1 // SPDX-License-Identifier: GPL-2.0-only
4 * Helper functions for bitmap.h.
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
10 #include <linux/ctype.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/thread_info.h>
19 #include <linux/uaccess.h>
26 * DOC: bitmap introduction
28 * bitmaps provide an array of bits, implemented using an
29 * array of unsigned longs. The number of valid bits in a
30 * given bitmap does _not_ need to be an exact multiple of
33 * The possible unused bits in the last, partially used word
34 * of a bitmap are 'don't care'. The implementation makes
35 * no particular effort to keep them zero. It ensures that
36 * their value will not affect the results of any operation.
37 * The bitmap operations that return Boolean (bitmap_empty,
38 * for example) or scalar (bitmap_weight, for example) results
39 * carefully filter out these unused bits from impacting their
42 * The byte ordering of bitmaps is more natural on little
43 * endian architectures. See the big-endian headers
44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45 * for the best explanations of this ordering.
48 int __bitmap_equal(const unsigned long *bitmap1,
49 const unsigned long *bitmap2, unsigned int bits)
51 unsigned int k, lim = bits/BITS_PER_LONG;
52 for (k = 0; k < lim; ++k)
53 if (bitmap1[k] != bitmap2[k])
56 if (bits % BITS_PER_LONG)
57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
62 EXPORT_SYMBOL(__bitmap_equal);
64 bool __bitmap_or_equal(const unsigned long *bitmap1,
65 const unsigned long *bitmap2,
66 const unsigned long *bitmap3,
69 unsigned int k, lim = bits / BITS_PER_LONG;
72 for (k = 0; k < lim; ++k) {
73 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
77 if (!(bits % BITS_PER_LONG))
80 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
81 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
86 unsigned int k, lim = BITS_TO_LONGS(bits);
87 for (k = 0; k < lim; ++k)
90 EXPORT_SYMBOL(__bitmap_complement);
93 * __bitmap_shift_right - logical right shift of the bits in a bitmap
94 * @dst : destination bitmap
95 * @src : source bitmap
96 * @shift : shift by this many bits
97 * @nbits : bitmap size, in bits
99 * Shifting right (dividing) means moving bits in the MS -> LS bit
100 * direction. Zeros are fed into the vacated MS positions and the
101 * LS bits shifted off the bottom are lost.
103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
104 unsigned shift, unsigned nbits)
106 unsigned k, lim = BITS_TO_LONGS(nbits);
107 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
108 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
109 for (k = 0; off + k < lim; ++k) {
110 unsigned long upper, lower;
113 * If shift is not word aligned, take lower rem bits of
114 * word above and make them the top rem bits of result.
116 if (!rem || off + k + 1 >= lim)
119 upper = src[off + k + 1];
120 if (off + k + 1 == lim - 1)
122 upper <<= (BITS_PER_LONG - rem);
124 lower = src[off + k];
125 if (off + k == lim - 1)
128 dst[k] = lower | upper;
131 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
133 EXPORT_SYMBOL(__bitmap_shift_right);
137 * __bitmap_shift_left - logical left shift of the bits in a bitmap
138 * @dst : destination bitmap
139 * @src : source bitmap
140 * @shift : shift by this many bits
141 * @nbits : bitmap size, in bits
143 * Shifting left (multiplying) means moving bits in the LS -> MS
144 * direction. Zeros are fed into the vacated LS bit positions
145 * and those MS bits shifted off the top are lost.
148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149 unsigned int shift, unsigned int nbits)
152 unsigned int lim = BITS_TO_LONGS(nbits);
153 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
154 for (k = lim - off - 1; k >= 0; --k) {
155 unsigned long upper, lower;
158 * If shift is not word aligned, take upper rem bits of
159 * word below and make them the bottom rem bits of result.
162 lower = src[k - 1] >> (BITS_PER_LONG - rem);
165 upper = src[k] << rem;
166 dst[k + off] = lower | upper;
169 memset(dst, 0, off*sizeof(unsigned long));
171 EXPORT_SYMBOL(__bitmap_shift_left);
174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
175 * @dst: destination bitmap, might overlap with src
176 * @src: source bitmap
177 * @first: start bit of region to be removed
178 * @cut: number of bits to remove
179 * @nbits: bitmap size, in bits
181 * Set the n-th bit of @dst iff the n-th bit of @src is set and
182 * n is less than @first, or the m-th bit of @src is set for any
183 * m such that @first <= n < nbits, and m = n + @cut.
185 * In pictures, example for a big-endian 32-bit architecture:
187 * The @src bitmap is::
191 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
199 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
204 * Note that @dst and @src might overlap partially or entirely.
206 * This is implemented in the obvious way, with a shift and carry
207 * step for each moved bit. Optimisation is left as an exercise
210 void bitmap_cut(unsigned long *dst, const unsigned long *src,
211 unsigned int first, unsigned int cut, unsigned int nbits)
213 unsigned int len = BITS_TO_LONGS(nbits);
214 unsigned long keep = 0, carry;
217 if (first % BITS_PER_LONG) {
218 keep = src[first / BITS_PER_LONG] &
219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
222 memmove(dst, src, len * sizeof(*dst));
225 for (i = first / BITS_PER_LONG; i < len; i++) {
227 carry = dst[i + 1] & 1UL;
231 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
235 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
236 dst[first / BITS_PER_LONG] |= keep;
238 EXPORT_SYMBOL(bitmap_cut);
240 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
241 const unsigned long *bitmap2, unsigned int bits)
244 unsigned int lim = bits/BITS_PER_LONG;
245 unsigned long result = 0;
247 for (k = 0; k < lim; k++)
248 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
249 if (bits % BITS_PER_LONG)
250 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
251 BITMAP_LAST_WORD_MASK(bits));
254 EXPORT_SYMBOL(__bitmap_and);
256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
257 const unsigned long *bitmap2, unsigned int bits)
260 unsigned int nr = BITS_TO_LONGS(bits);
262 for (k = 0; k < nr; k++)
263 dst[k] = bitmap1[k] | bitmap2[k];
265 EXPORT_SYMBOL(__bitmap_or);
267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
268 const unsigned long *bitmap2, unsigned int bits)
271 unsigned int nr = BITS_TO_LONGS(bits);
273 for (k = 0; k < nr; k++)
274 dst[k] = bitmap1[k] ^ bitmap2[k];
276 EXPORT_SYMBOL(__bitmap_xor);
278 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
279 const unsigned long *bitmap2, unsigned int bits)
282 unsigned int lim = bits/BITS_PER_LONG;
283 unsigned long result = 0;
285 for (k = 0; k < lim; k++)
286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
287 if (bits % BITS_PER_LONG)
288 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
289 BITMAP_LAST_WORD_MASK(bits));
292 EXPORT_SYMBOL(__bitmap_andnot);
294 void __bitmap_replace(unsigned long *dst,
295 const unsigned long *old, const unsigned long *new,
296 const unsigned long *mask, unsigned int nbits)
299 unsigned int nr = BITS_TO_LONGS(nbits);
301 for (k = 0; k < nr; k++)
302 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
304 EXPORT_SYMBOL(__bitmap_replace);
306 int __bitmap_intersects(const unsigned long *bitmap1,
307 const unsigned long *bitmap2, unsigned int bits)
309 unsigned int k, lim = bits/BITS_PER_LONG;
310 for (k = 0; k < lim; ++k)
311 if (bitmap1[k] & bitmap2[k])
314 if (bits % BITS_PER_LONG)
315 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
319 EXPORT_SYMBOL(__bitmap_intersects);
321 int __bitmap_subset(const unsigned long *bitmap1,
322 const unsigned long *bitmap2, unsigned int bits)
324 unsigned int k, lim = bits/BITS_PER_LONG;
325 for (k = 0; k < lim; ++k)
326 if (bitmap1[k] & ~bitmap2[k])
329 if (bits % BITS_PER_LONG)
330 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
334 EXPORT_SYMBOL(__bitmap_subset);
336 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
338 unsigned int k, lim = bits/BITS_PER_LONG;
341 for (k = 0; k < lim; k++)
342 w += hweight_long(bitmap[k]);
344 if (bits % BITS_PER_LONG)
345 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
349 EXPORT_SYMBOL(__bitmap_weight);
351 void __bitmap_set(unsigned long *map, unsigned int start, int len)
353 unsigned long *p = map + BIT_WORD(start);
354 const unsigned int size = start + len;
355 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
358 while (len - bits_to_set >= 0) {
361 bits_to_set = BITS_PER_LONG;
366 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
370 EXPORT_SYMBOL(__bitmap_set);
372 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
374 unsigned long *p = map + BIT_WORD(start);
375 const unsigned int size = start + len;
376 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
379 while (len - bits_to_clear >= 0) {
380 *p &= ~mask_to_clear;
381 len -= bits_to_clear;
382 bits_to_clear = BITS_PER_LONG;
383 mask_to_clear = ~0UL;
387 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388 *p &= ~mask_to_clear;
391 EXPORT_SYMBOL(__bitmap_clear);
394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395 * @map: The address to base the search on
396 * @size: The bitmap size in bits
397 * @start: The bitnumber to start searching at
398 * @nr: The number of zeroed bits we're looking for
399 * @align_mask: Alignment mask for zero area
400 * @align_offset: Alignment offset for zero area.
402 * The @align_mask should be one less than a power of 2; the effect is that
403 * the bit offset of all zero areas this function finds plus @align_offset
404 * is multiple of that power of 2.
406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
410 unsigned long align_mask,
411 unsigned long align_offset)
413 unsigned long index, end, i;
415 index = find_next_zero_bit(map, size, start);
417 /* Align allocation */
418 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
423 i = find_next_bit(map, end, index);
430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
433 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
434 * second version by Paul Jackson, third by Joe Korty.
438 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
440 * @ubuf: pointer to user buffer containing string.
441 * @ulen: buffer size in bytes. If string is smaller than this
442 * then it must be terminated with a \0.
443 * @maskp: pointer to bitmap array that will contain result.
444 * @nmaskbits: size of bitmap, in bits.
446 int bitmap_parse_user(const char __user *ubuf,
447 unsigned int ulen, unsigned long *maskp,
453 buf = memdup_user_nul(ubuf, ulen);
457 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
462 EXPORT_SYMBOL(bitmap_parse_user);
465 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
466 * @list: indicates whether the bitmap must be list
467 * @buf: page aligned buffer into which string is placed
468 * @maskp: pointer to bitmap to convert
469 * @nmaskbits: size of bitmap, in bits
471 * Output format is a comma-separated list of decimal numbers and
472 * ranges if list is specified or hex digits grouped into comma-separated
473 * sets of 8 digits/set. Returns the number of characters written to buf.
475 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
476 * area and that sufficient storage remains at @buf to accommodate the
477 * bitmap_print_to_pagebuf() output. Returns the number of characters
478 * actually printed to @buf, excluding terminating '\0'.
480 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
483 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
485 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
486 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
488 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
491 * Region 9-38:4/10 describes the following bitmap structure:
493 * .........****......****......****......
495 * start off group_len end
500 unsigned int group_len;
504 static int bitmap_set_region(const struct region *r,
505 unsigned long *bitmap, int nbits)
512 for (start = r->start; start <= r->end; start += r->group_len)
513 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
518 static int bitmap_check_region(const struct region *r)
520 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
526 static const char *bitmap_getnum(const char *str, unsigned int *num)
528 unsigned long long n;
531 len = _parse_integer(str, 10, &n);
533 return ERR_PTR(-EINVAL);
534 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
535 return ERR_PTR(-EOVERFLOW);
541 static inline bool end_of_str(char c)
543 return c == '\0' || c == '\n';
546 static inline bool __end_of_region(char c)
548 return isspace(c) || c == ',';
551 static inline bool end_of_region(char c)
553 return __end_of_region(c) || end_of_str(c);
557 * The format allows commas and whitespaces at the beginning
560 static const char *bitmap_find_region(const char *str)
562 while (__end_of_region(*str))
565 return end_of_str(*str) ? NULL : str;
568 static const char *bitmap_find_region_reverse(const char *start, const char *end)
570 while (start <= end && __end_of_region(*end))
576 static const char *bitmap_parse_region(const char *str, struct region *r)
578 str = bitmap_getnum(str, &r->start);
582 if (end_of_region(*str))
586 return ERR_PTR(-EINVAL);
588 str = bitmap_getnum(str + 1, &r->end);
592 if (end_of_region(*str))
596 return ERR_PTR(-EINVAL);
598 str = bitmap_getnum(str + 1, &r->off);
603 return ERR_PTR(-EINVAL);
605 return bitmap_getnum(str + 1, &r->group_len);
611 r->group_len = r->end + 1;
613 return end_of_str(*str) ? NULL : str;
617 * bitmap_parselist - convert list format ASCII string to bitmap
618 * @buf: read user string from this buffer; must be terminated
620 * @maskp: write resulting mask here
621 * @nmaskbits: number of bits in mask to be written
623 * Input format is a comma-separated list of decimal numbers and
624 * ranges. Consecutively set bits are shown as two hyphen-separated
625 * decimal numbers, the smallest and largest bit numbers set in
627 * Optionally each range can be postfixed to denote that only parts of it
628 * should be set. The range will divided to groups of specific size.
629 * From each group will be used only defined amount of bits.
630 * Syntax: range:used_size/group_size
631 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
633 * Returns: 0 on success, -errno on invalid input strings. Error values:
635 * - ``-EINVAL``: wrong region format
636 * - ``-EINVAL``: invalid character in string
637 * - ``-ERANGE``: bit number specified too large for mask
638 * - ``-EOVERFLOW``: integer overflow in the input parameters
640 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
645 bitmap_zero(maskp, nmaskbits);
648 buf = bitmap_find_region(buf);
652 buf = bitmap_parse_region(buf, &r);
656 ret = bitmap_check_region(&r);
660 ret = bitmap_set_region(&r, maskp, nmaskbits);
667 EXPORT_SYMBOL(bitmap_parselist);
671 * bitmap_parselist_user()
673 * @ubuf: pointer to user buffer containing string.
674 * @ulen: buffer size in bytes. If string is smaller than this
675 * then it must be terminated with a \0.
676 * @maskp: pointer to bitmap array that will contain result.
677 * @nmaskbits: size of bitmap, in bits.
679 * Wrapper for bitmap_parselist(), providing it with user buffer.
681 int bitmap_parselist_user(const char __user *ubuf,
682 unsigned int ulen, unsigned long *maskp,
688 buf = memdup_user_nul(ubuf, ulen);
692 ret = bitmap_parselist(buf, maskp, nmaskbits);
697 EXPORT_SYMBOL(bitmap_parselist_user);
699 static const char *bitmap_get_x32_reverse(const char *start,
700 const char *end, u32 *num)
705 for (i = 0; i < 32; i += 4) {
706 c = hex_to_bin(*end--);
708 return ERR_PTR(-EINVAL);
712 if (start > end || __end_of_region(*end))
716 if (hex_to_bin(*end--) >= 0)
717 return ERR_PTR(-EOVERFLOW);
724 * bitmap_parse - convert an ASCII hex string into a bitmap.
725 * @start: pointer to buffer containing string.
726 * @buflen: buffer size in bytes. If string is smaller than this
727 * then it must be terminated with a \0 or \n. In that case,
728 * UINT_MAX may be provided instead of string length.
729 * @maskp: pointer to bitmap array that will contain result.
730 * @nmaskbits: size of bitmap, in bits.
732 * Commas group hex digits into chunks. Each chunk defines exactly 32
733 * bits of the resultant bitmask. No chunk may specify a value larger
734 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
735 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
736 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
737 * Leading, embedded and trailing whitespace accepted.
739 int bitmap_parse(const char *start, unsigned int buflen,
740 unsigned long *maskp, int nmaskbits)
742 const char *end = strnchrnul(start, buflen, '\n') - 1;
743 int chunks = BITS_TO_U32(nmaskbits);
744 u32 *bitmap = (u32 *)maskp;
748 for (chunk = 0; ; chunk++) {
749 end = bitmap_find_region_reverse(start, end);
756 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
757 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
759 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
765 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
766 if (unset_bit < nmaskbits) {
767 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
771 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
776 EXPORT_SYMBOL(bitmap_parse);
781 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
782 * @buf: pointer to a bitmap
783 * @pos: a bit position in @buf (0 <= @pos < @nbits)
784 * @nbits: number of valid bit positions in @buf
786 * Map the bit at position @pos in @buf (of length @nbits) to the
787 * ordinal of which set bit it is. If it is not set or if @pos
788 * is not a valid bit position, map to -1.
790 * If for example, just bits 4 through 7 are set in @buf, then @pos
791 * values 4 through 7 will get mapped to 0 through 3, respectively,
792 * and other @pos values will get mapped to -1. When @pos value 7
793 * gets mapped to (returns) @ord value 3 in this example, that means
794 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
796 * The bit positions 0 through @bits are valid positions in @buf.
798 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
800 if (pos >= nbits || !test_bit(pos, buf))
803 return __bitmap_weight(buf, pos);
807 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
808 * @buf: pointer to bitmap
809 * @ord: ordinal bit position (n-th set bit, n >= 0)
810 * @nbits: number of valid bit positions in @buf
812 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
813 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
814 * >= weight(buf), returns @nbits.
816 * If for example, just bits 4 through 7 are set in @buf, then @ord
817 * values 0 through 3 will get mapped to 4 through 7, respectively,
818 * and all other @ord values returns @nbits. When @ord value 3
819 * gets mapped to (returns) @pos value 7 in this example, that means
820 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
822 * The bit positions 0 through @nbits-1 are valid positions in @buf.
824 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
828 for (pos = find_first_bit(buf, nbits);
830 pos = find_next_bit(buf, nbits, pos + 1))
837 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
838 * @dst: remapped result
839 * @src: subset to be remapped
840 * @old: defines domain of map
841 * @new: defines range of map
842 * @nbits: number of bits in each of these bitmaps
844 * Let @old and @new define a mapping of bit positions, such that
845 * whatever position is held by the n-th set bit in @old is mapped
846 * to the n-th set bit in @new. In the more general case, allowing
847 * for the possibility that the weight 'w' of @new is less than the
848 * weight of @old, map the position of the n-th set bit in @old to
849 * the position of the m-th set bit in @new, where m == n % w.
851 * If either of the @old and @new bitmaps are empty, or if @src and
852 * @dst point to the same location, then this routine copies @src
855 * The positions of unset bits in @old are mapped to themselves
856 * (the identify map).
858 * Apply the above specified mapping to @src, placing the result in
859 * @dst, clearing any bits previously set in @dst.
861 * For example, lets say that @old has bits 4 through 7 set, and
862 * @new has bits 12 through 15 set. This defines the mapping of bit
863 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
864 * bit positions unchanged. So if say @src comes into this routine
865 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
868 void bitmap_remap(unsigned long *dst, const unsigned long *src,
869 const unsigned long *old, const unsigned long *new,
872 unsigned int oldbit, w;
874 if (dst == src) /* following doesn't handle inplace remaps */
876 bitmap_zero(dst, nbits);
878 w = bitmap_weight(new, nbits);
879 for_each_set_bit(oldbit, src, nbits) {
880 int n = bitmap_pos_to_ord(old, oldbit, nbits);
883 set_bit(oldbit, dst); /* identity map */
885 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
890 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
891 * @oldbit: bit position to be mapped
892 * @old: defines domain of map
893 * @new: defines range of map
894 * @bits: number of bits in each of these bitmaps
896 * Let @old and @new define a mapping of bit positions, such that
897 * whatever position is held by the n-th set bit in @old is mapped
898 * to the n-th set bit in @new. In the more general case, allowing
899 * for the possibility that the weight 'w' of @new is less than the
900 * weight of @old, map the position of the n-th set bit in @old to
901 * the position of the m-th set bit in @new, where m == n % w.
903 * The positions of unset bits in @old are mapped to themselves
904 * (the identify map).
906 * Apply the above specified mapping to bit position @oldbit, returning
907 * the new bit position.
909 * For example, lets say that @old has bits 4 through 7 set, and
910 * @new has bits 12 through 15 set. This defines the mapping of bit
911 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
912 * bit positions unchanged. So if say @oldbit is 5, then this routine
915 int bitmap_bitremap(int oldbit, const unsigned long *old,
916 const unsigned long *new, int bits)
918 int w = bitmap_weight(new, bits);
919 int n = bitmap_pos_to_ord(old, oldbit, bits);
923 return bitmap_ord_to_pos(new, n % w, bits);
927 * bitmap_onto - translate one bitmap relative to another
928 * @dst: resulting translated bitmap
929 * @orig: original untranslated bitmap
930 * @relmap: bitmap relative to which translated
931 * @bits: number of bits in each of these bitmaps
933 * Set the n-th bit of @dst iff there exists some m such that the
934 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
935 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
936 * (If you understood the previous sentence the first time your
937 * read it, you're overqualified for your current job.)
939 * In other words, @orig is mapped onto (surjectively) @dst,
940 * using the map { <n, m> | the n-th bit of @relmap is the
941 * m-th set bit of @relmap }.
943 * Any set bits in @orig above bit number W, where W is the
944 * weight of (number of set bits in) @relmap are mapped nowhere.
945 * In particular, if for all bits m set in @orig, m >= W, then
946 * @dst will end up empty. In situations where the possibility
947 * of such an empty result is not desired, one way to avoid it is
948 * to use the bitmap_fold() operator, below, to first fold the
949 * @orig bitmap over itself so that all its set bits x are in the
950 * range 0 <= x < W. The bitmap_fold() operator does this by
951 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
953 * Example [1] for bitmap_onto():
954 * Let's say @relmap has bits 30-39 set, and @orig has bits
955 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
956 * @dst will have bits 31, 33, 35, 37 and 39 set.
958 * When bit 0 is set in @orig, it means turn on the bit in
959 * @dst corresponding to whatever is the first bit (if any)
960 * that is turned on in @relmap. Since bit 0 was off in the
961 * above example, we leave off that bit (bit 30) in @dst.
963 * When bit 1 is set in @orig (as in the above example), it
964 * means turn on the bit in @dst corresponding to whatever
965 * is the second bit that is turned on in @relmap. The second
966 * bit in @relmap that was turned on in the above example was
967 * bit 31, so we turned on bit 31 in @dst.
969 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
970 * because they were the 4th, 6th, 8th and 10th set bits
971 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
972 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
974 * When bit 11 is set in @orig, it means turn on the bit in
975 * @dst corresponding to whatever is the twelfth bit that is
976 * turned on in @relmap. In the above example, there were
977 * only ten bits turned on in @relmap (30..39), so that bit
978 * 11 was set in @orig had no affect on @dst.
980 * Example [2] for bitmap_fold() + bitmap_onto():
981 * Let's say @relmap has these ten bits set::
983 * 40 41 42 43 45 48 53 61 74 95
985 * (for the curious, that's 40 plus the first ten terms of the
986 * Fibonacci sequence.)
988 * Further lets say we use the following code, invoking
989 * bitmap_fold() then bitmap_onto, as suggested above to
990 * avoid the possibility of an empty @dst result::
992 * unsigned long *tmp; // a temporary bitmap's bits
994 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
995 * bitmap_onto(dst, tmp, relmap, bits);
997 * Then this table shows what various values of @dst would be, for
998 * various @orig's. I list the zero-based positions of each set bit.
999 * The tmp column shows the intermediate result, as computed by
1000 * using bitmap_fold() to fold the @orig bitmap modulo ten
1001 * (the weight of @relmap):
1003 * =============== ============== =================
1009 * 1 3 5 7 1 3 5 7 41 43 48 61
1010 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
1011 * 0 9 18 27 0 9 8 7 40 61 74 95
1013 * 0 11 22 33 0 1 2 3 40 41 42 43
1014 * 0 12 24 36 0 2 4 6 40 42 45 53
1015 * 78 102 211 1 2 8 41 42 74 [#f1]_
1016 * =============== ============== =================
1020 * For these marked lines, if we hadn't first done bitmap_fold()
1021 * into tmp, then the @dst result would have been empty.
1023 * If either of @orig or @relmap is empty (no set bits), then @dst
1024 * will be returned empty.
1026 * If (as explained above) the only set bits in @orig are in positions
1027 * m where m >= W, (where W is the weight of @relmap) then @dst will
1028 * once again be returned empty.
1030 * All bits in @dst not set by the above rule are cleared.
1032 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1033 const unsigned long *relmap, unsigned int bits)
1035 unsigned int n, m; /* same meaning as in above comment */
1037 if (dst == orig) /* following doesn't handle inplace mappings */
1039 bitmap_zero(dst, bits);
1042 * The following code is a more efficient, but less
1043 * obvious, equivalent to the loop:
1044 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1045 * n = bitmap_ord_to_pos(orig, m, bits);
1046 * if (test_bit(m, orig))
1052 for_each_set_bit(n, relmap, bits) {
1053 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1054 if (test_bit(m, orig))
1061 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1062 * @dst: resulting smaller bitmap
1063 * @orig: original larger bitmap
1064 * @sz: specified size
1065 * @nbits: number of bits in each of these bitmaps
1067 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1068 * Clear all other bits in @dst. See further the comment and
1069 * Example [2] for bitmap_onto() for why and how to use this.
1071 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1072 unsigned int sz, unsigned int nbits)
1074 unsigned int oldbit;
1076 if (dst == orig) /* following doesn't handle inplace mappings */
1078 bitmap_zero(dst, nbits);
1080 for_each_set_bit(oldbit, orig, nbits)
1081 set_bit(oldbit % sz, dst);
1083 #endif /* CONFIG_NUMA */
1086 * Common code for bitmap_*_region() routines.
1087 * bitmap: array of unsigned longs corresponding to the bitmap
1088 * pos: the beginning of the region
1089 * order: region size (log base 2 of number of bits)
1090 * reg_op: operation(s) to perform on that region of bitmap
1092 * Can set, verify and/or release a region of bits in a bitmap,
1093 * depending on which combination of REG_OP_* flag bits is set.
1095 * A region of a bitmap is a sequence of bits in the bitmap, of
1096 * some size '1 << order' (a power of two), aligned to that same
1097 * '1 << order' power of two.
1099 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1100 * Returns 0 in all other cases and reg_ops.
1104 REG_OP_ISFREE, /* true if region is all zero bits */
1105 REG_OP_ALLOC, /* set all bits in region */
1106 REG_OP_RELEASE, /* clear all bits in region */
1109 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1111 int nbits_reg; /* number of bits in region */
1112 int index; /* index first long of region in bitmap */
1113 int offset; /* bit offset region in bitmap[index] */
1114 int nlongs_reg; /* num longs spanned by region in bitmap */
1115 int nbitsinlong; /* num bits of region in each spanned long */
1116 unsigned long mask; /* bitmask for one long of region */
1117 int i; /* scans bitmap by longs */
1118 int ret = 0; /* return value */
1121 * Either nlongs_reg == 1 (for small orders that fit in one long)
1122 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1124 nbits_reg = 1 << order;
1125 index = pos / BITS_PER_LONG;
1126 offset = pos - (index * BITS_PER_LONG);
1127 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1128 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1131 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1132 * overflows if nbitsinlong == BITS_PER_LONG.
1134 mask = (1UL << (nbitsinlong - 1));
1140 for (i = 0; i < nlongs_reg; i++) {
1141 if (bitmap[index + i] & mask)
1144 ret = 1; /* all bits in region free (zero) */
1148 for (i = 0; i < nlongs_reg; i++)
1149 bitmap[index + i] |= mask;
1152 case REG_OP_RELEASE:
1153 for (i = 0; i < nlongs_reg; i++)
1154 bitmap[index + i] &= ~mask;
1162 * bitmap_find_free_region - find a contiguous aligned mem region
1163 * @bitmap: array of unsigned longs corresponding to the bitmap
1164 * @bits: number of bits in the bitmap
1165 * @order: region size (log base 2 of number of bits) to find
1167 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1168 * allocate them (set them to one). Only consider regions of length
1169 * a power (@order) of two, aligned to that power of two, which
1170 * makes the search algorithm much faster.
1172 * Return the bit offset in bitmap of the allocated region,
1173 * or -errno on failure.
1175 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1177 unsigned int pos, end; /* scans bitmap by regions of size order */
1179 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1180 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1182 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1187 EXPORT_SYMBOL(bitmap_find_free_region);
1190 * bitmap_release_region - release allocated bitmap region
1191 * @bitmap: array of unsigned longs corresponding to the bitmap
1192 * @pos: beginning of bit region to release
1193 * @order: region size (log base 2 of number of bits) to release
1195 * This is the complement to __bitmap_find_free_region() and releases
1196 * the found region (by clearing it in the bitmap).
1200 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1202 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1204 EXPORT_SYMBOL(bitmap_release_region);
1207 * bitmap_allocate_region - allocate bitmap region
1208 * @bitmap: array of unsigned longs corresponding to the bitmap
1209 * @pos: beginning of bit region to allocate
1210 * @order: region size (log base 2 of number of bits) to allocate
1212 * Allocate (set bits in) a specified region of a bitmap.
1214 * Return 0 on success, or %-EBUSY if specified region wasn't
1215 * free (not all bits were zero).
1217 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1219 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1221 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1223 EXPORT_SYMBOL(bitmap_allocate_region);
1226 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1227 * @dst: destination buffer
1228 * @src: bitmap to copy
1229 * @nbits: number of bits in the bitmap
1231 * Require nbits % BITS_PER_LONG == 0.
1234 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1238 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1239 if (BITS_PER_LONG == 64)
1240 dst[i] = cpu_to_le64(src[i]);
1242 dst[i] = cpu_to_le32(src[i]);
1245 EXPORT_SYMBOL(bitmap_copy_le);
1248 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1250 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1253 EXPORT_SYMBOL(bitmap_alloc);
1255 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1257 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1259 EXPORT_SYMBOL(bitmap_zalloc);
1261 void bitmap_free(const unsigned long *bitmap)
1265 EXPORT_SYMBOL(bitmap_free);
1267 static void devm_bitmap_free(void *data)
1269 unsigned long *bitmap = data;
1271 bitmap_free(bitmap);
1274 unsigned long *devm_bitmap_alloc(struct device *dev,
1275 unsigned int nbits, gfp_t flags)
1277 unsigned long *bitmap;
1280 bitmap = bitmap_alloc(nbits, flags);
1284 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
1290 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
1292 unsigned long *devm_bitmap_zalloc(struct device *dev,
1293 unsigned int nbits, gfp_t flags)
1295 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
1297 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
1299 #if BITS_PER_LONG == 64
1301 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1302 * @bitmap: array of unsigned longs, the destination bitmap
1303 * @buf: array of u32 (in host byte order), the source bitmap
1304 * @nbits: number of bits in @bitmap
1306 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1308 unsigned int i, halfwords;
1310 halfwords = DIV_ROUND_UP(nbits, 32);
1311 for (i = 0; i < halfwords; i++) {
1312 bitmap[i/2] = (unsigned long) buf[i];
1313 if (++i < halfwords)
1314 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1317 /* Clear tail bits in last word beyond nbits. */
1318 if (nbits % BITS_PER_LONG)
1319 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1321 EXPORT_SYMBOL(bitmap_from_arr32);
1324 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1325 * @buf: array of u32 (in host byte order), the dest bitmap
1326 * @bitmap: array of unsigned longs, the source bitmap
1327 * @nbits: number of bits in @bitmap
1329 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1331 unsigned int i, halfwords;
1333 halfwords = DIV_ROUND_UP(nbits, 32);
1334 for (i = 0; i < halfwords; i++) {
1335 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1336 if (++i < halfwords)
1337 buf[i] = (u32) (bitmap[i/2] >> 32);
1340 /* Clear tail bits in last element of array beyond nbits. */
1341 if (nbits % BITS_PER_LONG)
1342 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1344 EXPORT_SYMBOL(bitmap_to_arr32);