Merge tag 'pull-work.iov_iter-base' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16
17 #define PIPE_PARANOIA /* for now */
18
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {        \
21         size_t off = 0;                                         \
22         size_t skip = i->iov_offset;                            \
23         do {                                                    \
24                 len = min(n, __p->iov_len - skip);              \
25                 if (likely(len)) {                              \
26                         base = __p->iov_base + skip;            \
27                         len -= (STEP);                          \
28                         off += len;                             \
29                         skip += len;                            \
30                         n -= len;                               \
31                         if (skip < __p->iov_len)                \
32                                 break;                          \
33                 }                                               \
34                 __p++;                                          \
35                 skip = 0;                                       \
36         } while (n);                                            \
37         i->iov_offset = skip;                                   \
38         n = off;                                                \
39 }
40
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {           \
42         size_t off = 0;                                         \
43         unsigned skip = i->iov_offset;                          \
44         while (n) {                                             \
45                 unsigned offset = p->bv_offset + skip;          \
46                 unsigned left;                                  \
47                 void *kaddr = kmap_local_page(p->bv_page +      \
48                                         offset / PAGE_SIZE);    \
49                 base = kaddr + offset % PAGE_SIZE;              \
50                 len = min(min(n, (size_t)(p->bv_len - skip)),   \
51                      (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
52                 left = (STEP);                                  \
53                 kunmap_local(kaddr);                            \
54                 len -= left;                                    \
55                 off += len;                                     \
56                 skip += len;                                    \
57                 if (skip == p->bv_len) {                        \
58                         skip = 0;                               \
59                         p++;                                    \
60                 }                                               \
61                 n -= len;                                       \
62                 if (left)                                       \
63                         break;                                  \
64         }                                                       \
65         i->iov_offset = skip;                                   \
66         n = off;                                                \
67 }
68
69 #define iterate_xarray(i, n, base, len, __off, STEP) {          \
70         __label__ __out;                                        \
71         size_t __off = 0;                                       \
72         struct folio *folio;                                    \
73         loff_t start = i->xarray_start + i->iov_offset;         \
74         pgoff_t index = start / PAGE_SIZE;                      \
75         XA_STATE(xas, i->xarray, index);                        \
76                                                                 \
77         len = PAGE_SIZE - offset_in_page(start);                \
78         rcu_read_lock();                                        \
79         xas_for_each(&xas, folio, ULONG_MAX) {                  \
80                 unsigned left;                                  \
81                 size_t offset;                                  \
82                 if (xas_retry(&xas, folio))                     \
83                         continue;                               \
84                 if (WARN_ON(xa_is_value(folio)))                \
85                         break;                                  \
86                 if (WARN_ON(folio_test_hugetlb(folio)))         \
87                         break;                                  \
88                 offset = offset_in_folio(folio, start + __off); \
89                 while (offset < folio_size(folio)) {            \
90                         base = kmap_local_folio(folio, offset); \
91                         len = min(n, len);                      \
92                         left = (STEP);                          \
93                         kunmap_local(base);                     \
94                         len -= left;                            \
95                         __off += len;                           \
96                         n -= len;                               \
97                         if (left || n == 0)                     \
98                                 goto __out;                     \
99                         offset += len;                          \
100                         len = PAGE_SIZE;                        \
101                 }                                               \
102         }                                                       \
103 __out:                                                          \
104         rcu_read_unlock();                                      \
105         i->iov_offset += __off;                                 \
106         n = __off;                                              \
107 }
108
109 #define __iterate_and_advance(i, n, base, len, off, I, K) {     \
110         if (unlikely(i->count < n))                             \
111                 n = i->count;                                   \
112         if (likely(n)) {                                        \
113                 if (likely(iter_is_iovec(i))) {                 \
114                         const struct iovec *iov = i->iov;       \
115                         void __user *base;                      \
116                         size_t len;                             \
117                         iterate_iovec(i, n, base, len, off,     \
118                                                 iov, (I))       \
119                         i->nr_segs -= iov - i->iov;             \
120                         i->iov = iov;                           \
121                 } else if (iov_iter_is_bvec(i)) {               \
122                         const struct bio_vec *bvec = i->bvec;   \
123                         void *base;                             \
124                         size_t len;                             \
125                         iterate_bvec(i, n, base, len, off,      \
126                                                 bvec, (K))      \
127                         i->nr_segs -= bvec - i->bvec;           \
128                         i->bvec = bvec;                         \
129                 } else if (iov_iter_is_kvec(i)) {               \
130                         const struct kvec *kvec = i->kvec;      \
131                         void *base;                             \
132                         size_t len;                             \
133                         iterate_iovec(i, n, base, len, off,     \
134                                                 kvec, (K))      \
135                         i->nr_segs -= kvec - i->kvec;           \
136                         i->kvec = kvec;                         \
137                 } else if (iov_iter_is_xarray(i)) {             \
138                         void *base;                             \
139                         size_t len;                             \
140                         iterate_xarray(i, n, base, len, off,    \
141                                                         (K))    \
142                 }                                               \
143                 i->count -= n;                                  \
144         }                                                       \
145 }
146 #define iterate_and_advance(i, n, base, len, off, I, K) \
147         __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
148
149 static int copyout(void __user *to, const void *from, size_t n)
150 {
151         if (should_fail_usercopy())
152                 return n;
153         if (access_ok(to, n)) {
154                 instrument_copy_to_user(to, from, n);
155                 n = raw_copy_to_user(to, from, n);
156         }
157         return n;
158 }
159
160 static int copyin(void *to, const void __user *from, size_t n)
161 {
162         if (should_fail_usercopy())
163                 return n;
164         if (access_ok(from, n)) {
165                 instrument_copy_from_user(to, from, n);
166                 n = raw_copy_from_user(to, from, n);
167         }
168         return n;
169 }
170
171 #ifdef PIPE_PARANOIA
172 static bool sanity(const struct iov_iter *i)
173 {
174         struct pipe_inode_info *pipe = i->pipe;
175         unsigned int p_head = pipe->head;
176         unsigned int p_tail = pipe->tail;
177         unsigned int p_mask = pipe->ring_size - 1;
178         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
179         unsigned int i_head = i->head;
180         unsigned int idx;
181
182         if (i->iov_offset) {
183                 struct pipe_buffer *p;
184                 if (unlikely(p_occupancy == 0))
185                         goto Bad;       // pipe must be non-empty
186                 if (unlikely(i_head != p_head - 1))
187                         goto Bad;       // must be at the last buffer...
188
189                 p = &pipe->bufs[i_head & p_mask];
190                 if (unlikely(p->offset + p->len != i->iov_offset))
191                         goto Bad;       // ... at the end of segment
192         } else {
193                 if (i_head != p_head)
194                         goto Bad;       // must be right after the last buffer
195         }
196         return true;
197 Bad:
198         printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
199         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
200                         p_head, p_tail, pipe->ring_size);
201         for (idx = 0; idx < pipe->ring_size; idx++)
202                 printk(KERN_ERR "[%p %p %d %d]\n",
203                         pipe->bufs[idx].ops,
204                         pipe->bufs[idx].page,
205                         pipe->bufs[idx].offset,
206                         pipe->bufs[idx].len);
207         WARN_ON(1);
208         return false;
209 }
210 #else
211 #define sanity(i) true
212 #endif
213
214 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
215                          struct iov_iter *i)
216 {
217         struct pipe_inode_info *pipe = i->pipe;
218         struct pipe_buffer *buf;
219         unsigned int p_tail = pipe->tail;
220         unsigned int p_mask = pipe->ring_size - 1;
221         unsigned int i_head = i->head;
222         size_t off;
223
224         if (unlikely(bytes > i->count))
225                 bytes = i->count;
226
227         if (unlikely(!bytes))
228                 return 0;
229
230         if (!sanity(i))
231                 return 0;
232
233         off = i->iov_offset;
234         buf = &pipe->bufs[i_head & p_mask];
235         if (off) {
236                 if (offset == off && buf->page == page) {
237                         /* merge with the last one */
238                         buf->len += bytes;
239                         i->iov_offset += bytes;
240                         goto out;
241                 }
242                 i_head++;
243                 buf = &pipe->bufs[i_head & p_mask];
244         }
245         if (pipe_full(i_head, p_tail, pipe->max_usage))
246                 return 0;
247
248         buf->ops = &page_cache_pipe_buf_ops;
249         buf->flags = 0;
250         get_page(page);
251         buf->page = page;
252         buf->offset = offset;
253         buf->len = bytes;
254
255         pipe->head = i_head + 1;
256         i->iov_offset = offset + bytes;
257         i->head = i_head;
258 out:
259         i->count -= bytes;
260         return bytes;
261 }
262
263 /*
264  * fault_in_iov_iter_readable - fault in iov iterator for reading
265  * @i: iterator
266  * @size: maximum length
267  *
268  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
269  * @size.  For each iovec, fault in each page that constitutes the iovec.
270  *
271  * Returns the number of bytes not faulted in (like copy_to_user() and
272  * copy_from_user()).
273  *
274  * Always returns 0 for non-userspace iterators.
275  */
276 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
277 {
278         if (iter_is_iovec(i)) {
279                 size_t count = min(size, iov_iter_count(i));
280                 const struct iovec *p;
281                 size_t skip;
282
283                 size -= count;
284                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
285                         size_t len = min(count, p->iov_len - skip);
286                         size_t ret;
287
288                         if (unlikely(!len))
289                                 continue;
290                         ret = fault_in_readable(p->iov_base + skip, len);
291                         count -= len - ret;
292                         if (ret)
293                                 break;
294                 }
295                 return count + size;
296         }
297         return 0;
298 }
299 EXPORT_SYMBOL(fault_in_iov_iter_readable);
300
301 /*
302  * fault_in_iov_iter_writeable - fault in iov iterator for writing
303  * @i: iterator
304  * @size: maximum length
305  *
306  * Faults in the iterator using get_user_pages(), i.e., without triggering
307  * hardware page faults.  This is primarily useful when we already know that
308  * some or all of the pages in @i aren't in memory.
309  *
310  * Returns the number of bytes not faulted in, like copy_to_user() and
311  * copy_from_user().
312  *
313  * Always returns 0 for non-user-space iterators.
314  */
315 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
316 {
317         if (iter_is_iovec(i)) {
318                 size_t count = min(size, iov_iter_count(i));
319                 const struct iovec *p;
320                 size_t skip;
321
322                 size -= count;
323                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
324                         size_t len = min(count, p->iov_len - skip);
325                         size_t ret;
326
327                         if (unlikely(!len))
328                                 continue;
329                         ret = fault_in_safe_writeable(p->iov_base + skip, len);
330                         count -= len - ret;
331                         if (ret)
332                                 break;
333                 }
334                 return count + size;
335         }
336         return 0;
337 }
338 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
339
340 void iov_iter_init(struct iov_iter *i, unsigned int direction,
341                         const struct iovec *iov, unsigned long nr_segs,
342                         size_t count)
343 {
344         WARN_ON(direction & ~(READ | WRITE));
345         *i = (struct iov_iter) {
346                 .iter_type = ITER_IOVEC,
347                 .nofault = false,
348                 .data_source = direction,
349                 .iov = iov,
350                 .nr_segs = nr_segs,
351                 .iov_offset = 0,
352                 .count = count
353         };
354 }
355 EXPORT_SYMBOL(iov_iter_init);
356
357 static inline bool allocated(struct pipe_buffer *buf)
358 {
359         return buf->ops == &default_pipe_buf_ops;
360 }
361
362 static inline void data_start(const struct iov_iter *i,
363                               unsigned int *iter_headp, size_t *offp)
364 {
365         unsigned int p_mask = i->pipe->ring_size - 1;
366         unsigned int iter_head = i->head;
367         size_t off = i->iov_offset;
368
369         if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
370                     off == PAGE_SIZE)) {
371                 iter_head++;
372                 off = 0;
373         }
374         *iter_headp = iter_head;
375         *offp = off;
376 }
377
378 static size_t push_pipe(struct iov_iter *i, size_t size,
379                         int *iter_headp, size_t *offp)
380 {
381         struct pipe_inode_info *pipe = i->pipe;
382         unsigned int p_tail = pipe->tail;
383         unsigned int p_mask = pipe->ring_size - 1;
384         unsigned int iter_head;
385         size_t off;
386         ssize_t left;
387
388         if (unlikely(size > i->count))
389                 size = i->count;
390         if (unlikely(!size))
391                 return 0;
392
393         left = size;
394         data_start(i, &iter_head, &off);
395         *iter_headp = iter_head;
396         *offp = off;
397         if (off) {
398                 left -= PAGE_SIZE - off;
399                 if (left <= 0) {
400                         pipe->bufs[iter_head & p_mask].len += size;
401                         return size;
402                 }
403                 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
404                 iter_head++;
405         }
406         while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
407                 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
408                 struct page *page = alloc_page(GFP_USER);
409                 if (!page)
410                         break;
411
412                 buf->ops = &default_pipe_buf_ops;
413                 buf->flags = 0;
414                 buf->page = page;
415                 buf->offset = 0;
416                 buf->len = min_t(ssize_t, left, PAGE_SIZE);
417                 left -= buf->len;
418                 iter_head++;
419                 pipe->head = iter_head;
420
421                 if (left == 0)
422                         return size;
423         }
424         return size - left;
425 }
426
427 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
428                                 struct iov_iter *i)
429 {
430         struct pipe_inode_info *pipe = i->pipe;
431         unsigned int p_mask = pipe->ring_size - 1;
432         unsigned int i_head;
433         size_t n, off;
434
435         if (!sanity(i))
436                 return 0;
437
438         bytes = n = push_pipe(i, bytes, &i_head, &off);
439         if (unlikely(!n))
440                 return 0;
441         do {
442                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
443                 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
444                 i->head = i_head;
445                 i->iov_offset = off + chunk;
446                 n -= chunk;
447                 addr += chunk;
448                 off = 0;
449                 i_head++;
450         } while (n);
451         i->count -= bytes;
452         return bytes;
453 }
454
455 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
456                               __wsum sum, size_t off)
457 {
458         __wsum next = csum_partial_copy_nocheck(from, to, len);
459         return csum_block_add(sum, next, off);
460 }
461
462 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
463                                          struct iov_iter *i, __wsum *sump)
464 {
465         struct pipe_inode_info *pipe = i->pipe;
466         unsigned int p_mask = pipe->ring_size - 1;
467         __wsum sum = *sump;
468         size_t off = 0;
469         unsigned int i_head;
470         size_t r;
471
472         if (!sanity(i))
473                 return 0;
474
475         bytes = push_pipe(i, bytes, &i_head, &r);
476         while (bytes) {
477                 size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
478                 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
479                 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
480                 kunmap_local(p);
481                 i->head = i_head;
482                 i->iov_offset = r + chunk;
483                 bytes -= chunk;
484                 off += chunk;
485                 r = 0;
486                 i_head++;
487         }
488         *sump = sum;
489         i->count -= off;
490         return off;
491 }
492
493 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
494 {
495         if (unlikely(iov_iter_is_pipe(i)))
496                 return copy_pipe_to_iter(addr, bytes, i);
497         if (iter_is_iovec(i))
498                 might_fault();
499         iterate_and_advance(i, bytes, base, len, off,
500                 copyout(base, addr + off, len),
501                 memcpy(base, addr + off, len)
502         )
503
504         return bytes;
505 }
506 EXPORT_SYMBOL(_copy_to_iter);
507
508 #ifdef CONFIG_ARCH_HAS_COPY_MC
509 static int copyout_mc(void __user *to, const void *from, size_t n)
510 {
511         if (access_ok(to, n)) {
512                 instrument_copy_to_user(to, from, n);
513                 n = copy_mc_to_user((__force void *) to, from, n);
514         }
515         return n;
516 }
517
518 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
519                                 struct iov_iter *i)
520 {
521         struct pipe_inode_info *pipe = i->pipe;
522         unsigned int p_mask = pipe->ring_size - 1;
523         unsigned int i_head;
524         size_t n, off, xfer = 0;
525
526         if (!sanity(i))
527                 return 0;
528
529         n = push_pipe(i, bytes, &i_head, &off);
530         while (n) {
531                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
532                 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
533                 unsigned long rem;
534                 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
535                 chunk -= rem;
536                 kunmap_local(p);
537                 i->head = i_head;
538                 i->iov_offset = off + chunk;
539                 xfer += chunk;
540                 if (rem)
541                         break;
542                 n -= chunk;
543                 off = 0;
544                 i_head++;
545         }
546         i->count -= xfer;
547         return xfer;
548 }
549
550 /**
551  * _copy_mc_to_iter - copy to iter with source memory error exception handling
552  * @addr: source kernel address
553  * @bytes: total transfer length
554  * @i: destination iterator
555  *
556  * The pmem driver deploys this for the dax operation
557  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
558  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
559  * successfully copied.
560  *
561  * The main differences between this and typical _copy_to_iter().
562  *
563  * * Typical tail/residue handling after a fault retries the copy
564  *   byte-by-byte until the fault happens again. Re-triggering machine
565  *   checks is potentially fatal so the implementation uses source
566  *   alignment and poison alignment assumptions to avoid re-triggering
567  *   hardware exceptions.
568  *
569  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
570  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
571  *   a short copy.
572  *
573  * Return: number of bytes copied (may be %0)
574  */
575 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
576 {
577         if (unlikely(iov_iter_is_pipe(i)))
578                 return copy_mc_pipe_to_iter(addr, bytes, i);
579         if (iter_is_iovec(i))
580                 might_fault();
581         __iterate_and_advance(i, bytes, base, len, off,
582                 copyout_mc(base, addr + off, len),
583                 copy_mc_to_kernel(base, addr + off, len)
584         )
585
586         return bytes;
587 }
588 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
589 #endif /* CONFIG_ARCH_HAS_COPY_MC */
590
591 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
592 {
593         if (unlikely(iov_iter_is_pipe(i))) {
594                 WARN_ON(1);
595                 return 0;
596         }
597         if (iter_is_iovec(i))
598                 might_fault();
599         iterate_and_advance(i, bytes, base, len, off,
600                 copyin(addr + off, base, len),
601                 memcpy(addr + off, base, len)
602         )
603
604         return bytes;
605 }
606 EXPORT_SYMBOL(_copy_from_iter);
607
608 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
609 {
610         if (unlikely(iov_iter_is_pipe(i))) {
611                 WARN_ON(1);
612                 return 0;
613         }
614         iterate_and_advance(i, bytes, base, len, off,
615                 __copy_from_user_inatomic_nocache(addr + off, base, len),
616                 memcpy(addr + off, base, len)
617         )
618
619         return bytes;
620 }
621 EXPORT_SYMBOL(_copy_from_iter_nocache);
622
623 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
624 /**
625  * _copy_from_iter_flushcache - write destination through cpu cache
626  * @addr: destination kernel address
627  * @bytes: total transfer length
628  * @i: source iterator
629  *
630  * The pmem driver arranges for filesystem-dax to use this facility via
631  * dax_copy_from_iter() for ensuring that writes to persistent memory
632  * are flushed through the CPU cache. It is differentiated from
633  * _copy_from_iter_nocache() in that guarantees all data is flushed for
634  * all iterator types. The _copy_from_iter_nocache() only attempts to
635  * bypass the cache for the ITER_IOVEC case, and on some archs may use
636  * instructions that strand dirty-data in the cache.
637  *
638  * Return: number of bytes copied (may be %0)
639  */
640 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
641 {
642         if (unlikely(iov_iter_is_pipe(i))) {
643                 WARN_ON(1);
644                 return 0;
645         }
646         iterate_and_advance(i, bytes, base, len, off,
647                 __copy_from_user_flushcache(addr + off, base, len),
648                 memcpy_flushcache(addr + off, base, len)
649         )
650
651         return bytes;
652 }
653 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
654 #endif
655
656 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
657 {
658         struct page *head;
659         size_t v = n + offset;
660
661         /*
662          * The general case needs to access the page order in order
663          * to compute the page size.
664          * However, we mostly deal with order-0 pages and thus can
665          * avoid a possible cache line miss for requests that fit all
666          * page orders.
667          */
668         if (n <= v && v <= PAGE_SIZE)
669                 return true;
670
671         head = compound_head(page);
672         v += (page - head) << PAGE_SHIFT;
673
674         if (likely(n <= v && v <= (page_size(head))))
675                 return true;
676         WARN_ON(1);
677         return false;
678 }
679
680 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
681                          struct iov_iter *i)
682 {
683         if (unlikely(iov_iter_is_pipe(i))) {
684                 return copy_page_to_iter_pipe(page, offset, bytes, i);
685         } else {
686                 void *kaddr = kmap_local_page(page);
687                 size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
688                 kunmap_local(kaddr);
689                 return wanted;
690         }
691 }
692
693 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
694                          struct iov_iter *i)
695 {
696         size_t res = 0;
697         if (unlikely(!page_copy_sane(page, offset, bytes)))
698                 return 0;
699         page += offset / PAGE_SIZE; // first subpage
700         offset %= PAGE_SIZE;
701         while (1) {
702                 size_t n = __copy_page_to_iter(page, offset,
703                                 min(bytes, (size_t)PAGE_SIZE - offset), i);
704                 res += n;
705                 bytes -= n;
706                 if (!bytes || !n)
707                         break;
708                 offset += n;
709                 if (offset == PAGE_SIZE) {
710                         page++;
711                         offset = 0;
712                 }
713         }
714         return res;
715 }
716 EXPORT_SYMBOL(copy_page_to_iter);
717
718 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
719                          struct iov_iter *i)
720 {
721         if (page_copy_sane(page, offset, bytes)) {
722                 void *kaddr = kmap_local_page(page);
723                 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
724                 kunmap_local(kaddr);
725                 return wanted;
726         }
727         return 0;
728 }
729 EXPORT_SYMBOL(copy_page_from_iter);
730
731 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
732 {
733         struct pipe_inode_info *pipe = i->pipe;
734         unsigned int p_mask = pipe->ring_size - 1;
735         unsigned int i_head;
736         size_t n, off;
737
738         if (!sanity(i))
739                 return 0;
740
741         bytes = n = push_pipe(i, bytes, &i_head, &off);
742         if (unlikely(!n))
743                 return 0;
744
745         do {
746                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
747                 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
748                 memset(p + off, 0, chunk);
749                 kunmap_local(p);
750                 i->head = i_head;
751                 i->iov_offset = off + chunk;
752                 n -= chunk;
753                 off = 0;
754                 i_head++;
755         } while (n);
756         i->count -= bytes;
757         return bytes;
758 }
759
760 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
761 {
762         if (unlikely(iov_iter_is_pipe(i)))
763                 return pipe_zero(bytes, i);
764         iterate_and_advance(i, bytes, base, len, count,
765                 clear_user(base, len),
766                 memset(base, 0, len)
767         )
768
769         return bytes;
770 }
771 EXPORT_SYMBOL(iov_iter_zero);
772
773 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
774                                   struct iov_iter *i)
775 {
776         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
777         if (unlikely(!page_copy_sane(page, offset, bytes))) {
778                 kunmap_atomic(kaddr);
779                 return 0;
780         }
781         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
782                 kunmap_atomic(kaddr);
783                 WARN_ON(1);
784                 return 0;
785         }
786         iterate_and_advance(i, bytes, base, len, off,
787                 copyin(p + off, base, len),
788                 memcpy(p + off, base, len)
789         )
790         kunmap_atomic(kaddr);
791         return bytes;
792 }
793 EXPORT_SYMBOL(copy_page_from_iter_atomic);
794
795 static inline void pipe_truncate(struct iov_iter *i)
796 {
797         struct pipe_inode_info *pipe = i->pipe;
798         unsigned int p_tail = pipe->tail;
799         unsigned int p_head = pipe->head;
800         unsigned int p_mask = pipe->ring_size - 1;
801
802         if (!pipe_empty(p_head, p_tail)) {
803                 struct pipe_buffer *buf;
804                 unsigned int i_head = i->head;
805                 size_t off = i->iov_offset;
806
807                 if (off) {
808                         buf = &pipe->bufs[i_head & p_mask];
809                         buf->len = off - buf->offset;
810                         i_head++;
811                 }
812                 while (p_head != i_head) {
813                         p_head--;
814                         pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
815                 }
816
817                 pipe->head = p_head;
818         }
819 }
820
821 static void pipe_advance(struct iov_iter *i, size_t size)
822 {
823         struct pipe_inode_info *pipe = i->pipe;
824         if (size) {
825                 struct pipe_buffer *buf;
826                 unsigned int p_mask = pipe->ring_size - 1;
827                 unsigned int i_head = i->head;
828                 size_t off = i->iov_offset, left = size;
829
830                 if (off) /* make it relative to the beginning of buffer */
831                         left += off - pipe->bufs[i_head & p_mask].offset;
832                 while (1) {
833                         buf = &pipe->bufs[i_head & p_mask];
834                         if (left <= buf->len)
835                                 break;
836                         left -= buf->len;
837                         i_head++;
838                 }
839                 i->head = i_head;
840                 i->iov_offset = buf->offset + left;
841         }
842         i->count -= size;
843         /* ... and discard everything past that point */
844         pipe_truncate(i);
845 }
846
847 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
848 {
849         const struct bio_vec *bvec, *end;
850
851         if (!i->count)
852                 return;
853         i->count -= size;
854
855         size += i->iov_offset;
856
857         for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
858                 if (likely(size < bvec->bv_len))
859                         break;
860                 size -= bvec->bv_len;
861         }
862         i->iov_offset = size;
863         i->nr_segs -= bvec - i->bvec;
864         i->bvec = bvec;
865 }
866
867 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
868 {
869         const struct iovec *iov, *end;
870
871         if (!i->count)
872                 return;
873         i->count -= size;
874
875         size += i->iov_offset; // from beginning of current segment
876         for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
877                 if (likely(size < iov->iov_len))
878                         break;
879                 size -= iov->iov_len;
880         }
881         i->iov_offset = size;
882         i->nr_segs -= iov - i->iov;
883         i->iov = iov;
884 }
885
886 void iov_iter_advance(struct iov_iter *i, size_t size)
887 {
888         if (unlikely(i->count < size))
889                 size = i->count;
890         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
891                 /* iovec and kvec have identical layouts */
892                 iov_iter_iovec_advance(i, size);
893         } else if (iov_iter_is_bvec(i)) {
894                 iov_iter_bvec_advance(i, size);
895         } else if (iov_iter_is_pipe(i)) {
896                 pipe_advance(i, size);
897         } else if (unlikely(iov_iter_is_xarray(i))) {
898                 i->iov_offset += size;
899                 i->count -= size;
900         } else if (iov_iter_is_discard(i)) {
901                 i->count -= size;
902         }
903 }
904 EXPORT_SYMBOL(iov_iter_advance);
905
906 void iov_iter_revert(struct iov_iter *i, size_t unroll)
907 {
908         if (!unroll)
909                 return;
910         if (WARN_ON(unroll > MAX_RW_COUNT))
911                 return;
912         i->count += unroll;
913         if (unlikely(iov_iter_is_pipe(i))) {
914                 struct pipe_inode_info *pipe = i->pipe;
915                 unsigned int p_mask = pipe->ring_size - 1;
916                 unsigned int i_head = i->head;
917                 size_t off = i->iov_offset;
918                 while (1) {
919                         struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
920                         size_t n = off - b->offset;
921                         if (unroll < n) {
922                                 off -= unroll;
923                                 break;
924                         }
925                         unroll -= n;
926                         if (!unroll && i_head == i->start_head) {
927                                 off = 0;
928                                 break;
929                         }
930                         i_head--;
931                         b = &pipe->bufs[i_head & p_mask];
932                         off = b->offset + b->len;
933                 }
934                 i->iov_offset = off;
935                 i->head = i_head;
936                 pipe_truncate(i);
937                 return;
938         }
939         if (unlikely(iov_iter_is_discard(i)))
940                 return;
941         if (unroll <= i->iov_offset) {
942                 i->iov_offset -= unroll;
943                 return;
944         }
945         unroll -= i->iov_offset;
946         if (iov_iter_is_xarray(i)) {
947                 BUG(); /* We should never go beyond the start of the specified
948                         * range since we might then be straying into pages that
949                         * aren't pinned.
950                         */
951         } else if (iov_iter_is_bvec(i)) {
952                 const struct bio_vec *bvec = i->bvec;
953                 while (1) {
954                         size_t n = (--bvec)->bv_len;
955                         i->nr_segs++;
956                         if (unroll <= n) {
957                                 i->bvec = bvec;
958                                 i->iov_offset = n - unroll;
959                                 return;
960                         }
961                         unroll -= n;
962                 }
963         } else { /* same logics for iovec and kvec */
964                 const struct iovec *iov = i->iov;
965                 while (1) {
966                         size_t n = (--iov)->iov_len;
967                         i->nr_segs++;
968                         if (unroll <= n) {
969                                 i->iov = iov;
970                                 i->iov_offset = n - unroll;
971                                 return;
972                         }
973                         unroll -= n;
974                 }
975         }
976 }
977 EXPORT_SYMBOL(iov_iter_revert);
978
979 /*
980  * Return the count of just the current iov_iter segment.
981  */
982 size_t iov_iter_single_seg_count(const struct iov_iter *i)
983 {
984         if (i->nr_segs > 1) {
985                 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
986                         return min(i->count, i->iov->iov_len - i->iov_offset);
987                 if (iov_iter_is_bvec(i))
988                         return min(i->count, i->bvec->bv_len - i->iov_offset);
989         }
990         return i->count;
991 }
992 EXPORT_SYMBOL(iov_iter_single_seg_count);
993
994 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
995                         const struct kvec *kvec, unsigned long nr_segs,
996                         size_t count)
997 {
998         WARN_ON(direction & ~(READ | WRITE));
999         *i = (struct iov_iter){
1000                 .iter_type = ITER_KVEC,
1001                 .data_source = direction,
1002                 .kvec = kvec,
1003                 .nr_segs = nr_segs,
1004                 .iov_offset = 0,
1005                 .count = count
1006         };
1007 }
1008 EXPORT_SYMBOL(iov_iter_kvec);
1009
1010 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1011                         const struct bio_vec *bvec, unsigned long nr_segs,
1012                         size_t count)
1013 {
1014         WARN_ON(direction & ~(READ | WRITE));
1015         *i = (struct iov_iter){
1016                 .iter_type = ITER_BVEC,
1017                 .data_source = direction,
1018                 .bvec = bvec,
1019                 .nr_segs = nr_segs,
1020                 .iov_offset = 0,
1021                 .count = count
1022         };
1023 }
1024 EXPORT_SYMBOL(iov_iter_bvec);
1025
1026 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1027                         struct pipe_inode_info *pipe,
1028                         size_t count)
1029 {
1030         BUG_ON(direction != READ);
1031         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1032         *i = (struct iov_iter){
1033                 .iter_type = ITER_PIPE,
1034                 .data_source = false,
1035                 .pipe = pipe,
1036                 .head = pipe->head,
1037                 .start_head = pipe->head,
1038                 .iov_offset = 0,
1039                 .count = count
1040         };
1041 }
1042 EXPORT_SYMBOL(iov_iter_pipe);
1043
1044 /**
1045  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1046  * @i: The iterator to initialise.
1047  * @direction: The direction of the transfer.
1048  * @xarray: The xarray to access.
1049  * @start: The start file position.
1050  * @count: The size of the I/O buffer in bytes.
1051  *
1052  * Set up an I/O iterator to either draw data out of the pages attached to an
1053  * inode or to inject data into those pages.  The pages *must* be prevented
1054  * from evaporation, either by taking a ref on them or locking them by the
1055  * caller.
1056  */
1057 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1058                      struct xarray *xarray, loff_t start, size_t count)
1059 {
1060         BUG_ON(direction & ~1);
1061         *i = (struct iov_iter) {
1062                 .iter_type = ITER_XARRAY,
1063                 .data_source = direction,
1064                 .xarray = xarray,
1065                 .xarray_start = start,
1066                 .count = count,
1067                 .iov_offset = 0
1068         };
1069 }
1070 EXPORT_SYMBOL(iov_iter_xarray);
1071
1072 /**
1073  * iov_iter_discard - Initialise an I/O iterator that discards data
1074  * @i: The iterator to initialise.
1075  * @direction: The direction of the transfer.
1076  * @count: The size of the I/O buffer in bytes.
1077  *
1078  * Set up an I/O iterator that just discards everything that's written to it.
1079  * It's only available as a READ iterator.
1080  */
1081 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1082 {
1083         BUG_ON(direction != READ);
1084         *i = (struct iov_iter){
1085                 .iter_type = ITER_DISCARD,
1086                 .data_source = false,
1087                 .count = count,
1088                 .iov_offset = 0
1089         };
1090 }
1091 EXPORT_SYMBOL(iov_iter_discard);
1092
1093 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1094                                    unsigned len_mask)
1095 {
1096         size_t size = i->count;
1097         size_t skip = i->iov_offset;
1098         unsigned k;
1099
1100         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1101                 size_t len = i->iov[k].iov_len - skip;
1102
1103                 if (len > size)
1104                         len = size;
1105                 if (len & len_mask)
1106                         return false;
1107                 if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1108                         return false;
1109
1110                 size -= len;
1111                 if (!size)
1112                         break;
1113         }
1114         return true;
1115 }
1116
1117 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1118                                   unsigned len_mask)
1119 {
1120         size_t size = i->count;
1121         unsigned skip = i->iov_offset;
1122         unsigned k;
1123
1124         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1125                 size_t len = i->bvec[k].bv_len - skip;
1126
1127                 if (len > size)
1128                         len = size;
1129                 if (len & len_mask)
1130                         return false;
1131                 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1132                         return false;
1133
1134                 size -= len;
1135                 if (!size)
1136                         break;
1137         }
1138         return true;
1139 }
1140
1141 /**
1142  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1143  *      are aligned to the parameters.
1144  *
1145  * @i: &struct iov_iter to restore
1146  * @addr_mask: bit mask to check against the iov element's addresses
1147  * @len_mask: bit mask to check against the iov element's lengths
1148  *
1149  * Return: false if any addresses or lengths intersect with the provided masks
1150  */
1151 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1152                          unsigned len_mask)
1153 {
1154         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1155                 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1156
1157         if (iov_iter_is_bvec(i))
1158                 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1159
1160         if (iov_iter_is_pipe(i)) {
1161                 unsigned int p_mask = i->pipe->ring_size - 1;
1162                 size_t size = i->count;
1163
1164                 if (size & len_mask)
1165                         return false;
1166                 if (size && allocated(&i->pipe->bufs[i->head & p_mask])) {
1167                         if (i->iov_offset & addr_mask)
1168                                 return false;
1169                 }
1170
1171                 return true;
1172         }
1173
1174         if (iov_iter_is_xarray(i)) {
1175                 if (i->count & len_mask)
1176                         return false;
1177                 if ((i->xarray_start + i->iov_offset) & addr_mask)
1178                         return false;
1179         }
1180
1181         return true;
1182 }
1183 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1184
1185 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1186 {
1187         unsigned long res = 0;
1188         size_t size = i->count;
1189         size_t skip = i->iov_offset;
1190         unsigned k;
1191
1192         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1193                 size_t len = i->iov[k].iov_len - skip;
1194                 if (len) {
1195                         res |= (unsigned long)i->iov[k].iov_base + skip;
1196                         if (len > size)
1197                                 len = size;
1198                         res |= len;
1199                         size -= len;
1200                         if (!size)
1201                                 break;
1202                 }
1203         }
1204         return res;
1205 }
1206
1207 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1208 {
1209         unsigned res = 0;
1210         size_t size = i->count;
1211         unsigned skip = i->iov_offset;
1212         unsigned k;
1213
1214         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1215                 size_t len = i->bvec[k].bv_len - skip;
1216                 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1217                 if (len > size)
1218                         len = size;
1219                 res |= len;
1220                 size -= len;
1221                 if (!size)
1222                         break;
1223         }
1224         return res;
1225 }
1226
1227 unsigned long iov_iter_alignment(const struct iov_iter *i)
1228 {
1229         /* iovec and kvec have identical layouts */
1230         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1231                 return iov_iter_alignment_iovec(i);
1232
1233         if (iov_iter_is_bvec(i))
1234                 return iov_iter_alignment_bvec(i);
1235
1236         if (iov_iter_is_pipe(i)) {
1237                 unsigned int p_mask = i->pipe->ring_size - 1;
1238                 size_t size = i->count;
1239
1240                 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1241                         return size | i->iov_offset;
1242                 return size;
1243         }
1244
1245         if (iov_iter_is_xarray(i))
1246                 return (i->xarray_start + i->iov_offset) | i->count;
1247
1248         return 0;
1249 }
1250 EXPORT_SYMBOL(iov_iter_alignment);
1251
1252 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1253 {
1254         unsigned long res = 0;
1255         unsigned long v = 0;
1256         size_t size = i->count;
1257         unsigned k;
1258
1259         if (WARN_ON(!iter_is_iovec(i)))
1260                 return ~0U;
1261
1262         for (k = 0; k < i->nr_segs; k++) {
1263                 if (i->iov[k].iov_len) {
1264                         unsigned long base = (unsigned long)i->iov[k].iov_base;
1265                         if (v) // if not the first one
1266                                 res |= base | v; // this start | previous end
1267                         v = base + i->iov[k].iov_len;
1268                         if (size <= i->iov[k].iov_len)
1269                                 break;
1270                         size -= i->iov[k].iov_len;
1271                 }
1272         }
1273         return res;
1274 }
1275 EXPORT_SYMBOL(iov_iter_gap_alignment);
1276
1277 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1278                                 size_t maxsize,
1279                                 struct page **pages,
1280                                 int iter_head,
1281                                 size_t *start)
1282 {
1283         struct pipe_inode_info *pipe = i->pipe;
1284         unsigned int p_mask = pipe->ring_size - 1;
1285         ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1286         if (!n)
1287                 return -EFAULT;
1288
1289         maxsize = n;
1290         n += *start;
1291         while (n > 0) {
1292                 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1293                 iter_head++;
1294                 n -= PAGE_SIZE;
1295         }
1296
1297         return maxsize;
1298 }
1299
1300 static ssize_t pipe_get_pages(struct iov_iter *i,
1301                    struct page **pages, size_t maxsize, unsigned maxpages,
1302                    size_t *start)
1303 {
1304         unsigned int iter_head, npages;
1305         size_t capacity;
1306
1307         if (!sanity(i))
1308                 return -EFAULT;
1309
1310         data_start(i, &iter_head, start);
1311         /* Amount of free space: some of this one + all after this one */
1312         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1313         capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1314
1315         return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1316 }
1317
1318 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1319                                           pgoff_t index, unsigned int nr_pages)
1320 {
1321         XA_STATE(xas, xa, index);
1322         struct page *page;
1323         unsigned int ret = 0;
1324
1325         rcu_read_lock();
1326         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1327                 if (xas_retry(&xas, page))
1328                         continue;
1329
1330                 /* Has the page moved or been split? */
1331                 if (unlikely(page != xas_reload(&xas))) {
1332                         xas_reset(&xas);
1333                         continue;
1334                 }
1335
1336                 pages[ret] = find_subpage(page, xas.xa_index);
1337                 get_page(pages[ret]);
1338                 if (++ret == nr_pages)
1339                         break;
1340         }
1341         rcu_read_unlock();
1342         return ret;
1343 }
1344
1345 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1346                                      struct page **pages, size_t maxsize,
1347                                      unsigned maxpages, size_t *_start_offset)
1348 {
1349         unsigned nr, offset;
1350         pgoff_t index, count;
1351         size_t size = maxsize;
1352         loff_t pos;
1353
1354         if (!size || !maxpages)
1355                 return 0;
1356
1357         pos = i->xarray_start + i->iov_offset;
1358         index = pos >> PAGE_SHIFT;
1359         offset = pos & ~PAGE_MASK;
1360         *_start_offset = offset;
1361
1362         count = 1;
1363         if (size > PAGE_SIZE - offset) {
1364                 size -= PAGE_SIZE - offset;
1365                 count += size >> PAGE_SHIFT;
1366                 size &= ~PAGE_MASK;
1367                 if (size)
1368                         count++;
1369         }
1370
1371         if (count > maxpages)
1372                 count = maxpages;
1373
1374         nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1375         if (nr == 0)
1376                 return 0;
1377
1378         return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1379 }
1380
1381 /* must be done on non-empty ITER_IOVEC one */
1382 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1383 {
1384         size_t skip;
1385         long k;
1386
1387         for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1388                 size_t len = i->iov[k].iov_len - skip;
1389
1390                 if (unlikely(!len))
1391                         continue;
1392                 if (*size > len)
1393                         *size = len;
1394                 return (unsigned long)i->iov[k].iov_base + skip;
1395         }
1396         BUG(); // if it had been empty, we wouldn't get called
1397 }
1398
1399 /* must be done on non-empty ITER_BVEC one */
1400 static struct page *first_bvec_segment(const struct iov_iter *i,
1401                                        size_t *size, size_t *start)
1402 {
1403         struct page *page;
1404         size_t skip = i->iov_offset, len;
1405
1406         len = i->bvec->bv_len - skip;
1407         if (*size > len)
1408                 *size = len;
1409         skip += i->bvec->bv_offset;
1410         page = i->bvec->bv_page + skip / PAGE_SIZE;
1411         *start = skip % PAGE_SIZE;
1412         return page;
1413 }
1414
1415 ssize_t iov_iter_get_pages(struct iov_iter *i,
1416                    struct page **pages, size_t maxsize, unsigned maxpages,
1417                    size_t *start)
1418 {
1419         int n, res;
1420
1421         if (maxsize > i->count)
1422                 maxsize = i->count;
1423         if (!maxsize)
1424                 return 0;
1425         if (maxsize > MAX_RW_COUNT)
1426                 maxsize = MAX_RW_COUNT;
1427
1428         if (likely(iter_is_iovec(i))) {
1429                 unsigned int gup_flags = 0;
1430                 unsigned long addr;
1431
1432                 if (iov_iter_rw(i) != WRITE)
1433                         gup_flags |= FOLL_WRITE;
1434                 if (i->nofault)
1435                         gup_flags |= FOLL_NOFAULT;
1436
1437                 addr = first_iovec_segment(i, &maxsize);
1438                 *start = addr % PAGE_SIZE;
1439                 addr &= PAGE_MASK;
1440                 n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1441                 if (n > maxpages)
1442                         n = maxpages;
1443                 res = get_user_pages_fast(addr, n, gup_flags, pages);
1444                 if (unlikely(res <= 0))
1445                         return res;
1446                 return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1447         }
1448         if (iov_iter_is_bvec(i)) {
1449                 struct page *page;
1450
1451                 page = first_bvec_segment(i, &maxsize, start);
1452                 n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1453                 if (n > maxpages)
1454                         n = maxpages;
1455                 for (int k = 0; k < n; k++)
1456                         get_page(*pages++ = page++);
1457                 return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1458         }
1459         if (iov_iter_is_pipe(i))
1460                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1461         if (iov_iter_is_xarray(i))
1462                 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1463         return -EFAULT;
1464 }
1465 EXPORT_SYMBOL(iov_iter_get_pages);
1466
1467 static struct page **get_pages_array(size_t n)
1468 {
1469         return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1470 }
1471
1472 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1473                    struct page ***pages, size_t maxsize,
1474                    size_t *start)
1475 {
1476         struct page **p;
1477         unsigned int iter_head, npages;
1478         ssize_t n;
1479
1480         if (!sanity(i))
1481                 return -EFAULT;
1482
1483         data_start(i, &iter_head, start);
1484         /* Amount of free space: some of this one + all after this one */
1485         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1486         n = npages * PAGE_SIZE - *start;
1487         if (maxsize > n)
1488                 maxsize = n;
1489         else
1490                 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1491         p = get_pages_array(npages);
1492         if (!p)
1493                 return -ENOMEM;
1494         n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1495         if (n > 0)
1496                 *pages = p;
1497         else
1498                 kvfree(p);
1499         return n;
1500 }
1501
1502 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1503                                            struct page ***pages, size_t maxsize,
1504                                            size_t *_start_offset)
1505 {
1506         struct page **p;
1507         unsigned nr, offset;
1508         pgoff_t index, count;
1509         size_t size = maxsize;
1510         loff_t pos;
1511
1512         if (!size)
1513                 return 0;
1514
1515         pos = i->xarray_start + i->iov_offset;
1516         index = pos >> PAGE_SHIFT;
1517         offset = pos & ~PAGE_MASK;
1518         *_start_offset = offset;
1519
1520         count = 1;
1521         if (size > PAGE_SIZE - offset) {
1522                 size -= PAGE_SIZE - offset;
1523                 count += size >> PAGE_SHIFT;
1524                 size &= ~PAGE_MASK;
1525                 if (size)
1526                         count++;
1527         }
1528
1529         p = get_pages_array(count);
1530         if (!p)
1531                 return -ENOMEM;
1532         *pages = p;
1533
1534         nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1535         if (nr == 0)
1536                 return 0;
1537
1538         return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1539 }
1540
1541 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1542                    struct page ***pages, size_t maxsize,
1543                    size_t *start)
1544 {
1545         struct page **p;
1546         int n, res;
1547
1548         if (maxsize > i->count)
1549                 maxsize = i->count;
1550         if (!maxsize)
1551                 return 0;
1552         if (maxsize > MAX_RW_COUNT)
1553                 maxsize = MAX_RW_COUNT;
1554
1555         if (likely(iter_is_iovec(i))) {
1556                 unsigned int gup_flags = 0;
1557                 unsigned long addr;
1558
1559                 if (iov_iter_rw(i) != WRITE)
1560                         gup_flags |= FOLL_WRITE;
1561                 if (i->nofault)
1562                         gup_flags |= FOLL_NOFAULT;
1563
1564                 addr = first_iovec_segment(i, &maxsize);
1565                 *start = addr % PAGE_SIZE;
1566                 addr &= PAGE_MASK;
1567                 n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1568                 p = get_pages_array(n);
1569                 if (!p)
1570                         return -ENOMEM;
1571                 res = get_user_pages_fast(addr, n, gup_flags, p);
1572                 if (unlikely(res <= 0)) {
1573                         kvfree(p);
1574                         *pages = NULL;
1575                         return res;
1576                 }
1577                 *pages = p;
1578                 return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1579         }
1580         if (iov_iter_is_bvec(i)) {
1581                 struct page *page;
1582
1583                 page = first_bvec_segment(i, &maxsize, start);
1584                 n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1585                 *pages = p = get_pages_array(n);
1586                 if (!p)
1587                         return -ENOMEM;
1588                 for (int k = 0; k < n; k++)
1589                         get_page(*p++ = page++);
1590                 return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1591         }
1592         if (iov_iter_is_pipe(i))
1593                 return pipe_get_pages_alloc(i, pages, maxsize, start);
1594         if (iov_iter_is_xarray(i))
1595                 return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1596         return -EFAULT;
1597 }
1598 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1599
1600 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1601                                struct iov_iter *i)
1602 {
1603         __wsum sum, next;
1604         sum = *csum;
1605         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1606                 WARN_ON(1);
1607                 return 0;
1608         }
1609         iterate_and_advance(i, bytes, base, len, off, ({
1610                 next = csum_and_copy_from_user(base, addr + off, len);
1611                 sum = csum_block_add(sum, next, off);
1612                 next ? 0 : len;
1613         }), ({
1614                 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1615         })
1616         )
1617         *csum = sum;
1618         return bytes;
1619 }
1620 EXPORT_SYMBOL(csum_and_copy_from_iter);
1621
1622 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1623                              struct iov_iter *i)
1624 {
1625         struct csum_state *csstate = _csstate;
1626         __wsum sum, next;
1627
1628         if (unlikely(iov_iter_is_discard(i))) {
1629                 WARN_ON(1);     /* for now */
1630                 return 0;
1631         }
1632
1633         sum = csum_shift(csstate->csum, csstate->off);
1634         if (unlikely(iov_iter_is_pipe(i)))
1635                 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1636         else iterate_and_advance(i, bytes, base, len, off, ({
1637                 next = csum_and_copy_to_user(addr + off, base, len);
1638                 sum = csum_block_add(sum, next, off);
1639                 next ? 0 : len;
1640         }), ({
1641                 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1642         })
1643         )
1644         csstate->csum = csum_shift(sum, csstate->off);
1645         csstate->off += bytes;
1646         return bytes;
1647 }
1648 EXPORT_SYMBOL(csum_and_copy_to_iter);
1649
1650 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1651                 struct iov_iter *i)
1652 {
1653 #ifdef CONFIG_CRYPTO_HASH
1654         struct ahash_request *hash = hashp;
1655         struct scatterlist sg;
1656         size_t copied;
1657
1658         copied = copy_to_iter(addr, bytes, i);
1659         sg_init_one(&sg, addr, copied);
1660         ahash_request_set_crypt(hash, &sg, NULL, copied);
1661         crypto_ahash_update(hash);
1662         return copied;
1663 #else
1664         return 0;
1665 #endif
1666 }
1667 EXPORT_SYMBOL(hash_and_copy_to_iter);
1668
1669 static int iov_npages(const struct iov_iter *i, int maxpages)
1670 {
1671         size_t skip = i->iov_offset, size = i->count;
1672         const struct iovec *p;
1673         int npages = 0;
1674
1675         for (p = i->iov; size; skip = 0, p++) {
1676                 unsigned offs = offset_in_page(p->iov_base + skip);
1677                 size_t len = min(p->iov_len - skip, size);
1678
1679                 if (len) {
1680                         size -= len;
1681                         npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1682                         if (unlikely(npages > maxpages))
1683                                 return maxpages;
1684                 }
1685         }
1686         return npages;
1687 }
1688
1689 static int bvec_npages(const struct iov_iter *i, int maxpages)
1690 {
1691         size_t skip = i->iov_offset, size = i->count;
1692         const struct bio_vec *p;
1693         int npages = 0;
1694
1695         for (p = i->bvec; size; skip = 0, p++) {
1696                 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1697                 size_t len = min(p->bv_len - skip, size);
1698
1699                 size -= len;
1700                 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1701                 if (unlikely(npages > maxpages))
1702                         return maxpages;
1703         }
1704         return npages;
1705 }
1706
1707 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1708 {
1709         if (unlikely(!i->count))
1710                 return 0;
1711         /* iovec and kvec have identical layouts */
1712         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1713                 return iov_npages(i, maxpages);
1714         if (iov_iter_is_bvec(i))
1715                 return bvec_npages(i, maxpages);
1716         if (iov_iter_is_pipe(i)) {
1717                 unsigned int iter_head;
1718                 int npages;
1719                 size_t off;
1720
1721                 if (!sanity(i))
1722                         return 0;
1723
1724                 data_start(i, &iter_head, &off);
1725                 /* some of this one + all after this one */
1726                 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1727                 return min(npages, maxpages);
1728         }
1729         if (iov_iter_is_xarray(i)) {
1730                 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1731                 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1732                 return min(npages, maxpages);
1733         }
1734         return 0;
1735 }
1736 EXPORT_SYMBOL(iov_iter_npages);
1737
1738 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1739 {
1740         *new = *old;
1741         if (unlikely(iov_iter_is_pipe(new))) {
1742                 WARN_ON(1);
1743                 return NULL;
1744         }
1745         if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1746                 return NULL;
1747         if (iov_iter_is_bvec(new))
1748                 return new->bvec = kmemdup(new->bvec,
1749                                     new->nr_segs * sizeof(struct bio_vec),
1750                                     flags);
1751         else
1752                 /* iovec and kvec have identical layout */
1753                 return new->iov = kmemdup(new->iov,
1754                                    new->nr_segs * sizeof(struct iovec),
1755                                    flags);
1756 }
1757 EXPORT_SYMBOL(dup_iter);
1758
1759 static int copy_compat_iovec_from_user(struct iovec *iov,
1760                 const struct iovec __user *uvec, unsigned long nr_segs)
1761 {
1762         const struct compat_iovec __user *uiov =
1763                 (const struct compat_iovec __user *)uvec;
1764         int ret = -EFAULT, i;
1765
1766         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1767                 return -EFAULT;
1768
1769         for (i = 0; i < nr_segs; i++) {
1770                 compat_uptr_t buf;
1771                 compat_ssize_t len;
1772
1773                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1774                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1775
1776                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1777                 if (len < 0) {
1778                         ret = -EINVAL;
1779                         goto uaccess_end;
1780                 }
1781                 iov[i].iov_base = compat_ptr(buf);
1782                 iov[i].iov_len = len;
1783         }
1784
1785         ret = 0;
1786 uaccess_end:
1787         user_access_end();
1788         return ret;
1789 }
1790
1791 static int copy_iovec_from_user(struct iovec *iov,
1792                 const struct iovec __user *uvec, unsigned long nr_segs)
1793 {
1794         unsigned long seg;
1795
1796         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1797                 return -EFAULT;
1798         for (seg = 0; seg < nr_segs; seg++) {
1799                 if ((ssize_t)iov[seg].iov_len < 0)
1800                         return -EINVAL;
1801         }
1802
1803         return 0;
1804 }
1805
1806 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1807                 unsigned long nr_segs, unsigned long fast_segs,
1808                 struct iovec *fast_iov, bool compat)
1809 {
1810         struct iovec *iov = fast_iov;
1811         int ret;
1812
1813         /*
1814          * SuS says "The readv() function *may* fail if the iovcnt argument was
1815          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1816          * traditionally returned zero for zero segments, so...
1817          */
1818         if (nr_segs == 0)
1819                 return iov;
1820         if (nr_segs > UIO_MAXIOV)
1821                 return ERR_PTR(-EINVAL);
1822         if (nr_segs > fast_segs) {
1823                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1824                 if (!iov)
1825                         return ERR_PTR(-ENOMEM);
1826         }
1827
1828         if (compat)
1829                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1830         else
1831                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1832         if (ret) {
1833                 if (iov != fast_iov)
1834                         kfree(iov);
1835                 return ERR_PTR(ret);
1836         }
1837
1838         return iov;
1839 }
1840
1841 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1842                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1843                  struct iov_iter *i, bool compat)
1844 {
1845         ssize_t total_len = 0;
1846         unsigned long seg;
1847         struct iovec *iov;
1848
1849         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1850         if (IS_ERR(iov)) {
1851                 *iovp = NULL;
1852                 return PTR_ERR(iov);
1853         }
1854
1855         /*
1856          * According to the Single Unix Specification we should return EINVAL if
1857          * an element length is < 0 when cast to ssize_t or if the total length
1858          * would overflow the ssize_t return value of the system call.
1859          *
1860          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1861          * overflow case.
1862          */
1863         for (seg = 0; seg < nr_segs; seg++) {
1864                 ssize_t len = (ssize_t)iov[seg].iov_len;
1865
1866                 if (!access_ok(iov[seg].iov_base, len)) {
1867                         if (iov != *iovp)
1868                                 kfree(iov);
1869                         *iovp = NULL;
1870                         return -EFAULT;
1871                 }
1872
1873                 if (len > MAX_RW_COUNT - total_len) {
1874                         len = MAX_RW_COUNT - total_len;
1875                         iov[seg].iov_len = len;
1876                 }
1877                 total_len += len;
1878         }
1879
1880         iov_iter_init(i, type, iov, nr_segs, total_len);
1881         if (iov == *iovp)
1882                 *iovp = NULL;
1883         else
1884                 *iovp = iov;
1885         return total_len;
1886 }
1887
1888 /**
1889  * import_iovec() - Copy an array of &struct iovec from userspace
1890  *     into the kernel, check that it is valid, and initialize a new
1891  *     &struct iov_iter iterator to access it.
1892  *
1893  * @type: One of %READ or %WRITE.
1894  * @uvec: Pointer to the userspace array.
1895  * @nr_segs: Number of elements in userspace array.
1896  * @fast_segs: Number of elements in @iov.
1897  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1898  *     on-stack) kernel array.
1899  * @i: Pointer to iterator that will be initialized on success.
1900  *
1901  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1902  * then this function places %NULL in *@iov on return. Otherwise, a new
1903  * array will be allocated and the result placed in *@iov. This means that
1904  * the caller may call kfree() on *@iov regardless of whether the small
1905  * on-stack array was used or not (and regardless of whether this function
1906  * returns an error or not).
1907  *
1908  * Return: Negative error code on error, bytes imported on success
1909  */
1910 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1911                  unsigned nr_segs, unsigned fast_segs,
1912                  struct iovec **iovp, struct iov_iter *i)
1913 {
1914         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1915                               in_compat_syscall());
1916 }
1917 EXPORT_SYMBOL(import_iovec);
1918
1919 int import_single_range(int rw, void __user *buf, size_t len,
1920                  struct iovec *iov, struct iov_iter *i)
1921 {
1922         if (len > MAX_RW_COUNT)
1923                 len = MAX_RW_COUNT;
1924         if (unlikely(!access_ok(buf, len)))
1925                 return -EFAULT;
1926
1927         iov->iov_base = buf;
1928         iov->iov_len = len;
1929         iov_iter_init(i, rw, iov, 1, len);
1930         return 0;
1931 }
1932 EXPORT_SYMBOL(import_single_range);
1933
1934 /**
1935  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1936  *     iov_iter_save_state() was called.
1937  *
1938  * @i: &struct iov_iter to restore
1939  * @state: state to restore from
1940  *
1941  * Used after iov_iter_save_state() to bring restore @i, if operations may
1942  * have advanced it.
1943  *
1944  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1945  */
1946 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1947 {
1948         if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1949                          !iov_iter_is_kvec(i))
1950                 return;
1951         i->iov_offset = state->iov_offset;
1952         i->count = state->count;
1953         /*
1954          * For the *vec iters, nr_segs + iov is constant - if we increment
1955          * the vec, then we also decrement the nr_segs count. Hence we don't
1956          * need to track both of these, just one is enough and we can deduct
1957          * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1958          * size, so we can just increment the iov pointer as they are unionzed.
1959          * ITER_BVEC _may_ be the same size on some archs, but on others it is
1960          * not. Be safe and handle it separately.
1961          */
1962         BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1963         if (iov_iter_is_bvec(i))
1964                 i->bvec -= state->nr_segs - i->nr_segs;
1965         else
1966                 i->iov -= state->nr_segs - i->nr_segs;
1967         i->nr_segs = state->nr_segs;
1968 }