Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / lib / flex_array.c
1 /*
2  * Flexible array managed in PAGE_SIZE parts
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2009
19  *
20  * Author: Dave Hansen <dave@linux.vnet.ibm.com>
21  */
22
23 #include <linux/flex_array.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/module.h>
27 #include <linux/reciprocal_div.h>
28
29 struct flex_array_part {
30         char elements[FLEX_ARRAY_PART_SIZE];
31 };
32
33 /*
34  * If a user requests an allocation which is small
35  * enough, we may simply use the space in the
36  * flex_array->parts[] array to store the user
37  * data.
38  */
39 static inline int elements_fit_in_base(struct flex_array *fa)
40 {
41         int data_size = fa->element_size * fa->total_nr_elements;
42         if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT)
43                 return 1;
44         return 0;
45 }
46
47 /**
48  * flex_array_alloc - allocate a new flexible array
49  * @element_size:       the size of individual elements in the array
50  * @total:              total number of elements that this should hold
51  * @flags:              page allocation flags to use for base array
52  *
53  * Note: all locking must be provided by the caller.
54  *
55  * @total is used to size internal structures.  If the user ever
56  * accesses any array indexes >=@total, it will produce errors.
57  *
58  * The maximum number of elements is defined as: the number of
59  * elements that can be stored in a page times the number of
60  * page pointers that we can fit in the base structure or (using
61  * integer math):
62  *
63  *      (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
64  *
65  * Here's a table showing example capacities.  Note that the maximum
66  * index that the get/put() functions is just nr_objects-1.   This
67  * basically means that you get 4MB of storage on 32-bit and 2MB on
68  * 64-bit.
69  *
70  *
71  * Element size | Objects | Objects |
72  * PAGE_SIZE=4k |  32-bit |  64-bit |
73  * ---------------------------------|
74  *      1 bytes | 4177920 | 2088960 |
75  *      2 bytes | 2088960 | 1044480 |
76  *      3 bytes | 1392300 |  696150 |
77  *      4 bytes | 1044480 |  522240 |
78  *     32 bytes |  130560 |   65408 |
79  *     33 bytes |  126480 |   63240 |
80  *   2048 bytes |    2040 |    1020 |
81  *   2049 bytes |    1020 |     510 |
82  *       void * | 1044480 |  261120 |
83  *
84  * Since 64-bit pointers are twice the size, we lose half the
85  * capacity in the base structure.  Also note that no effort is made
86  * to efficiently pack objects across page boundaries.
87  */
88 struct flex_array *flex_array_alloc(int element_size, unsigned int total,
89                                         gfp_t flags)
90 {
91         struct flex_array *ret;
92         int elems_per_part = 0;
93         int reciprocal_elems = 0;
94         int max_size = 0;
95
96         if (element_size) {
97                 elems_per_part = FLEX_ARRAY_ELEMENTS_PER_PART(element_size);
98                 reciprocal_elems = reciprocal_value(elems_per_part);
99                 max_size = FLEX_ARRAY_NR_BASE_PTRS * elems_per_part;
100         }
101
102         /* max_size will end up 0 if element_size > PAGE_SIZE */
103         if (total > max_size)
104                 return NULL;
105         ret = kzalloc(sizeof(struct flex_array), flags);
106         if (!ret)
107                 return NULL;
108         ret->element_size = element_size;
109         ret->total_nr_elements = total;
110         ret->elems_per_part = elems_per_part;
111         ret->reciprocal_elems = reciprocal_elems;
112         if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
113                 memset(&ret->parts[0], FLEX_ARRAY_FREE,
114                                                 FLEX_ARRAY_BASE_BYTES_LEFT);
115         return ret;
116 }
117 EXPORT_SYMBOL(flex_array_alloc);
118
119 static int fa_element_to_part_nr(struct flex_array *fa,
120                                         unsigned int element_nr)
121 {
122         return reciprocal_divide(element_nr, fa->reciprocal_elems);
123 }
124
125 /**
126  * flex_array_free_parts - just free the second-level pages
127  * @fa:         the flex array from which to free parts
128  *
129  * This is to be used in cases where the base 'struct flex_array'
130  * has been statically allocated and should not be free.
131  */
132 void flex_array_free_parts(struct flex_array *fa)
133 {
134         int part_nr;
135
136         if (elements_fit_in_base(fa))
137                 return;
138         for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++)
139                 kfree(fa->parts[part_nr]);
140 }
141 EXPORT_SYMBOL(flex_array_free_parts);
142
143 void flex_array_free(struct flex_array *fa)
144 {
145         flex_array_free_parts(fa);
146         kfree(fa);
147 }
148 EXPORT_SYMBOL(flex_array_free);
149
150 static unsigned int index_inside_part(struct flex_array *fa,
151                                         unsigned int element_nr,
152                                         unsigned int part_nr)
153 {
154         unsigned int part_offset;
155
156         part_offset = element_nr - part_nr * fa->elems_per_part;
157         return part_offset * fa->element_size;
158 }
159
160 static struct flex_array_part *
161 __fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
162 {
163         struct flex_array_part *part = fa->parts[part_nr];
164         if (!part) {
165                 part = kmalloc(sizeof(struct flex_array_part), flags);
166                 if (!part)
167                         return NULL;
168                 if (!(flags & __GFP_ZERO))
169                         memset(part, FLEX_ARRAY_FREE,
170                                 sizeof(struct flex_array_part));
171                 fa->parts[part_nr] = part;
172         }
173         return part;
174 }
175
176 /**
177  * flex_array_put - copy data into the array at @element_nr
178  * @fa:         the flex array to copy data into
179  * @element_nr: index of the position in which to insert
180  *              the new element.
181  * @src:        address of data to copy into the array
182  * @flags:      page allocation flags to use for array expansion
183  *
184  *
185  * Note that this *copies* the contents of @src into
186  * the array.  If you are trying to store an array of
187  * pointers, make sure to pass in &ptr instead of ptr.
188  * You may instead wish to use the flex_array_put_ptr()
189  * helper function.
190  *
191  * Locking must be provided by the caller.
192  */
193 int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
194                         gfp_t flags)
195 {
196         int part_nr = 0;
197         struct flex_array_part *part;
198         void *dst;
199
200         if (element_nr >= fa->total_nr_elements)
201                 return -ENOSPC;
202         if (!fa->element_size)
203                 return 0;
204         if (elements_fit_in_base(fa))
205                 part = (struct flex_array_part *)&fa->parts[0];
206         else {
207                 part_nr = fa_element_to_part_nr(fa, element_nr);
208                 part = __fa_get_part(fa, part_nr, flags);
209                 if (!part)
210                         return -ENOMEM;
211         }
212         dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
213         memcpy(dst, src, fa->element_size);
214         return 0;
215 }
216 EXPORT_SYMBOL(flex_array_put);
217
218 /**
219  * flex_array_clear - clear element in array at @element_nr
220  * @fa:         the flex array of the element.
221  * @element_nr: index of the position to clear.
222  *
223  * Locking must be provided by the caller.
224  */
225 int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
226 {
227         int part_nr = 0;
228         struct flex_array_part *part;
229         void *dst;
230
231         if (element_nr >= fa->total_nr_elements)
232                 return -ENOSPC;
233         if (!fa->element_size)
234                 return 0;
235         if (elements_fit_in_base(fa))
236                 part = (struct flex_array_part *)&fa->parts[0];
237         else {
238                 part_nr = fa_element_to_part_nr(fa, element_nr);
239                 part = fa->parts[part_nr];
240                 if (!part)
241                         return -EINVAL;
242         }
243         dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
244         memset(dst, FLEX_ARRAY_FREE, fa->element_size);
245         return 0;
246 }
247 EXPORT_SYMBOL(flex_array_clear);
248
249 /**
250  * flex_array_prealloc - guarantee that array space exists
251  * @fa:                 the flex array for which to preallocate parts
252  * @start:              index of first array element for which space is allocated
253  * @nr_elements:        number of elements for which space is allocated
254  * @flags:              page allocation flags
255  *
256  * This will guarantee that no future calls to flex_array_put()
257  * will allocate memory.  It can be used if you are expecting to
258  * be holding a lock or in some atomic context while writing
259  * data into the array.
260  *
261  * Locking must be provided by the caller.
262  */
263 int flex_array_prealloc(struct flex_array *fa, unsigned int start,
264                         unsigned int nr_elements, gfp_t flags)
265 {
266         int start_part;
267         int end_part;
268         int part_nr;
269         unsigned int end;
270         struct flex_array_part *part;
271
272         if (!start && !nr_elements)
273                 return 0;
274         if (start >= fa->total_nr_elements)
275                 return -ENOSPC;
276         if (!nr_elements)
277                 return 0;
278
279         end = start + nr_elements - 1;
280
281         if (end >= fa->total_nr_elements)
282                 return -ENOSPC;
283         if (!fa->element_size)
284                 return 0;
285         if (elements_fit_in_base(fa))
286                 return 0;
287         start_part = fa_element_to_part_nr(fa, start);
288         end_part = fa_element_to_part_nr(fa, end);
289         for (part_nr = start_part; part_nr <= end_part; part_nr++) {
290                 part = __fa_get_part(fa, part_nr, flags);
291                 if (!part)
292                         return -ENOMEM;
293         }
294         return 0;
295 }
296 EXPORT_SYMBOL(flex_array_prealloc);
297
298 /**
299  * flex_array_get - pull data back out of the array
300  * @fa:         the flex array from which to extract data
301  * @element_nr: index of the element to fetch from the array
302  *
303  * Returns a pointer to the data at index @element_nr.  Note
304  * that this is a copy of the data that was passed in.  If you
305  * are using this to store pointers, you'll get back &ptr.  You
306  * may instead wish to use the flex_array_get_ptr helper.
307  *
308  * Locking must be provided by the caller.
309  */
310 void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
311 {
312         int part_nr = 0;
313         struct flex_array_part *part;
314
315         if (!fa->element_size)
316                 return NULL;
317         if (element_nr >= fa->total_nr_elements)
318                 return NULL;
319         if (elements_fit_in_base(fa))
320                 part = (struct flex_array_part *)&fa->parts[0];
321         else {
322                 part_nr = fa_element_to_part_nr(fa, element_nr);
323                 part = fa->parts[part_nr];
324                 if (!part)
325                         return NULL;
326         }
327         return &part->elements[index_inside_part(fa, element_nr, part_nr)];
328 }
329 EXPORT_SYMBOL(flex_array_get);
330
331 /**
332  * flex_array_get_ptr - pull a ptr back out of the array
333  * @fa:         the flex array from which to extract data
334  * @element_nr: index of the element to fetch from the array
335  *
336  * Returns the pointer placed in the flex array at element_nr using
337  * flex_array_put_ptr().  This function should not be called if the
338  * element in question was not set using the _put_ptr() helper.
339  */
340 void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr)
341 {
342         void **tmp;
343
344         tmp = flex_array_get(fa, element_nr);
345         if (!tmp)
346                 return NULL;
347
348         return *tmp;
349 }
350 EXPORT_SYMBOL(flex_array_get_ptr);
351
352 static int part_is_free(struct flex_array_part *part)
353 {
354         int i;
355
356         for (i = 0; i < sizeof(struct flex_array_part); i++)
357                 if (part->elements[i] != FLEX_ARRAY_FREE)
358                         return 0;
359         return 1;
360 }
361
362 /**
363  * flex_array_shrink - free unused second-level pages
364  * @fa:         the flex array to shrink
365  *
366  * Frees all second-level pages that consist solely of unused
367  * elements.  Returns the number of pages freed.
368  *
369  * Locking must be provided by the caller.
370  */
371 int flex_array_shrink(struct flex_array *fa)
372 {
373         struct flex_array_part *part;
374         int part_nr;
375         int ret = 0;
376
377         if (!fa->total_nr_elements || !fa->element_size)
378                 return 0;
379         if (elements_fit_in_base(fa))
380                 return ret;
381         for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) {
382                 part = fa->parts[part_nr];
383                 if (!part)
384                         continue;
385                 if (part_is_free(part)) {
386                         fa->parts[part_nr] = NULL;
387                         kfree(part);
388                         ret++;
389                 }
390         }
391         return ret;
392 }
393 EXPORT_SYMBOL(flex_array_shrink);