal with order-0 pages and thus can
697          * avoid a possible cache line miss for requests that fit all
698          * page orders.
699          */
700         if (n <= v && v <= PAGE_SIZE)
701                 return true;
702
703         head = compound_head(page);
704         v += (page - head) << PAGE_SHIFT;
705
706         if (likely(n <= v && v <= (page_size(head))))
707                 return true;
708         WARN_ON(1);
709         return false;
710 }
711
712 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
713                          struct iov_iter *i)
714 {
715         size_t res = 0;
716         if (unlikely(!page_copy_sane(page, offset, bytes)))
717                 return 0;
718         if (unlikely(iov_iter_is_pipe(i)))
719                 return copy_page_to_iter_pipe(page, offset, bytes, i);
720         page += offset / PAGE_SIZE; // first subpage
721         offset %= PAGE_SIZE;
722         while (1) {
723                 void *kaddr = kmap_local_page(page);
724                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
725                 n = _copy_to_iter(kaddr + offset, n, i);
726                 kunmap_local(kaddr);
727                 res += n;
728                 bytes -= n;
729                 if (!bytes || !n)
730                         break;
731                 offset += n;
732                 if (offset == PAGE_SIZE) {
733                         page++;
734                         offset = 0;
735                 }
736         }
737         return res;
738 }
739 EXPORT_SYMBOL(copy_page_to_iter);
740
741 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
742                          struct iov_iter *i)
743 {
744         size_t res = 0;
745         if (!page_copy_sane(page, offset, bytes))
746                 return 0;
747         page += offset / PAGE_SIZE; // first subpage
748         offset %= PAGE_SIZE;
749         while (1) {
750                 void *kaddr = kmap_local_page(page);
751                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
752                 n = _copy_from_iter(kaddr + offset, n, i);
753                 kunmap_local(kaddr);
754                 res += n;
755                 bytes -= n;
756                 if (!bytes || !n)
757                         break;
758                 offset += n;
759                 if (offset == PAGE_SIZE) {
760                         page++;
761                         offset = 0;
762                 }
763         }
764         return res;
765 }
766 EXPORT_SYMBOL(copy_page_from_iter);
767
768 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
769 {
770         unsigned int chunk, off;
771
772         if (unlikely(bytes > i->count))
773                 bytes = i->count;
774         if (unlikely(!bytes))
775                 return 0;
776
777         if (!sanity(i))
778                 return 0;
779
780         for (size_t n = bytes; n; n -= chunk) {
781                 struct page *page = append_pipe(i, n, &off);
782                 char *p;
783
784                 if (!page)
785                         return bytes - n;
786                 chunk = min_t(size_t, n, PAGE_SIZE - off);
787                 p = kmap_local_page(page);
788                 memset(p + off, 0, chunk);
789                 kunmap_local(p);
790         }
791         return bytes;
792 }
793
794 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
795 {
796         if (unlikely(iov_iter_is_pipe(i)))
797                 return pipe_zero(bytes, i);
798         iterate_and_advance(i, bytes, base, len, count,
799                 clear_user(base, len),
800                 memset(base, 0, len)
801         )
802
803         return bytes;
804 }
805 EXPORT_SYMBOL(iov_iter_zero);
806
807 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
808                                   struct iov_iter *i)
809 {
810         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
811         if (unlikely(!page_copy_sane(page, offset, bytes))) {
812                 kunmap_atomic(kaddr);
813                 return 0;
814         }
815         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
816                 kunmap_atomic(kaddr);
817                 WARN_ON(1);
818                 return 0;
819         }
820         iterate_and_advance(i, bytes, base, len, off,
821                 copyin(p + off, base, len),
822                 memcpy(p + off, base, len)
823         )
824         kunmap_atomic(kaddr);
825         return bytes;
826 }
827 EXPORT_SYMBOL(copy_page_from_iter_atomic);
828
829 static void pipe_advance(struct iov_iter *i, size_t size)
830 {
831         struct pipe_inode_info *pipe = i->pipe;
832         int off = i->last_offset;
833
834         if (!off && !size) {
835                 pipe_discard_from(pipe, i->start_head); // discard everything
836                 return;
837         }
838         i->count -= size;
839         while (1) {
840                 struct pipe_buffer *buf = pipe_buf(pipe, i->head);
841                 if (off) /* make it relative to the beginning of buffer */
842                         size += abs(off) - buf->offset;
843                 if (size <= buf->len) {
844                         buf->len = size;
845                         i->last_offset = last_offset(buf);
846                         break;
847                 }
848                 size -= buf->len;
849                 i->head++;
850                 off = 0;
851         }
852         pipe_discard_from(pipe, i->head + 1); // discard everything past this one
853 }
854
855 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
856 {
857         const struct bio_vec *bvec, *end;
858
859         if (!i->count)
860                 return;
861         i->count -= size;
862
863         size += i->iov_offset;
864
865         for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
866                 if (likely(size < bvec->bv_len))
867                         break;
868                 size -= bvec->bv_len;
869         }
870         i->iov_offset = size;
871         i->nr_segs -= bvec - i->bvec;
872         i->bvec = bvec;
873 }
874
875 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
876 {
877         const struct iovec *iov, *end;
878
879         if (!i->count)
880                 return;
881         i->count -= size;
882
883         size += i->iov_offset; // from beginning of current segment
884         for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
885                 if (likely(size < iov->iov_len))
886                         break;
887                 size -= iov->iov_len;
888         }
889         i->iov_offset = size;
890         i->nr_segs -= iov - i->iov;
891         i->iov = iov;
892 }
893
894 void iov_iter_advance(struct iov_iter *i, size_t size)
895 {
896         if (unlikely(i->count < size))
897                 size = i->count;
898         if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
899                 i->iov_offset += size;
900                 i->count -= size;
901         } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
902                 /* iovec and kvec have identical layouts */
903                 iov_iter_iovec_advance(i, size);
904         } else if (iov_iter_is_bvec(i)) {
905                 iov_iter_bvec_advance(i, size);
906         } else if (iov_iter_is_pipe(i)) {
907                 pipe_advance(i, size);
908         } else if (iov_iter_is_discard(i)) {
909                 i->count -= size;
910         }
911 }
912 EXPORT_SYMBOL(iov_iter_advance);
913
914 void iov_iter_revert(struct iov_iter *i, size_t unroll)
915 {
916         if (!unroll)
917                 return;
918         if (WARN_ON(unroll > MAX_RW_COUNT))
919                 return;
920         i->count += unroll;
921         if (unlikely(iov_iter_is_pipe(i))) {
922                 struct pipe_inode_info *pipe = i->pipe;
923                 unsigned int head = pipe->head;
924
925                 while (head > i->start_head) {
926                         struct pipe_buffer *b = pipe_buf(pipe, --head);
927                         if (unroll < b->len) {
928                                 b->len -= unroll;
929                                 i->last_offset = last_offset(b);
930                                 i->head = head;
931                                 return;
932                         }
933                         unroll -= b->len;
934                         pipe_buf_release(pipe, b);
935                         pipe->head--;
936                 }
937                 i->last_offset = 0;
938                 i->head = head;
939                 return;
940         }
941         if (unlikely(iov_iter_is_discard(i)))
942                 return;
943         if (unroll <= i->iov_offset) {
944                 i->iov_offset -= unroll;
945                 return;
946         }
947         unroll -= i->iov_offset;
948         if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
949                 BUG(); /* We should never go beyond the start of the specified
950                         * range since we might then be straying into pages that
951                         * aren't pinned.
952                         */
953         } else if (iov_iter_is_bvec(i)) {
954                 const struct bio_vec *bvec = i->bvec;
955                 while (1) {
956                         size_t n = (--bvec)->bv_len;
957                         i->nr_segs++;
958                         if (unroll <= n) {
959                                 i->bvec = bvec;
960                                 i->iov_offset = n - unroll;
961                                 return;
962                         }
963                         unroll -= n;
964                 }
965         } else { /* same logics for iovec and kvec */
966                 const struct iovec *iov = i->iov;
967                 while (1) {
968                         size_t n = (--iov)->iov_len;
969                         i->nr_segs++;
970                         if (unroll <= n) {
971                                 i->iov = iov;
972                                 i->iov_offset = n - unroll;
973                                 return;
974                         }
975                         unroll -= n;
976                 }
977         }
978 }
979 EXPORT_SYMBOL(iov_iter_revert);
980
981 /*
982  * Return the count of just the current iov_iter segment.
983  */
984 size_t iov_iter_single_seg_count(const struct iov_iter *i)
985 {
986         if (i->nr_segs > 1) {
987                 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
988                         return min(i->count, i->iov->iov_len - i->iov_offset);
989                 if (iov_iter_is_bvec(i))
990                         return min(i->count, i->bvec->bv_len - i->iov_offset);
991         }
992         return i->count;
993 }
994 EXPORT_SYMBOL(iov_iter_single_seg_count);
995
996 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
997                         const struct kvec *kvec, unsigned long nr_segs,
998                         size_t count)
999 {
1000         WARN_ON(direction & ~(READ | WRITE));
1001         *i = (struct iov_iter){
1002                 .iter_type = ITER_KVEC,
1003                 .data_source = direction,
1004                 .kvec = kvec,
1005                 .nr_segs = nr_segs,
1006                 .iov_offset = 0,
1007                 .count = count
1008         };
1009 }
1010 EXPORT_SYMBOL(iov_iter_kvec);
1011
1012 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1013                         const struct bio_vec *bvec, unsigned long nr_segs,
1014                         size_t count)
1015 {
1016         WARN_ON(direction & ~(READ | WRITE));
1017         *i = (struct iov_iter){
1018                 .iter_type = ITER_BVEC,
1019                 .data_source = direction,
1020                 .bvec = bvec,
1021                 .nr_segs = nr_segs,
1022                 .iov_offset = 0,
1023                 .count = count
1024         };
1025 }
1026 EXPORT_SYMBOL(iov_iter_bvec);
1027
1028 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1029                         struct pipe_inode_info *pipe,
1030                         size_t count)
1031 {
1032         BUG_ON(direction != READ);
1033         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1034         *i = (struct iov_iter){
1035                 .iter_type = ITER_PIPE,
1036                 .data_source = false,
1037                 .pipe = pipe,
1038                 .head = pipe->head,
1039                 .start_head = pipe->head,
1040                 .last_offset = 0,
1041                 .count = count
1042         };
1043 }
1044 EXPORT_SYMBOL(iov_iter_pipe);
1045
1046 /**
1047  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1048  * @i: The iterator to initialise.
1049  * @direction: The direction of the transfer.
1050  * @xarray: The xarray to access.
1051  * @start: The start file position.
1052  * @count: The size of the I/O buffer in bytes.
1053  *
1054  * Set up an I/O iterator to either draw data out of the pages attached to an
1055  * inode or to inject data into those pages.  The pages *must* be prevented
1056  * from evaporation, either by taking a ref on them or locking them by the
1057  * caller.
1058  */
1059 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1060                      struct xarray *xarray, loff_t start, size_t count)
1061 {
1062         BUG_ON(direction & ~1);
1063         *i = (struct iov_iter) {
1064                 .iter_type = ITER_XARRAY,
1065                 .data_source = direction,
1066                 .xarray = xarray,
1067                 .xarray_start = start,
1068                 .count = count,
1069                 .iov_offset = 0
1070         };
1071 }
1072 EXPORT_SYMBOL(iov_iter_xarray);
1073
1074 /**
1075  * iov_iter_discard - Initialise an I/O iterator that discards data
1076  * @i: The iterator to initialise.
1077  * @direction: The direction of the transfer.
1078  * @count: The size of the I/O buffer in bytes.
1079  *
1080  * Set up an I/O iterator that just discards everything that's written to it.
1081  * It's only available as a READ iterator.
1082  */
1083 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1084 {
1085         BUG_ON(direction != READ);
1086         *i = (struct iov_iter){
1087                 .iter_type = ITER_DISCARD,
1088                 .data_source = false,
1089                 .count = count,
1090                 .iov_offset = 0
1091         };
1092 }
1093 EXPORT_SYMBOL(iov_iter_discard);
1094
1095 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1096                                    unsigned len_mask)
1097 {
1098         size_t size = i->count;
1099         size_t skip = i->iov_offset;
1100         unsigned k;
1101
1102         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1103                 size_t len = i->iov[k].iov_len - skip;
1104
1105                 if (len > size)
1106                         len = size;
1107                 if (len & len_mask)
1108                         return false;
1109                 if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1110                         return false;
1111
1112                 size -= len;
1113                 if (!size)
1114                         break;
1115         }
1116         return true;
1117 }
1118
1119 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1120                                   unsigned len_mask)
1121 {
1122         size_t size = i->count;
1123         unsigned skip = i->iov_offset;
1124         unsigned k;
1125
1126         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1127                 size_t len = i->bvec[k].bv_len - skip;
1128
1129                 if (len > size)
1130                         len = size;
1131                 if (len & len_mask)
1132                         return false;
1133                 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1134                         return false;
1135
1136                 size -= len;
1137                 if (!size)
1138                         break;
1139         }
1140         return true;
1141 }
1142
1143 /**
1144  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1145  *      are aligned to the parameters.
1146  *
1147  * @i: &struct iov_iter to restore
1148  * @addr_mask: bit mask to check against the iov element's addresses
1149  * @len_mask: bit mask to check against the iov element's lengths
1150  *
1151  * Return: false if any addresses or lengths intersect with the provided masks
1152  */
1153 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1154                          unsigned len_mask)
1155 {
1156         if (likely(iter_is_ubuf(i))) {
1157                 if (i->count & len_mask)
1158                         return false;
1159                 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1160                         return false;
1161                 return true;
1162         }
1163
1164         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1165                 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1166
1167         if (iov_iter_is_bvec(i))
1168                 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1169
1170         if (iov_iter_is_pipe(i)) {
1171                 size_t size = i->count;
1172
1173                 if (size & len_mask)
1174                         return false;
1175                 if (size && i->last_offset > 0) {
1176                         if (i->last_offset & addr_mask)
1177                                 return false;
1178                 }
1179
1180                 return true;
1181         }
1182
1183         if (iov_iter_is_xarray(i)) {
1184                 if (i->count & len_mask)
1185                         return false;
1186                 if ((i->xarray_start + i->iov_offset) & addr_mask)
1187                         return false;
1188         }
1189
1190         return true;
1191 }
1192 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1193
1194 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1195 {
1196         unsigned long res = 0;
1197         size_t size = i->count;
1198         size_t skip = i->iov_offset;
1199         unsigned k;
1200
1201         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1202                 size_t len = i->iov[k].iov_len - skip;
1203                 if (len) {
1204                         res |= (unsigned long)i->iov[k].iov_base + skip;
1205                         if (len > size)
1206                                 len = size;
1207                         res |= len;
1208                         size -= len;
1209                         if (!size)
1210                                 break;
1211                 }
1212         }
1213         return res;
1214 }
1215
1216 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1217 {
1218         unsigned res = 0;
1219         size_t size = i->count;
1220         unsigned skip = i->iov_offset;
1221         unsigned k;
1222
1223         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1224                 size_t len = i->bvec[k].bv_len - skip;
1225                 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1226                 if (len > size)
1227                         len = size;
1228                 res |= len;
1229                 size -= len;
1230                 if (!size)
1231                         break;
1232         }
1233         return res;
1234 }
1235
1236 unsigned long iov_iter_alignment(const struct iov_iter *i)
1237 {
1238         if (likely(iter_is_ubuf(i))) {
1239                 size_t size = i->count;
1240                 if (size)
1241                         return ((unsigned long)i->ubuf + i->iov_offset) | size;
1242                 return 0;
1243         }
1244
1245         /* iovec and kvec have identical layouts */
1246         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1247                 return iov_iter_alignment_iovec(i);
1248
1249         if (iov_iter_is_bvec(i))
1250                 return iov_iter_alignment_bvec(i);
1251
1252         if (iov_iter_is_pipe(i)) {
1253                 size_t size = i->count;
1254
1255                 if (size && i->last_offset > 0)
1256                         return size | i->last_offset;
1257                 return size;
1258         }
1259
1260         if (iov_iter_is_xarray(i))
1261                 return (i->xarray_start + i->iov_offset) | i->count;
1262
1263         return 0;
1264 }
1265 EXPORT_SYMBOL(iov_iter_alignment);
1266
1267 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1268 {
1269         unsigned long res = 0;
1270         unsigned long v = 0;
1271         size_t size = i->count;
1272         unsigned k;
1273
1274         if (iter_is_ubuf(i))
1275                 return 0;
1276
1277         if (WARN_ON(!iter_is_iovec(i)))
1278                 return ~0U;
1279
1280         for (k = 0; k < i->nr_segs; k++) {
1281                 if (i->iov[k].iov_len) {
1282                         unsigned long base = (unsigned long)i->iov[k].iov_base;
1283                         if (v) // if not the first one
1284                                 res |= base | v; // this start | previous end
1285                         v = base + i->iov[k].iov_len;
1286                         if (size <= i->iov[k].iov_len)
1287                                 break;
1288                         size -= i->iov[k].iov_len;
1289                 }
1290         }
1291         return res;
1292 }
1293 EXPORT_SYMBOL(iov_iter_gap_alignment);
1294
1295 static int want_pages_array(struct page ***res, size_t size,
1296                             size_t start, unsigned int maxpages)
1297 {
1298         unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1299
1300         if (count > maxpages)
1301                 count = maxpages;
1302         WARN_ON(!count);        // caller should've prevented that
1303         if (!*res) {
1304                 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1305                 if (!*res)
1306                         return 0;
1307         }
1308         return count;
1309 }
1310
1311 static ssize_t pipe_get_pages(struct iov_iter *i,
1312                    struct page ***pages, size_t maxsize, unsigned maxpages,
1313                    size_t *start)
1314 {
1315         unsigned int npages, count, off, chunk;
1316         struct page **p;
1317         size_t left;
1318
1319         if (!sanity(i))
1320                 return -EFAULT;
1321
1322         *start = off = pipe_npages(i, &npages);
1323         if (!npages)
1324                 return -EFAULT;
1325         count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1326         if (!count)
1327                 return -ENOMEM;
1328         p = *pages;
1329         for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1330                 struct page *page = append_pipe(i, left, &off);
1331                 if (!page)
1332                         break;
1333                 chunk = min_t(size_t, left, PAGE_SIZE - off);
1334                 get_page(*p++ = page);
1335         }
1336         if (!npages)
1337                 return -EFAULT;
1338         return maxsize - left;
1339 }
1340
1341 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1342                                           pgoff_t index, unsigned int nr_pages)
1343 {
1344         XA_STATE(xas, xa, index);
1345         struct page *page;
1346         unsigned int ret = 0;
1347
1348         rcu_read_lock();
1349         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1350                 if (xas_retry(&xas, page))
1351                         continue;
1352
1353                 /* Has the page moved or been split? */
1354                 if (unlikely(page != xas_reload(&xas))) {
1355                         xas_reset(&xas);
1356                         continue;
1357                 }
1358
1359                 pages[ret] = find_subpage(page, xas.xa_index);
1360                 get_page(pages[ret]);
1361                 if (++ret == nr_pages)
1362                         break;
1363         }
1364         rcu_read_unlock();
1365         return ret;
1366 }
1367
1368 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1369                                      struct page ***pages, size_t maxsize,
1370                                      unsigned maxpages, size_t *_start_offset)
1371 {
1372         unsigned nr, offset, count;
1373         pgoff_t index;
1374         loff_t pos;
1375
1376         pos = i->xarray_start + i->iov_offset;
1377         index = pos >> PAGE_SHIFT;
1378         offset = pos & ~PAGE_MASK;
1379         *_start_offset = offset;
1380
1381         count = want_pages_array(pages, maxsize, offset, maxpages);
1382         if (!count)
1383                 return -ENOMEM;
1384         nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1385         if (nr == 0)
1386                 return 0;
1387
1388         maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1389         i->iov_offset += maxsize;
1390         i->count -= maxsize;
1391         return maxsize;
1392 }
1393
1394 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1395 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1396 {
1397         size_t skip;
1398         long k;
1399
1400         if (iter_is_ubuf(i))
1401                 return (unsigned long)i->ubuf + i->iov_offset;
1402
1403         for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1404                 size_t len = i->iov[k].iov_len - skip;
1405
1406                 if (unlikely(!len))
1407                         continue;
1408                 if (*size > len)
1409                         *size = len;
1410                 return (unsigned long)i->iov[k].iov_base + skip;
1411         }
1412         BUG(); // if it had been empty, we wouldn't get called
1413 }
1414
1415 /* must be done on non-empty ITER_BVEC one */
1416 static struct page *first_bvec_segment(const struct iov_iter *i,
1417                                        size_t *size, size_t *start)
1418 {
1419         struct page *page;
1420         size_t skip = i->iov_offset, len;
1421
1422         len = i->bvec->bv_len - skip;
1423         if (*size > len)
1424                 *size = len;
1425         skip += i->bvec->bv_offset;
1426         page = i->bvec->bv_page + skip / PAGE_SIZE;
1427         *start = skip % PAGE_SIZE;
1428         return page;
1429 }
1430
1431 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1432                    struct page ***pages, size_t maxsize,
1433                    unsigned int maxpages, size_t *start)
1434 {
1435         unsigned int n;
1436
1437         if (maxsize > i->count)
1438                 maxsize = i->count;
1439         if (!maxsize)
1440                 return 0;
1441         if (maxsize > MAX_RW_COUNT)
1442                 maxsize = MAX_RW_COUNT;
1443
1444         if (likely(user_backed_iter(i))) {
1445                 unsigned int gup_flags = 0;
1446                 unsigned long addr;
1447                 int res;
1448
1449                 if (iov_iter_rw(i) != WRITE)
1450                         gup_flags |= FOLL_WRITE;
1451                 if (i->nofault)
1452                         gup_flags |= FOLL_NOFAULT;
1453
1454                 addr = first_iovec_segment(i, &maxsize);
1455                 *start = addr % PAGE_SIZE;
1456                 addr &= PAGE_MASK;
1457                 n = want_pages_array(pages, maxsize, *start, maxpages);
1458                 if (!n)
1459                         return -ENOMEM;
1460                 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1461                 if (unlikely(res <= 0))
1462                         return res;
1463                 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1464                 iov_iter_advance(i, maxsize);
1465                 return maxsize;
1466         }
1467         if (iov_iter_is_bvec(i)) {
1468                 struct page **p;
1469                 struct page *page;
1470
1471                 page = first_bvec_segment(i, &maxsize, start);
1472                 n = want_pages_array(pages, maxsize, *start, maxpages);
1473                 if (!n)
1474                         return -ENOMEM;
1475                 p = *pages;
1476                 for (int k = 0; k < n; k++)
1477                         get_page(p[k] = page + k);
1478                 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1479                 i->count -= maxsize;
1480                 i->iov_offset += maxsize;
1481                 if (i->iov_offset == i->bvec->bv_len) {
1482                         i->iov_offset = 0;
1483                         i->bvec++;
1484                         i->nr_segs--;
1485                 }
1486                 return maxsize;
1487         }
1488         if (iov_iter_is_pipe(i))
1489                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1490         if (iov_iter_is_xarray(i))
1491                 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1492         return -EFAULT;
1493 }
1494
1495 ssize_t iov_iter_get_pages2(struct iov_iter *i,
1496                    struct page **pages, size_t maxsize, unsigned maxpages,
1497                    size_t *start)
1498 {
1499         if (!maxpages)
1500                 return 0;
1501         BUG_ON(!pages);
1502
1503         return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1504 }
1505 EXPORT_SYMBOL(iov_iter_get_pages2);
1506
1507 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1508                    struct page ***pages, size_t maxsize,
1509                    size_t *start)
1510 {
1511         ssize_t len;
1512
1513         *pages = NULL;
1514
1515         len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1516         if (len <= 0) {
1517                 kvfree(*pages);
1518                 *pages = NULL;
1519         }
1520         return len;
1521 }
1522 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1523
1524 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1525                                struct iov_iter *i)
1526 {
1527         __wsum sum, next;
1528         sum = *csum;
1529         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1530                 WARN_ON(1);
1531                 return 0;
1532         }
1533         iterate_and_advance(i, bytes, base, len, off, ({
1534                 next = csum_and_copy_from_user(base, addr + off, len);
1535                 sum = csum_block_add(sum, next, off);
1536                 next ? 0 : len;
1537         }), ({
1538                 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1539         })
1540         )
1541         *csum = sum;
1542         return bytes;
1543 }
1544 EXPORT_SYMBOL(csum_and_copy_from_iter);
1545
1546 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1547                              struct iov_iter *i)
1548 {
1549         struct csum_state *csstate = _csstate;
1550         __wsum sum, next;
1551
1552         if (unlikely(iov_iter_is_discard(i))) {
1553                 WARN_ON(1);     /* for now */
1554                 return 0;
1555         }
1556
1557         sum = csum_shift(csstate->csum, csstate->off);
1558         if (unlikely(iov_iter_is_pipe(i)))
1559                 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1560         else iterate_and_advance(i, bytes, base, len, off, ({
1561                 next = csum_and_copy_to_user(addr + off, base, len);
1562                 sum = csum_block_add(sum, next, off);
1563                 next ? 0 : len;
1564         }), ({
1565                 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1566         })
1567         )
1568         csstate->csum = csum_shift(sum, csstate->off);
1569         csstate->off += bytes;
1570         return bytes;
1571 }
1572 EXPORT_SYMBOL(csum_and_copy_to_iter);
1573
1574 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1575                 struct iov_iter *i)
1576 {
1577 #ifdef CONFIG_CRYPTO_HASH
1578         struct ahash_request *hash = hashp;
1579         struct scatterlist sg;
1580         size_t copied;
1581
1582         copied = copy_to_iter(addr, bytes, i);
1583         sg_init_one(&sg, addr, copied);
1584         ahash_request_set_crypt(hash, &sg, NULL, copied);
1585         crypto_ahash_update(hash);
1586         return copied;
1587 #else
1588         return 0;
1589 #endif
1590 }
1591 EXPORT_SYMBOL(hash_and_copy_to_iter);
1592
1593 static int iov_npages(const struct iov_iter *i, int maxpages)
1594 {
1595         size_t skip = i->iov_offset, size = i->count;
1596         const struct iovec *p;
1597         int npages = 0;
1598
1599         for (p = i->iov; size; skip = 0, p++) {
1600                 unsigned offs = offset_in_page(p->iov_base + skip);
1601                 size_t len = min(p->iov_len - skip, size);
1602
1603                 if (len) {
1604                         size -= len;
1605                         npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1606                         if (unlikely(npages > maxpages))
1607                                 return maxpages;
1608                 }
1609         }
1610         return npages;
1611 }
1612
1613 static int bvec_npages(const struct iov_iter *i, int maxpages)
1614 {
1615         size_t skip = i->iov_offset, size = i->count;
1616         const struct bio_vec *p;
1617         int npages = 0;
1618
1619         for (p = i->bvec; size; skip = 0, p++) {
1620                 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1621                 size_t len = min(p->bv_len - skip, size);
1622
1623                 size -= len;
1624                 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1625                 if (unlikely(npages > maxpages))
1626                         return maxpages;
1627         }
1628         return npages;
1629 }
1630
1631 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1632 {
1633         if (unlikely(!i->count))
1634                 return 0;
1635         if (likely(iter_is_ubuf(i))) {
1636                 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1637                 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1638                 return min(npages, maxpages);
1639         }
1640         /* iovec and kvec have identical layouts */
1641         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1642                 return iov_npages(i, maxpages);
1643         if (iov_iter_is_bvec(i))
1644                 return bvec_npages(i, maxpages);
1645         if (iov_iter_is_pipe(i)) {
1646                 int npages;
1647
1648                 if (!sanity(i))
1649                         return 0;
1650
1651                 pipe_npages(i, &npages);
1652                 return min(npages, maxpages);
1653         }
1654         if (iov_iter_is_xarray(i)) {
1655                 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1656                 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1657                 return min(npages, maxpages);
1658         }
1659         return 0;
1660 }
1661 EXPORT_SYMBOL(iov_iter_npages);
1662
1663 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1664 {
1665         *new = *old;
1666         if (unlikely(iov_iter_is_pipe(new))) {
1667                 WARN_ON(1);
1668                 return NULL;
1669         }
1670         if (iov_iter_is_bvec(new))
1671                 return new->bvec = kmemdup(new->bvec,
1672                                     new->nr_segs * sizeof(struct bio_vec),
1673                                     flags);
1674         else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1675                 /* iovec and kvec have identical layout */
1676                 return new->iov = kmemdup(new->iov,
1677                                    new->nr_segs * sizeof(struct iovec),
1678                                    flags);
1679         return NULL;
1680 }
1681 EXPORT_SYMBOL(dup_iter);
1682
1683 static int copy_compat_iovec_from_user(struct iovec *iov,
1684                 const struct iovec __user *uvec, unsigned long nr_segs)
1685 {
1686         const struct compat_iovec __user *uiov =
1687                 (const struct compat_iovec __user *)uvec;
1688         int ret = -EFAULT, i;
1689
1690         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1691                 return -EFAULT;
1692
1693         for (i = 0; i < nr_segs; i++) {
1694                 compat_uptr_t buf;
1695                 compat_ssize_t len;
1696
1697                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1698                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1699
1700                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1701                 if (len < 0) {
1702                         ret = -EINVAL;
1703                         goto uaccess_end;
1704                 }
1705                 iov[i].iov_base = compat_ptr(buf);
1706                 iov[i].iov_len = len;
1707         }
1708
1709         ret = 0;
1710 uaccess_end:
1711         user_access_end();
1712         return ret;
1713 }
1714
1715 static int copy_iovec_from_user(struct iovec *iov,
1716                 const struct iovec __user *uvec, unsigned long nr_segs)
1717 {
1718         unsigned long seg;
1719
1720         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1721                 return -EFAULT;
1722         for (seg = 0; seg < nr_segs; seg++) {
1723                 if ((ssize_t)iov[seg].iov_len < 0)
1724                         return -EINVAL;
1725         }
1726
1727         return 0;
1728 }
1729
1730 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1731                 unsigned long nr_segs, unsigned long fast_segs,
1732                 struct iovec *fast_iov, bool compat)
1733 {
1734         struct iovec *iov = fast_iov;
1735         int ret;
1736
1737         /*
1738          * SuS says "The readv() function *may* fail if the iovcnt argument was
1739          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1740          * traditionally returned zero for zero segments, so...
1741          */
1742         if (nr_segs == 0)
1743                 return iov;
1744         if (nr_segs > UIO_MAXIOV)
1745                 return ERR_PTR(-EINVAL);
1746         if (nr_segs > fast_segs) {
1747                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1748                 if (!iov)
1749                         return ERR_PTR(-ENOMEM);
1750         }
1751
1752         if (compat)
1753                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1754         else
1755                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1756         if (ret) {
1757                 if (iov != fast_iov)
1758                         kfree(iov);
1759                 return ERR_PTR(ret);
1760         }
1761
1762         return iov;
1763 }
1764
1765 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1766                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1767                  struct iov_iter *i, bool compat)
1768 {
1769         ssize_t total_len = 0;
1770         unsigned long seg;
1771         struct iovec *iov;
1772
1773         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1774         if (IS_ERR(iov)) {
1775                 *iovp = NULL;
1776                 return PTR_ERR(iov);
1777         }
1778
1779         /*
1780          * According to the Single Unix Specification we should return EINVAL if
1781          * an element length is < 0 when cast to ssize_t or if the total length
1782          * would overflow the ssize_t return value of the system call.
1783          *
1784          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1785          * overflow case.
1786          */
1787         for (seg = 0; seg < nr_segs; seg++) {
1788                 ssize_t len = (ssize_t)iov[seg].iov_len;
1789
1790                 if (!access_ok(iov[seg].iov_base, len)) {
1791                         if (iov != *iovp)
1792                                 kfree(iov);
1793                         *iovp = NULL;
1794                         return -EFAULT;
1795                 }
1796
1797                 if (len > MAX_RW_COUNT - total_len) {
1798                         len = MAX_RW_COUNT - total_len;
1799                         iov[seg].iov_len = len;
1800                 }
1801                 total_len += len;
1802         }
1803
1804         iov_iter_init(i, type, iov, nr_segs, total_len);
1805         if (iov == *iovp)
1806                 *iovp = NULL;
1807         else
1808                 *iovp = iov;
1809         return total_len;
1810 }
1811
1812 /**
1813  * import_iovec() - Copy an array of &struct iovec from userspace
1814  *     into the kernel, check that it is valid, and initialize a new
1815  *     &struct iov_iter iterator to access it.
1816  *
1817  * @type: One of %READ or %WRITE.
1818  * @uvec: Pointer to the userspace array.
1819  * @nr_segs: Number of elements in userspace array.
1820  * @fast_segs: Number of elements in @iov.
1821  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1822  *     on-stack) kernel array.
1823  * @i: Pointer to iterator that will be initialized on success.
1824  *
1825  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1826  * then this function places %NULL in *@iov on return. Otherwise, a new
1827  * array will be allocated and the result placed in *@iov. This means that
1828  * the caller may call kfree() on *@iov regardless of whether the small
1829  * on-stack array was used or not (and regardless of whether this function
1830  * returns an error or not).
1831  *
1832  * Return: Negative error code on error, bytes imported on success
1833  */
1834 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1835                  unsigned nr_segs, unsigned fast_segs,
1836                  struct iovec **iovp, struct iov_iter *i)
1837 {
1838         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1839                               in_compat_syscall());
1840 }
1841 EXPORT_SYMBOL(import_iovec);
1842
1843 int import_single_range(int rw, void __user *buf, size_t len,
1844                  struct iovec *iov, struct iov_iter *i)
1845 {
1846         if (len > MAX_RW_COUNT)
1847                 len = MAX_RW_COUNT;
1848         if (unlikely(!access_ok(buf, len)))
1849                 return -EFAULT;
1850
1851         iov->iov_base = buf;
1852         iov->iov_len = len;
1853         iov_iter_init(i, rw, iov, 1, len);
1854         return 0;
1855 }
1856 EXPORT_SYMBOL(import_single_range);
1857
1858 /**
1859  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1860  *     iov_iter_save_state() was called.
1861  *
1862  * @i: &struct iov_iter to restore
1863  * @state: state to restore from
1864  *
1865  * Used after iov_iter_save_state() to bring restore @i, if operations may
1866  * have advanced it.
1867  *
1868  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1869  */
1870 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1871 {
1872         if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1873                          !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1874                 return;
1875         i->iov_offset = state->iov_offset;
1876         i->count = state->count;
1877         if (iter_is_ubuf(i))
1878                 return;
1879         /*
1880          * For the *vec iters, nr_segs + iov is constant - if we increment
1881          * the vec, then we also decrement the nr_segs count. Hence we don't
1882          * need to track both of these, just one is enough and we can deduct
1883          * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1884          * size, so we can just increment the iov pointer as they are unionzed.
1885          * ITER_BVEC _may_ be the same size on some archs, but on others it is
1886          * not. Be safe and handle it separately.
1887          */
1888         BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1889         if (iov_iter_is_bvec(i))
1890                 i->bvec -= state->nr_segs - i->nr_segs;
1891         else
1892                 i->iov -= state->nr_segs - i->nr_segs;
1893         i->nr_segs = state->nr_segs;
1894 }