1 #include <linux/bitmap.h>
3 #include <linux/export.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 #include <linux/xarray.h>
9 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
12 * idr_alloc_u32() - Allocate an ID.
14 * @ptr: Pointer to be associated with the new ID.
15 * @nextid: Pointer to an ID.
16 * @max: The maximum ID to allocate (inclusive).
17 * @gfp: Memory allocation flags.
19 * Allocates an unused ID in the range specified by @nextid and @max.
20 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21 * is exclusive. The new ID is assigned to @nextid before the pointer
22 * is inserted into the IDR, so if @nextid points into the object pointed
23 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
25 * The caller should provide their own locking to ensure that two
26 * concurrent modifications to the IDR are not possible. Read-only
27 * accesses to the IDR may be done under the RCU read lock or may
28 * exclude simultaneous writers.
30 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31 * or -ENOSPC if no free IDs could be found. If an error occurred,
32 * @nextid is unchanged.
34 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
35 unsigned long max, gfp_t gfp)
37 struct radix_tree_iter iter;
39 unsigned int base = idr->idr_base;
40 unsigned int id = *nextid;
42 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
44 if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
45 idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
47 id = (id < base) ? 0 : id - base;
48 radix_tree_iter_init(&iter, id);
49 slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
53 *nextid = iter.index + base;
54 /* there is a memory barrier inside radix_tree_iter_replace() */
55 radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
56 radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
60 EXPORT_SYMBOL_GPL(idr_alloc_u32);
63 * idr_alloc() - Allocate an ID.
65 * @ptr: Pointer to be associated with the new ID.
66 * @start: The minimum ID (inclusive).
67 * @end: The maximum ID (exclusive).
68 * @gfp: Memory allocation flags.
70 * Allocates an unused ID in the range specified by @start and @end. If
71 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
72 * callers to use @start + N as @end as long as N is within integer range.
74 * The caller should provide their own locking to ensure that two
75 * concurrent modifications to the IDR are not possible. Read-only
76 * accesses to the IDR may be done under the RCU read lock or may
77 * exclude simultaneous writers.
79 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
80 * or -ENOSPC if no free IDs could be found.
82 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
87 if (WARN_ON_ONCE(start < 0))
90 ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
96 EXPORT_SYMBOL_GPL(idr_alloc);
99 * idr_alloc_cyclic() - Allocate an ID cyclically.
101 * @ptr: Pointer to be associated with the new ID.
102 * @start: The minimum ID (inclusive).
103 * @end: The maximum ID (exclusive).
104 * @gfp: Memory allocation flags.
106 * Allocates an unused ID in the range specified by @nextid and @end. If
107 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
108 * callers to use @start + N as @end as long as N is within integer range.
109 * The search for an unused ID will start at the last ID allocated and will
110 * wrap around to @start if no free IDs are found before reaching @end.
112 * The caller should provide their own locking to ensure that two
113 * concurrent modifications to the IDR are not possible. Read-only
114 * accesses to the IDR may be done under the RCU read lock or may
115 * exclude simultaneous writers.
117 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
118 * or -ENOSPC if no free IDs could be found.
120 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
122 u32 id = idr->idr_next;
123 int err, max = end > 0 ? end - 1 : INT_MAX;
128 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 if ((err == -ENOSPC) && (id > start)) {
131 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
136 idr->idr_next = id + 1;
139 EXPORT_SYMBOL(idr_alloc_cyclic);
142 * idr_remove() - Remove an ID from the IDR.
146 * Removes this ID from the IDR. If the ID was not previously in the IDR,
147 * this function returns %NULL.
149 * Since this function modifies the IDR, the caller should provide their
150 * own locking to ensure that concurrent modification of the same IDR is
153 * Return: The pointer formerly associated with this ID.
155 void *idr_remove(struct idr *idr, unsigned long id)
157 return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
159 EXPORT_SYMBOL_GPL(idr_remove);
162 * idr_find() - Return pointer for given ID.
166 * Looks up the pointer associated with this ID. A %NULL pointer may
167 * indicate that @id is not allocated or that the %NULL pointer was
168 * associated with this ID.
170 * This function can be called under rcu_read_lock(), given that the leaf
171 * pointers lifetimes are correctly managed.
173 * Return: The pointer associated with this ID.
175 void *idr_find(const struct idr *idr, unsigned long id)
177 return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
179 EXPORT_SYMBOL_GPL(idr_find);
182 * idr_for_each() - Iterate through all stored pointers.
184 * @fn: Function to be called for each pointer.
185 * @data: Data passed to callback function.
187 * The callback function will be called for each entry in @idr, passing
188 * the ID, the entry and @data.
190 * If @fn returns anything other than %0, the iteration stops and that
191 * value is returned from this function.
193 * idr_for_each() can be called concurrently with idr_alloc() and
194 * idr_remove() if protected by RCU. Newly added entries may not be
195 * seen and deleted entries may be seen, but adding and removing entries
196 * will not cause other entries to be skipped, nor spurious ones to be seen.
198 int idr_for_each(const struct idr *idr,
199 int (*fn)(int id, void *p, void *data), void *data)
201 struct radix_tree_iter iter;
203 int base = idr->idr_base;
205 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
207 unsigned long id = iter.index + base;
209 if (WARN_ON_ONCE(id > INT_MAX))
211 ret = fn(id, rcu_dereference_raw(*slot), data);
218 EXPORT_SYMBOL(idr_for_each);
221 * idr_get_next() - Find next populated entry.
223 * @nextid: Pointer to an ID.
225 * Returns the next populated entry in the tree with an ID greater than
226 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
227 * to the ID of the found value. To use in a loop, the value pointed to by
228 * nextid must be incremented by the user.
230 void *idr_get_next(struct idr *idr, int *nextid)
232 struct radix_tree_iter iter;
235 unsigned long base = idr->idr_base;
236 unsigned long id = *nextid;
238 id = (id < base) ? 0 : id - base;
239 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
240 entry = rcu_dereference_raw(*slot);
243 if (!radix_tree_deref_retry(entry))
245 if (slot != (void *)&idr->idr_rt.rnode &&
246 entry != (void *)RADIX_TREE_INTERNAL_NODE)
248 slot = radix_tree_iter_retry(&iter);
252 id = iter.index + base;
254 if (WARN_ON_ONCE(id > INT_MAX))
260 EXPORT_SYMBOL(idr_get_next);
263 * idr_get_next_ul() - Find next populated entry.
265 * @nextid: Pointer to an ID.
267 * Returns the next populated entry in the tree with an ID greater than
268 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
269 * to the ID of the found value. To use in a loop, the value pointed to by
270 * nextid must be incremented by the user.
272 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
274 struct radix_tree_iter iter;
276 unsigned long base = idr->idr_base;
277 unsigned long id = *nextid;
279 id = (id < base) ? 0 : id - base;
280 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
284 *nextid = iter.index + base;
285 return rcu_dereference_raw(*slot);
287 EXPORT_SYMBOL(idr_get_next_ul);
290 * idr_replace() - replace pointer for given ID.
292 * @ptr: New pointer to associate with the ID.
295 * Replace the pointer registered with an ID and return the old value.
296 * This function can be called under the RCU read lock concurrently with
297 * idr_alloc() and idr_remove() (as long as the ID being removed is not
298 * the one being replaced!).
300 * Returns: the old value on success. %-ENOENT indicates that @id was not
301 * found. %-EINVAL indicates that @ptr was not valid.
303 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
305 struct radix_tree_node *node;
306 void __rcu **slot = NULL;
309 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
310 return ERR_PTR(-EINVAL);
313 entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
314 if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
315 return ERR_PTR(-ENOENT);
317 __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
321 EXPORT_SYMBOL(idr_replace);
324 * DOC: IDA description
326 * The IDA is an ID allocator which does not provide the ability to
327 * associate an ID with a pointer. As such, it only needs to store one
328 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
329 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
330 * then initialise it using ida_init()). To allocate a new ID, call
331 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
332 * To free an ID, call ida_free().
334 * ida_destroy() can be used to dispose of an IDA without needing to
335 * free the individual IDs in it. You can use ida_is_empty() to find
336 * out whether the IDA has any IDs currently allocated.
338 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
339 * limitation, it should be quite straightforward to raise the maximum.
345 * The IDA uses the functionality provided by the IDR & radix tree to store
346 * bitmaps in each entry. The IDR_FREE tag means there is at least one bit
347 * free, unlike the IDR where it means at least one entry is free.
349 * I considered telling the radix tree that each slot is an order-10 node
350 * and storing the bit numbers in the radix tree, but the radix tree can't
351 * allow a single multiorder entry at index 0, which would significantly
352 * increase memory consumption for the IDA. So instead we divide the index
353 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
355 * As an optimisation, if there are only a few low bits set in any given
356 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
357 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
358 * directly in the entry. By being really tricksy, we could store
359 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
360 * for 0-3 allocated IDs.
362 * We allow the radix tree 'exceptional' count to get out of date. Nothing
363 * in the IDA nor the radix tree code checks it. If it becomes important
364 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
365 * calls to radix_tree_iter_replace() which will correct the exceptional
368 * The IDA always requires a lock to alloc/free. If we add a 'test_bit'
369 * equivalent, it will still need locking. Going to RCU lookup would require
370 * using RCU to free bitmaps, and that's not trivial without embedding an
371 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
372 * bitmap, which is excessive.
375 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
377 static int ida_get_new_above(struct ida *ida, int start)
379 struct radix_tree_root *root = &ida->ida_rt;
381 struct radix_tree_iter iter;
382 struct ida_bitmap *bitmap;
387 index = start / IDA_BITMAP_BITS;
388 bit = start % IDA_BITMAP_BITS;
389 ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
391 slot = radix_tree_iter_init(&iter, index);
394 slot = radix_tree_next_slot(slot, &iter,
395 RADIX_TREE_ITER_TAGGED);
397 slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
399 if (slot == ERR_PTR(-ENOMEM))
401 return PTR_ERR(slot);
404 if (iter.index > index) {
406 ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
408 new = iter.index * IDA_BITMAP_BITS;
409 bitmap = rcu_dereference_raw(*slot);
410 if (radix_tree_exception(bitmap)) {
411 unsigned long tmp = (unsigned long)bitmap;
412 ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
413 if (ebit < BITS_PER_LONG) {
415 rcu_assign_pointer(*slot, (void *)tmp);
417 RADIX_TREE_EXCEPTIONAL_SHIFT;
419 bitmap = this_cpu_xchg(ida_bitmap, NULL);
422 bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
423 rcu_assign_pointer(*slot, bitmap);
427 bit = find_next_zero_bit(bitmap->bitmap,
428 IDA_BITMAP_BITS, bit);
432 if (bit == IDA_BITMAP_BITS)
435 __set_bit(bit, bitmap->bitmap);
436 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
437 radix_tree_iter_tag_clear(root, &iter,
443 if (ebit < BITS_PER_LONG) {
444 bitmap = (void *)((1UL << ebit) |
445 RADIX_TREE_EXCEPTIONAL_ENTRY);
446 radix_tree_iter_replace(root, &iter, slot,
450 bitmap = this_cpu_xchg(ida_bitmap, NULL);
453 __set_bit(bit, bitmap->bitmap);
454 radix_tree_iter_replace(root, &iter, slot, bitmap);
461 static void ida_remove(struct ida *ida, int id)
463 unsigned long index = id / IDA_BITMAP_BITS;
464 unsigned offset = id % IDA_BITMAP_BITS;
465 struct ida_bitmap *bitmap;
467 struct radix_tree_iter iter;
470 slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
474 bitmap = rcu_dereference_raw(*slot);
475 if (radix_tree_exception(bitmap)) {
476 btmp = (unsigned long *)slot;
477 offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
478 if (offset >= BITS_PER_LONG)
481 btmp = bitmap->bitmap;
483 if (!test_bit(offset, btmp))
486 __clear_bit(offset, btmp);
487 radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
488 if (radix_tree_exception(bitmap)) {
489 if (rcu_dereference_raw(*slot) ==
490 (void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
491 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
492 } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
494 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
498 WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
502 * ida_destroy() - Free all IDs.
505 * Calling this function frees all IDs and releases all resources used
506 * by an IDA. When this call returns, the IDA is empty and can be reused
507 * or freed. If the IDA is already empty, there is no need to call this
510 * Context: Any context.
512 void ida_destroy(struct ida *ida)
515 struct radix_tree_iter iter;
518 xa_lock_irqsave(&ida->ida_rt, flags);
519 radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
520 struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
521 if (!radix_tree_exception(bitmap))
523 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
525 xa_unlock_irqrestore(&ida->ida_rt, flags);
527 EXPORT_SYMBOL(ida_destroy);
530 * ida_alloc_range() - Allocate an unused ID.
532 * @min: Lowest ID to allocate.
533 * @max: Highest ID to allocate.
534 * @gfp: Memory allocation flags.
536 * Allocate an ID between @min and @max, inclusive. The allocated ID will
537 * not exceed %INT_MAX, even if @max is larger.
539 * Context: Any context.
540 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
541 * or %-ENOSPC if there are no free IDs.
543 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
556 xa_lock_irqsave(&ida->ida_rt, flags);
557 id = ida_get_new_above(ida, min);
562 xa_unlock_irqrestore(&ida->ida_rt, flags);
564 if (unlikely(id == -EAGAIN)) {
565 if (!ida_pre_get(ida, gfp))
572 EXPORT_SYMBOL(ida_alloc_range);
575 * ida_free() - Release an allocated ID.
577 * @id: Previously allocated ID.
579 * Context: Any context.
581 void ida_free(struct ida *ida, unsigned int id)
586 xa_lock_irqsave(&ida->ida_rt, flags);
588 xa_unlock_irqrestore(&ida->ida_rt, flags);
590 EXPORT_SYMBOL(ida_free);