ASoC: mediatek: mt8192-mt6359: Make i2s9 share the clock from i2s8
[platform/kernel/linux-starfive.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16
17 #define PIPE_PARANOIA /* for now */
18
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {          \
21         size_t __maybe_unused off = 0;                          \
22         len = n;                                                \
23         base = __p + i->iov_offset;                             \
24         len -= (STEP);                                          \
25         i->iov_offset += len;                                   \
26         n = len;                                                \
27 }
28
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {        \
31         size_t off = 0;                                         \
32         size_t skip = i->iov_offset;                            \
33         do {                                                    \
34                 len = min(n, __p->iov_len - skip);              \
35                 if (likely(len)) {                              \
36                         base = __p->iov_base + skip;            \
37                         len -= (STEP);                          \
38                         off += len;                             \
39                         skip += len;                            \
40                         n -= len;                               \
41                         if (skip < __p->iov_len)                \
42                                 break;                          \
43                 }                                               \
44                 __p++;                                          \
45                 skip = 0;                                       \
46         } while (n);                                            \
47         i->iov_offset = skip;                                   \
48         n = off;                                                \
49 }
50
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {           \
52         size_t off = 0;                                         \
53         unsigned skip = i->iov_offset;                          \
54         while (n) {                                             \
55                 unsigned offset = p->bv_offset + skip;          \
56                 unsigned left;                                  \
57                 void *kaddr = kmap_local_page(p->bv_page +      \
58                                         offset / PAGE_SIZE);    \
59                 base = kaddr + offset % PAGE_SIZE;              \
60                 len = min(min(n, (size_t)(p->bv_len - skip)),   \
61                      (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
62                 left = (STEP);                                  \
63                 kunmap_local(kaddr);                            \
64                 len -= left;                                    \
65                 off += len;                                     \
66                 skip += len;                                    \
67                 if (skip == p->bv_len) {                        \
68                         skip = 0;                               \
69                         p++;                                    \
70                 }                                               \
71                 n -= len;                                       \
72                 if (left)                                       \
73                         break;                                  \
74         }                                                       \
75         i->iov_offset = skip;                                   \
76         n = off;                                                \
77 }
78
79 #define iterate_xarray(i, n, base, len, __off, STEP) {          \
80         __label__ __out;                                        \
81         size_t __off = 0;                                       \
82         struct folio *folio;                                    \
83         loff_t start = i->xarray_start + i->iov_offset;         \
84         pgoff_t index = start / PAGE_SIZE;                      \
85         XA_STATE(xas, i->xarray, index);                        \
86                                                                 \
87         len = PAGE_SIZE - offset_in_page(start);                \
88         rcu_read_lock();                                        \
89         xas_for_each(&xas, folio, ULONG_MAX) {                  \
90                 unsigned left;                                  \
91                 size_t offset;                                  \
92                 if (xas_retry(&xas, folio))                     \
93                         continue;                               \
94                 if (WARN_ON(xa_is_value(folio)))                \
95                         break;                                  \
96                 if (WARN_ON(folio_test_hugetlb(folio)))         \
97                         break;                                  \
98                 offset = offset_in_folio(folio, start + __off); \
99                 while (offset < folio_size(folio)) {            \
100                         base = kmap_local_folio(folio, offset); \
101                         len = min(n, len);                      \
102                         left = (STEP);                          \
103                         kunmap_local(base);                     \
104                         len -= left;                            \
105                         __off += len;                           \
106                         n -= len;                               \
107                         if (left || n == 0)                     \
108                                 goto __out;                     \
109                         offset += len;                          \
110                         len = PAGE_SIZE;                        \
111                 }                                               \
112         }                                                       \
113 __out:                                                          \
114         rcu_read_unlock();                                      \
115         i->iov_offset += __off;                                 \
116         n = __off;                                              \
117 }
118
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {     \
120         if (unlikely(i->count < n))                             \
121                 n = i->count;                                   \
122         if (likely(n)) {                                        \
123                 if (likely(iter_is_ubuf(i))) {                  \
124                         void __user *base;                      \
125                         size_t len;                             \
126                         iterate_buf(i, n, base, len, off,       \
127                                                 i->ubuf, (I))   \
128                 } else if (likely(iter_is_iovec(i))) {          \
129                         const struct iovec *iov = i->iov;       \
130                         void __user *base;                      \
131                         size_t len;                             \
132                         iterate_iovec(i, n, base, len, off,     \
133                                                 iov, (I))       \
134                         i->nr_segs -= iov - i->iov;             \
135                         i->iov = iov;                           \
136                 } else if (iov_iter_is_bvec(i)) {               \
137                         const struct bio_vec *bvec = i->bvec;   \
138                         void *base;                             \
139                         size_t len;                             \
140                         iterate_bvec(i, n, base, len, off,      \
141                                                 bvec, (K))      \
142                         i->nr_segs -= bvec - i->bvec;           \
143                         i->bvec = bvec;                         \
144                 } else if (iov_iter_is_kvec(i)) {               \
145                         const struct kvec *kvec = i->kvec;      \
146                         void *base;                             \
147                         size_t len;                             \
148                         iterate_iovec(i, n, base, len, off,     \
149                                                 kvec, (K))      \
150                         i->nr_segs -= kvec - i->kvec;           \
151                         i->kvec = kvec;                         \
152                 } else if (iov_iter_is_xarray(i)) {             \
153                         void *base;                             \
154                         size_t len;                             \
155                         iterate_xarray(i, n, base, len, off,    \
156                                                         (K))    \
157                 }                                               \
158                 i->count -= n;                                  \
159         }                                                       \
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162         __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166         if (should_fail_usercopy())
167                 return n;
168         if (access_ok(to, n)) {
169                 instrument_copy_to_user(to, from, n);
170                 n = raw_copy_to_user(to, from, n);
171         }
172         return n;
173 }
174
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177         if (should_fail_usercopy())
178                 return n;
179         if (access_ok(from, n)) {
180                 instrument_copy_from_user(to, from, n);
181                 n = raw_copy_from_user(to, from, n);
182         }
183         return n;
184 }
185
186 static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
187                                            unsigned int slot)
188 {
189         return &pipe->bufs[slot & (pipe->ring_size - 1)];
190 }
191
192 #ifdef PIPE_PARANOIA
193 static bool sanity(const struct iov_iter *i)
194 {
195         struct pipe_inode_info *pipe = i->pipe;
196         unsigned int p_head = pipe->head;
197         unsigned int p_tail = pipe->tail;
198         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
199         unsigned int i_head = i->head;
200         unsigned int idx;
201
202         if (i->last_offset) {
203                 struct pipe_buffer *p;
204                 if (unlikely(p_occupancy == 0))
205                         goto Bad;       // pipe must be non-empty
206                 if (unlikely(i_head != p_head - 1))
207                         goto Bad;       // must be at the last buffer...
208
209                 p = pipe_buf(pipe, i_head);
210                 if (unlikely(p->offset + p->len != abs(i->last_offset)))
211                         goto Bad;       // ... at the end of segment
212         } else {
213                 if (i_head != p_head)
214                         goto Bad;       // must be right after the last buffer
215         }
216         return true;
217 Bad:
218         printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
219         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
220                         p_head, p_tail, pipe->ring_size);
221         for (idx = 0; idx < pipe->ring_size; idx++)
222                 printk(KERN_ERR "[%p %p %d %d]\n",
223                         pipe->bufs[idx].ops,
224                         pipe->bufs[idx].page,
225                         pipe->bufs[idx].offset,
226                         pipe->bufs[idx].len);
227         WARN_ON(1);
228         return false;
229 }
230 #else
231 #define sanity(i) true
232 #endif
233
234 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
235 {
236         struct page *page = alloc_page(GFP_USER);
237         if (page) {
238                 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
239                 *buf = (struct pipe_buffer) {
240                         .ops = &default_pipe_buf_ops,
241                         .page = page,
242                         .offset = 0,
243                         .len = size
244                 };
245         }
246         return page;
247 }
248
249 static void push_page(struct pipe_inode_info *pipe, struct page *page,
250                         unsigned int offset, unsigned int size)
251 {
252         struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
253         *buf = (struct pipe_buffer) {
254                 .ops = &page_cache_pipe_buf_ops,
255                 .page = page,
256                 .offset = offset,
257                 .len = size
258         };
259         get_page(page);
260 }
261
262 static inline int last_offset(const struct pipe_buffer *buf)
263 {
264         if (buf->ops == &default_pipe_buf_ops)
265                 return buf->len;        // buf->offset is 0 for those
266         else
267                 return -(buf->offset + buf->len);
268 }
269
270 static struct page *append_pipe(struct iov_iter *i, size_t size,
271                                 unsigned int *off)
272 {
273         struct pipe_inode_info *pipe = i->pipe;
274         int offset = i->last_offset;
275         struct pipe_buffer *buf;
276         struct page *page;
277
278         if (offset > 0 && offset < PAGE_SIZE) {
279                 // some space in the last buffer; add to it
280                 buf = pipe_buf(pipe, pipe->head - 1);
281                 size = min_t(size_t, size, PAGE_SIZE - offset);
282                 buf->len += size;
283                 i->last_offset += size;
284                 i->count -= size;
285                 *off = offset;
286                 return buf->page;
287         }
288         // OK, we need a new buffer
289         *off = 0;
290         size = min_t(size_t, size, PAGE_SIZE);
291         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
292                 return NULL;
293         page = push_anon(pipe, size);
294         if (!page)
295                 return NULL;
296         i->head = pipe->head - 1;
297         i->last_offset = size;
298         i->count -= size;
299         return page;
300 }
301
302 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
303                          struct iov_iter *i)
304 {
305         struct pipe_inode_info *pipe = i->pipe;
306         unsigned int head = pipe->head;
307
308         if (unlikely(bytes > i->count))
309                 bytes = i->count;
310
311         if (unlikely(!bytes))
312                 return 0;
313
314         if (!sanity(i))
315                 return 0;
316
317         if (offset && i->last_offset == -offset) { // could we merge it?
318                 struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
319                 if (buf->page == page) {
320                         buf->len += bytes;
321                         i->last_offset -= bytes;
322                         i->count -= bytes;
323                         return bytes;
324                 }
325         }
326         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
327                 return 0;
328
329         push_page(pipe, page, offset, bytes);
330         i->last_offset = -(offset + bytes);
331         i->head = head;
332         i->count -= bytes;
333         return bytes;
334 }
335
336 /*
337  * fault_in_iov_iter_readable - fault in iov iterator for reading
338  * @i: iterator
339  * @size: maximum length
340  *
341  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
342  * @size.  For each iovec, fault in each page that constitutes the iovec.
343  *
344  * Returns the number of bytes not faulted in (like copy_to_user() and
345  * copy_from_user()).
346  *
347  * Always returns 0 for non-userspace iterators.
348  */
349 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
350 {
351         if (iter_is_ubuf(i)) {
352                 size_t n = min(size, iov_iter_count(i));
353                 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
354                 return size - n;
355         } else if (iter_is_iovec(i)) {
356                 size_t count = min(size, iov_iter_count(i));
357                 const struct iovec *p;
358                 size_t skip;
359
360                 size -= count;
361                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
362                         size_t len = min(count, p->iov_len - skip);
363                         size_t ret;
364
365                         if (unlikely(!len))
366                                 continue;
367                         ret = fault_in_readable(p->iov_base + skip, len);
368                         count -= len - ret;
369                         if (ret)
370                                 break;
371                 }
372                 return count + size;
373         }
374         return 0;
375 }
376 EXPORT_SYMBOL(fault_in_iov_iter_readable);
377
378 /*
379  * fault_in_iov_iter_writeable - fault in iov iterator for writing
380  * @i: iterator
381  * @size: maximum length
382  *
383  * Faults in the iterator using get_user_pages(), i.e., without triggering
384  * hardware page faults.  This is primarily useful when we already know that
385  * some or all of the pages in @i aren't in memory.
386  *
387  * Returns the number of bytes not faulted in, like copy_to_user() and
388  * copy_from_user().
389  *
390  * Always returns 0 for non-user-space iterators.
391  */
392 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
393 {
394         if (iter_is_ubuf(i)) {
395                 size_t n = min(size, iov_iter_count(i));
396                 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
397                 return size - n;
398         } else if (iter_is_iovec(i)) {
399                 size_t count = min(size, iov_iter_count(i));
400                 const struct iovec *p;
401                 size_t skip;
402
403                 size -= count;
404                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
405                         size_t len = min(count, p->iov_len - skip);
406                         size_t ret;
407
408                         if (unlikely(!len))
409                                 continue;
410                         ret = fault_in_safe_writeable(p->iov_base + skip, len);
411                         count -= len - ret;
412                         if (ret)
413                                 break;
414                 }
415                 return count + size;
416         }
417         return 0;
418 }
419 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
420
421 void iov_iter_init(struct iov_iter *i, unsigned int direction,
422                         const struct iovec *iov, unsigned long nr_segs,
423                         size_t count)
424 {
425         WARN_ON(direction & ~(READ | WRITE));
426         *i = (struct iov_iter) {
427                 .iter_type = ITER_IOVEC,
428                 .nofault = false,
429                 .user_backed = true,
430                 .data_source = direction,
431                 .iov = iov,
432                 .nr_segs = nr_segs,
433                 .iov_offset = 0,
434                 .count = count
435         };
436 }
437 EXPORT_SYMBOL(iov_iter_init);
438
439 // returns the offset in partial buffer (if any)
440 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
441 {
442         struct pipe_inode_info *pipe = i->pipe;
443         int used = pipe->head - pipe->tail;
444         int off = i->last_offset;
445
446         *npages = max((int)pipe->max_usage - used, 0);
447
448         if (off > 0 && off < PAGE_SIZE) { // anon and not full
449                 (*npages)++;
450                 return off;
451         }
452         return 0;
453 }
454
455 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
456                                 struct iov_iter *i)
457 {
458         unsigned int off, chunk;
459
460         if (unlikely(bytes > i->count))
461                 bytes = i->count;
462         if (unlikely(!bytes))
463                 return 0;
464
465         if (!sanity(i))
466                 return 0;
467
468         for (size_t n = bytes; n; n -= chunk) {
469                 struct page *page = append_pipe(i, n, &off);
470                 chunk = min_t(size_t, n, PAGE_SIZE - off);
471                 if (!page)
472                         return bytes - n;
473                 memcpy_to_page(page, off, addr, chunk);
474                 addr += chunk;
475         }
476         return bytes;
477 }
478
479 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
480                               __wsum sum, size_t off)
481 {
482         __wsum next = csum_partial_copy_nocheck(from, to, len);
483         return csum_block_add(sum, next, off);
484 }
485
486 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
487                                          struct iov_iter *i, __wsum *sump)
488 {
489         __wsum sum = *sump;
490         size_t off = 0;
491         unsigned int chunk, r;
492
493         if (unlikely(bytes > i->count))
494                 bytes = i->count;
495         if (unlikely(!bytes))
496                 return 0;
497
498         if (!sanity(i))
499                 return 0;
500
501         while (bytes) {
502                 struct page *page = append_pipe(i, bytes, &r);
503                 char *p;
504
505                 if (!page)
506                         break;
507                 chunk = min_t(size_t, bytes, PAGE_SIZE - r);
508                 p = kmap_local_page(page);
509                 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
510                 kunmap_local(p);
511                 off += chunk;
512                 bytes -= chunk;
513         }
514         *sump = sum;
515         return off;
516 }
517
518 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
519 {
520         if (unlikely(iov_iter_is_pipe(i)))
521                 return copy_pipe_to_iter(addr, bytes, i);
522         if (user_backed_iter(i))
523                 might_fault();
524         iterate_and_advance(i, bytes, base, len, off,
525                 copyout(base, addr + off, len),
526                 memcpy(base, addr + off, len)
527         )
528
529         return bytes;
530 }
531 EXPORT_SYMBOL(_copy_to_iter);
532
533 #ifdef CONFIG_ARCH_HAS_COPY_MC
534 static int copyout_mc(void __user *to, const void *from, size_t n)
535 {
536         if (access_ok(to, n)) {
537                 instrument_copy_to_user(to, from, n);
538                 n = copy_mc_to_user((__force void *) to, from, n);
539         }
540         return n;
541 }
542
543 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
544                                 struct iov_iter *i)
545 {
546         size_t xfer = 0;
547         unsigned int off, chunk;
548
549         if (unlikely(bytes > i->count))
550                 bytes = i->count;
551         if (unlikely(!bytes))
552                 return 0;
553
554         if (!sanity(i))
555                 return 0;
556
557         while (bytes) {
558                 struct page *page = append_pipe(i, bytes, &off);
559                 unsigned long rem;
560                 char *p;
561
562                 if (!page)
563                         break;
564                 chunk = min_t(size_t, bytes, PAGE_SIZE - off);
565                 p = kmap_local_page(page);
566                 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
567                 chunk -= rem;
568                 kunmap_local(p);
569                 xfer += chunk;
570                 bytes -= chunk;
571                 if (rem) {
572                         iov_iter_revert(i, rem);
573                         break;
574                 }
575         }
576         return xfer;
577 }
578
579 /**
580  * _copy_mc_to_iter - copy to iter with source memory error exception handling
581  * @addr: source kernel address
582  * @bytes: total transfer length
583  * @i: destination iterator
584  *
585  * The pmem driver deploys this for the dax operation
586  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
587  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
588  * successfully copied.
589  *
590  * The main differences between this and typical _copy_to_iter().
591  *
592  * * Typical tail/residue handling after a fault retries the copy
593  *   byte-by-byte until the fault happens again. Re-triggering machine
594  *   checks is potentially fatal so the implementation uses source
595  *   alignment and poison alignment assumptions to avoid re-triggering
596  *   hardware exceptions.
597  *
598  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
599  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
600  *   a short copy.
601  *
602  * Return: number of bytes copied (may be %0)
603  */
604 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
605 {
606         if (unlikely(iov_iter_is_pipe(i)))
607                 return copy_mc_pipe_to_iter(addr, bytes, i);
608         if (user_backed_iter(i))
609                 might_fault();
610         __iterate_and_advance(i, bytes, base, len, off,
611                 copyout_mc(base, addr + off, len),
612                 copy_mc_to_kernel(base, addr + off, len)
613         )
614
615         return bytes;
616 }
617 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
618 #endif /* CONFIG_ARCH_HAS_COPY_MC */
619
620 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
621 {
622         if (unlikely(iov_iter_is_pipe(i))) {
623                 WARN_ON(1);
624                 return 0;
625         }
626         if (user_backed_iter(i))
627                 might_fault();
628         iterate_and_advance(i, bytes, base, len, off,
629                 copyin(addr + off, base, len),
630                 memcpy(addr + off, base, len)
631         )
632
633         return bytes;
634 }
635 EXPORT_SYMBOL(_copy_from_iter);
636
637 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
638 {
639         if (unlikely(iov_iter_is_pipe(i))) {
640                 WARN_ON(1);
641                 return 0;
642         }
643         iterate_and_advance(i, bytes, base, len, off,
644                 __copy_from_user_inatomic_nocache(addr + off, base, len),
645                 memcpy(addr + off, base, len)
646         )
647
648         return bytes;
649 }
650 EXPORT_SYMBOL(_copy_from_iter_nocache);
651
652 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
653 /**
654  * _copy_from_iter_flushcache - write destination through cpu cache
655  * @addr: destination kernel address
656  * @bytes: total transfer length
657  * @i: source iterator
658  *
659  * The pmem driver arranges for filesystem-dax to use this facility via
660  * dax_copy_from_iter() for ensuring that writes to persistent memory
661  * are flushed through the CPU cache. It is differentiated from
662  * _copy_from_iter_nocache() in that guarantees all data is flushed for
663  * all iterator types. The _copy_from_iter_nocache() only attempts to
664  * bypass the cache for the ITER_IOVEC case, and on some archs may use
665  * instructions that strand dirty-data in the cache.
666  *
667  * Return: number of bytes copied (may be %0)
668  */
669 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
670 {
671         if (unlikely(iov_iter_is_pipe(i))) {
672                 WARN_ON(1);
673                 return 0;
674         }
675         iterate_and_advance(i, bytes, base, len, off,
676                 __copy_from_user_flushcache(addr + off, base, len),
677                 memcpy_flushcache(addr + off, base, len)
678         )
679
680         return bytes;
681 }
682 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
683 #endif
684
685 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
686 {
687         struct page *head;
688         size_t v = n + offset;
689
690         /*
691          * The general case needs to access the page order in order
692          * to compute the page size.
693          * However, we mostly deal with order-0 pages and thus can
694          * avoid a possible cache line miss for requests that fit all
695          * page orders.
696          */
697         if (n <= v && v <= PAGE_SIZE)
698                 return true;
699
700         head = compound_head(page);
701         v += (page - head) << PAGE_SHIFT;
702
703         if (likely(n <= v && v <= (page_size(head))))
704                 return true;
705         WARN_ON(1);
706         return false;
707 }
708
709 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
710                          struct iov_iter *i)
711 {
712         size_t res = 0;
713         if (unlikely(!page_copy_sane(page, offset, bytes)))
714                 return 0;
715         if (unlikely(iov_iter_is_pipe(i)))
716                 return copy_page_to_iter_pipe(page, offset, bytes, i);
717         page += offset / PAGE_SIZE; // first subpage
718         offset %= PAGE_SIZE;
719         while (1) {
720                 void *kaddr = kmap_local_page(page);
721                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
722                 n = _copy_to_iter(kaddr + offset, n, i);
723                 kunmap_local(kaddr);
724                 res += n;
725                 bytes -= n;
726                 if (!bytes || !n)
727                         break;
728                 offset += n;
729                 if (offset == PAGE_SIZE) {
730                         page++;
731                         offset = 0;
732                 }
733         }
734         return res;
735 }
736 EXPORT_SYMBOL(copy_page_to_iter);
737
738 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
739                          struct iov_iter *i)
740 {
741         size_t res = 0;
742         if (!page_copy_sane(page, offset, bytes))
743                 return 0;
744         page += offset / PAGE_SIZE; // first subpage
745         offset %= PAGE_SIZE;
746         while (1) {
747                 void *kaddr = kmap_local_page(page);
748                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
749                 n = _copy_from_iter(kaddr + offset, n, i);
750                 kunmap_local(kaddr);
751                 res += n;
752                 bytes -= n;
753                 if (!bytes || !n)
754                         break;
755                 offset += n;
756                 if (offset == PAGE_SIZE) {
757                         page++;
758                         offset = 0;
759                 }
760         }
761         return res;
762 }
763 EXPORT_SYMBOL(copy_page_from_iter);
764
765 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
766 {
767         unsigned int chunk, off;
768
769         if (unlikely(bytes > i->count))
770                 bytes = i->count;
771         if (unlikely(!bytes))
772                 return 0;
773
774         if (!sanity(i))
775                 return 0;
776
777         for (size_t n = bytes; n; n -= chunk) {
778                 struct page *page = append_pipe(i, n, &off);
779                 char *p;
780
781                 if (!page)
782                         return bytes - n;
783                 chunk = min_t(size_t, n, PAGE_SIZE - off);
784                 p = kmap_local_page(page);
785                 memset(p + off, 0, chunk);
786                 kunmap_local(p);
787         }
788         return bytes;
789 }
790
791 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
792 {
793         if (unlikely(iov_iter_is_pipe(i)))
794                 return pipe_zero(bytes, i);
795         iterate_and_advance(i, bytes, base, len, count,
796                 clear_user(base, len),
797                 memset(base, 0, len)
798         )
799
800         return bytes;
801 }
802 EXPORT_SYMBOL(iov_iter_zero);
803
804 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
805                                   struct iov_iter *i)
806 {
807         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
808         if (unlikely(!page_copy_sane(page, offset, bytes))) {
809                 kunmap_atomic(kaddr);
810                 return 0;
811         }
812         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
813                 kunmap_atomic(kaddr);
814                 WARN_ON(1);
815                 return 0;
816         }
817         iterate_and_advance(i, bytes, base, len, off,
818                 copyin(p + off, base, len),
819                 memcpy(p + off, base, len)
820         )
821         kunmap_atomic(kaddr);
822         return bytes;
823 }
824 EXPORT_SYMBOL(copy_page_from_iter_atomic);
825
826 static void pipe_advance(struct iov_iter *i, size_t size)
827 {
828         struct pipe_inode_info *pipe = i->pipe;
829         int off = i->last_offset;
830
831         if (!off && !size) {
832                 pipe_discard_from(pipe, i->start_head); // discard everything
833                 return;
834         }
835         i->count -= size;
836         while (1) {
837                 struct pipe_buffer *buf = pipe_buf(pipe, i->head);
838                 if (off) /* make it relative to the beginning of buffer */
839                         size += abs(off) - buf->offset;
840                 if (size <= buf->len) {
841                         buf->len = size;
842                         i->last_offset = last_offset(buf);
843                         break;
844                 }
845                 size -= buf->len;
846                 i->head++;
847                 off = 0;
848         }
849         pipe_discard_from(pipe, i->head + 1); // discard everything past this one
850 }
851
852 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
853 {
854         const struct bio_vec *bvec, *end;
855
856         if (!i->count)
857                 return;
858         i->count -= size;
859
860         size += i->iov_offset;
861
862         for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
863                 if (likely(size < bvec->bv_len))
864                         break;
865                 size -= bvec->bv_len;
866         }
867         i->iov_offset = size;
868         i->nr_segs -= bvec - i->bvec;
869         i->bvec = bvec;
870 }
871
872 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
873 {
874         const struct iovec *iov, *end;
875
876         if (!i->count)
877                 return;
878         i->count -= size;
879
880         size += i->iov_offset; // from beginning of current segment
881         for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
882                 if (likely(size < iov->iov_len))
883                         break;
884                 size -= iov->iov_len;
885         }
886         i->iov_offset = size;
887         i->nr_segs -= iov - i->iov;
888         i->iov = iov;
889 }
890
891 void iov_iter_advance(struct iov_iter *i, size_t size)
892 {
893         if (unlikely(i->count < size))
894                 size = i->count;
895         if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
896                 i->iov_offset += size;
897                 i->count -= size;
898         } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
899                 /* iovec and kvec have identical layouts */
900                 iov_iter_iovec_advance(i, size);
901         } else if (iov_iter_is_bvec(i)) {
902                 iov_iter_bvec_advance(i, size);
903         } else if (iov_iter_is_pipe(i)) {
904                 pipe_advance(i, size);
905         } else if (iov_iter_is_discard(i)) {
906                 i->count -= size;
907         }
908 }
909 EXPORT_SYMBOL(iov_iter_advance);
910
911 void iov_iter_revert(struct iov_iter *i, size_t unroll)
912 {
913         if (!unroll)
914                 return;
915         if (WARN_ON(unroll > MAX_RW_COUNT))
916                 return;
917         i->count += unroll;
918         if (unlikely(iov_iter_is_pipe(i))) {
919                 struct pipe_inode_info *pipe = i->pipe;
920                 unsigned int head = pipe->head;
921
922                 while (head > i->start_head) {
923                         struct pipe_buffer *b = pipe_buf(pipe, --head);
924                         if (unroll < b->len) {
925                                 b->len -= unroll;
926                                 i->last_offset = last_offset(b);
927                                 i->head = head;
928                                 return;
929                         }
930                         unroll -= b->len;
931                         pipe_buf_release(pipe, b);
932                         pipe->head--;
933                 }
934                 i->last_offset = 0;
935                 i->head = head;
936                 return;
937         }
938         if (unlikely(iov_iter_is_discard(i)))
939                 return;
940         if (unroll <= i->iov_offset) {
941                 i->iov_offset -= unroll;
942                 return;
943         }
944         unroll -= i->iov_offset;
945         if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
946                 BUG(); /* We should never go beyond the start of the specified
947                         * range since we might then be straying into pages that
948                         * aren't pinned.
949                         */
950         } else if (iov_iter_is_bvec(i)) {
951                 const struct bio_vec *bvec = i->bvec;
952                 while (1) {
953                         size_t n = (--bvec)->bv_len;
954                         i->nr_segs++;
955                         if (unroll <= n) {
956                                 i->bvec = bvec;
957                                 i->iov_offset = n - unroll;
958                                 return;
959                         }
960                         unroll -= n;
961                 }
962         } else { /* same logics for iovec and kvec */
963                 const struct iovec *iov = i->iov;
964                 while (1) {
965                         size_t n = (--iov)->iov_len;
966                         i->nr_segs++;
967                         if (unroll <= n) {
968                                 i->iov = iov;
969                                 i->iov_offset = n - unroll;
970                                 return;
971                         }
972                         unroll -= n;
973                 }
974         }
975 }
976 EXPORT_SYMBOL(iov_iter_revert);
977
978 /*
979  * Return the count of just the current iov_iter segment.
980  */
981 size_t iov_iter_single_seg_count(const struct iov_iter *i)
982 {
983         if (i->nr_segs > 1) {
984                 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
985                         return min(i->count, i->iov->iov_len - i->iov_offset);
986                 if (iov_iter_is_bvec(i))
987                         return min(i->count, i->bvec->bv_len - i->iov_offset);
988         }
989         return i->count;
990 }
991 EXPORT_SYMBOL(iov_iter_single_seg_count);
992
993 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
994                         const struct kvec *kvec, unsigned long nr_segs,
995                         size_t count)
996 {
997         WARN_ON(direction & ~(READ | WRITE));
998         *i = (struct iov_iter){
999                 .iter_type = ITER_KVEC,
1000                 .data_source = direction,
1001                 .kvec = kvec,
1002                 .nr_segs = nr_segs,
1003                 .iov_offset = 0,
1004                 .count = count
1005         };
1006 }
1007 EXPORT_SYMBOL(iov_iter_kvec);
1008
1009 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1010                         const struct bio_vec *bvec, unsigned long nr_segs,
1011                         size_t count)
1012 {
1013         WARN_ON(direction & ~(READ | WRITE));
1014         *i = (struct iov_iter){
1015                 .iter_type = ITER_BVEC,
1016                 .data_source = direction,
1017                 .bvec = bvec,
1018                 .nr_segs = nr_segs,
1019                 .iov_offset = 0,
1020                 .count = count
1021         };
1022 }
1023 EXPORT_SYMBOL(iov_iter_bvec);
1024
1025 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1026                         struct pipe_inode_info *pipe,
1027                         size_t count)
1028 {
1029         BUG_ON(direction != READ);
1030         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1031         *i = (struct iov_iter){
1032                 .iter_type = ITER_PIPE,
1033                 .data_source = false,
1034                 .pipe = pipe,
1035                 .head = pipe->head,
1036                 .start_head = pipe->head,
1037                 .last_offset = 0,
1038                 .count = count
1039         };
1040 }
1041 EXPORT_SYMBOL(iov_iter_pipe);
1042
1043 /**
1044  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1045  * @i: The iterator to initialise.
1046  * @direction: The direction of the transfer.
1047  * @xarray: The xarray to access.
1048  * @start: The start file position.
1049  * @count: The size of the I/O buffer in bytes.
1050  *
1051  * Set up an I/O iterator to either draw data out of the pages attached to an
1052  * inode or to inject data into those pages.  The pages *must* be prevented
1053  * from evaporation, either by taking a ref on them or locking them by the
1054  * caller.
1055  */
1056 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1057                      struct xarray *xarray, loff_t start, size_t count)
1058 {
1059         BUG_ON(direction & ~1);
1060         *i = (struct iov_iter) {
1061                 .iter_type = ITER_XARRAY,
1062                 .data_source = direction,
1063                 .xarray = xarray,
1064                 .xarray_start = start,
1065                 .count = count,
1066                 .iov_offset = 0
1067         };
1068 }
1069 EXPORT_SYMBOL(iov_iter_xarray);
1070
1071 /**
1072  * iov_iter_discard - Initialise an I/O iterator that discards data
1073  * @i: The iterator to initialise.
1074  * @direction: The direction of the transfer.
1075  * @count: The size of the I/O buffer in bytes.
1076  *
1077  * Set up an I/O iterator that just discards everything that's written to it.
1078  * It's only available as a READ iterator.
1079  */
1080 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1081 {
1082         BUG_ON(direction != READ);
1083         *i = (struct iov_iter){
1084                 .iter_type = ITER_DISCARD,
1085                 .data_source = false,
1086                 .count = count,
1087                 .iov_offset = 0
1088         };
1089 }
1090 EXPORT_SYMBOL(iov_iter_discard);
1091
1092 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1093                                    unsigned len_mask)
1094 {
1095         size_t size = i->count;
1096         size_t skip = i->iov_offset;
1097         unsigned k;
1098
1099         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1100                 size_t len = i->iov[k].iov_len - skip;
1101
1102                 if (len > size)
1103                         len = size;
1104                 if (len & len_mask)
1105                         return false;
1106                 if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1107                         return false;
1108
1109                 size -= len;
1110                 if (!size)
1111                         break;
1112         }
1113         return true;
1114 }
1115
1116 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1117                                   unsigned len_mask)
1118 {
1119         size_t size = i->count;
1120         unsigned skip = i->iov_offset;
1121         unsigned k;
1122
1123         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1124                 size_t len = i->bvec[k].bv_len - skip;
1125
1126                 if (len > size)
1127                         len = size;
1128                 if (len & len_mask)
1129                         return false;
1130                 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1131                         return false;
1132
1133                 size -= len;
1134                 if (!size)
1135                         break;
1136         }
1137         return true;
1138 }
1139
1140 /**
1141  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1142  *      are aligned to the parameters.
1143  *
1144  * @i: &struct iov_iter to restore
1145  * @addr_mask: bit mask to check against the iov element's addresses
1146  * @len_mask: bit mask to check against the iov element's lengths
1147  *
1148  * Return: false if any addresses or lengths intersect with the provided masks
1149  */
1150 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1151                          unsigned len_mask)
1152 {
1153         if (likely(iter_is_ubuf(i))) {
1154                 if (i->count & len_mask)
1155                         return false;
1156                 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1157                         return false;
1158                 return true;
1159         }
1160
1161         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1162                 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1163
1164         if (iov_iter_is_bvec(i))
1165                 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1166
1167         if (iov_iter_is_pipe(i)) {
1168                 size_t size = i->count;
1169
1170                 if (size & len_mask)
1171                         return false;
1172                 if (size && i->last_offset > 0) {
1173                         if (i->last_offset & addr_mask)
1174                                 return false;
1175                 }
1176
1177                 return true;
1178         }
1179
1180         if (iov_iter_is_xarray(i)) {
1181                 if (i->count & len_mask)
1182                         return false;
1183                 if ((i->xarray_start + i->iov_offset) & addr_mask)
1184                         return false;
1185         }
1186
1187         return true;
1188 }
1189 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1190
1191 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1192 {
1193         unsigned long res = 0;
1194         size_t size = i->count;
1195         size_t skip = i->iov_offset;
1196         unsigned k;
1197
1198         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1199                 size_t len = i->iov[k].iov_len - skip;
1200                 if (len) {
1201                         res |= (unsigned long)i->iov[k].iov_base + skip;
1202                         if (len > size)
1203                                 len = size;
1204                         res |= len;
1205                         size -= len;
1206                         if (!size)
1207                                 break;
1208                 }
1209         }
1210         return res;
1211 }
1212
1213 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1214 {
1215         unsigned res = 0;
1216         size_t size = i->count;
1217         unsigned skip = i->iov_offset;
1218         unsigned k;
1219
1220         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1221                 size_t len = i->bvec[k].bv_len - skip;
1222                 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1223                 if (len > size)
1224                         len = size;
1225                 res |= len;
1226                 size -= len;
1227                 if (!size)
1228                         break;
1229         }
1230         return res;
1231 }
1232
1233 unsigned long iov_iter_alignment(const struct iov_iter *i)
1234 {
1235         if (likely(iter_is_ubuf(i))) {
1236                 size_t size = i->count;
1237                 if (size)
1238                         return ((unsigned long)i->ubuf + i->iov_offset) | size;
1239                 return 0;
1240         }
1241
1242         /* iovec and kvec have identical layouts */
1243         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1244                 return iov_iter_alignment_iovec(i);
1245
1246         if (iov_iter_is_bvec(i))
1247                 return iov_iter_alignment_bvec(i);
1248
1249         if (iov_iter_is_pipe(i)) {
1250                 size_t size = i->count;
1251
1252                 if (size && i->last_offset > 0)
1253                         return size | i->last_offset;
1254                 return size;
1255         }
1256
1257         if (iov_iter_is_xarray(i))
1258                 return (i->xarray_start + i->iov_offset) | i->count;
1259
1260         return 0;
1261 }
1262 EXPORT_SYMBOL(iov_iter_alignment);
1263
1264 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1265 {
1266         unsigned long res = 0;
1267         unsigned long v = 0;
1268         size_t size = i->count;
1269         unsigned k;
1270
1271         if (iter_is_ubuf(i))
1272                 return 0;
1273
1274         if (WARN_ON(!iter_is_iovec(i)))
1275                 return ~0U;
1276
1277         for (k = 0; k < i->nr_segs; k++) {
1278                 if (i->iov[k].iov_len) {
1279                         unsigned long base = (unsigned long)i->iov[k].iov_base;
1280                         if (v) // if not the first one
1281                                 res |= base | v; // this start | previous end
1282                         v = base + i->iov[k].iov_len;
1283                         if (size <= i->iov[k].iov_len)
1284                                 break;
1285                         size -= i->iov[k].iov_len;
1286                 }
1287         }
1288         return res;
1289 }
1290 EXPORT_SYMBOL(iov_iter_gap_alignment);
1291
1292 static int want_pages_array(struct page ***res, size_t size,
1293                             size_t start, unsigned int maxpages)
1294 {
1295         unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1296
1297         if (count > maxpages)
1298                 count = maxpages;
1299         WARN_ON(!count);        // caller should've prevented that
1300         if (!*res) {
1301                 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1302                 if (!*res)
1303                         return 0;
1304         }
1305         return count;
1306 }
1307
1308 static ssize_t pipe_get_pages(struct iov_iter *i,
1309                    struct page ***pages, size_t maxsize, unsigned maxpages,
1310                    size_t *start)
1311 {
1312         unsigned int npages, count, off, chunk;
1313         struct page **p;
1314         size_t left;
1315
1316         if (!sanity(i))
1317                 return -EFAULT;
1318
1319         *start = off = pipe_npages(i, &npages);
1320         if (!npages)
1321                 return -EFAULT;
1322         count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1323         if (!count)
1324                 return -ENOMEM;
1325         p = *pages;
1326         for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1327                 struct page *page = append_pipe(i, left, &off);
1328                 if (!page)
1329                         break;
1330                 chunk = min_t(size_t, left, PAGE_SIZE - off);
1331                 get_page(*p++ = page);
1332         }
1333         if (!npages)
1334                 return -EFAULT;
1335         return maxsize - left;
1336 }
1337
1338 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1339                                           pgoff_t index, unsigned int nr_pages)
1340 {
1341         XA_STATE(xas, xa, index);
1342         struct page *page;
1343         unsigned int ret = 0;
1344
1345         rcu_read_lock();
1346         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1347                 if (xas_retry(&xas, page))
1348                         continue;
1349
1350                 /* Has the page moved or been split? */
1351                 if (unlikely(page != xas_reload(&xas))) {
1352                         xas_reset(&xas);
1353                         continue;
1354                 }
1355
1356                 pages[ret] = find_subpage(page, xas.xa_index);
1357                 get_page(pages[ret]);
1358                 if (++ret == nr_pages)
1359                         break;
1360         }
1361         rcu_read_unlock();
1362         return ret;
1363 }
1364
1365 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1366                                      struct page ***pages, size_t maxsize,
1367                                      unsigned maxpages, size_t *_start_offset)
1368 {
1369         unsigned nr, offset, count;
1370         pgoff_t index;
1371         loff_t pos;
1372
1373         pos = i->xarray_start + i->iov_offset;
1374         index = pos >> PAGE_SHIFT;
1375         offset = pos & ~PAGE_MASK;
1376         *_start_offset = offset;
1377
1378         count = want_pages_array(pages, maxsize, offset, maxpages);
1379         if (!count)
1380                 return -ENOMEM;
1381         nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1382         if (nr == 0)
1383                 return 0;
1384
1385         maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1386         i->iov_offset += maxsize;
1387         i->count -= maxsize;
1388         return maxsize;
1389 }
1390
1391 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1392 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1393 {
1394         size_t skip;
1395         long k;
1396
1397         if (iter_is_ubuf(i))
1398                 return (unsigned long)i->ubuf + i->iov_offset;
1399
1400         for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1401                 size_t len = i->iov[k].iov_len - skip;
1402
1403                 if (unlikely(!len))
1404                         continue;
1405                 if (*size > len)
1406                         *size = len;
1407                 return (unsigned long)i->iov[k].iov_base + skip;
1408         }
1409         BUG(); // if it had been empty, we wouldn't get called
1410 }
1411
1412 /* must be done on non-empty ITER_BVEC one */
1413 static struct page *first_bvec_segment(const struct iov_iter *i,
1414                                        size_t *size, size_t *start)
1415 {
1416         struct page *page;
1417         size_t skip = i->iov_offset, len;
1418
1419         len = i->bvec->bv_len - skip;
1420         if (*size > len)
1421                 *size = len;
1422         skip += i->bvec->bv_offset;
1423         page = i->bvec->bv_page + skip / PAGE_SIZE;
1424         *start = skip % PAGE_SIZE;
1425         return page;
1426 }
1427
1428 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1429                    struct page ***pages, size_t maxsize,
1430                    unsigned int maxpages, size_t *start)
1431 {
1432         unsigned int n;
1433
1434         if (maxsize > i->count)
1435                 maxsize = i->count;
1436         if (!maxsize)
1437                 return 0;
1438         if (maxsize > MAX_RW_COUNT)
1439                 maxsize = MAX_RW_COUNT;
1440
1441         if (likely(user_backed_iter(i))) {
1442                 unsigned int gup_flags = 0;
1443                 unsigned long addr;
1444                 int res;
1445
1446                 if (iov_iter_rw(i) != WRITE)
1447                         gup_flags |= FOLL_WRITE;
1448                 if (i->nofault)
1449                         gup_flags |= FOLL_NOFAULT;
1450
1451                 addr = first_iovec_segment(i, &maxsize);
1452                 *start = addr % PAGE_SIZE;
1453                 addr &= PAGE_MASK;
1454                 n = want_pages_array(pages, maxsize, *start, maxpages);
1455                 if (!n)
1456                         return -ENOMEM;
1457                 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1458                 if (unlikely(res <= 0))
1459                         return res;
1460                 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1461                 iov_iter_advance(i, maxsize);
1462                 return maxsize;
1463         }
1464         if (iov_iter_is_bvec(i)) {
1465                 struct page **p;
1466                 struct page *page;
1467
1468                 page = first_bvec_segment(i, &maxsize, start);
1469                 n = want_pages_array(pages, maxsize, *start, maxpages);
1470                 if (!n)
1471                         return -ENOMEM;
1472                 p = *pages;
1473                 for (int k = 0; k < n; k++)
1474                         get_page(p[k] = page + k);
1475                 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1476                 i->count -= maxsize;
1477                 i->iov_offset += maxsize;
1478                 if (i->iov_offset == i->bvec->bv_len) {
1479                         i->iov_offset = 0;
1480                         i->bvec++;
1481                         i->nr_segs--;
1482                 }
1483                 return maxsize;
1484         }
1485         if (iov_iter_is_pipe(i))
1486                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1487         if (iov_iter_is_xarray(i))
1488                 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1489         return -EFAULT;
1490 }
1491
1492 ssize_t iov_iter_get_pages2(struct iov_iter *i,
1493                    struct page **pages, size_t maxsize, unsigned maxpages,
1494                    size_t *start)
1495 {
1496         if (!maxpages)
1497                 return 0;
1498         BUG_ON(!pages);
1499
1500         return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1501 }
1502 EXPORT_SYMBOL(iov_iter_get_pages2);
1503
1504 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1505                    struct page ***pages, size_t maxsize,
1506                    size_t *start)
1507 {
1508         ssize_t len;
1509
1510         *pages = NULL;
1511
1512         len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1513         if (len <= 0) {
1514                 kvfree(*pages);
1515                 *pages = NULL;
1516         }
1517         return len;
1518 }
1519 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1520
1521 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1522                                struct iov_iter *i)
1523 {
1524         __wsum sum, next;
1525         sum = *csum;
1526         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1527                 WARN_ON(1);
1528                 return 0;
1529         }
1530         iterate_and_advance(i, bytes, base, len, off, ({
1531                 next = csum_and_copy_from_user(base, addr + off, len);
1532                 sum = csum_block_add(sum, next, off);
1533                 next ? 0 : len;
1534         }), ({
1535                 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1536         })
1537         )
1538         *csum = sum;
1539         return bytes;
1540 }
1541 EXPORT_SYMBOL(csum_and_copy_from_iter);
1542
1543 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1544                              struct iov_iter *i)
1545 {
1546         struct csum_state *csstate = _csstate;
1547         __wsum sum, next;
1548
1549         if (unlikely(iov_iter_is_discard(i))) {
1550                 WARN_ON(1);     /* for now */
1551                 return 0;
1552         }
1553
1554         sum = csum_shift(csstate->csum, csstate->off);
1555         if (unlikely(iov_iter_is_pipe(i)))
1556                 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1557         else iterate_and_advance(i, bytes, base, len, off, ({
1558                 next = csum_and_copy_to_user(addr + off, base, len);
1559                 sum = csum_block_add(sum, next, off);
1560                 next ? 0 : len;
1561         }), ({
1562                 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1563         })
1564         )
1565         csstate->csum = csum_shift(sum, csstate->off);
1566         csstate->off += bytes;
1567         return bytes;
1568 }
1569 EXPORT_SYMBOL(csum_and_copy_to_iter);
1570
1571 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1572                 struct iov_iter *i)
1573 {
1574 #ifdef CONFIG_CRYPTO_HASH
1575         struct ahash_request *hash = hashp;
1576         struct scatterlist sg;
1577         size_t copied;
1578
1579         copied = copy_to_iter(addr, bytes, i);
1580         sg_init_one(&sg, addr, copied);
1581         ahash_request_set_crypt(hash, &sg, NULL, copied);
1582         crypto_ahash_update(hash);
1583         return copied;
1584 #else
1585         return 0;
1586 #endif
1587 }
1588 EXPORT_SYMBOL(hash_and_copy_to_iter);
1589
1590 static int iov_npages(const struct iov_iter *i, int maxpages)
1591 {
1592         size_t skip = i->iov_offset, size = i->count;
1593         const struct iovec *p;
1594         int npages = 0;
1595
1596         for (p = i->iov; size; skip = 0, p++) {
1597                 unsigned offs = offset_in_page(p->iov_base + skip);
1598                 size_t len = min(p->iov_len - skip, size);
1599
1600                 if (len) {
1601                         size -= len;
1602                         npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1603                         if (unlikely(npages > maxpages))
1604                                 return maxpages;
1605                 }
1606         }
1607         return npages;
1608 }
1609
1610 static int bvec_npages(const struct iov_iter *i, int maxpages)
1611 {
1612         size_t skip = i->iov_offset, size = i->count;
1613         const struct bio_vec *p;
1614         int npages = 0;
1615
1616         for (p = i->bvec; size; skip = 0, p++) {
1617                 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1618                 size_t len = min(p->bv_len - skip, size);
1619
1620                 size -= len;
1621                 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1622                 if (unlikely(npages > maxpages))
1623                         return maxpages;
1624         }
1625         return npages;
1626 }
1627
1628 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1629 {
1630         if (unlikely(!i->count))
1631                 return 0;
1632         if (likely(iter_is_ubuf(i))) {
1633                 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1634                 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1635                 return min(npages, maxpages);
1636         }
1637         /* iovec and kvec have identical layouts */
1638         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1639                 return iov_npages(i, maxpages);
1640         if (iov_iter_is_bvec(i))
1641                 return bvec_npages(i, maxpages);
1642         if (iov_iter_is_pipe(i)) {
1643                 int npages;
1644
1645                 if (!sanity(i))
1646                         return 0;
1647
1648                 pipe_npages(i, &npages);
1649                 return min(npages, maxpages);
1650         }
1651         if (iov_iter_is_xarray(i)) {
1652                 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1653                 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1654                 return min(npages, maxpages);
1655         }
1656         return 0;
1657 }
1658 EXPORT_SYMBOL(iov_iter_npages);
1659
1660 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1661 {
1662         *new = *old;
1663         if (unlikely(iov_iter_is_pipe(new))) {
1664                 WARN_ON(1);
1665                 return NULL;
1666         }
1667         if (iov_iter_is_bvec(new))
1668                 return new->bvec = kmemdup(new->bvec,
1669                                     new->nr_segs * sizeof(struct bio_vec),
1670                                     flags);
1671         else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1672                 /* iovec and kvec have identical layout */
1673                 return new->iov = kmemdup(new->iov,
1674                                    new->nr_segs * sizeof(struct iovec),
1675                                    flags);
1676         return NULL;
1677 }
1678 EXPORT_SYMBOL(dup_iter);
1679
1680 static int copy_compat_iovec_from_user(struct iovec *iov,
1681                 const struct iovec __user *uvec, unsigned long nr_segs)
1682 {
1683         const struct compat_iovec __user *uiov =
1684                 (const struct compat_iovec __user *)uvec;
1685         int ret = -EFAULT, i;
1686
1687         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1688                 return -EFAULT;
1689
1690         for (i = 0; i < nr_segs; i++) {
1691                 compat_uptr_t buf;
1692                 compat_ssize_t len;
1693
1694                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1695                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1696
1697                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1698                 if (len < 0) {
1699                         ret = -EINVAL;
1700                         goto uaccess_end;
1701                 }
1702                 iov[i].iov_base = compat_ptr(buf);
1703                 iov[i].iov_len = len;
1704         }
1705
1706         ret = 0;
1707 uaccess_end:
1708         user_access_end();
1709         return ret;
1710 }
1711
1712 static int copy_iovec_from_user(struct iovec *iov,
1713                 const struct iovec __user *uvec, unsigned long nr_segs)
1714 {
1715         unsigned long seg;
1716
1717         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1718                 return -EFAULT;
1719         for (seg = 0; seg < nr_segs; seg++) {
1720                 if ((ssize_t)iov[seg].iov_len < 0)
1721                         return -EINVAL;
1722         }
1723
1724         return 0;
1725 }
1726
1727 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1728                 unsigned long nr_segs, unsigned long fast_segs,
1729                 struct iovec *fast_iov, bool compat)
1730 {
1731         struct iovec *iov = fast_iov;
1732         int ret;
1733
1734         /*
1735          * SuS says "The readv() function *may* fail if the iovcnt argument was
1736          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1737          * traditionally returned zero for zero segments, so...
1738          */
1739         if (nr_segs == 0)
1740                 return iov;
1741         if (nr_segs > UIO_MAXIOV)
1742                 return ERR_PTR(-EINVAL);
1743         if (nr_segs > fast_segs) {
1744                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1745                 if (!iov)
1746                         return ERR_PTR(-ENOMEM);
1747         }
1748
1749         if (compat)
1750                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1751         else
1752                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1753         if (ret) {
1754                 if (iov != fast_iov)
1755                         kfree(iov);
1756                 return ERR_PTR(ret);
1757         }
1758
1759         return iov;
1760 }
1761
1762 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1763                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1764                  struct iov_iter *i, bool compat)
1765 {
1766         ssize_t total_len = 0;
1767         unsigned long seg;
1768         struct iovec *iov;
1769
1770         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1771         if (IS_ERR(iov)) {
1772                 *iovp = NULL;
1773                 return PTR_ERR(iov);
1774         }
1775
1776         /*
1777          * According to the Single Unix Specification we should return EINVAL if
1778          * an element length is < 0 when cast to ssize_t or if the total length
1779          * would overflow the ssize_t return value of the system call.
1780          *
1781          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1782          * overflow case.
1783          */
1784         for (seg = 0; seg < nr_segs; seg++) {
1785                 ssize_t len = (ssize_t)iov[seg].iov_len;
1786
1787                 if (!access_ok(iov[seg].iov_base, len)) {
1788                         if (iov != *iovp)
1789                                 kfree(iov);
1790                         *iovp = NULL;
1791                         return -EFAULT;
1792                 }
1793
1794                 if (len > MAX_RW_COUNT - total_len) {
1795                         len = MAX_RW_COUNT - total_len;
1796                         iov[seg].iov_len = len;
1797                 }
1798                 total_len += len;
1799         }
1800
1801         iov_iter_init(i, type, iov, nr_segs, total_len);
1802         if (iov == *iovp)
1803                 *iovp = NULL;
1804         else
1805                 *iovp = iov;
1806         return total_len;
1807 }
1808
1809 /**
1810  * import_iovec() - Copy an array of &struct iovec from userspace
1811  *     into the kernel, check that it is valid, and initialize a new
1812  *     &struct iov_iter iterator to access it.
1813  *
1814  * @type: One of %READ or %WRITE.
1815  * @uvec: Pointer to the userspace array.
1816  * @nr_segs: Number of elements in userspace array.
1817  * @fast_segs: Number of elements in @iov.
1818  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1819  *     on-stack) kernel array.
1820  * @i: Pointer to iterator that will be initialized on success.
1821  *
1822  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1823  * then this function places %NULL in *@iov on return. Otherwise, a new
1824  * array will be allocated and the result placed in *@iov. This means that
1825  * the caller may call kfree() on *@iov regardless of whether the small
1826  * on-stack array was used or not (and regardless of whether this function
1827  * returns an error or not).
1828  *
1829  * Return: Negative error code on error, bytes imported on success
1830  */
1831 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1832                  unsigned nr_segs, unsigned fast_segs,
1833                  struct iovec **iovp, struct iov_iter *i)
1834 {
1835         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1836                               in_compat_syscall());
1837 }
1838 EXPORT_SYMBOL(import_iovec);
1839
1840 int import_single_range(int rw, void __user *buf, size_t len,
1841                  struct iovec *iov, struct iov_iter *i)
1842 {
1843         if (len > MAX_RW_COUNT)
1844                 len = MAX_RW_COUNT;
1845         if (unlikely(!access_ok(buf, len)))
1846                 return -EFAULT;
1847
1848         iov->iov_base = buf;
1849         iov->iov_len = len;
1850         iov_iter_init(i, rw, iov, 1, len);
1851         return 0;
1852 }
1853 EXPORT_SYMBOL(import_single_range);
1854
1855 /**
1856  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1857  *     iov_iter_save_state() was called.
1858  *
1859  * @i: &struct iov_iter to restore
1860  * @state: state to restore from
1861  *
1862  * Used after iov_iter_save_state() to bring restore @i, if operations may
1863  * have advanced it.
1864  *
1865  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1866  */
1867 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1868 {
1869         if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1870                          !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1871                 return;
1872         i->iov_offset = state->iov_offset;
1873         i->count = state->count;
1874         if (iter_is_ubuf(i))
1875                 return;
1876         /*
1877          * For the *vec iters, nr_segs + iov is constant - if we increment
1878          * the vec, then we also decrement the nr_segs count. Hence we don't
1879          * need to track both of these, just one is enough and we can deduct
1880          * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1881          * size, so we can just increment the iov pointer as they are unionzed.
1882          * ITER_BVEC _may_ be the same size on some archs, but on others it is
1883          * not. Be safe and handle it separately.
1884          */
1885         BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1886         if (iov_iter_is_bvec(i))
1887                 i->bvec -= state->nr_segs - i->nr_segs;
1888         else
1889                 i->iov -= state->nr_segs - i->nr_segs;
1890         i->nr_segs = state->nr_segs;
1891 }