1 /* gf128mul.c - GF(2^128) multiplication functions
3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
6 * Based on Dr Brian Gladman's (GPL'd) work published at
7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
8 * See the original copyright notice below.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
17 ---------------------------------------------------------------------------
18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
22 The free distribution and use of this software in both source and binary
23 form is allowed (with or without changes) provided that:
25 1. distributions of this source code include the above copyright
26 notice, this list of conditions and the following disclaimer;
28 2. distributions in binary form include the above copyright
29 notice, this list of conditions and the following disclaimer
30 in the documentation and/or other associated materials;
32 3. the copyright holder's name is not used to endorse products
33 built using this software without specific written permission.
35 ALTERNATIVELY, provided that this notice is retained in full, this product
36 may be distributed under the terms of the GNU General Public License (GPL),
37 in which case the provisions of the GPL apply INSTEAD OF those given above.
41 This software is provided 'as is' with no explicit or implied warranties
42 in respect of its properties, including, but not limited to, correctness
43 and/or fitness for purpose.
44 ---------------------------------------------------------------------------
47 This file provides fast multiplication in GF(2^128) as required by several
48 cryptographic authentication modes
51 #include <crypto/gf128mul.h>
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/slab.h>
56 #define gf128mul_dat(q) { \
57 q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58 q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59 q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60 q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61 q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62 q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63 q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64 q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65 q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66 q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67 q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68 q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69 q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70 q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71 q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72 q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73 q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74 q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75 q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76 q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77 q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78 q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79 q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80 q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81 q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82 q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83 q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84 q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85 q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86 q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87 q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88 q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
92 * Given a value i in 0..255 as the byte overflow when a field element
93 * in GF(2^128) is multiplied by x^8, the following macro returns the
94 * 16-bit value that must be XOR-ed into the low-degree end of the
95 * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
97 * There are two versions of the macro, and hence two tables: one for
98 * the "be" convention where the highest-order bit is the coefficient of
99 * the highest-degree polynomial term, and one for the "le" convention
100 * where the highest-order bit is the coefficient of the lowest-degree
101 * polynomial term. In both cases the values are stored in CPU byte
102 * endianness such that the coefficients are ordered consistently across
103 * bytes, i.e. in the "be" table bits 15..0 of the stored value
104 * correspond to the coefficients of x^15..x^0, and in the "le" table
105 * bits 15..0 correspond to the coefficients of x^0..x^15.
107 * Therefore, provided that the appropriate byte endianness conversions
108 * are done by the multiplication functions (and these must be in place
109 * anyway to support both little endian and big endian CPUs), the "be"
110 * table can be used for multiplications of both "bbe" and "ble"
111 * elements, and the "le" table can be used for multiplications of both
112 * "lle" and "lbe" elements.
115 #define xda_be(i) ( \
116 (i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
117 (i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
118 (i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
119 (i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
122 #define xda_le(i) ( \
123 (i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
124 (i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
125 (i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
126 (i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
129 static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
130 static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
133 * The following functions multiply a field element by x^8 in
134 * the polynomial field representation. They use 64-bit word operations
135 * to gain speed but compensate for machine endianness and hence work
136 * correctly on both styles of machine.
139 static void gf128mul_x8_lle(be128 *x)
141 u64 a = be64_to_cpu(x->a);
142 u64 b = be64_to_cpu(x->b);
143 u64 _tt = gf128mul_table_le[b & 0xff];
145 x->b = cpu_to_be64((b >> 8) | (a << 56));
146 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
149 /* time invariant version of gf128mul_x8_lle */
150 static void gf128mul_x8_lle_ti(be128 *x)
152 u64 a = be64_to_cpu(x->a);
153 u64 b = be64_to_cpu(x->b);
154 u64 _tt = xda_le(b & 0xff); /* avoid table lookup */
156 x->b = cpu_to_be64((b >> 8) | (a << 56));
157 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
160 static void gf128mul_x8_bbe(be128 *x)
162 u64 a = be64_to_cpu(x->a);
163 u64 b = be64_to_cpu(x->b);
164 u64 _tt = gf128mul_table_be[a >> 56];
166 x->a = cpu_to_be64((a << 8) | (b >> 56));
167 x->b = cpu_to_be64((b << 8) ^ _tt);
170 void gf128mul_x8_ble(le128 *r, const le128 *x)
172 u64 a = le64_to_cpu(x->a);
173 u64 b = le64_to_cpu(x->b);
174 u64 _tt = gf128mul_table_be[a >> 56];
176 r->a = cpu_to_le64((a << 8) | (b >> 56));
177 r->b = cpu_to_le64((b << 8) ^ _tt);
179 EXPORT_SYMBOL(gf128mul_x8_ble);
181 void gf128mul_lle(be128 *r, const be128 *b)
184 * The p array should be aligned to twice the size of its element type,
185 * so that every even/odd pair is guaranteed to share a cacheline
186 * (assuming a cacheline size of 32 bytes or more, which is by far the
187 * most common). This ensures that each be128_xor() call in the loop
188 * takes the same amount of time regardless of the value of 'ch', which
189 * is derived from function parameter 'b', which is commonly used as a
190 * key, e.g., for GHASH. The odd array elements are all set to zero,
191 * making each be128_xor() a NOP if its associated bit in 'ch' is not
192 * set, and this is equivalent to calling be128_xor() conditionally.
193 * This approach aims to avoid leaking information about such keys
194 * through execution time variances.
196 * Unfortunately, __aligned(16) or higher does not work on x86 for
197 * variables on the stack so we need to perform the alignment by hand.
199 be128 array[16 + 3] = {};
200 be128 *p = PTR_ALIGN(&array[0], 2 * sizeof(be128));
204 for (i = 0; i < 7; ++i)
205 gf128mul_x_lle(&p[2 * i + 2], &p[2 * i]);
207 memset(r, 0, sizeof(*r));
209 u8 ch = ((u8 *)b)[15 - i];
211 be128_xor(r, r, &p[ 0 + !(ch & 0x80)]);
212 be128_xor(r, r, &p[ 2 + !(ch & 0x40)]);
213 be128_xor(r, r, &p[ 4 + !(ch & 0x20)]);
214 be128_xor(r, r, &p[ 6 + !(ch & 0x10)]);
215 be128_xor(r, r, &p[ 8 + !(ch & 0x08)]);
216 be128_xor(r, r, &p[10 + !(ch & 0x04)]);
217 be128_xor(r, r, &p[12 + !(ch & 0x02)]);
218 be128_xor(r, r, &p[14 + !(ch & 0x01)]);
223 gf128mul_x8_lle_ti(r); /* use the time invariant version */
226 EXPORT_SYMBOL(gf128mul_lle);
228 void gf128mul_bbe(be128 *r, const be128 *b)
234 for (i = 0; i < 7; ++i)
235 gf128mul_x_bbe(&p[i + 1], &p[i]);
237 memset(r, 0, sizeof(*r));
239 u8 ch = ((u8 *)b)[i];
242 be128_xor(r, r, &p[7]);
244 be128_xor(r, r, &p[6]);
246 be128_xor(r, r, &p[5]);
248 be128_xor(r, r, &p[4]);
250 be128_xor(r, r, &p[3]);
252 be128_xor(r, r, &p[2]);
254 be128_xor(r, r, &p[1]);
256 be128_xor(r, r, &p[0]);
264 EXPORT_SYMBOL(gf128mul_bbe);
266 /* This version uses 64k bytes of table space.
267 A 16 byte buffer has to be multiplied by a 16 byte key
268 value in GF(2^128). If we consider a GF(2^128) value in
269 the buffer's lowest byte, we can construct a table of
270 the 256 16 byte values that result from the 256 values
271 of this byte. This requires 4096 bytes. But we also
272 need tables for each of the 16 higher bytes in the
273 buffer as well, which makes 64 kbytes in total.
275 /* additional explanation
276 * t[0][BYTE] contains g*BYTE
277 * t[1][BYTE] contains g*x^8*BYTE
279 * t[15][BYTE] contains g*x^120*BYTE */
280 struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
282 struct gf128mul_64k *t;
285 t = kzalloc(sizeof(*t), GFP_KERNEL);
289 for (i = 0; i < 16; i++) {
290 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
292 gf128mul_free_64k(t);
299 for (j = 1; j <= 64; j <<= 1)
300 gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
303 for (j = 2; j < 256; j += j)
304 for (k = 1; k < j; ++k)
305 be128_xor(&t->t[i]->t[j + k],
306 &t->t[i]->t[j], &t->t[i]->t[k]);
311 for (j = 128; j > 0; j >>= 1) {
312 t->t[i]->t[j] = t->t[i - 1]->t[j];
313 gf128mul_x8_bbe(&t->t[i]->t[j]);
320 EXPORT_SYMBOL(gf128mul_init_64k_bbe);
322 void gf128mul_free_64k(struct gf128mul_64k *t)
326 for (i = 0; i < 16; i++)
327 kfree_sensitive(t->t[i]);
330 EXPORT_SYMBOL(gf128mul_free_64k);
332 void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
338 *r = t->t[0]->t[ap[15]];
339 for (i = 1; i < 16; ++i)
340 be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
343 EXPORT_SYMBOL(gf128mul_64k_bbe);
345 /* This version uses 4k bytes of table space.
346 A 16 byte buffer has to be multiplied by a 16 byte key
347 value in GF(2^128). If we consider a GF(2^128) value in a
348 single byte, we can construct a table of the 256 16 byte
349 values that result from the 256 values of this byte.
350 This requires 4096 bytes. If we take the highest byte in
351 the buffer and use this table to get the result, we then
352 have to multiply by x^120 to get the final value. For the
353 next highest byte the result has to be multiplied by x^112
354 and so on. But we can do this by accumulating the result
355 in an accumulator starting with the result for the top
356 byte. We repeatedly multiply the accumulator value by
357 x^8 and then add in (i.e. xor) the 16 bytes of the next
358 lower byte in the buffer, stopping when we reach the
359 lowest byte. This requires a 4096 byte table.
361 struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
363 struct gf128mul_4k *t;
366 t = kzalloc(sizeof(*t), GFP_KERNEL);
371 for (j = 64; j > 0; j >>= 1)
372 gf128mul_x_lle(&t->t[j], &t->t[j+j]);
374 for (j = 2; j < 256; j += j)
375 for (k = 1; k < j; ++k)
376 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
381 EXPORT_SYMBOL(gf128mul_init_4k_lle);
383 struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
385 struct gf128mul_4k *t;
388 t = kzalloc(sizeof(*t), GFP_KERNEL);
393 for (j = 1; j <= 64; j <<= 1)
394 gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
396 for (j = 2; j < 256; j += j)
397 for (k = 1; k < j; ++k)
398 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
403 EXPORT_SYMBOL(gf128mul_init_4k_bbe);
405 void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
414 be128_xor(r, r, &t->t[ap[i]]);
418 EXPORT_SYMBOL(gf128mul_4k_lle);
420 void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
429 be128_xor(r, r, &t->t[ap[i]]);
433 EXPORT_SYMBOL(gf128mul_4k_bbe);
435 MODULE_LICENSE("GPL");
436 MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");