1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
5 #include <linux/pagemap.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/splice.h>
9 #include <net/checksum.h>
10 #include <linux/scatterlist.h>
12 #define PIPE_PARANOIA /* for now */
14 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \
18 __v.iov_len = min(n, __p->iov_len - skip); \
19 if (likely(__v.iov_len)) { \
20 __v.iov_base = __p->iov_base + skip; \
22 __v.iov_len -= left; \
23 skip += __v.iov_len; \
28 while (unlikely(!left && n)) { \
30 __v.iov_len = min(n, __p->iov_len); \
31 if (unlikely(!__v.iov_len)) \
33 __v.iov_base = __p->iov_base; \
35 __v.iov_len -= left; \
42 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \
45 __v.iov_len = min(n, __p->iov_len - skip); \
46 if (likely(__v.iov_len)) { \
47 __v.iov_base = __p->iov_base + skip; \
49 skip += __v.iov_len; \
52 while (unlikely(n)) { \
54 __v.iov_len = min(n, __p->iov_len); \
55 if (unlikely(!__v.iov_len)) \
57 __v.iov_base = __p->iov_base; \
65 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \
66 struct bvec_iter __start; \
67 __start.bi_size = n; \
68 __start.bi_bvec_done = skip; \
70 for_each_bvec(__v, i->bvec, __bi, __start) { \
77 #define iterate_all_kinds(i, n, v, I, B, K) { \
79 size_t skip = i->iov_offset; \
80 if (unlikely(i->type & ITER_BVEC)) { \
82 struct bvec_iter __bi; \
83 iterate_bvec(i, n, v, __bi, skip, (B)) \
84 } else if (unlikely(i->type & ITER_KVEC)) { \
85 const struct kvec *kvec; \
87 iterate_kvec(i, n, v, kvec, skip, (K)) \
88 } else if (unlikely(i->type & ITER_DISCARD)) { \
90 const struct iovec *iov; \
92 iterate_iovec(i, n, v, iov, skip, (I)) \
97 #define iterate_and_advance(i, n, v, I, B, K) { \
98 if (unlikely(i->count < n)) \
101 size_t skip = i->iov_offset; \
102 if (unlikely(i->type & ITER_BVEC)) { \
103 const struct bio_vec *bvec = i->bvec; \
105 struct bvec_iter __bi; \
106 iterate_bvec(i, n, v, __bi, skip, (B)) \
107 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \
108 i->nr_segs -= i->bvec - bvec; \
109 skip = __bi.bi_bvec_done; \
110 } else if (unlikely(i->type & ITER_KVEC)) { \
111 const struct kvec *kvec; \
113 iterate_kvec(i, n, v, kvec, skip, (K)) \
114 if (skip == kvec->iov_len) { \
118 i->nr_segs -= kvec - i->kvec; \
120 } else if (unlikely(i->type & ITER_DISCARD)) { \
123 const struct iovec *iov; \
125 iterate_iovec(i, n, v, iov, skip, (I)) \
126 if (skip == iov->iov_len) { \
130 i->nr_segs -= iov - i->iov; \
134 i->iov_offset = skip; \
138 static int copyout(void __user *to, const void *from, size_t n)
140 if (access_ok(to, n)) {
141 kasan_check_read(from, n);
142 n = raw_copy_to_user(to, from, n);
147 static int copyin(void *to, const void __user *from, size_t n)
149 if (access_ok(from, n)) {
150 kasan_check_write(to, n);
151 n = raw_copy_from_user(to, from, n);
156 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
159 size_t skip, copy, left, wanted;
160 const struct iovec *iov;
164 if (unlikely(bytes > i->count))
167 if (unlikely(!bytes))
173 skip = i->iov_offset;
174 buf = iov->iov_base + skip;
175 copy = min(bytes, iov->iov_len - skip);
177 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
178 kaddr = kmap_atomic(page);
179 from = kaddr + offset;
181 /* first chunk, usually the only one */
182 left = copyout(buf, from, copy);
188 while (unlikely(!left && bytes)) {
191 copy = min(bytes, iov->iov_len);
192 left = copyout(buf, from, copy);
198 if (likely(!bytes)) {
199 kunmap_atomic(kaddr);
202 offset = from - kaddr;
204 kunmap_atomic(kaddr);
205 copy = min(bytes, iov->iov_len - skip);
207 /* Too bad - revert to non-atomic kmap */
210 from = kaddr + offset;
211 left = copyout(buf, from, copy);
216 while (unlikely(!left && bytes)) {
219 copy = min(bytes, iov->iov_len);
220 left = copyout(buf, from, copy);
229 if (skip == iov->iov_len) {
233 i->count -= wanted - bytes;
234 i->nr_segs -= iov - i->iov;
236 i->iov_offset = skip;
237 return wanted - bytes;
240 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
243 size_t skip, copy, left, wanted;
244 const struct iovec *iov;
248 if (unlikely(bytes > i->count))
251 if (unlikely(!bytes))
257 skip = i->iov_offset;
258 buf = iov->iov_base + skip;
259 copy = min(bytes, iov->iov_len - skip);
261 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
262 kaddr = kmap_atomic(page);
265 /* first chunk, usually the only one */
266 left = copyin(to, buf, copy);
272 while (unlikely(!left && bytes)) {
275 copy = min(bytes, iov->iov_len);
276 left = copyin(to, buf, copy);
282 if (likely(!bytes)) {
283 kunmap_atomic(kaddr);
288 kunmap_atomic(kaddr);
289 copy = min(bytes, iov->iov_len - skip);
291 /* Too bad - revert to non-atomic kmap */
295 left = copyin(to, buf, copy);
300 while (unlikely(!left && bytes)) {
303 copy = min(bytes, iov->iov_len);
304 left = copyin(to, buf, copy);
313 if (skip == iov->iov_len) {
317 i->count -= wanted - bytes;
318 i->nr_segs -= iov - i->iov;
320 i->iov_offset = skip;
321 return wanted - bytes;
325 static bool sanity(const struct iov_iter *i)
327 struct pipe_inode_info *pipe = i->pipe;
329 int next = pipe->curbuf + pipe->nrbufs;
331 struct pipe_buffer *p;
332 if (unlikely(!pipe->nrbufs))
333 goto Bad; // pipe must be non-empty
334 if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
335 goto Bad; // must be at the last buffer...
337 p = &pipe->bufs[idx];
338 if (unlikely(p->offset + p->len != i->iov_offset))
339 goto Bad; // ... at the end of segment
341 if (idx != (next & (pipe->buffers - 1)))
342 goto Bad; // must be right after the last buffer
346 printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
347 printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
348 pipe->curbuf, pipe->nrbufs, pipe->buffers);
349 for (idx = 0; idx < pipe->buffers; idx++)
350 printk(KERN_ERR "[%p %p %d %d]\n",
352 pipe->bufs[idx].page,
353 pipe->bufs[idx].offset,
354 pipe->bufs[idx].len);
359 #define sanity(i) true
362 static inline int next_idx(int idx, struct pipe_inode_info *pipe)
364 return (idx + 1) & (pipe->buffers - 1);
367 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
370 struct pipe_inode_info *pipe = i->pipe;
371 struct pipe_buffer *buf;
375 if (unlikely(bytes > i->count))
378 if (unlikely(!bytes))
386 buf = &pipe->bufs[idx];
388 if (offset == off && buf->page == page) {
389 /* merge with the last one */
391 i->iov_offset += bytes;
394 idx = next_idx(idx, pipe);
395 buf = &pipe->bufs[idx];
397 if (idx == pipe->curbuf && pipe->nrbufs)
400 buf->ops = &page_cache_pipe_buf_ops;
401 get_page(buf->page = page);
402 buf->offset = offset;
404 i->iov_offset = offset + bytes;
412 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
413 * bytes. For each iovec, fault in each page that constitutes the iovec.
415 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
416 * because it is an invalid address).
418 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
420 size_t skip = i->iov_offset;
421 const struct iovec *iov;
425 if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
426 iterate_iovec(i, bytes, v, iov, skip, ({
427 err = fault_in_pages_readable(v.iov_base, v.iov_len);
434 EXPORT_SYMBOL(iov_iter_fault_in_readable);
436 void iov_iter_init(struct iov_iter *i, unsigned int direction,
437 const struct iovec *iov, unsigned long nr_segs,
440 WARN_ON(direction & ~(READ | WRITE));
441 direction &= READ | WRITE;
443 /* It will get better. Eventually... */
444 if (uaccess_kernel()) {
445 i->type = ITER_KVEC | direction;
446 i->kvec = (struct kvec *)iov;
448 i->type = ITER_IOVEC | direction;
451 i->nr_segs = nr_segs;
455 EXPORT_SYMBOL(iov_iter_init);
457 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
459 char *from = kmap_atomic(page);
460 memcpy(to, from + offset, len);
464 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
466 char *to = kmap_atomic(page);
467 memcpy(to + offset, from, len);
471 static void memzero_page(struct page *page, size_t offset, size_t len)
473 char *addr = kmap_atomic(page);
474 memset(addr + offset, 0, len);
478 static inline bool allocated(struct pipe_buffer *buf)
480 return buf->ops == &default_pipe_buf_ops;
483 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
485 size_t off = i->iov_offset;
487 if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
488 idx = next_idx(idx, i->pipe);
495 static size_t push_pipe(struct iov_iter *i, size_t size,
496 int *idxp, size_t *offp)
498 struct pipe_inode_info *pipe = i->pipe;
503 if (unlikely(size > i->count))
509 data_start(i, &idx, &off);
513 left -= PAGE_SIZE - off;
515 pipe->bufs[idx].len += size;
518 pipe->bufs[idx].len = PAGE_SIZE;
519 idx = next_idx(idx, pipe);
521 while (idx != pipe->curbuf || !pipe->nrbufs) {
522 struct page *page = alloc_page(GFP_USER);
526 pipe->bufs[idx].ops = &default_pipe_buf_ops;
527 pipe->bufs[idx].page = page;
528 pipe->bufs[idx].offset = 0;
529 if (left <= PAGE_SIZE) {
530 pipe->bufs[idx].len = left;
533 pipe->bufs[idx].len = PAGE_SIZE;
535 idx = next_idx(idx, pipe);
540 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
543 struct pipe_inode_info *pipe = i->pipe;
550 bytes = n = push_pipe(i, bytes, &idx, &off);
553 for ( ; n; idx = next_idx(idx, pipe), off = 0) {
554 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
555 memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
557 i->iov_offset = off + chunk;
565 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
566 __wsum sum, size_t off)
568 __wsum next = csum_partial_copy_nocheck(from, to, len, 0);
569 return csum_block_add(sum, next, off);
572 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
573 __wsum *csum, struct iov_iter *i)
575 struct pipe_inode_info *pipe = i->pipe;
584 bytes = n = push_pipe(i, bytes, &idx, &r);
587 for ( ; n; idx = next_idx(idx, pipe), r = 0) {
588 size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
589 char *p = kmap_atomic(pipe->bufs[idx].page);
590 sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
593 i->iov_offset = r + chunk;
603 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
605 const char *from = addr;
606 if (unlikely(iov_iter_is_pipe(i)))
607 return copy_pipe_to_iter(addr, bytes, i);
608 if (iter_is_iovec(i))
610 iterate_and_advance(i, bytes, v,
611 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
612 memcpy_to_page(v.bv_page, v.bv_offset,
613 (from += v.bv_len) - v.bv_len, v.bv_len),
614 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
619 EXPORT_SYMBOL(_copy_to_iter);
621 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
622 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
624 if (access_ok(to, n)) {
625 kasan_check_read(from, n);
626 n = copy_to_user_mcsafe((__force void *) to, from, n);
631 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
632 const char *from, size_t len)
637 to = kmap_atomic(page);
638 ret = memcpy_mcsafe(to + offset, from, len);
644 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
647 struct pipe_inode_info *pipe = i->pipe;
648 size_t n, off, xfer = 0;
654 bytes = n = push_pipe(i, bytes, &idx, &off);
657 for ( ; n; idx = next_idx(idx, pipe), off = 0) {
658 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
661 rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr,
664 i->iov_offset = off + chunk - rem;
676 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
677 * @addr: source kernel address
678 * @bytes: total transfer length
679 * @iter: destination iterator
681 * The pmem driver arranges for filesystem-dax to use this facility via
682 * dax_copy_to_iter() for protecting read/write to persistent memory.
683 * Unless / until an architecture can guarantee identical performance
684 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
685 * performance regression to switch more users to the mcsafe version.
687 * Otherwise, the main differences between this and typical _copy_to_iter().
689 * * Typical tail/residue handling after a fault retries the copy
690 * byte-by-byte until the fault happens again. Re-triggering machine
691 * checks is potentially fatal so the implementation uses source
692 * alignment and poison alignment assumptions to avoid re-triggering
693 * hardware exceptions.
695 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
696 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
699 * See MCSAFE_TEST for self-test.
701 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
703 const char *from = addr;
704 unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
706 if (unlikely(iov_iter_is_pipe(i)))
707 return copy_pipe_to_iter_mcsafe(addr, bytes, i);
708 if (iter_is_iovec(i))
710 iterate_and_advance(i, bytes, v,
711 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
713 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
714 (from += v.bv_len) - v.bv_len, v.bv_len);
716 curr_addr = (unsigned long) from;
717 bytes = curr_addr - s_addr - rem;
722 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
725 curr_addr = (unsigned long) from;
726 bytes = curr_addr - s_addr - rem;
734 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
735 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
737 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
740 if (unlikely(iov_iter_is_pipe(i))) {
744 if (iter_is_iovec(i))
746 iterate_and_advance(i, bytes, v,
747 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
748 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
749 v.bv_offset, v.bv_len),
750 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
755 EXPORT_SYMBOL(_copy_from_iter);
757 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
760 if (unlikely(iov_iter_is_pipe(i))) {
764 if (unlikely(i->count < bytes))
767 if (iter_is_iovec(i))
769 iterate_all_kinds(i, bytes, v, ({
770 if (copyin((to += v.iov_len) - v.iov_len,
771 v.iov_base, v.iov_len))
774 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
775 v.bv_offset, v.bv_len),
776 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
779 iov_iter_advance(i, bytes);
782 EXPORT_SYMBOL(_copy_from_iter_full);
784 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
787 if (unlikely(iov_iter_is_pipe(i))) {
791 iterate_and_advance(i, bytes, v,
792 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
793 v.iov_base, v.iov_len),
794 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
795 v.bv_offset, v.bv_len),
796 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
801 EXPORT_SYMBOL(_copy_from_iter_nocache);
803 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
805 * _copy_from_iter_flushcache - write destination through cpu cache
806 * @addr: destination kernel address
807 * @bytes: total transfer length
808 * @iter: source iterator
810 * The pmem driver arranges for filesystem-dax to use this facility via
811 * dax_copy_from_iter() for ensuring that writes to persistent memory
812 * are flushed through the CPU cache. It is differentiated from
813 * _copy_from_iter_nocache() in that guarantees all data is flushed for
814 * all iterator types. The _copy_from_iter_nocache() only attempts to
815 * bypass the cache for the ITER_IOVEC case, and on some archs may use
816 * instructions that strand dirty-data in the cache.
818 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
821 if (unlikely(iov_iter_is_pipe(i))) {
825 iterate_and_advance(i, bytes, v,
826 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
827 v.iov_base, v.iov_len),
828 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
829 v.bv_offset, v.bv_len),
830 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
836 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
839 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
842 if (unlikely(iov_iter_is_pipe(i))) {
846 if (unlikely(i->count < bytes))
848 iterate_all_kinds(i, bytes, v, ({
849 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
850 v.iov_base, v.iov_len))
853 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
854 v.bv_offset, v.bv_len),
855 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
858 iov_iter_advance(i, bytes);
861 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
863 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
866 size_t v = n + offset;
869 * The general case needs to access the page order in order
870 * to compute the page size.
871 * However, we mostly deal with order-0 pages and thus can
872 * avoid a possible cache line miss for requests that fit all
875 if (n <= v && v <= PAGE_SIZE)
878 head = compound_head(page);
879 v += (page - head) << PAGE_SHIFT;
881 if (likely(n <= v && v <= (page_size(head))))
887 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
890 if (unlikely(!page_copy_sane(page, offset, bytes)))
892 if (i->type & (ITER_BVEC|ITER_KVEC)) {
893 void *kaddr = kmap_atomic(page);
894 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
895 kunmap_atomic(kaddr);
897 } else if (unlikely(iov_iter_is_discard(i)))
899 else if (likely(!iov_iter_is_pipe(i)))
900 return copy_page_to_iter_iovec(page, offset, bytes, i);
902 return copy_page_to_iter_pipe(page, offset, bytes, i);
904 EXPORT_SYMBOL(copy_page_to_iter);
906 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
909 if (unlikely(!page_copy_sane(page, offset, bytes)))
911 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
915 if (i->type & (ITER_BVEC|ITER_KVEC)) {
916 void *kaddr = kmap_atomic(page);
917 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
918 kunmap_atomic(kaddr);
921 return copy_page_from_iter_iovec(page, offset, bytes, i);
923 EXPORT_SYMBOL(copy_page_from_iter);
925 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
927 struct pipe_inode_info *pipe = i->pipe;
934 bytes = n = push_pipe(i, bytes, &idx, &off);
938 for ( ; n; idx = next_idx(idx, pipe), off = 0) {
939 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
940 memzero_page(pipe->bufs[idx].page, off, chunk);
942 i->iov_offset = off + chunk;
949 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
951 if (unlikely(iov_iter_is_pipe(i)))
952 return pipe_zero(bytes, i);
953 iterate_and_advance(i, bytes, v,
954 clear_user(v.iov_base, v.iov_len),
955 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
956 memset(v.iov_base, 0, v.iov_len)
961 EXPORT_SYMBOL(iov_iter_zero);
963 size_t iov_iter_copy_from_user_atomic(struct page *page,
964 struct iov_iter *i, unsigned long offset, size_t bytes)
966 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
967 if (unlikely(!page_copy_sane(page, offset, bytes))) {
968 kunmap_atomic(kaddr);
971 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
972 kunmap_atomic(kaddr);
976 iterate_all_kinds(i, bytes, v,
977 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
978 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
979 v.bv_offset, v.bv_len),
980 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
982 kunmap_atomic(kaddr);
985 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
987 static inline void pipe_truncate(struct iov_iter *i)
989 struct pipe_inode_info *pipe = i->pipe;
991 size_t off = i->iov_offset;
993 int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
995 pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
996 idx = next_idx(idx, pipe);
999 while (pipe->nrbufs > nrbufs) {
1000 pipe_buf_release(pipe, &pipe->bufs[idx]);
1001 idx = next_idx(idx, pipe);
1007 static void pipe_advance(struct iov_iter *i, size_t size)
1009 struct pipe_inode_info *pipe = i->pipe;
1010 if (unlikely(i->count < size))
1013 struct pipe_buffer *buf;
1014 size_t off = i->iov_offset, left = size;
1016 if (off) /* make it relative to the beginning of buffer */
1017 left += off - pipe->bufs[idx].offset;
1019 buf = &pipe->bufs[idx];
1020 if (left <= buf->len)
1023 idx = next_idx(idx, pipe);
1026 i->iov_offset = buf->offset + left;
1029 /* ... and discard everything past that point */
1033 void iov_iter_advance(struct iov_iter *i, size_t size)
1035 if (unlikely(iov_iter_is_pipe(i))) {
1036 pipe_advance(i, size);
1039 if (unlikely(iov_iter_is_discard(i))) {
1043 iterate_and_advance(i, size, v, 0, 0, 0)
1045 EXPORT_SYMBOL(iov_iter_advance);
1047 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1051 if (WARN_ON(unroll > MAX_RW_COUNT))
1054 if (unlikely(iov_iter_is_pipe(i))) {
1055 struct pipe_inode_info *pipe = i->pipe;
1057 size_t off = i->iov_offset;
1059 size_t n = off - pipe->bufs[idx].offset;
1065 if (!unroll && idx == i->start_idx) {
1070 idx = pipe->buffers - 1;
1071 off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
1073 i->iov_offset = off;
1078 if (unlikely(iov_iter_is_discard(i)))
1080 if (unroll <= i->iov_offset) {
1081 i->iov_offset -= unroll;
1084 unroll -= i->iov_offset;
1085 if (iov_iter_is_bvec(i)) {
1086 const struct bio_vec *bvec = i->bvec;
1088 size_t n = (--bvec)->bv_len;
1092 i->iov_offset = n - unroll;
1097 } else { /* same logics for iovec and kvec */
1098 const struct iovec *iov = i->iov;
1100 size_t n = (--iov)->iov_len;
1104 i->iov_offset = n - unroll;
1111 EXPORT_SYMBOL(iov_iter_revert);
1114 * Return the count of just the current iov_iter segment.
1116 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1118 if (unlikely(iov_iter_is_pipe(i)))
1119 return i->count; // it is a silly place, anyway
1120 if (i->nr_segs == 1)
1122 if (unlikely(iov_iter_is_discard(i)))
1124 else if (iov_iter_is_bvec(i))
1125 return min(i->count, i->bvec->bv_len - i->iov_offset);
1127 return min(i->count, i->iov->iov_len - i->iov_offset);
1129 EXPORT_SYMBOL(iov_iter_single_seg_count);
1131 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1132 const struct kvec *kvec, unsigned long nr_segs,
1135 WARN_ON(direction & ~(READ | WRITE));
1136 i->type = ITER_KVEC | (direction & (READ | WRITE));
1138 i->nr_segs = nr_segs;
1142 EXPORT_SYMBOL(iov_iter_kvec);
1144 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1145 const struct bio_vec *bvec, unsigned long nr_segs,
1148 WARN_ON(direction & ~(READ | WRITE));
1149 i->type = ITER_BVEC | (direction & (READ | WRITE));
1151 i->nr_segs = nr_segs;
1155 EXPORT_SYMBOL(iov_iter_bvec);
1157 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1158 struct pipe_inode_info *pipe,
1161 BUG_ON(direction != READ);
1162 WARN_ON(pipe->nrbufs == pipe->buffers);
1163 i->type = ITER_PIPE | READ;
1165 i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1168 i->start_idx = i->idx;
1170 EXPORT_SYMBOL(iov_iter_pipe);
1173 * iov_iter_discard - Initialise an I/O iterator that discards data
1174 * @i: The iterator to initialise.
1175 * @direction: The direction of the transfer.
1176 * @count: The size of the I/O buffer in bytes.
1178 * Set up an I/O iterator that just discards everything that's written to it.
1179 * It's only available as a READ iterator.
1181 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1183 BUG_ON(direction != READ);
1184 i->type = ITER_DISCARD | READ;
1188 EXPORT_SYMBOL(iov_iter_discard);
1190 unsigned long iov_iter_alignment(const struct iov_iter *i)
1192 unsigned long res = 0;
1193 size_t size = i->count;
1195 if (unlikely(iov_iter_is_pipe(i))) {
1196 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
1197 return size | i->iov_offset;
1200 iterate_all_kinds(i, size, v,
1201 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1202 res |= v.bv_offset | v.bv_len,
1203 res |= (unsigned long)v.iov_base | v.iov_len
1207 EXPORT_SYMBOL(iov_iter_alignment);
1209 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1211 unsigned long res = 0;
1212 size_t size = i->count;
1214 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1219 iterate_all_kinds(i, size, v,
1220 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1221 (size != v.iov_len ? size : 0), 0),
1222 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1223 (size != v.bv_len ? size : 0)),
1224 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1225 (size != v.iov_len ? size : 0))
1229 EXPORT_SYMBOL(iov_iter_gap_alignment);
1231 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1233 struct page **pages,
1237 struct pipe_inode_info *pipe = i->pipe;
1238 ssize_t n = push_pipe(i, maxsize, &idx, start);
1245 get_page(*pages++ = pipe->bufs[idx].page);
1246 idx = next_idx(idx, pipe);
1253 static ssize_t pipe_get_pages(struct iov_iter *i,
1254 struct page **pages, size_t maxsize, unsigned maxpages,
1267 data_start(i, &idx, start);
1268 /* some of this one + all after this one */
1269 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1270 capacity = min(npages,maxpages) * PAGE_SIZE - *start;
1272 return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
1275 ssize_t iov_iter_get_pages(struct iov_iter *i,
1276 struct page **pages, size_t maxsize, unsigned maxpages,
1279 if (maxsize > i->count)
1282 if (unlikely(iov_iter_is_pipe(i)))
1283 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1284 if (unlikely(iov_iter_is_discard(i)))
1287 iterate_all_kinds(i, maxsize, v, ({
1288 unsigned long addr = (unsigned long)v.iov_base;
1289 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1293 if (len > maxpages * PAGE_SIZE)
1294 len = maxpages * PAGE_SIZE;
1295 addr &= ~(PAGE_SIZE - 1);
1296 n = DIV_ROUND_UP(len, PAGE_SIZE);
1297 res = get_user_pages_fast(addr, n,
1298 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0,
1300 if (unlikely(res < 0))
1302 return (res == n ? len : res * PAGE_SIZE) - *start;
1304 /* can't be more than PAGE_SIZE */
1305 *start = v.bv_offset;
1306 get_page(*pages = v.bv_page);
1314 EXPORT_SYMBOL(iov_iter_get_pages);
1316 static struct page **get_pages_array(size_t n)
1318 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1321 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1322 struct page ***pages, size_t maxsize,
1336 data_start(i, &idx, start);
1337 /* some of this one + all after this one */
1338 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1339 n = npages * PAGE_SIZE - *start;
1343 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1344 p = get_pages_array(npages);
1347 n = __pipe_get_pages(i, maxsize, p, idx, start);
1355 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1356 struct page ***pages, size_t maxsize,
1361 if (maxsize > i->count)
1364 if (unlikely(iov_iter_is_pipe(i)))
1365 return pipe_get_pages_alloc(i, pages, maxsize, start);
1366 if (unlikely(iov_iter_is_discard(i)))
1369 iterate_all_kinds(i, maxsize, v, ({
1370 unsigned long addr = (unsigned long)v.iov_base;
1371 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1375 addr &= ~(PAGE_SIZE - 1);
1376 n = DIV_ROUND_UP(len, PAGE_SIZE);
1377 p = get_pages_array(n);
1380 res = get_user_pages_fast(addr, n,
1381 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p);
1382 if (unlikely(res < 0)) {
1387 return (res == n ? len : res * PAGE_SIZE) - *start;
1389 /* can't be more than PAGE_SIZE */
1390 *start = v.bv_offset;
1391 *pages = p = get_pages_array(1);
1394 get_page(*p = v.bv_page);
1402 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1404 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1411 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1415 iterate_and_advance(i, bytes, v, ({
1417 next = csum_and_copy_from_user(v.iov_base,
1418 (to += v.iov_len) - v.iov_len,
1419 v.iov_len, 0, &err);
1421 sum = csum_block_add(sum, next, off);
1424 err ? v.iov_len : 0;
1426 char *p = kmap_atomic(v.bv_page);
1427 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1428 p + v.bv_offset, v.bv_len,
1433 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1434 v.iov_base, v.iov_len,
1442 EXPORT_SYMBOL(csum_and_copy_from_iter);
1444 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1451 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1455 if (unlikely(i->count < bytes))
1457 iterate_all_kinds(i, bytes, v, ({
1459 next = csum_and_copy_from_user(v.iov_base,
1460 (to += v.iov_len) - v.iov_len,
1461 v.iov_len, 0, &err);
1464 sum = csum_block_add(sum, next, off);
1468 char *p = kmap_atomic(v.bv_page);
1469 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1470 p + v.bv_offset, v.bv_len,
1475 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1476 v.iov_base, v.iov_len,
1482 iov_iter_advance(i, bytes);
1485 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1487 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1490 const char *from = addr;
1491 __wsum *csum = csump;
1495 if (unlikely(iov_iter_is_pipe(i)))
1496 return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1499 if (unlikely(iov_iter_is_discard(i))) {
1500 WARN_ON(1); /* for now */
1503 iterate_and_advance(i, bytes, v, ({
1505 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1507 v.iov_len, 0, &err);
1509 sum = csum_block_add(sum, next, off);
1512 err ? v.iov_len : 0;
1514 char *p = kmap_atomic(v.bv_page);
1515 sum = csum_and_memcpy(p + v.bv_offset,
1516 (from += v.bv_len) - v.bv_len,
1517 v.bv_len, sum, off);
1521 sum = csum_and_memcpy(v.iov_base,
1522 (from += v.iov_len) - v.iov_len,
1523 v.iov_len, sum, off);
1530 EXPORT_SYMBOL(csum_and_copy_to_iter);
1532 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1535 #ifdef CONFIG_CRYPTO
1536 struct ahash_request *hash = hashp;
1537 struct scatterlist sg;
1540 copied = copy_to_iter(addr, bytes, i);
1541 sg_init_one(&sg, addr, copied);
1542 ahash_request_set_crypt(hash, &sg, NULL, copied);
1543 crypto_ahash_update(hash);
1549 EXPORT_SYMBOL(hash_and_copy_to_iter);
1551 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1553 size_t size = i->count;
1558 if (unlikely(iov_iter_is_discard(i)))
1561 if (unlikely(iov_iter_is_pipe(i))) {
1562 struct pipe_inode_info *pipe = i->pipe;
1569 data_start(i, &idx, &off);
1570 /* some of this one + all after this one */
1571 npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1572 if (npages >= maxpages)
1574 } else iterate_all_kinds(i, size, v, ({
1575 unsigned long p = (unsigned long)v.iov_base;
1576 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1578 if (npages >= maxpages)
1582 if (npages >= maxpages)
1585 unsigned long p = (unsigned long)v.iov_base;
1586 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1588 if (npages >= maxpages)
1594 EXPORT_SYMBOL(iov_iter_npages);
1596 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1599 if (unlikely(iov_iter_is_pipe(new))) {
1603 if (unlikely(iov_iter_is_discard(new)))
1605 if (iov_iter_is_bvec(new))
1606 return new->bvec = kmemdup(new->bvec,
1607 new->nr_segs * sizeof(struct bio_vec),
1610 /* iovec and kvec have identical layout */
1611 return new->iov = kmemdup(new->iov,
1612 new->nr_segs * sizeof(struct iovec),
1615 EXPORT_SYMBOL(dup_iter);
1618 * import_iovec() - Copy an array of &struct iovec from userspace
1619 * into the kernel, check that it is valid, and initialize a new
1620 * &struct iov_iter iterator to access it.
1622 * @type: One of %READ or %WRITE.
1623 * @uvector: Pointer to the userspace array.
1624 * @nr_segs: Number of elements in userspace array.
1625 * @fast_segs: Number of elements in @iov.
1626 * @iov: (input and output parameter) Pointer to pointer to (usually small
1627 * on-stack) kernel array.
1628 * @i: Pointer to iterator that will be initialized on success.
1630 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1631 * then this function places %NULL in *@iov on return. Otherwise, a new
1632 * array will be allocated and the result placed in *@iov. This means that
1633 * the caller may call kfree() on *@iov regardless of whether the small
1634 * on-stack array was used or not (and regardless of whether this function
1635 * returns an error or not).
1637 * Return: Negative error code on error, bytes imported on success
1639 ssize_t import_iovec(int type, const struct iovec __user * uvector,
1640 unsigned nr_segs, unsigned fast_segs,
1641 struct iovec **iov, struct iov_iter *i)
1645 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1653 iov_iter_init(i, type, p, nr_segs, n);
1654 *iov = p == *iov ? NULL : p;
1657 EXPORT_SYMBOL(import_iovec);
1659 #ifdef CONFIG_COMPAT
1660 #include <linux/compat.h>
1662 ssize_t compat_import_iovec(int type,
1663 const struct compat_iovec __user * uvector,
1664 unsigned nr_segs, unsigned fast_segs,
1665 struct iovec **iov, struct iov_iter *i)
1669 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1677 iov_iter_init(i, type, p, nr_segs, n);
1678 *iov = p == *iov ? NULL : p;
1683 int import_single_range(int rw, void __user *buf, size_t len,
1684 struct iovec *iov, struct iov_iter *i)
1686 if (len > MAX_RW_COUNT)
1688 if (unlikely(!access_ok(buf, len)))
1691 iov->iov_base = buf;
1693 iov_iter_init(i, rw, iov, 1, len);
1696 EXPORT_SYMBOL(import_single_range);
1698 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1699 int (*f)(struct kvec *vec, void *context),
1707 iterate_all_kinds(i, bytes, v, -EINVAL, ({
1708 w.iov_base = kmap(v.bv_page) + v.bv_offset;
1709 w.iov_len = v.bv_len;
1710 err = f(&w, context);
1714 err = f(&w, context);})
1718 EXPORT_SYMBOL(iov_iter_for_each_range);