x86/mm/mem_encrypt: Disable all instrumentation for early SME setup
[platform/kernel/linux-rpi.git] / lib / iov_iter.c
1 #include <linux/export.h>
2 #include <linux/bvec.h>
3 #include <linux/uio.h>
4 #include <linux/pagemap.h>
5 #include <linux/slab.h>
6 #include <linux/vmalloc.h>
7 #include <linux/splice.h>
8 #include <net/checksum.h>
9
10 #define PIPE_PARANOIA /* for now */
11
12 #define iterate_iovec(i, n, __v, __p, skip, STEP) {     \
13         size_t left;                                    \
14         size_t wanted = n;                              \
15         __p = i->iov;                                   \
16         __v.iov_len = min(n, __p->iov_len - skip);      \
17         if (likely(__v.iov_len)) {                      \
18                 __v.iov_base = __p->iov_base + skip;    \
19                 left = (STEP);                          \
20                 __v.iov_len -= left;                    \
21                 skip += __v.iov_len;                    \
22                 n -= __v.iov_len;                       \
23         } else {                                        \
24                 left = 0;                               \
25         }                                               \
26         while (unlikely(!left && n)) {                  \
27                 __p++;                                  \
28                 __v.iov_len = min(n, __p->iov_len);     \
29                 if (unlikely(!__v.iov_len))             \
30                         continue;                       \
31                 __v.iov_base = __p->iov_base;           \
32                 left = (STEP);                          \
33                 __v.iov_len -= left;                    \
34                 skip = __v.iov_len;                     \
35                 n -= __v.iov_len;                       \
36         }                                               \
37         n = wanted - n;                                 \
38 }
39
40 #define iterate_kvec(i, n, __v, __p, skip, STEP) {      \
41         size_t wanted = n;                              \
42         __p = i->kvec;                                  \
43         __v.iov_len = min(n, __p->iov_len - skip);      \
44         if (likely(__v.iov_len)) {                      \
45                 __v.iov_base = __p->iov_base + skip;    \
46                 (void)(STEP);                           \
47                 skip += __v.iov_len;                    \
48                 n -= __v.iov_len;                       \
49         }                                               \
50         while (unlikely(n)) {                           \
51                 __p++;                                  \
52                 __v.iov_len = min(n, __p->iov_len);     \
53                 if (unlikely(!__v.iov_len))             \
54                         continue;                       \
55                 __v.iov_base = __p->iov_base;           \
56                 (void)(STEP);                           \
57                 skip = __v.iov_len;                     \
58                 n -= __v.iov_len;                       \
59         }                                               \
60         n = wanted;                                     \
61 }
62
63 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {     \
64         struct bvec_iter __start;                       \
65         __start.bi_size = n;                            \
66         __start.bi_bvec_done = skip;                    \
67         __start.bi_idx = 0;                             \
68         for_each_bvec(__v, i->bvec, __bi, __start) {    \
69                 if (!__v.bv_len)                        \
70                         continue;                       \
71                 (void)(STEP);                           \
72         }                                               \
73 }
74
75 #define iterate_all_kinds(i, n, v, I, B, K) {                   \
76         if (likely(n)) {                                        \
77                 size_t skip = i->iov_offset;                    \
78                 if (unlikely(i->type & ITER_BVEC)) {            \
79                         struct bio_vec v;                       \
80                         struct bvec_iter __bi;                  \
81                         iterate_bvec(i, n, v, __bi, skip, (B))  \
82                 } else if (unlikely(i->type & ITER_KVEC)) {     \
83                         const struct kvec *kvec;                \
84                         struct kvec v;                          \
85                         iterate_kvec(i, n, v, kvec, skip, (K))  \
86                 } else {                                        \
87                         const struct iovec *iov;                \
88                         struct iovec v;                         \
89                         iterate_iovec(i, n, v, iov, skip, (I))  \
90                 }                                               \
91         }                                                       \
92 }
93
94 #define iterate_and_advance(i, n, v, I, B, K) {                 \
95         if (unlikely(i->count < n))                             \
96                 n = i->count;                                   \
97         if (i->count) {                                         \
98                 size_t skip = i->iov_offset;                    \
99                 if (unlikely(i->type & ITER_BVEC)) {            \
100                         const struct bio_vec *bvec = i->bvec;   \
101                         struct bio_vec v;                       \
102                         struct bvec_iter __bi;                  \
103                         iterate_bvec(i, n, v, __bi, skip, (B))  \
104                         i->bvec = __bvec_iter_bvec(i->bvec, __bi);      \
105                         i->nr_segs -= i->bvec - bvec;           \
106                         skip = __bi.bi_bvec_done;               \
107                 } else if (unlikely(i->type & ITER_KVEC)) {     \
108                         const struct kvec *kvec;                \
109                         struct kvec v;                          \
110                         iterate_kvec(i, n, v, kvec, skip, (K))  \
111                         if (skip == kvec->iov_len) {            \
112                                 kvec++;                         \
113                                 skip = 0;                       \
114                         }                                       \
115                         i->nr_segs -= kvec - i->kvec;           \
116                         i->kvec = kvec;                         \
117                 } else {                                        \
118                         const struct iovec *iov;                \
119                         struct iovec v;                         \
120                         iterate_iovec(i, n, v, iov, skip, (I))  \
121                         if (skip == iov->iov_len) {             \
122                                 iov++;                          \
123                                 skip = 0;                       \
124                         }                                       \
125                         i->nr_segs -= iov - i->iov;             \
126                         i->iov = iov;                           \
127                 }                                               \
128                 i->count -= n;                                  \
129                 i->iov_offset = skip;                           \
130         }                                                       \
131 }
132
133 static int copyout(void __user *to, const void *from, size_t n)
134 {
135         if (access_ok(VERIFY_WRITE, to, n)) {
136                 kasan_check_read(from, n);
137                 n = raw_copy_to_user(to, from, n);
138         }
139         return n;
140 }
141
142 static int copyin(void *to, const void __user *from, size_t n)
143 {
144         if (access_ok(VERIFY_READ, from, n)) {
145                 kasan_check_write(to, n);
146                 n = raw_copy_from_user(to, from, n);
147         }
148         return n;
149 }
150
151 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
152                          struct iov_iter *i)
153 {
154         size_t skip, copy, left, wanted;
155         const struct iovec *iov;
156         char __user *buf;
157         void *kaddr, *from;
158
159         if (unlikely(bytes > i->count))
160                 bytes = i->count;
161
162         if (unlikely(!bytes))
163                 return 0;
164
165         might_fault();
166         wanted = bytes;
167         iov = i->iov;
168         skip = i->iov_offset;
169         buf = iov->iov_base + skip;
170         copy = min(bytes, iov->iov_len - skip);
171
172         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
173                 kaddr = kmap_atomic(page);
174                 from = kaddr + offset;
175
176                 /* first chunk, usually the only one */
177                 left = copyout(buf, from, copy);
178                 copy -= left;
179                 skip += copy;
180                 from += copy;
181                 bytes -= copy;
182
183                 while (unlikely(!left && bytes)) {
184                         iov++;
185                         buf = iov->iov_base;
186                         copy = min(bytes, iov->iov_len);
187                         left = copyout(buf, from, copy);
188                         copy -= left;
189                         skip = copy;
190                         from += copy;
191                         bytes -= copy;
192                 }
193                 if (likely(!bytes)) {
194                         kunmap_atomic(kaddr);
195                         goto done;
196                 }
197                 offset = from - kaddr;
198                 buf += copy;
199                 kunmap_atomic(kaddr);
200                 copy = min(bytes, iov->iov_len - skip);
201         }
202         /* Too bad - revert to non-atomic kmap */
203
204         kaddr = kmap(page);
205         from = kaddr + offset;
206         left = copyout(buf, from, copy);
207         copy -= left;
208         skip += copy;
209         from += copy;
210         bytes -= copy;
211         while (unlikely(!left && bytes)) {
212                 iov++;
213                 buf = iov->iov_base;
214                 copy = min(bytes, iov->iov_len);
215                 left = copyout(buf, from, copy);
216                 copy -= left;
217                 skip = copy;
218                 from += copy;
219                 bytes -= copy;
220         }
221         kunmap(page);
222
223 done:
224         if (skip == iov->iov_len) {
225                 iov++;
226                 skip = 0;
227         }
228         i->count -= wanted - bytes;
229         i->nr_segs -= iov - i->iov;
230         i->iov = iov;
231         i->iov_offset = skip;
232         return wanted - bytes;
233 }
234
235 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
236                          struct iov_iter *i)
237 {
238         size_t skip, copy, left, wanted;
239         const struct iovec *iov;
240         char __user *buf;
241         void *kaddr, *to;
242
243         if (unlikely(bytes > i->count))
244                 bytes = i->count;
245
246         if (unlikely(!bytes))
247                 return 0;
248
249         might_fault();
250         wanted = bytes;
251         iov = i->iov;
252         skip = i->iov_offset;
253         buf = iov->iov_base + skip;
254         copy = min(bytes, iov->iov_len - skip);
255
256         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
257                 kaddr = kmap_atomic(page);
258                 to = kaddr + offset;
259
260                 /* first chunk, usually the only one */
261                 left = copyin(to, buf, copy);
262                 copy -= left;
263                 skip += copy;
264                 to += copy;
265                 bytes -= copy;
266
267                 while (unlikely(!left && bytes)) {
268                         iov++;
269                         buf = iov->iov_base;
270                         copy = min(bytes, iov->iov_len);
271                         left = copyin(to, buf, copy);
272                         copy -= left;
273                         skip = copy;
274                         to += copy;
275                         bytes -= copy;
276                 }
277                 if (likely(!bytes)) {
278                         kunmap_atomic(kaddr);
279                         goto done;
280                 }
281                 offset = to - kaddr;
282                 buf += copy;
283                 kunmap_atomic(kaddr);
284                 copy = min(bytes, iov->iov_len - skip);
285         }
286         /* Too bad - revert to non-atomic kmap */
287
288         kaddr = kmap(page);
289         to = kaddr + offset;
290         left = copyin(to, buf, copy);
291         copy -= left;
292         skip += copy;
293         to += copy;
294         bytes -= copy;
295         while (unlikely(!left && bytes)) {
296                 iov++;
297                 buf = iov->iov_base;
298                 copy = min(bytes, iov->iov_len);
299                 left = copyin(to, buf, copy);
300                 copy -= left;
301                 skip = copy;
302                 to += copy;
303                 bytes -= copy;
304         }
305         kunmap(page);
306
307 done:
308         if (skip == iov->iov_len) {
309                 iov++;
310                 skip = 0;
311         }
312         i->count -= wanted - bytes;
313         i->nr_segs -= iov - i->iov;
314         i->iov = iov;
315         i->iov_offset = skip;
316         return wanted - bytes;
317 }
318
319 #ifdef PIPE_PARANOIA
320 static bool sanity(const struct iov_iter *i)
321 {
322         struct pipe_inode_info *pipe = i->pipe;
323         int idx = i->idx;
324         int next = pipe->curbuf + pipe->nrbufs;
325         if (i->iov_offset) {
326                 struct pipe_buffer *p;
327                 if (unlikely(!pipe->nrbufs))
328                         goto Bad;       // pipe must be non-empty
329                 if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
330                         goto Bad;       // must be at the last buffer...
331
332                 p = &pipe->bufs[idx];
333                 if (unlikely(p->offset + p->len != i->iov_offset))
334                         goto Bad;       // ... at the end of segment
335         } else {
336                 if (idx != (next & (pipe->buffers - 1)))
337                         goto Bad;       // must be right after the last buffer
338         }
339         return true;
340 Bad:
341         printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
342         printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
343                         pipe->curbuf, pipe->nrbufs, pipe->buffers);
344         for (idx = 0; idx < pipe->buffers; idx++)
345                 printk(KERN_ERR "[%p %p %d %d]\n",
346                         pipe->bufs[idx].ops,
347                         pipe->bufs[idx].page,
348                         pipe->bufs[idx].offset,
349                         pipe->bufs[idx].len);
350         WARN_ON(1);
351         return false;
352 }
353 #else
354 #define sanity(i) true
355 #endif
356
357 static inline int next_idx(int idx, struct pipe_inode_info *pipe)
358 {
359         return (idx + 1) & (pipe->buffers - 1);
360 }
361
362 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
363                          struct iov_iter *i)
364 {
365         struct pipe_inode_info *pipe = i->pipe;
366         struct pipe_buffer *buf;
367         size_t off;
368         int idx;
369
370         if (unlikely(bytes > i->count))
371                 bytes = i->count;
372
373         if (unlikely(!bytes))
374                 return 0;
375
376         if (!sanity(i))
377                 return 0;
378
379         off = i->iov_offset;
380         idx = i->idx;
381         buf = &pipe->bufs[idx];
382         if (off) {
383                 if (offset == off && buf->page == page) {
384                         /* merge with the last one */
385                         buf->len += bytes;
386                         i->iov_offset += bytes;
387                         goto out;
388                 }
389                 idx = next_idx(idx, pipe);
390                 buf = &pipe->bufs[idx];
391         }
392         if (idx == pipe->curbuf && pipe->nrbufs)
393                 return 0;
394         pipe->nrbufs++;
395         buf->ops = &page_cache_pipe_buf_ops;
396         get_page(buf->page = page);
397         buf->offset = offset;
398         buf->len = bytes;
399         i->iov_offset = offset + bytes;
400         i->idx = idx;
401 out:
402         i->count -= bytes;
403         return bytes;
404 }
405
406 /*
407  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
408  * bytes.  For each iovec, fault in each page that constitutes the iovec.
409  *
410  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
411  * because it is an invalid address).
412  */
413 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
414 {
415         size_t skip = i->iov_offset;
416         const struct iovec *iov;
417         int err;
418         struct iovec v;
419
420         if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
421                 iterate_iovec(i, bytes, v, iov, skip, ({
422                         err = fault_in_pages_readable(v.iov_base, v.iov_len);
423                         if (unlikely(err))
424                         return err;
425                 0;}))
426         }
427         return 0;
428 }
429 EXPORT_SYMBOL(iov_iter_fault_in_readable);
430
431 void iov_iter_init(struct iov_iter *i, int direction,
432                         const struct iovec *iov, unsigned long nr_segs,
433                         size_t count)
434 {
435         /* It will get better.  Eventually... */
436         if (uaccess_kernel()) {
437                 direction |= ITER_KVEC;
438                 i->type = direction;
439                 i->kvec = (struct kvec *)iov;
440         } else {
441                 i->type = direction;
442                 i->iov = iov;
443         }
444         i->nr_segs = nr_segs;
445         i->iov_offset = 0;
446         i->count = count;
447 }
448 EXPORT_SYMBOL(iov_iter_init);
449
450 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
451 {
452         char *from = kmap_atomic(page);
453         memcpy(to, from + offset, len);
454         kunmap_atomic(from);
455 }
456
457 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
458 {
459         char *to = kmap_atomic(page);
460         memcpy(to + offset, from, len);
461         kunmap_atomic(to);
462 }
463
464 static void memzero_page(struct page *page, size_t offset, size_t len)
465 {
466         char *addr = kmap_atomic(page);
467         memset(addr + offset, 0, len);
468         kunmap_atomic(addr);
469 }
470
471 static inline bool allocated(struct pipe_buffer *buf)
472 {
473         return buf->ops == &default_pipe_buf_ops;
474 }
475
476 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
477 {
478         size_t off = i->iov_offset;
479         int idx = i->idx;
480         if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
481                 idx = next_idx(idx, i->pipe);
482                 off = 0;
483         }
484         *idxp = idx;
485         *offp = off;
486 }
487
488 static size_t push_pipe(struct iov_iter *i, size_t size,
489                         int *idxp, size_t *offp)
490 {
491         struct pipe_inode_info *pipe = i->pipe;
492         size_t off;
493         int idx;
494         ssize_t left;
495
496         if (unlikely(size > i->count))
497                 size = i->count;
498         if (unlikely(!size))
499                 return 0;
500
501         left = size;
502         data_start(i, &idx, &off);
503         *idxp = idx;
504         *offp = off;
505         if (off) {
506                 left -= PAGE_SIZE - off;
507                 if (left <= 0) {
508                         pipe->bufs[idx].len += size;
509                         return size;
510                 }
511                 pipe->bufs[idx].len = PAGE_SIZE;
512                 idx = next_idx(idx, pipe);
513         }
514         while (idx != pipe->curbuf || !pipe->nrbufs) {
515                 struct page *page = alloc_page(GFP_USER);
516                 if (!page)
517                         break;
518                 pipe->nrbufs++;
519                 pipe->bufs[idx].ops = &default_pipe_buf_ops;
520                 pipe->bufs[idx].page = page;
521                 pipe->bufs[idx].offset = 0;
522                 if (left <= PAGE_SIZE) {
523                         pipe->bufs[idx].len = left;
524                         return size;
525                 }
526                 pipe->bufs[idx].len = PAGE_SIZE;
527                 left -= PAGE_SIZE;
528                 idx = next_idx(idx, pipe);
529         }
530         return size - left;
531 }
532
533 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
534                                 struct iov_iter *i)
535 {
536         struct pipe_inode_info *pipe = i->pipe;
537         size_t n, off;
538         int idx;
539
540         if (!sanity(i))
541                 return 0;
542
543         bytes = n = push_pipe(i, bytes, &idx, &off);
544         if (unlikely(!n))
545                 return 0;
546         for ( ; n; idx = next_idx(idx, pipe), off = 0) {
547                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
548                 memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
549                 i->idx = idx;
550                 i->iov_offset = off + chunk;
551                 n -= chunk;
552                 addr += chunk;
553         }
554         i->count -= bytes;
555         return bytes;
556 }
557
558 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
559 {
560         const char *from = addr;
561         if (unlikely(i->type & ITER_PIPE))
562                 return copy_pipe_to_iter(addr, bytes, i);
563         if (iter_is_iovec(i))
564                 might_fault();
565         iterate_and_advance(i, bytes, v,
566                 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
567                 memcpy_to_page(v.bv_page, v.bv_offset,
568                                (from += v.bv_len) - v.bv_len, v.bv_len),
569                 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
570         )
571
572         return bytes;
573 }
574 EXPORT_SYMBOL(_copy_to_iter);
575
576 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
577 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
578 {
579         if (access_ok(VERIFY_WRITE, to, n)) {
580                 kasan_check_read(from, n);
581                 n = copy_to_user_mcsafe((__force void *) to, from, n);
582         }
583         return n;
584 }
585
586 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
587                 const char *from, size_t len)
588 {
589         unsigned long ret;
590         char *to;
591
592         to = kmap_atomic(page);
593         ret = memcpy_mcsafe(to + offset, from, len);
594         kunmap_atomic(to);
595
596         return ret;
597 }
598
599 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
600                                 struct iov_iter *i)
601 {
602         struct pipe_inode_info *pipe = i->pipe;
603         size_t n, off, xfer = 0;
604         int idx;
605
606         if (!sanity(i))
607                 return 0;
608
609         bytes = n = push_pipe(i, bytes, &idx, &off);
610         if (unlikely(!n))
611                 return 0;
612         for ( ; n; idx = next_idx(idx, pipe), off = 0) {
613                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
614                 unsigned long rem;
615
616                 rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr,
617                                 chunk);
618                 i->idx = idx;
619                 i->iov_offset = off + chunk - rem;
620                 xfer += chunk - rem;
621                 if (rem)
622                         break;
623                 n -= chunk;
624                 addr += chunk;
625         }
626         i->count -= xfer;
627         return xfer;
628 }
629
630 /**
631  * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
632  * @addr: source kernel address
633  * @bytes: total transfer length
634  * @iter: destination iterator
635  *
636  * The pmem driver arranges for filesystem-dax to use this facility via
637  * dax_copy_to_iter() for protecting read/write to persistent memory.
638  * Unless / until an architecture can guarantee identical performance
639  * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
640  * performance regression to switch more users to the mcsafe version.
641  *
642  * Otherwise, the main differences between this and typical _copy_to_iter().
643  *
644  * * Typical tail/residue handling after a fault retries the copy
645  *   byte-by-byte until the fault happens again. Re-triggering machine
646  *   checks is potentially fatal so the implementation uses source
647  *   alignment and poison alignment assumptions to avoid re-triggering
648  *   hardware exceptions.
649  *
650  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
651  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
652  *   a short copy.
653  *
654  * See MCSAFE_TEST for self-test.
655  */
656 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
657 {
658         const char *from = addr;
659         unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
660
661         if (unlikely(i->type & ITER_PIPE))
662                 return copy_pipe_to_iter_mcsafe(addr, bytes, i);
663         if (iter_is_iovec(i))
664                 might_fault();
665         iterate_and_advance(i, bytes, v,
666                 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
667                 ({
668                 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
669                                (from += v.bv_len) - v.bv_len, v.bv_len);
670                 if (rem) {
671                         curr_addr = (unsigned long) from;
672                         bytes = curr_addr - s_addr - rem;
673                         return bytes;
674                 }
675                 }),
676                 ({
677                 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
678                                 v.iov_len);
679                 if (rem) {
680                         curr_addr = (unsigned long) from;
681                         bytes = curr_addr - s_addr - rem;
682                         return bytes;
683                 }
684                 })
685         )
686
687         return bytes;
688 }
689 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
690 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
691
692 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
693 {
694         char *to = addr;
695         if (unlikely(i->type & ITER_PIPE)) {
696                 WARN_ON(1);
697                 return 0;
698         }
699         if (iter_is_iovec(i))
700                 might_fault();
701         iterate_and_advance(i, bytes, v,
702                 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
703                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
704                                  v.bv_offset, v.bv_len),
705                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
706         )
707
708         return bytes;
709 }
710 EXPORT_SYMBOL(_copy_from_iter);
711
712 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
713 {
714         char *to = addr;
715         if (unlikely(i->type & ITER_PIPE)) {
716                 WARN_ON(1);
717                 return false;
718         }
719         if (unlikely(i->count < bytes))
720                 return false;
721
722         if (iter_is_iovec(i))
723                 might_fault();
724         iterate_all_kinds(i, bytes, v, ({
725                 if (copyin((to += v.iov_len) - v.iov_len,
726                                       v.iov_base, v.iov_len))
727                         return false;
728                 0;}),
729                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
730                                  v.bv_offset, v.bv_len),
731                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
732         )
733
734         iov_iter_advance(i, bytes);
735         return true;
736 }
737 EXPORT_SYMBOL(_copy_from_iter_full);
738
739 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
740 {
741         char *to = addr;
742         if (unlikely(i->type & ITER_PIPE)) {
743                 WARN_ON(1);
744                 return 0;
745         }
746         iterate_and_advance(i, bytes, v,
747                 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
748                                          v.iov_base, v.iov_len),
749                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
750                                  v.bv_offset, v.bv_len),
751                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
752         )
753
754         return bytes;
755 }
756 EXPORT_SYMBOL(_copy_from_iter_nocache);
757
758 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
759 /**
760  * _copy_from_iter_flushcache - write destination through cpu cache
761  * @addr: destination kernel address
762  * @bytes: total transfer length
763  * @iter: source iterator
764  *
765  * The pmem driver arranges for filesystem-dax to use this facility via
766  * dax_copy_from_iter() for ensuring that writes to persistent memory
767  * are flushed through the CPU cache. It is differentiated from
768  * _copy_from_iter_nocache() in that guarantees all data is flushed for
769  * all iterator types. The _copy_from_iter_nocache() only attempts to
770  * bypass the cache for the ITER_IOVEC case, and on some archs may use
771  * instructions that strand dirty-data in the cache.
772  */
773 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
774 {
775         char *to = addr;
776         if (unlikely(i->type & ITER_PIPE)) {
777                 WARN_ON(1);
778                 return 0;
779         }
780         iterate_and_advance(i, bytes, v,
781                 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
782                                          v.iov_base, v.iov_len),
783                 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
784                                  v.bv_offset, v.bv_len),
785                 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
786                         v.iov_len)
787         )
788
789         return bytes;
790 }
791 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
792 #endif
793
794 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
795 {
796         char *to = addr;
797         if (unlikely(i->type & ITER_PIPE)) {
798                 WARN_ON(1);
799                 return false;
800         }
801         if (unlikely(i->count < bytes))
802                 return false;
803         iterate_all_kinds(i, bytes, v, ({
804                 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
805                                              v.iov_base, v.iov_len))
806                         return false;
807                 0;}),
808                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
809                                  v.bv_offset, v.bv_len),
810                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
811         )
812
813         iov_iter_advance(i, bytes);
814         return true;
815 }
816 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
817
818 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
819 {
820         struct page *head;
821         size_t v = n + offset;
822
823         /*
824          * The general case needs to access the page order in order
825          * to compute the page size.
826          * However, we mostly deal with order-0 pages and thus can
827          * avoid a possible cache line miss for requests that fit all
828          * page orders.
829          */
830         if (n <= v && v <= PAGE_SIZE)
831                 return true;
832
833         head = compound_head(page);
834         v += (page - head) << PAGE_SHIFT;
835
836         if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head))))
837                 return true;
838         WARN_ON(1);
839         return false;
840 }
841
842 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
843                          struct iov_iter *i)
844 {
845         if (unlikely(!page_copy_sane(page, offset, bytes)))
846                 return 0;
847         if (i->type & (ITER_BVEC|ITER_KVEC)) {
848                 void *kaddr = kmap_atomic(page);
849                 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
850                 kunmap_atomic(kaddr);
851                 return wanted;
852         } else if (likely(!(i->type & ITER_PIPE)))
853                 return copy_page_to_iter_iovec(page, offset, bytes, i);
854         else
855                 return copy_page_to_iter_pipe(page, offset, bytes, i);
856 }
857 EXPORT_SYMBOL(copy_page_to_iter);
858
859 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
860                          struct iov_iter *i)
861 {
862         if (unlikely(!page_copy_sane(page, offset, bytes)))
863                 return 0;
864         if (unlikely(i->type & ITER_PIPE)) {
865                 WARN_ON(1);
866                 return 0;
867         }
868         if (i->type & (ITER_BVEC|ITER_KVEC)) {
869                 void *kaddr = kmap_atomic(page);
870                 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
871                 kunmap_atomic(kaddr);
872                 return wanted;
873         } else
874                 return copy_page_from_iter_iovec(page, offset, bytes, i);
875 }
876 EXPORT_SYMBOL(copy_page_from_iter);
877
878 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
879 {
880         struct pipe_inode_info *pipe = i->pipe;
881         size_t n, off;
882         int idx;
883
884         if (!sanity(i))
885                 return 0;
886
887         bytes = n = push_pipe(i, bytes, &idx, &off);
888         if (unlikely(!n))
889                 return 0;
890
891         for ( ; n; idx = next_idx(idx, pipe), off = 0) {
892                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
893                 memzero_page(pipe->bufs[idx].page, off, chunk);
894                 i->idx = idx;
895                 i->iov_offset = off + chunk;
896                 n -= chunk;
897         }
898         i->count -= bytes;
899         return bytes;
900 }
901
902 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
903 {
904         if (unlikely(i->type & ITER_PIPE))
905                 return pipe_zero(bytes, i);
906         iterate_and_advance(i, bytes, v,
907                 clear_user(v.iov_base, v.iov_len),
908                 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
909                 memset(v.iov_base, 0, v.iov_len)
910         )
911
912         return bytes;
913 }
914 EXPORT_SYMBOL(iov_iter_zero);
915
916 size_t iov_iter_copy_from_user_atomic(struct page *page,
917                 struct iov_iter *i, unsigned long offset, size_t bytes)
918 {
919         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
920         if (unlikely(!page_copy_sane(page, offset, bytes))) {
921                 kunmap_atomic(kaddr);
922                 return 0;
923         }
924         if (unlikely(i->type & ITER_PIPE)) {
925                 kunmap_atomic(kaddr);
926                 WARN_ON(1);
927                 return 0;
928         }
929         iterate_all_kinds(i, bytes, v,
930                 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
931                 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
932                                  v.bv_offset, v.bv_len),
933                 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
934         )
935         kunmap_atomic(kaddr);
936         return bytes;
937 }
938 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
939
940 static inline void pipe_truncate(struct iov_iter *i)
941 {
942         struct pipe_inode_info *pipe = i->pipe;
943         if (pipe->nrbufs) {
944                 size_t off = i->iov_offset;
945                 int idx = i->idx;
946                 int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
947                 if (off) {
948                         pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
949                         idx = next_idx(idx, pipe);
950                         nrbufs++;
951                 }
952                 while (pipe->nrbufs > nrbufs) {
953                         pipe_buf_release(pipe, &pipe->bufs[idx]);
954                         idx = next_idx(idx, pipe);
955                         pipe->nrbufs--;
956                 }
957         }
958 }
959
960 static void pipe_advance(struct iov_iter *i, size_t size)
961 {
962         struct pipe_inode_info *pipe = i->pipe;
963         if (unlikely(i->count < size))
964                 size = i->count;
965         if (size) {
966                 struct pipe_buffer *buf;
967                 size_t off = i->iov_offset, left = size;
968                 int idx = i->idx;
969                 if (off) /* make it relative to the beginning of buffer */
970                         left += off - pipe->bufs[idx].offset;
971                 while (1) {
972                         buf = &pipe->bufs[idx];
973                         if (left <= buf->len)
974                                 break;
975                         left -= buf->len;
976                         idx = next_idx(idx, pipe);
977                 }
978                 i->idx = idx;
979                 i->iov_offset = buf->offset + left;
980         }
981         i->count -= size;
982         /* ... and discard everything past that point */
983         pipe_truncate(i);
984 }
985
986 void iov_iter_advance(struct iov_iter *i, size_t size)
987 {
988         if (unlikely(i->type & ITER_PIPE)) {
989                 pipe_advance(i, size);
990                 return;
991         }
992         iterate_and_advance(i, size, v, 0, 0, 0)
993 }
994 EXPORT_SYMBOL(iov_iter_advance);
995
996 void iov_iter_revert(struct iov_iter *i, size_t unroll)
997 {
998         if (!unroll)
999                 return;
1000         if (WARN_ON(unroll > MAX_RW_COUNT))
1001                 return;
1002         i->count += unroll;
1003         if (unlikely(i->type & ITER_PIPE)) {
1004                 struct pipe_inode_info *pipe = i->pipe;
1005                 int idx = i->idx;
1006                 size_t off = i->iov_offset;
1007                 while (1) {
1008                         size_t n = off - pipe->bufs[idx].offset;
1009                         if (unroll < n) {
1010                                 off -= unroll;
1011                                 break;
1012                         }
1013                         unroll -= n;
1014                         if (!unroll && idx == i->start_idx) {
1015                                 off = 0;
1016                                 break;
1017                         }
1018                         if (!idx--)
1019                                 idx = pipe->buffers - 1;
1020                         off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
1021                 }
1022                 i->iov_offset = off;
1023                 i->idx = idx;
1024                 pipe_truncate(i);
1025                 return;
1026         }
1027         if (unroll <= i->iov_offset) {
1028                 i->iov_offset -= unroll;
1029                 return;
1030         }
1031         unroll -= i->iov_offset;
1032         if (i->type & ITER_BVEC) {
1033                 const struct bio_vec *bvec = i->bvec;
1034                 while (1) {
1035                         size_t n = (--bvec)->bv_len;
1036                         i->nr_segs++;
1037                         if (unroll <= n) {
1038                                 i->bvec = bvec;
1039                                 i->iov_offset = n - unroll;
1040                                 return;
1041                         }
1042                         unroll -= n;
1043                 }
1044         } else { /* same logics for iovec and kvec */
1045                 const struct iovec *iov = i->iov;
1046                 while (1) {
1047                         size_t n = (--iov)->iov_len;
1048                         i->nr_segs++;
1049                         if (unroll <= n) {
1050                                 i->iov = iov;
1051                                 i->iov_offset = n - unroll;
1052                                 return;
1053                         }
1054                         unroll -= n;
1055                 }
1056         }
1057 }
1058 EXPORT_SYMBOL(iov_iter_revert);
1059
1060 /*
1061  * Return the count of just the current iov_iter segment.
1062  */
1063 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1064 {
1065         if (unlikely(i->type & ITER_PIPE))
1066                 return i->count;        // it is a silly place, anyway
1067         if (i->nr_segs == 1)
1068                 return i->count;
1069         else if (i->type & ITER_BVEC)
1070                 return min(i->count, i->bvec->bv_len - i->iov_offset);
1071         else
1072                 return min(i->count, i->iov->iov_len - i->iov_offset);
1073 }
1074 EXPORT_SYMBOL(iov_iter_single_seg_count);
1075
1076 void iov_iter_kvec(struct iov_iter *i, int direction,
1077                         const struct kvec *kvec, unsigned long nr_segs,
1078                         size_t count)
1079 {
1080         BUG_ON(!(direction & ITER_KVEC));
1081         i->type = direction;
1082         i->kvec = kvec;
1083         i->nr_segs = nr_segs;
1084         i->iov_offset = 0;
1085         i->count = count;
1086 }
1087 EXPORT_SYMBOL(iov_iter_kvec);
1088
1089 void iov_iter_bvec(struct iov_iter *i, int direction,
1090                         const struct bio_vec *bvec, unsigned long nr_segs,
1091                         size_t count)
1092 {
1093         BUG_ON(!(direction & ITER_BVEC));
1094         i->type = direction;
1095         i->bvec = bvec;
1096         i->nr_segs = nr_segs;
1097         i->iov_offset = 0;
1098         i->count = count;
1099 }
1100 EXPORT_SYMBOL(iov_iter_bvec);
1101
1102 void iov_iter_pipe(struct iov_iter *i, int direction,
1103                         struct pipe_inode_info *pipe,
1104                         size_t count)
1105 {
1106         BUG_ON(direction != ITER_PIPE);
1107         WARN_ON(pipe->nrbufs == pipe->buffers);
1108         i->type = direction;
1109         i->pipe = pipe;
1110         i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1111         i->iov_offset = 0;
1112         i->count = count;
1113         i->start_idx = i->idx;
1114 }
1115 EXPORT_SYMBOL(iov_iter_pipe);
1116
1117 unsigned long iov_iter_alignment(const struct iov_iter *i)
1118 {
1119         unsigned long res = 0;
1120         size_t size = i->count;
1121
1122         if (unlikely(i->type & ITER_PIPE)) {
1123                 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
1124                         return size | i->iov_offset;
1125                 return size;
1126         }
1127         iterate_all_kinds(i, size, v,
1128                 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1129                 res |= v.bv_offset | v.bv_len,
1130                 res |= (unsigned long)v.iov_base | v.iov_len
1131         )
1132         return res;
1133 }
1134 EXPORT_SYMBOL(iov_iter_alignment);
1135
1136 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1137 {
1138         unsigned long res = 0;
1139         size_t size = i->count;
1140
1141         if (unlikely(i->type & ITER_PIPE)) {
1142                 WARN_ON(1);
1143                 return ~0U;
1144         }
1145
1146         iterate_all_kinds(i, size, v,
1147                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1148                         (size != v.iov_len ? size : 0), 0),
1149                 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1150                         (size != v.bv_len ? size : 0)),
1151                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1152                         (size != v.iov_len ? size : 0))
1153                 );
1154         return res;
1155 }
1156 EXPORT_SYMBOL(iov_iter_gap_alignment);
1157
1158 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1159                                 size_t maxsize,
1160                                 struct page **pages,
1161                                 int idx,
1162                                 size_t *start)
1163 {
1164         struct pipe_inode_info *pipe = i->pipe;
1165         ssize_t n = push_pipe(i, maxsize, &idx, start);
1166         if (!n)
1167                 return -EFAULT;
1168
1169         maxsize = n;
1170         n += *start;
1171         while (n > 0) {
1172                 get_page(*pages++ = pipe->bufs[idx].page);
1173                 idx = next_idx(idx, pipe);
1174                 n -= PAGE_SIZE;
1175         }
1176
1177         return maxsize;
1178 }
1179
1180 static ssize_t pipe_get_pages(struct iov_iter *i,
1181                    struct page **pages, size_t maxsize, unsigned maxpages,
1182                    size_t *start)
1183 {
1184         unsigned npages;
1185         size_t capacity;
1186         int idx;
1187
1188         if (!maxsize)
1189                 return 0;
1190
1191         if (!sanity(i))
1192                 return -EFAULT;
1193
1194         data_start(i, &idx, start);
1195         /* some of this one + all after this one */
1196         npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1197         capacity = min(npages,maxpages) * PAGE_SIZE - *start;
1198
1199         return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
1200 }
1201
1202 ssize_t iov_iter_get_pages(struct iov_iter *i,
1203                    struct page **pages, size_t maxsize, unsigned maxpages,
1204                    size_t *start)
1205 {
1206         if (maxsize > i->count)
1207                 maxsize = i->count;
1208
1209         if (unlikely(i->type & ITER_PIPE))
1210                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1211         iterate_all_kinds(i, maxsize, v, ({
1212                 unsigned long addr = (unsigned long)v.iov_base;
1213                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1214                 int n;
1215                 int res;
1216
1217                 if (len > maxpages * PAGE_SIZE)
1218                         len = maxpages * PAGE_SIZE;
1219                 addr &= ~(PAGE_SIZE - 1);
1220                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1221                 res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, pages);
1222                 if (unlikely(res < 0))
1223                         return res;
1224                 return (res == n ? len : res * PAGE_SIZE) - *start;
1225         0;}),({
1226                 /* can't be more than PAGE_SIZE */
1227                 *start = v.bv_offset;
1228                 get_page(*pages = v.bv_page);
1229                 return v.bv_len;
1230         }),({
1231                 return -EFAULT;
1232         })
1233         )
1234         return 0;
1235 }
1236 EXPORT_SYMBOL(iov_iter_get_pages);
1237
1238 static struct page **get_pages_array(size_t n)
1239 {
1240         return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1241 }
1242
1243 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1244                    struct page ***pages, size_t maxsize,
1245                    size_t *start)
1246 {
1247         struct page **p;
1248         ssize_t n;
1249         int idx;
1250         int npages;
1251
1252         if (!maxsize)
1253                 return 0;
1254
1255         if (!sanity(i))
1256                 return -EFAULT;
1257
1258         data_start(i, &idx, start);
1259         /* some of this one + all after this one */
1260         npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1261         n = npages * PAGE_SIZE - *start;
1262         if (maxsize > n)
1263                 maxsize = n;
1264         else
1265                 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1266         p = get_pages_array(npages);
1267         if (!p)
1268                 return -ENOMEM;
1269         n = __pipe_get_pages(i, maxsize, p, idx, start);
1270         if (n > 0)
1271                 *pages = p;
1272         else
1273                 kvfree(p);
1274         return n;
1275 }
1276
1277 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1278                    struct page ***pages, size_t maxsize,
1279                    size_t *start)
1280 {
1281         struct page **p;
1282
1283         if (maxsize > i->count)
1284                 maxsize = i->count;
1285
1286         if (unlikely(i->type & ITER_PIPE))
1287                 return pipe_get_pages_alloc(i, pages, maxsize, start);
1288         iterate_all_kinds(i, maxsize, v, ({
1289                 unsigned long addr = (unsigned long)v.iov_base;
1290                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1291                 int n;
1292                 int res;
1293
1294                 addr &= ~(PAGE_SIZE - 1);
1295                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1296                 p = get_pages_array(n);
1297                 if (!p)
1298                         return -ENOMEM;
1299                 res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, p);
1300                 if (unlikely(res < 0)) {
1301                         kvfree(p);
1302                         return res;
1303                 }
1304                 *pages = p;
1305                 return (res == n ? len : res * PAGE_SIZE) - *start;
1306         0;}),({
1307                 /* can't be more than PAGE_SIZE */
1308                 *start = v.bv_offset;
1309                 *pages = p = get_pages_array(1);
1310                 if (!p)
1311                         return -ENOMEM;
1312                 get_page(*p = v.bv_page);
1313                 return v.bv_len;
1314         }),({
1315                 return -EFAULT;
1316         })
1317         )
1318         return 0;
1319 }
1320 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1321
1322 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1323                                struct iov_iter *i)
1324 {
1325         char *to = addr;
1326         __wsum sum, next;
1327         size_t off = 0;
1328         sum = *csum;
1329         if (unlikely(i->type & ITER_PIPE)) {
1330                 WARN_ON(1);
1331                 return 0;
1332         }
1333         iterate_and_advance(i, bytes, v, ({
1334                 int err = 0;
1335                 next = csum_and_copy_from_user(v.iov_base,
1336                                                (to += v.iov_len) - v.iov_len,
1337                                                v.iov_len, 0, &err);
1338                 if (!err) {
1339                         sum = csum_block_add(sum, next, off);
1340                         off += v.iov_len;
1341                 }
1342                 err ? v.iov_len : 0;
1343         }), ({
1344                 char *p = kmap_atomic(v.bv_page);
1345                 next = csum_partial_copy_nocheck(p + v.bv_offset,
1346                                                  (to += v.bv_len) - v.bv_len,
1347                                                  v.bv_len, 0);
1348                 kunmap_atomic(p);
1349                 sum = csum_block_add(sum, next, off);
1350                 off += v.bv_len;
1351         }),({
1352                 next = csum_partial_copy_nocheck(v.iov_base,
1353                                                  (to += v.iov_len) - v.iov_len,
1354                                                  v.iov_len, 0);
1355                 sum = csum_block_add(sum, next, off);
1356                 off += v.iov_len;
1357         })
1358         )
1359         *csum = sum;
1360         return bytes;
1361 }
1362 EXPORT_SYMBOL(csum_and_copy_from_iter);
1363
1364 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1365                                struct iov_iter *i)
1366 {
1367         char *to = addr;
1368         __wsum sum, next;
1369         size_t off = 0;
1370         sum = *csum;
1371         if (unlikely(i->type & ITER_PIPE)) {
1372                 WARN_ON(1);
1373                 return false;
1374         }
1375         if (unlikely(i->count < bytes))
1376                 return false;
1377         iterate_all_kinds(i, bytes, v, ({
1378                 int err = 0;
1379                 next = csum_and_copy_from_user(v.iov_base,
1380                                                (to += v.iov_len) - v.iov_len,
1381                                                v.iov_len, 0, &err);
1382                 if (err)
1383                         return false;
1384                 sum = csum_block_add(sum, next, off);
1385                 off += v.iov_len;
1386                 0;
1387         }), ({
1388                 char *p = kmap_atomic(v.bv_page);
1389                 next = csum_partial_copy_nocheck(p + v.bv_offset,
1390                                                  (to += v.bv_len) - v.bv_len,
1391                                                  v.bv_len, 0);
1392                 kunmap_atomic(p);
1393                 sum = csum_block_add(sum, next, off);
1394                 off += v.bv_len;
1395         }),({
1396                 next = csum_partial_copy_nocheck(v.iov_base,
1397                                                  (to += v.iov_len) - v.iov_len,
1398                                                  v.iov_len, 0);
1399                 sum = csum_block_add(sum, next, off);
1400                 off += v.iov_len;
1401         })
1402         )
1403         *csum = sum;
1404         iov_iter_advance(i, bytes);
1405         return true;
1406 }
1407 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1408
1409 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, __wsum *csum,
1410                              struct iov_iter *i)
1411 {
1412         const char *from = addr;
1413         __wsum sum, next;
1414         size_t off = 0;
1415         sum = *csum;
1416         if (unlikely(i->type & ITER_PIPE)) {
1417                 WARN_ON(1);     /* for now */
1418                 return 0;
1419         }
1420         iterate_and_advance(i, bytes, v, ({
1421                 int err = 0;
1422                 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1423                                              v.iov_base,
1424                                              v.iov_len, 0, &err);
1425                 if (!err) {
1426                         sum = csum_block_add(sum, next, off);
1427                         off += v.iov_len;
1428                 }
1429                 err ? v.iov_len : 0;
1430         }), ({
1431                 char *p = kmap_atomic(v.bv_page);
1432                 next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len,
1433                                                  p + v.bv_offset,
1434                                                  v.bv_len, 0);
1435                 kunmap_atomic(p);
1436                 sum = csum_block_add(sum, next, off);
1437                 off += v.bv_len;
1438         }),({
1439                 next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len,
1440                                                  v.iov_base,
1441                                                  v.iov_len, 0);
1442                 sum = csum_block_add(sum, next, off);
1443                 off += v.iov_len;
1444         })
1445         )
1446         *csum = sum;
1447         return bytes;
1448 }
1449 EXPORT_SYMBOL(csum_and_copy_to_iter);
1450
1451 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1452 {
1453         size_t size = i->count;
1454         int npages = 0;
1455
1456         if (!size)
1457                 return 0;
1458
1459         if (unlikely(i->type & ITER_PIPE)) {
1460                 struct pipe_inode_info *pipe = i->pipe;
1461                 size_t off;
1462                 int idx;
1463
1464                 if (!sanity(i))
1465                         return 0;
1466
1467                 data_start(i, &idx, &off);
1468                 /* some of this one + all after this one */
1469                 npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1470                 if (npages >= maxpages)
1471                         return maxpages;
1472         } else iterate_all_kinds(i, size, v, ({
1473                 unsigned long p = (unsigned long)v.iov_base;
1474                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1475                         - p / PAGE_SIZE;
1476                 if (npages >= maxpages)
1477                         return maxpages;
1478         0;}),({
1479                 npages++;
1480                 if (npages >= maxpages)
1481                         return maxpages;
1482         }),({
1483                 unsigned long p = (unsigned long)v.iov_base;
1484                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1485                         - p / PAGE_SIZE;
1486                 if (npages >= maxpages)
1487                         return maxpages;
1488         })
1489         )
1490         return npages;
1491 }
1492 EXPORT_SYMBOL(iov_iter_npages);
1493
1494 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1495 {
1496         *new = *old;
1497         if (unlikely(new->type & ITER_PIPE)) {
1498                 WARN_ON(1);
1499                 return NULL;
1500         }
1501         if (new->type & ITER_BVEC)
1502                 return new->bvec = kmemdup(new->bvec,
1503                                     new->nr_segs * sizeof(struct bio_vec),
1504                                     flags);
1505         else
1506                 /* iovec and kvec have identical layout */
1507                 return new->iov = kmemdup(new->iov,
1508                                    new->nr_segs * sizeof(struct iovec),
1509                                    flags);
1510 }
1511 EXPORT_SYMBOL(dup_iter);
1512
1513 /**
1514  * import_iovec() - Copy an array of &struct iovec from userspace
1515  *     into the kernel, check that it is valid, and initialize a new
1516  *     &struct iov_iter iterator to access it.
1517  *
1518  * @type: One of %READ or %WRITE.
1519  * @uvector: Pointer to the userspace array.
1520  * @nr_segs: Number of elements in userspace array.
1521  * @fast_segs: Number of elements in @iov.
1522  * @iov: (input and output parameter) Pointer to pointer to (usually small
1523  *     on-stack) kernel array.
1524  * @i: Pointer to iterator that will be initialized on success.
1525  *
1526  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1527  * then this function places %NULL in *@iov on return. Otherwise, a new
1528  * array will be allocated and the result placed in *@iov. This means that
1529  * the caller may call kfree() on *@iov regardless of whether the small
1530  * on-stack array was used or not (and regardless of whether this function
1531  * returns an error or not).
1532  *
1533  * Return: 0 on success or negative error code on error.
1534  */
1535 int import_iovec(int type, const struct iovec __user * uvector,
1536                  unsigned nr_segs, unsigned fast_segs,
1537                  struct iovec **iov, struct iov_iter *i)
1538 {
1539         ssize_t n;
1540         struct iovec *p;
1541         n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1542                                   *iov, &p);
1543         if (n < 0) {
1544                 if (p != *iov)
1545                         kfree(p);
1546                 *iov = NULL;
1547                 return n;
1548         }
1549         iov_iter_init(i, type, p, nr_segs, n);
1550         *iov = p == *iov ? NULL : p;
1551         return 0;
1552 }
1553 EXPORT_SYMBOL(import_iovec);
1554
1555 #ifdef CONFIG_COMPAT
1556 #include <linux/compat.h>
1557
1558 int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
1559                  unsigned nr_segs, unsigned fast_segs,
1560                  struct iovec **iov, struct iov_iter *i)
1561 {
1562         ssize_t n;
1563         struct iovec *p;
1564         n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1565                                   *iov, &p);
1566         if (n < 0) {
1567                 if (p != *iov)
1568                         kfree(p);
1569                 *iov = NULL;
1570                 return n;
1571         }
1572         iov_iter_init(i, type, p, nr_segs, n);
1573         *iov = p == *iov ? NULL : p;
1574         return 0;
1575 }
1576 #endif
1577
1578 int import_single_range(int rw, void __user *buf, size_t len,
1579                  struct iovec *iov, struct iov_iter *i)
1580 {
1581         if (len > MAX_RW_COUNT)
1582                 len = MAX_RW_COUNT;
1583         if (unlikely(!access_ok(!rw, buf, len)))
1584                 return -EFAULT;
1585
1586         iov->iov_base = buf;
1587         iov->iov_len = len;
1588         iov_iter_init(i, rw, iov, 1, len);
1589         return 0;
1590 }
1591 EXPORT_SYMBOL(import_single_range);
1592
1593 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1594                             int (*f)(struct kvec *vec, void *context),
1595                             void *context)
1596 {
1597         struct kvec w;
1598         int err = -EINVAL;
1599         if (!bytes)
1600                 return 0;
1601
1602         iterate_all_kinds(i, bytes, v, -EINVAL, ({
1603                 w.iov_base = kmap(v.bv_page) + v.bv_offset;
1604                 w.iov_len = v.bv_len;
1605                 err = f(&w, context);
1606                 kunmap(v.bv_page);
1607                 err;}), ({
1608                 w = v;
1609                 err = f(&w, context);})
1610         )
1611         return err;
1612 }
1613 EXPORT_SYMBOL(iov_iter_for_each_range);