1 // SPDX-License-Identifier: GPL-2.0-only
3 * Basic general purpose allocator for managing special purpose
4 * memory, for example, memory that is not managed by the regular
5 * kmalloc/kfree interface. Uses for this includes on-device special
6 * memory, uncached memory etc.
8 * It is safe to use the allocator in NMI handlers and other special
9 * unblockable contexts that could otherwise deadlock on locks. This
10 * is implemented by using atomic operations and retries on any
11 * conflicts. The disadvantage is that there may be livelocks in
12 * extreme cases. For better scalability, one allocator can be used
15 * The lockless operation only works if there is enough memory
16 * available. If new memory is added to the pool a lock has to be
17 * still taken. So any user relying on locklessness has to ensure
18 * that sufficient memory is preallocated.
20 * The basic atomic operation of this allocator is cmpxchg on long.
21 * On architectures that don't have NMI-safe cmpxchg implementation,
22 * the allocator can NOT be used in NMI handler. So code uses the
23 * allocator in NMI handler should depend on
24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/bitmap.h>
32 #include <linux/rculist.h>
33 #include <linux/interrupt.h>
34 #include <linux/genalloc.h>
35 #include <linux/of_device.h>
36 #include <linux/vmalloc.h>
38 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
40 return chunk->end_addr - chunk->start_addr + 1;
43 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
45 unsigned long val, nval;
50 if (val & mask_to_set)
53 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
58 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
60 unsigned long val, nval;
65 if ((val & mask_to_clear) != mask_to_clear)
68 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
74 * bitmap_set_ll - set the specified number of bits at the specified position
75 * @map: pointer to a bitmap
76 * @start: a bit position in @map
77 * @nr: number of bits to set
79 * Set @nr bits start from @start in @map lock-lessly. Several users
80 * can set/clear the same bitmap simultaneously without lock. If two
81 * users set the same bit, one user will return remain bits, otherwise
85 bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr)
87 unsigned long *p = map + BIT_WORD(start);
88 const unsigned long size = start + nr;
89 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
90 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
92 while (nr >= bits_to_set) {
93 if (set_bits_ll(p, mask_to_set))
96 bits_to_set = BITS_PER_LONG;
101 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102 if (set_bits_ll(p, mask_to_set))
110 * bitmap_clear_ll - clear the specified number of bits at the specified position
111 * @map: pointer to a bitmap
112 * @start: a bit position in @map
113 * @nr: number of bits to set
115 * Clear @nr bits start from @start in @map lock-lessly. Several users
116 * can set/clear the same bitmap simultaneously without lock. If two
117 * users clear the same bit, one user will return remain bits,
118 * otherwise return 0.
121 bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr)
123 unsigned long *p = map + BIT_WORD(start);
124 const unsigned long size = start + nr;
125 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
128 while (nr >= bits_to_clear) {
129 if (clear_bits_ll(p, mask_to_clear))
132 bits_to_clear = BITS_PER_LONG;
133 mask_to_clear = ~0UL;
137 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138 if (clear_bits_ll(p, mask_to_clear))
146 * gen_pool_create - create a new special memory pool
147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148 * @nid: node id of the node the pool structure should be allocated on, or -1
150 * Create a new special memory pool that can be used to manage special purpose
151 * memory not managed by the regular kmalloc/kfree interface.
153 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
155 struct gen_pool *pool;
157 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
159 spin_lock_init(&pool->lock);
160 INIT_LIST_HEAD(&pool->chunks);
161 pool->min_alloc_order = min_alloc_order;
162 pool->algo = gen_pool_first_fit;
168 EXPORT_SYMBOL(gen_pool_create);
171 * gen_pool_add_owner- add a new chunk of special memory to the pool
172 * @pool: pool to add new memory chunk to
173 * @virt: virtual starting address of memory chunk to add to pool
174 * @phys: physical starting address of memory chunk to add to pool
175 * @size: size in bytes of the memory chunk to add to pool
176 * @nid: node id of the node the chunk structure and bitmap should be
177 * allocated on, or -1
178 * @owner: private data the publisher would like to recall at alloc time
180 * Add a new chunk of special memory to the specified pool.
182 * Returns 0 on success or a -ve errno on failure.
184 int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
185 size_t size, int nid, void *owner)
187 struct gen_pool_chunk *chunk;
188 unsigned long nbits = size >> pool->min_alloc_order;
189 unsigned long nbytes = sizeof(struct gen_pool_chunk) +
190 BITS_TO_LONGS(nbits) * sizeof(long);
192 chunk = vzalloc_node(nbytes, nid);
193 if (unlikely(chunk == NULL))
196 chunk->phys_addr = phys;
197 chunk->start_addr = virt;
198 chunk->end_addr = virt + size - 1;
199 chunk->owner = owner;
200 atomic_long_set(&chunk->avail, size);
202 spin_lock(&pool->lock);
203 list_add_rcu(&chunk->next_chunk, &pool->chunks);
204 spin_unlock(&pool->lock);
208 EXPORT_SYMBOL(gen_pool_add_owner);
211 * gen_pool_virt_to_phys - return the physical address of memory
212 * @pool: pool to allocate from
213 * @addr: starting address of memory
215 * Returns the physical address on success, or -1 on error.
217 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
219 struct gen_pool_chunk *chunk;
220 phys_addr_t paddr = -1;
223 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
224 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
225 paddr = chunk->phys_addr + (addr - chunk->start_addr);
233 EXPORT_SYMBOL(gen_pool_virt_to_phys);
236 * gen_pool_destroy - destroy a special memory pool
237 * @pool: pool to destroy
239 * Destroy the specified special memory pool. Verifies that there are no
240 * outstanding allocations.
242 void gen_pool_destroy(struct gen_pool *pool)
244 struct list_head *_chunk, *_next_chunk;
245 struct gen_pool_chunk *chunk;
246 int order = pool->min_alloc_order;
247 unsigned long bit, end_bit;
249 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
250 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
251 list_del(&chunk->next_chunk);
253 end_bit = chunk_size(chunk) >> order;
254 bit = find_first_bit(chunk->bits, end_bit);
255 BUG_ON(bit < end_bit);
259 kfree_const(pool->name);
262 EXPORT_SYMBOL(gen_pool_destroy);
265 * gen_pool_alloc_algo_owner - allocate special memory from the pool
266 * @pool: pool to allocate from
267 * @size: number of bytes to allocate from the pool
268 * @algo: algorithm passed from caller
269 * @data: data passed to algorithm
270 * @owner: optionally retrieve the chunk owner
272 * Allocate the requested number of bytes from the specified pool.
273 * Uses the pool allocation function (with first-fit algorithm by default).
274 * Can not be used in NMI handler on architectures without
275 * NMI-safe cmpxchg implementation.
277 unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
278 genpool_algo_t algo, void *data, void **owner)
280 struct gen_pool_chunk *chunk;
281 unsigned long addr = 0;
282 int order = pool->min_alloc_order;
283 unsigned long nbits, start_bit, end_bit, remain;
285 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
295 nbits = (size + (1UL << order) - 1) >> order;
297 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
298 if (size > atomic_long_read(&chunk->avail))
302 end_bit = chunk_size(chunk) >> order;
304 start_bit = algo(chunk->bits, end_bit, start_bit,
305 nbits, data, pool, chunk->start_addr);
306 if (start_bit >= end_bit)
308 remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
310 remain = bitmap_clear_ll(chunk->bits, start_bit,
316 addr = chunk->start_addr + ((unsigned long)start_bit << order);
317 size = nbits << order;
318 atomic_long_sub(size, &chunk->avail);
320 *owner = chunk->owner;
326 EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
329 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
330 * @pool: pool to allocate from
331 * @size: number of bytes to allocate from the pool
332 * @dma: dma-view physical address return value. Use %NULL if unneeded.
334 * Allocate the requested number of bytes from the specified pool.
335 * Uses the pool allocation function (with first-fit algorithm by default).
336 * Can not be used in NMI handler on architectures without
337 * NMI-safe cmpxchg implementation.
339 * Return: virtual address of the allocated memory, or %NULL on failure
341 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
343 return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data);
345 EXPORT_SYMBOL(gen_pool_dma_alloc);
348 * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
349 * usage with the given pool algorithm
350 * @pool: pool to allocate from
351 * @size: number of bytes to allocate from the pool
352 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
353 * @algo: algorithm passed from caller
354 * @data: data passed to algorithm
356 * Allocate the requested number of bytes from the specified pool. Uses the
357 * given pool allocation function. Can not be used in NMI handler on
358 * architectures without NMI-safe cmpxchg implementation.
360 * Return: virtual address of the allocated memory, or %NULL on failure
362 void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
363 dma_addr_t *dma, genpool_algo_t algo, void *data)
370 vaddr = gen_pool_alloc_algo(pool, size, algo, data);
375 *dma = gen_pool_virt_to_phys(pool, vaddr);
377 return (void *)vaddr;
379 EXPORT_SYMBOL(gen_pool_dma_alloc_algo);
382 * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
383 * usage with the given alignment
384 * @pool: pool to allocate from
385 * @size: number of bytes to allocate from the pool
386 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
387 * @align: alignment in bytes for starting address
389 * Allocate the requested number bytes from the specified pool, with the given
390 * alignment restriction. Can not be used in NMI handler on architectures
391 * without NMI-safe cmpxchg implementation.
393 * Return: virtual address of the allocated memory, or %NULL on failure
395 void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
396 dma_addr_t *dma, int align)
398 struct genpool_data_align data = { .align = align };
400 return gen_pool_dma_alloc_algo(pool, size, dma,
401 gen_pool_first_fit_align, &data);
403 EXPORT_SYMBOL(gen_pool_dma_alloc_align);
406 * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
408 * @pool: pool to allocate from
409 * @size: number of bytes to allocate from the pool
410 * @dma: dma-view physical address return value. Use %NULL if unneeded.
412 * Allocate the requested number of zeroed bytes from the specified pool.
413 * Uses the pool allocation function (with first-fit algorithm by default).
414 * Can not be used in NMI handler on architectures without
415 * NMI-safe cmpxchg implementation.
417 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
419 void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
421 return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data);
423 EXPORT_SYMBOL(gen_pool_dma_zalloc);
426 * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
427 * DMA usage with the given pool algorithm
428 * @pool: pool to allocate from
429 * @size: number of bytes to allocate from the pool
430 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
431 * @algo: algorithm passed from caller
432 * @data: data passed to algorithm
434 * Allocate the requested number of zeroed bytes from the specified pool. Uses
435 * the given pool allocation function. Can not be used in NMI handler on
436 * architectures without NMI-safe cmpxchg implementation.
438 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
440 void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
441 dma_addr_t *dma, genpool_algo_t algo, void *data)
443 void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data);
446 memset(vaddr, 0, size);
450 EXPORT_SYMBOL(gen_pool_dma_zalloc_algo);
453 * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
454 * DMA usage with the given alignment
455 * @pool: pool to allocate from
456 * @size: number of bytes to allocate from the pool
457 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
458 * @align: alignment in bytes for starting address
460 * Allocate the requested number of zeroed bytes from the specified pool,
461 * with the given alignment restriction. Can not be used in NMI handler on
462 * architectures without NMI-safe cmpxchg implementation.
464 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
466 void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
467 dma_addr_t *dma, int align)
469 struct genpool_data_align data = { .align = align };
471 return gen_pool_dma_zalloc_algo(pool, size, dma,
472 gen_pool_first_fit_align, &data);
474 EXPORT_SYMBOL(gen_pool_dma_zalloc_align);
477 * gen_pool_free_owner - free allocated special memory back to the pool
478 * @pool: pool to free to
479 * @addr: starting address of memory to free back to pool
480 * @size: size in bytes of memory to free
481 * @owner: private data stashed at gen_pool_add() time
483 * Free previously allocated special memory back to the specified
484 * pool. Can not be used in NMI handler on architectures without
485 * NMI-safe cmpxchg implementation.
487 void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
490 struct gen_pool_chunk *chunk;
491 int order = pool->min_alloc_order;
492 unsigned long start_bit, nbits, remain;
494 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
501 nbits = (size + (1UL << order) - 1) >> order;
503 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
504 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
505 BUG_ON(addr + size - 1 > chunk->end_addr);
506 start_bit = (addr - chunk->start_addr) >> order;
507 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
509 size = nbits << order;
510 atomic_long_add(size, &chunk->avail);
512 *owner = chunk->owner;
520 EXPORT_SYMBOL(gen_pool_free_owner);
523 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
524 * @pool: the generic memory pool
525 * @func: func to call
526 * @data: additional data used by @func
528 * Call @func for every chunk of generic memory pool. The @func is
529 * called with rcu_read_lock held.
531 void gen_pool_for_each_chunk(struct gen_pool *pool,
532 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
535 struct gen_pool_chunk *chunk;
538 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
539 func(pool, chunk, data);
542 EXPORT_SYMBOL(gen_pool_for_each_chunk);
545 * gen_pool_has_addr - checks if an address falls within the range of a pool
546 * @pool: the generic memory pool
547 * @start: start address
548 * @size: size of the region
550 * Check if the range of addresses falls within the specified pool. Returns
551 * true if the entire range is contained in the pool and false otherwise.
553 bool gen_pool_has_addr(struct gen_pool *pool, unsigned long start,
557 unsigned long end = start + size - 1;
558 struct gen_pool_chunk *chunk;
561 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
562 if (start >= chunk->start_addr && start <= chunk->end_addr) {
563 if (end <= chunk->end_addr) {
572 EXPORT_SYMBOL(gen_pool_has_addr);
575 * gen_pool_avail - get available free space of the pool
576 * @pool: pool to get available free space
578 * Return available free space of the specified pool.
580 size_t gen_pool_avail(struct gen_pool *pool)
582 struct gen_pool_chunk *chunk;
586 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
587 avail += atomic_long_read(&chunk->avail);
591 EXPORT_SYMBOL_GPL(gen_pool_avail);
594 * gen_pool_size - get size in bytes of memory managed by the pool
595 * @pool: pool to get size
597 * Return size in bytes of memory managed by the pool.
599 size_t gen_pool_size(struct gen_pool *pool)
601 struct gen_pool_chunk *chunk;
605 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
606 size += chunk_size(chunk);
610 EXPORT_SYMBOL_GPL(gen_pool_size);
613 * gen_pool_set_algo - set the allocation algorithm
614 * @pool: pool to change allocation algorithm
615 * @algo: custom algorithm function
616 * @data: additional data used by @algo
618 * Call @algo for each memory allocation in the pool.
619 * If @algo is NULL use gen_pool_first_fit as default
620 * memory allocation function.
622 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
628 pool->algo = gen_pool_first_fit;
634 EXPORT_SYMBOL(gen_pool_set_algo);
637 * gen_pool_first_fit - find the first available region
638 * of memory matching the size requirement (no alignment constraint)
639 * @map: The address to base the search on
640 * @size: The bitmap size in bits
641 * @start: The bitnumber to start searching at
642 * @nr: The number of zeroed bits we're looking for
643 * @data: additional data - unused
644 * @pool: pool to find the fit region memory from
645 * @start_addr: not used in this function
647 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
648 unsigned long start, unsigned int nr, void *data,
649 struct gen_pool *pool, unsigned long start_addr)
651 return bitmap_find_next_zero_area(map, size, start, nr, 0);
653 EXPORT_SYMBOL(gen_pool_first_fit);
656 * gen_pool_first_fit_align - find the first available region
657 * of memory matching the size requirement (alignment constraint)
658 * @map: The address to base the search on
659 * @size: The bitmap size in bits
660 * @start: The bitnumber to start searching at
661 * @nr: The number of zeroed bits we're looking for
662 * @data: data for alignment
663 * @pool: pool to get order from
664 * @start_addr: start addr of alloction chunk
666 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
667 unsigned long start, unsigned int nr, void *data,
668 struct gen_pool *pool, unsigned long start_addr)
670 struct genpool_data_align *alignment;
671 unsigned long align_mask, align_off;
675 order = pool->min_alloc_order;
676 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
677 align_off = (start_addr & (alignment->align - 1)) >> order;
679 return bitmap_find_next_zero_area_off(map, size, start, nr,
680 align_mask, align_off);
682 EXPORT_SYMBOL(gen_pool_first_fit_align);
685 * gen_pool_fixed_alloc - reserve a specific region
686 * @map: The address to base the search on
687 * @size: The bitmap size in bits
688 * @start: The bitnumber to start searching at
689 * @nr: The number of zeroed bits we're looking for
690 * @data: data for alignment
691 * @pool: pool to get order from
692 * @start_addr: not used in this function
694 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
695 unsigned long start, unsigned int nr, void *data,
696 struct gen_pool *pool, unsigned long start_addr)
698 struct genpool_data_fixed *fixed_data;
700 unsigned long offset_bit;
701 unsigned long start_bit;
704 order = pool->min_alloc_order;
705 offset_bit = fixed_data->offset >> order;
706 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
709 start_bit = bitmap_find_next_zero_area(map, size,
710 start + offset_bit, nr, 0);
711 if (start_bit != offset_bit)
715 EXPORT_SYMBOL(gen_pool_fixed_alloc);
718 * gen_pool_first_fit_order_align - find the first available region
719 * of memory matching the size requirement. The region will be aligned
720 * to the order of the size specified.
721 * @map: The address to base the search on
722 * @size: The bitmap size in bits
723 * @start: The bitnumber to start searching at
724 * @nr: The number of zeroed bits we're looking for
725 * @data: additional data - unused
726 * @pool: pool to find the fit region memory from
727 * @start_addr: not used in this function
729 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
730 unsigned long size, unsigned long start,
731 unsigned int nr, void *data, struct gen_pool *pool,
732 unsigned long start_addr)
734 unsigned long align_mask = roundup_pow_of_two(nr) - 1;
736 return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
738 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
741 * gen_pool_best_fit - find the best fitting region of memory
742 * matching the size requirement (no alignment constraint)
743 * @map: The address to base the search on
744 * @size: The bitmap size in bits
745 * @start: The bitnumber to start searching at
746 * @nr: The number of zeroed bits we're looking for
747 * @data: additional data - unused
748 * @pool: pool to find the fit region memory from
749 * @start_addr: not used in this function
751 * Iterate over the bitmap to find the smallest free region
752 * which we can allocate the memory.
754 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
755 unsigned long start, unsigned int nr, void *data,
756 struct gen_pool *pool, unsigned long start_addr)
758 unsigned long start_bit = size;
759 unsigned long len = size + 1;
762 index = bitmap_find_next_zero_area(map, size, start, nr, 0);
764 while (index < size) {
765 unsigned long next_bit = find_next_bit(map, size, index + nr);
766 if ((next_bit - index) < len) {
767 len = next_bit - index;
772 index = bitmap_find_next_zero_area(map, size,
773 next_bit + 1, nr, 0);
778 EXPORT_SYMBOL(gen_pool_best_fit);
780 static void devm_gen_pool_release(struct device *dev, void *res)
782 gen_pool_destroy(*(struct gen_pool **)res);
785 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
787 struct gen_pool **p = res;
789 /* NULL data matches only a pool without an assigned name */
790 if (!data && !(*p)->name)
793 if (!data || !(*p)->name)
796 return !strcmp((*p)->name, data);
800 * gen_pool_get - Obtain the gen_pool (if any) for a device
801 * @dev: device to retrieve the gen_pool from
802 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
804 * Returns the gen_pool for the device if one is present, or NULL.
806 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
810 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
816 EXPORT_SYMBOL_GPL(gen_pool_get);
819 * devm_gen_pool_create - managed gen_pool_create
820 * @dev: device that provides the gen_pool
821 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
822 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
823 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
825 * Create a new special memory pool that can be used to manage special purpose
826 * memory not managed by the regular kmalloc/kfree interface. The pool will be
827 * automatically destroyed by the device management code.
829 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
830 int nid, const char *name)
832 struct gen_pool **ptr, *pool;
833 const char *pool_name = NULL;
835 /* Check that genpool to be created is uniquely addressed on device */
836 if (gen_pool_get(dev, name))
837 return ERR_PTR(-EINVAL);
840 pool_name = kstrdup_const(name, GFP_KERNEL);
842 return ERR_PTR(-ENOMEM);
845 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
849 pool = gen_pool_create(min_alloc_order, nid);
854 pool->name = pool_name;
855 devres_add(dev, ptr);
862 kfree_const(pool_name);
864 return ERR_PTR(-ENOMEM);
866 EXPORT_SYMBOL(devm_gen_pool_create);
870 * of_gen_pool_get - find a pool by phandle property
872 * @propname: property name containing phandle(s)
873 * @index: index into the phandle array
875 * Returns the pool that contains the chunk starting at the physical
876 * address of the device tree node pointed at by the phandle property,
877 * or NULL if not found.
879 struct gen_pool *of_gen_pool_get(struct device_node *np,
880 const char *propname, int index)
882 struct platform_device *pdev;
883 struct device_node *np_pool, *parent;
884 const char *name = NULL;
885 struct gen_pool *pool = NULL;
887 np_pool = of_parse_phandle(np, propname, index);
891 pdev = of_find_device_by_node(np_pool);
893 /* Check if named gen_pool is created by parent node device */
894 parent = of_get_parent(np_pool);
895 pdev = of_find_device_by_node(parent);
898 of_property_read_string(np_pool, "label", &name);
900 name = np_pool->name;
903 pool = gen_pool_get(&pdev->dev, name);
904 of_node_put(np_pool);
908 EXPORT_SYMBOL_GPL(of_gen_pool_get);
909 #endif /* CONFIG_OF */