2 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
4 * Based on former do_div() implementation from asm-parisc/div64.h:
5 * Copyright (C) 1999 Hewlett-Packard Co
6 * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
9 * Generic C version of 64bit/32bit division and modulo, with
10 * 64bit result and 32bit remainder.
12 * The fast case for (n>>32 == 0) is handled inline by do_div().
14 * Code generated for this function might be very inefficient
15 * for some CPUs. __div64_32() can be overridden by linking arch-specific
16 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
17 * or by defining a preprocessor macro in arch/include/asm/div64.h.
20 #include <linux/compat.h>
21 #include <linux/kernel.h>
22 #include <linux/math64.h>
24 /* Not needed on 64bit architectures */
25 #if BITS_PER_LONG == 32
29 * Don't instrument this function as it may be called from tracing code, since
30 * it needs to read the timer and this often requires calling do_div(), which
31 * calls this function.
33 uint32_t __attribute__((weak, no_instrument_function)) __div64_32(u64 *n,
41 /* Reduce the thing a bit first */
45 res = (u64)high << 32;
46 rem -= (u64)(high * base) << 32;
49 while ((int64_t)b > 0 && b < rem) {
66 EXPORT_SYMBOL(__div64_32);
70 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
75 quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
76 *remainder = -*remainder;
80 quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
86 EXPORT_SYMBOL(div_s64_rem);
90 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
91 * @dividend: 64bit dividend
92 * @divisor: 64bit divisor
93 * @remainder: 64bit remainder
95 * This implementation is a comparable to algorithm used by div64_u64.
96 * But this operation, which includes math for calculating the remainder,
97 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
100 #ifndef div64_u64_rem
101 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
103 u32 high = divisor >> 32;
108 quot = div_u64_rem(dividend, divisor, &rem32);
111 int n = 1 + fls(high);
112 quot = div_u64(dividend >> n, divisor >> n);
117 *remainder = dividend - quot * divisor;
118 if (*remainder >= divisor) {
120 *remainder -= divisor;
126 EXPORT_SYMBOL(div64_u64_rem);
130 * div64_u64 - unsigned 64bit divide with 64bit divisor
131 * @dividend: 64bit dividend
132 * @divisor: 64bit divisor
134 * This implementation is a modified version of the algorithm proposed
135 * by the book 'Hacker's Delight'. The original source and full proof
136 * can be found here and is available for use without restriction.
138 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
141 u64 div64_u64(u64 dividend, u64 divisor)
143 u32 high = divisor >> 32;
147 quot = div_u64(dividend, divisor);
149 int n = 1 + fls(high);
150 quot = div_u64(dividend >> n, divisor >> n);
154 if ((dividend - quot * divisor) >= divisor)
160 EXPORT_SYMBOL(div64_u64);
164 * div64_s64 - signed 64bit divide with 64bit divisor
165 * @dividend: 64bit dividend
166 * @divisor: 64bit divisor
169 s64 div64_s64(s64 dividend, s64 divisor)
173 quot = div64_u64(abs(dividend), abs(divisor));
174 t = (dividend ^ divisor) >> 63;
176 return (quot ^ t) - t;
178 EXPORT_SYMBOL(div64_s64);
181 #endif /* BITS_PER_LONG == 32 */
184 * Iterative div/mod for use when dividend is not expected to be much
185 * bigger than divisor.
187 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
189 return __iter_div_u64_rem(dividend, divisor, remainder);
191 EXPORT_SYMBOL(iter_div_u64_rem);