2 * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
3 * cleaned up code to current version of sparse and added the slicing-by-8
4 * algorithm to the closely similar existing slicing-by-4 algorithm.
6 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
7 * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
8 * Code was from the public domain, copyright abandoned. Code was
9 * subsequently included in the kernel, thus was re-licensed under the
12 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
13 * Same crc32 function was used in 5 other places in the kernel.
14 * I made one version, and deleted the others.
15 * There are various incantations of crc32(). Some use a seed of 0 or ~0.
16 * Some xor at the end with ~0. The generic crc32() function takes
17 * seed as an argument, and doesn't xor at the end. Then individual
18 * users can do whatever they need.
19 * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
20 * fs/jffs2 uses seed 0, doesn't xor with ~0.
21 * fs/partitions/efi.c uses seed ~0, xor's with ~0.
23 * This source code is licensed under the GNU General Public License,
24 * Version 2. See the file COPYING for more details.
27 /* see: Documentation/crc32.txt for a description of algorithms */
29 #include <linux/crc32.h>
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/sched.h>
33 #include "crc32defs.h"
36 # define tole(x) ((__force u32) cpu_to_le32(x))
42 # define tobe(x) ((__force u32) cpu_to_be32(x))
47 #include "crc32table.h"
49 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
50 MODULE_DESCRIPTION("Various CRC32 calculations");
51 MODULE_LICENSE("GPL");
53 #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
55 /* implements slicing-by-4 or slicing-by-8 algorithm */
56 static inline u32 __pure
57 crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
59 # ifdef __LITTLE_ENDIAN
60 # define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
61 # define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
62 t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
63 # define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
64 t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
66 # define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
67 # define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
68 t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
69 # define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
70 t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
77 const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
78 # if CRC_LE_BITS != 32
79 const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
84 if (unlikely((long)buf & 3 && len)) {
87 } while ((--len) && ((long)buf)&3);
90 # if CRC_LE_BITS == 32
101 for (i = 0; i < len; i++) {
103 for (--b; len; --len) {
105 q = crc ^ *++b; /* use pre increment for speed */
106 # if CRC_LE_BITS == 32
115 /* And the last few bytes */
117 u8 *p = (u8 *)(b + 1) - 1;
119 for (i = 0; i < len; i++)
120 DO_CRC(*++p); /* use pre increment for speed */
123 DO_CRC(*++p); /* use pre increment for speed */
136 * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
138 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other
139 * uses, or the previous crc32/crc32c value if computing incrementally.
140 * @p: pointer to buffer over which CRC32/CRC32C is run
141 * @len: length of buffer @p
142 * @tab: little-endian Ethernet table
143 * @polynomial: CRC32/CRC32c LE polynomial
145 static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
146 size_t len, const u32 (*tab)[256],
153 for (i = 0; i < 8; i++)
154 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
156 # elif CRC_LE_BITS == 2
159 crc = (crc >> 2) ^ tab[0][crc & 3];
160 crc = (crc >> 2) ^ tab[0][crc & 3];
161 crc = (crc >> 2) ^ tab[0][crc & 3];
162 crc = (crc >> 2) ^ tab[0][crc & 3];
164 # elif CRC_LE_BITS == 4
167 crc = (crc >> 4) ^ tab[0][crc & 15];
168 crc = (crc >> 4) ^ tab[0][crc & 15];
170 # elif CRC_LE_BITS == 8
171 /* aka Sarwate algorithm */
174 crc = (crc >> 8) ^ tab[0][crc & 255];
177 crc = (__force u32) __cpu_to_le32(crc);
178 crc = crc32_body(crc, p, len, tab);
179 crc = __le32_to_cpu((__force __le32)crc);
185 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
187 return crc32_le_generic(crc, p, len, NULL, CRCPOLY_LE);
189 u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
191 return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
194 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
196 return crc32_le_generic(crc, p, len,
197 (const u32 (*)[256])crc32table_le, CRCPOLY_LE);
199 u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
201 return crc32_le_generic(crc, p, len,
202 (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
205 EXPORT_SYMBOL(crc32_le);
206 EXPORT_SYMBOL(__crc32c_le);
209 * This multiplies the polynomials x and y modulo the given modulus.
210 * This follows the "little-endian" CRC convention that the lsbit
211 * represents the highest power of x, and the msbit represents x^0.
213 static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
215 u32 product = x & 1 ? y : 0;
218 for (i = 0; i < 31; i++) {
219 product = (product >> 1) ^ (product & 1 ? modulus : 0);
221 product ^= x & 1 ? y : 0;
228 * crc32_generic_shift - Append len 0 bytes to crc, in logarithmic time
229 * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
230 * @len: The number of bytes. @crc is multiplied by x^(8*@len)
231 * @polynomial: The modulus used to reduce the result to 32 bits.
233 * It's possible to parallelize CRC computations by computing a CRC
234 * over separate ranges of a buffer, then summing them.
235 * This shifts the given CRC by 8*len bits (i.e. produces the same effect
236 * as appending len bytes of zero to the data), in time proportional
239 static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
242 u32 power = polynomial; /* CRC of x^32 */
245 /* Shift up to 32 bits in the simple linear way */
246 for (i = 0; i < 8 * (int)(len & 3); i++)
247 crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
254 /* "power" is x^(2^i), modulo the polynomial */
256 crc = gf2_multiply(crc, power, polynomial);
262 /* Square power, advancing to x^(2^(i+1)) */
263 power = gf2_multiply(power, power, polynomial);
269 u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
271 return crc32_generic_shift(crc, len, CRCPOLY_LE);
274 u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
276 return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
278 EXPORT_SYMBOL(crc32_le_shift);
279 EXPORT_SYMBOL(__crc32c_le_shift);
282 * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
283 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
284 * other uses, or the previous crc32 value if computing incrementally.
285 * @p: pointer to buffer over which CRC32 is run
286 * @len: length of buffer @p
287 * @tab: big-endian Ethernet table
288 * @polynomial: CRC32 BE polynomial
290 static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
291 size_t len, const u32 (*tab)[256],
298 for (i = 0; i < 8; i++)
300 (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
303 # elif CRC_BE_BITS == 2
306 crc = (crc << 2) ^ tab[0][crc >> 30];
307 crc = (crc << 2) ^ tab[0][crc >> 30];
308 crc = (crc << 2) ^ tab[0][crc >> 30];
309 crc = (crc << 2) ^ tab[0][crc >> 30];
311 # elif CRC_BE_BITS == 4
314 crc = (crc << 4) ^ tab[0][crc >> 28];
315 crc = (crc << 4) ^ tab[0][crc >> 28];
317 # elif CRC_BE_BITS == 8
320 crc = (crc << 8) ^ tab[0][crc >> 24];
323 crc = (__force u32) __cpu_to_be32(crc);
324 crc = crc32_body(crc, p, len, tab);
325 crc = __be32_to_cpu((__force __be32)crc);
331 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
333 return crc32_be_generic(crc, p, len, NULL, CRCPOLY_BE);
336 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
338 return crc32_be_generic(crc, p, len,
339 (const u32 (*)[256])crc32table_be, CRCPOLY_BE);
342 EXPORT_SYMBOL(crc32_be);