Merge tag '5.19-rc-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[platform/kernel/linux-rpi.git] / lib / bitmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/ctype.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/thread_info.h>
19 #include <linux/uaccess.h>
20
21 #include <asm/page.h>
22
23 #include "kstrtox.h"
24
25 /**
26  * DOC: bitmap introduction
27  *
28  * bitmaps provide an array of bits, implemented using an
29  * array of unsigned longs.  The number of valid bits in a
30  * given bitmap does _not_ need to be an exact multiple of
31  * BITS_PER_LONG.
32  *
33  * The possible unused bits in the last, partially used word
34  * of a bitmap are 'don't care'.  The implementation makes
35  * no particular effort to keep them zero.  It ensures that
36  * their value will not affect the results of any operation.
37  * The bitmap operations that return Boolean (bitmap_empty,
38  * for example) or scalar (bitmap_weight, for example) results
39  * carefully filter out these unused bits from impacting their
40  * results.
41  *
42  * The byte ordering of bitmaps is more natural on little
43  * endian architectures.  See the big-endian headers
44  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45  * for the best explanations of this ordering.
46  */
47
48 int __bitmap_equal(const unsigned long *bitmap1,
49                 const unsigned long *bitmap2, unsigned int bits)
50 {
51         unsigned int k, lim = bits/BITS_PER_LONG;
52         for (k = 0; k < lim; ++k)
53                 if (bitmap1[k] != bitmap2[k])
54                         return 0;
55
56         if (bits % BITS_PER_LONG)
57                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58                         return 0;
59
60         return 1;
61 }
62 EXPORT_SYMBOL(__bitmap_equal);
63
64 bool __bitmap_or_equal(const unsigned long *bitmap1,
65                        const unsigned long *bitmap2,
66                        const unsigned long *bitmap3,
67                        unsigned int bits)
68 {
69         unsigned int k, lim = bits / BITS_PER_LONG;
70         unsigned long tmp;
71
72         for (k = 0; k < lim; ++k) {
73                 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
74                         return false;
75         }
76
77         if (!(bits % BITS_PER_LONG))
78                 return true;
79
80         tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
81         return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
82 }
83
84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
85 {
86         unsigned int k, lim = BITS_TO_LONGS(bits);
87         for (k = 0; k < lim; ++k)
88                 dst[k] = ~src[k];
89 }
90 EXPORT_SYMBOL(__bitmap_complement);
91
92 /**
93  * __bitmap_shift_right - logical right shift of the bits in a bitmap
94  *   @dst : destination bitmap
95  *   @src : source bitmap
96  *   @shift : shift by this many bits
97  *   @nbits : bitmap size, in bits
98  *
99  * Shifting right (dividing) means moving bits in the MS -> LS bit
100  * direction.  Zeros are fed into the vacated MS positions and the
101  * LS bits shifted off the bottom are lost.
102  */
103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
104                         unsigned shift, unsigned nbits)
105 {
106         unsigned k, lim = BITS_TO_LONGS(nbits);
107         unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
108         unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
109         for (k = 0; off + k < lim; ++k) {
110                 unsigned long upper, lower;
111
112                 /*
113                  * If shift is not word aligned, take lower rem bits of
114                  * word above and make them the top rem bits of result.
115                  */
116                 if (!rem || off + k + 1 >= lim)
117                         upper = 0;
118                 else {
119                         upper = src[off + k + 1];
120                         if (off + k + 1 == lim - 1)
121                                 upper &= mask;
122                         upper <<= (BITS_PER_LONG - rem);
123                 }
124                 lower = src[off + k];
125                 if (off + k == lim - 1)
126                         lower &= mask;
127                 lower >>= rem;
128                 dst[k] = lower | upper;
129         }
130         if (off)
131                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
132 }
133 EXPORT_SYMBOL(__bitmap_shift_right);
134
135
136 /**
137  * __bitmap_shift_left - logical left shift of the bits in a bitmap
138  *   @dst : destination bitmap
139  *   @src : source bitmap
140  *   @shift : shift by this many bits
141  *   @nbits : bitmap size, in bits
142  *
143  * Shifting left (multiplying) means moving bits in the LS -> MS
144  * direction.  Zeros are fed into the vacated LS bit positions
145  * and those MS bits shifted off the top are lost.
146  */
147
148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149                         unsigned int shift, unsigned int nbits)
150 {
151         int k;
152         unsigned int lim = BITS_TO_LONGS(nbits);
153         unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
154         for (k = lim - off - 1; k >= 0; --k) {
155                 unsigned long upper, lower;
156
157                 /*
158                  * If shift is not word aligned, take upper rem bits of
159                  * word below and make them the bottom rem bits of result.
160                  */
161                 if (rem && k > 0)
162                         lower = src[k - 1] >> (BITS_PER_LONG - rem);
163                 else
164                         lower = 0;
165                 upper = src[k] << rem;
166                 dst[k + off] = lower | upper;
167         }
168         if (off)
169                 memset(dst, 0, off*sizeof(unsigned long));
170 }
171 EXPORT_SYMBOL(__bitmap_shift_left);
172
173 /**
174  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
175  * @dst: destination bitmap, might overlap with src
176  * @src: source bitmap
177  * @first: start bit of region to be removed
178  * @cut: number of bits to remove
179  * @nbits: bitmap size, in bits
180  *
181  * Set the n-th bit of @dst iff the n-th bit of @src is set and
182  * n is less than @first, or the m-th bit of @src is set for any
183  * m such that @first <= n < nbits, and m = n + @cut.
184  *
185  * In pictures, example for a big-endian 32-bit architecture:
186  *
187  * The @src bitmap is::
188  *
189  *   31                                   63
190  *   |                                    |
191  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
192  *                   |  |              |                                    |
193  *                  16  14             0                                   32
194  *
195  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
196  *
197  *   31                                   63
198  *   |                                    |
199  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
200  *                      |              |                                    |
201  *                      14 (bit 17     0                                   32
202  *                          from @src)
203  *
204  * Note that @dst and @src might overlap partially or entirely.
205  *
206  * This is implemented in the obvious way, with a shift and carry
207  * step for each moved bit. Optimisation is left as an exercise
208  * for the compiler.
209  */
210 void bitmap_cut(unsigned long *dst, const unsigned long *src,
211                 unsigned int first, unsigned int cut, unsigned int nbits)
212 {
213         unsigned int len = BITS_TO_LONGS(nbits);
214         unsigned long keep = 0, carry;
215         int i;
216
217         if (first % BITS_PER_LONG) {
218                 keep = src[first / BITS_PER_LONG] &
219                        (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
220         }
221
222         memmove(dst, src, len * sizeof(*dst));
223
224         while (cut--) {
225                 for (i = first / BITS_PER_LONG; i < len; i++) {
226                         if (i < len - 1)
227                                 carry = dst[i + 1] & 1UL;
228                         else
229                                 carry = 0;
230
231                         dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
232                 }
233         }
234
235         dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
236         dst[first / BITS_PER_LONG] |= keep;
237 }
238 EXPORT_SYMBOL(bitmap_cut);
239
240 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
241                                 const unsigned long *bitmap2, unsigned int bits)
242 {
243         unsigned int k;
244         unsigned int lim = bits/BITS_PER_LONG;
245         unsigned long result = 0;
246
247         for (k = 0; k < lim; k++)
248                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
249         if (bits % BITS_PER_LONG)
250                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
251                            BITMAP_LAST_WORD_MASK(bits));
252         return result != 0;
253 }
254 EXPORT_SYMBOL(__bitmap_and);
255
256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
257                                 const unsigned long *bitmap2, unsigned int bits)
258 {
259         unsigned int k;
260         unsigned int nr = BITS_TO_LONGS(bits);
261
262         for (k = 0; k < nr; k++)
263                 dst[k] = bitmap1[k] | bitmap2[k];
264 }
265 EXPORT_SYMBOL(__bitmap_or);
266
267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
268                                 const unsigned long *bitmap2, unsigned int bits)
269 {
270         unsigned int k;
271         unsigned int nr = BITS_TO_LONGS(bits);
272
273         for (k = 0; k < nr; k++)
274                 dst[k] = bitmap1[k] ^ bitmap2[k];
275 }
276 EXPORT_SYMBOL(__bitmap_xor);
277
278 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
279                                 const unsigned long *bitmap2, unsigned int bits)
280 {
281         unsigned int k;
282         unsigned int lim = bits/BITS_PER_LONG;
283         unsigned long result = 0;
284
285         for (k = 0; k < lim; k++)
286                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
287         if (bits % BITS_PER_LONG)
288                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
289                            BITMAP_LAST_WORD_MASK(bits));
290         return result != 0;
291 }
292 EXPORT_SYMBOL(__bitmap_andnot);
293
294 void __bitmap_replace(unsigned long *dst,
295                       const unsigned long *old, const unsigned long *new,
296                       const unsigned long *mask, unsigned int nbits)
297 {
298         unsigned int k;
299         unsigned int nr = BITS_TO_LONGS(nbits);
300
301         for (k = 0; k < nr; k++)
302                 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
303 }
304 EXPORT_SYMBOL(__bitmap_replace);
305
306 int __bitmap_intersects(const unsigned long *bitmap1,
307                         const unsigned long *bitmap2, unsigned int bits)
308 {
309         unsigned int k, lim = bits/BITS_PER_LONG;
310         for (k = 0; k < lim; ++k)
311                 if (bitmap1[k] & bitmap2[k])
312                         return 1;
313
314         if (bits % BITS_PER_LONG)
315                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
316                         return 1;
317         return 0;
318 }
319 EXPORT_SYMBOL(__bitmap_intersects);
320
321 int __bitmap_subset(const unsigned long *bitmap1,
322                     const unsigned long *bitmap2, unsigned int bits)
323 {
324         unsigned int k, lim = bits/BITS_PER_LONG;
325         for (k = 0; k < lim; ++k)
326                 if (bitmap1[k] & ~bitmap2[k])
327                         return 0;
328
329         if (bits % BITS_PER_LONG)
330                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
331                         return 0;
332         return 1;
333 }
334 EXPORT_SYMBOL(__bitmap_subset);
335
336 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
337 {
338         unsigned int k, lim = bits/BITS_PER_LONG;
339         int w = 0;
340
341         for (k = 0; k < lim; k++)
342                 w += hweight_long(bitmap[k]);
343
344         if (bits % BITS_PER_LONG)
345                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
346
347         return w;
348 }
349 EXPORT_SYMBOL(__bitmap_weight);
350
351 void __bitmap_set(unsigned long *map, unsigned int start, int len)
352 {
353         unsigned long *p = map + BIT_WORD(start);
354         const unsigned int size = start + len;
355         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357
358         while (len - bits_to_set >= 0) {
359                 *p |= mask_to_set;
360                 len -= bits_to_set;
361                 bits_to_set = BITS_PER_LONG;
362                 mask_to_set = ~0UL;
363                 p++;
364         }
365         if (len) {
366                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367                 *p |= mask_to_set;
368         }
369 }
370 EXPORT_SYMBOL(__bitmap_set);
371
372 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
373 {
374         unsigned long *p = map + BIT_WORD(start);
375         const unsigned int size = start + len;
376         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378
379         while (len - bits_to_clear >= 0) {
380                 *p &= ~mask_to_clear;
381                 len -= bits_to_clear;
382                 bits_to_clear = BITS_PER_LONG;
383                 mask_to_clear = ~0UL;
384                 p++;
385         }
386         if (len) {
387                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388                 *p &= ~mask_to_clear;
389         }
390 }
391 EXPORT_SYMBOL(__bitmap_clear);
392
393 /**
394  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395  * @map: The address to base the search on
396  * @size: The bitmap size in bits
397  * @start: The bitnumber to start searching at
398  * @nr: The number of zeroed bits we're looking for
399  * @align_mask: Alignment mask for zero area
400  * @align_offset: Alignment offset for zero area.
401  *
402  * The @align_mask should be one less than a power of 2; the effect is that
403  * the bit offset of all zero areas this function finds plus @align_offset
404  * is multiple of that power of 2.
405  */
406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407                                              unsigned long size,
408                                              unsigned long start,
409                                              unsigned int nr,
410                                              unsigned long align_mask,
411                                              unsigned long align_offset)
412 {
413         unsigned long index, end, i;
414 again:
415         index = find_next_zero_bit(map, size, start);
416
417         /* Align allocation */
418         index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
419
420         end = index + nr;
421         if (end > size)
422                 return end;
423         i = find_next_bit(map, end, index);
424         if (i < end) {
425                 start = i + 1;
426                 goto again;
427         }
428         return index;
429 }
430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
431
432 /*
433  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
434  * second version by Paul Jackson, third by Joe Korty.
435  */
436
437 /**
438  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
439  *
440  * @ubuf: pointer to user buffer containing string.
441  * @ulen: buffer size in bytes.  If string is smaller than this
442  *    then it must be terminated with a \0.
443  * @maskp: pointer to bitmap array that will contain result.
444  * @nmaskbits: size of bitmap, in bits.
445  */
446 int bitmap_parse_user(const char __user *ubuf,
447                         unsigned int ulen, unsigned long *maskp,
448                         int nmaskbits)
449 {
450         char *buf;
451         int ret;
452
453         buf = memdup_user_nul(ubuf, ulen);
454         if (IS_ERR(buf))
455                 return PTR_ERR(buf);
456
457         ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
458
459         kfree(buf);
460         return ret;
461 }
462 EXPORT_SYMBOL(bitmap_parse_user);
463
464 /**
465  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
466  * @list: indicates whether the bitmap must be list
467  * @buf: page aligned buffer into which string is placed
468  * @maskp: pointer to bitmap to convert
469  * @nmaskbits: size of bitmap, in bits
470  *
471  * Output format is a comma-separated list of decimal numbers and
472  * ranges if list is specified or hex digits grouped into comma-separated
473  * sets of 8 digits/set. Returns the number of characters written to buf.
474  *
475  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
476  * area and that sufficient storage remains at @buf to accommodate the
477  * bitmap_print_to_pagebuf() output. Returns the number of characters
478  * actually printed to @buf, excluding terminating '\0'.
479  */
480 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
481                             int nmaskbits)
482 {
483         ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
484
485         return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
486                       scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
487 }
488 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
489
490 /**
491  * bitmap_print_to_buf  - convert bitmap to list or hex format ASCII string
492  * @list: indicates whether the bitmap must be list
493  *      true:  print in decimal list format
494  *      false: print in hexadecimal bitmask format
495  * @buf: buffer into which string is placed
496  * @maskp: pointer to bitmap to convert
497  * @nmaskbits: size of bitmap, in bits
498  * @off: in the string from which we are copying, We copy to @buf
499  * @count: the maximum number of bytes to print
500  */
501 static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp,
502                 int nmaskbits, loff_t off, size_t count)
503 {
504         const char *fmt = list ? "%*pbl\n" : "%*pb\n";
505         ssize_t size;
506         void *data;
507
508         data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp);
509         if (!data)
510                 return -ENOMEM;
511
512         size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1);
513         kfree(data);
514
515         return size;
516 }
517
518 /**
519  * bitmap_print_bitmask_to_buf  - convert bitmap to hex bitmask format ASCII string
520  * @buf: buffer into which string is placed
521  * @maskp: pointer to bitmap to convert
522  * @nmaskbits: size of bitmap, in bits
523  * @off: in the string from which we are copying, We copy to @buf
524  * @count: the maximum number of bytes to print
525  *
526  * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper
527  * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal
528  * bitmask and decimal list to userspace by sysfs ABI.
529  * Drivers might be using a normal attribute for this kind of ABIs. A
530  * normal attribute typically has show entry as below:
531  * static ssize_t example_attribute_show(struct device *dev,
532  *              struct device_attribute *attr, char *buf)
533  * {
534  *      ...
535  *      return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max);
536  * }
537  * show entry of attribute has no offset and count parameters and this
538  * means the file is limited to one page only.
539  * bitmap_print_to_pagebuf() API works terribly well for this kind of
540  * normal attribute with buf parameter and without offset, count:
541  * bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
542  *                         int nmaskbits)
543  * {
544  * }
545  * The problem is once we have a large bitmap, we have a chance to get a
546  * bitmask or list more than one page. Especially for list, it could be
547  * as complex as 0,3,5,7,9,... We have no simple way to know it exact size.
548  * It turns out bin_attribute is a way to break this limit. bin_attribute
549  * has show entry as below:
550  * static ssize_t
551  * example_bin_attribute_show(struct file *filp, struct kobject *kobj,
552  *              struct bin_attribute *attr, char *buf,
553  *              loff_t offset, size_t count)
554  * {
555  *      ...
556  * }
557  * With the new offset and count parameters, this makes sysfs ABI be able
558  * to support file size more than one page. For example, offset could be
559  * >= 4096.
560  * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their
561  * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf()
562  * make those drivers be able to support large bitmask and list after they
563  * move to use bin_attribute. In result, we have to pass the corresponding
564  * parameters such as off, count from bin_attribute show entry to this API.
565  *
566  * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf()
567  * is similar with cpumap_print_to_pagebuf(),  the difference is that
568  * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption
569  * the destination buffer is exactly one page and won't be more than one page.
570  * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other
571  * hand, mainly serves bin_attribute which doesn't work with exact one page,
572  * and it can break the size limit of converted decimal list and hexadecimal
573  * bitmask.
574  *
575  * WARNING!
576  *
577  * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf().
578  * It is intended to workaround sysfs limitations discussed above and should be
579  * used carefully in general case for the following reasons:
580  *  - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf().
581  *  - Memory complexity is O(nbits), comparing to O(1) for snprintf().
582  *  - @off and @count are NOT offset and number of bits to print.
583  *  - If printing part of bitmap as list, the resulting string is not a correct
584  *    list representation of bitmap. Particularly, some bits within or out of
585  *    related interval may be erroneously set or unset. The format of the string
586  *    may be broken, so bitmap_parselist-like parser may fail parsing it.
587  *  - If printing the whole bitmap as list by parts, user must ensure the order
588  *    of calls of the function such that the offset is incremented linearly.
589  *  - If printing the whole bitmap as list by parts, user must keep bitmap
590  *    unchanged between the very first and very last call. Otherwise concatenated
591  *    result may be incorrect, and format may be broken.
592  *
593  * Returns the number of characters actually printed to @buf
594  */
595 int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
596                                 int nmaskbits, loff_t off, size_t count)
597 {
598         return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count);
599 }
600 EXPORT_SYMBOL(bitmap_print_bitmask_to_buf);
601
602 /**
603  * bitmap_print_list_to_buf  - convert bitmap to decimal list format ASCII string
604  * @buf: buffer into which string is placed
605  * @maskp: pointer to bitmap to convert
606  * @nmaskbits: size of bitmap, in bits
607  * @off: in the string from which we are copying, We copy to @buf
608  * @count: the maximum number of bytes to print
609  *
610  * Everything is same with the above bitmap_print_bitmask_to_buf() except
611  * the print format.
612  */
613 int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
614                              int nmaskbits, loff_t off, size_t count)
615 {
616         return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count);
617 }
618 EXPORT_SYMBOL(bitmap_print_list_to_buf);
619
620 /*
621  * Region 9-38:4/10 describes the following bitmap structure:
622  * 0       9  12    18                  38           N
623  * .........****......****......****..................
624  *          ^  ^     ^                   ^           ^
625  *      start  off   group_len         end       nbits
626  */
627 struct region {
628         unsigned int start;
629         unsigned int off;
630         unsigned int group_len;
631         unsigned int end;
632         unsigned int nbits;
633 };
634
635 static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
636 {
637         unsigned int start;
638
639         for (start = r->start; start <= r->end; start += r->group_len)
640                 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
641 }
642
643 static int bitmap_check_region(const struct region *r)
644 {
645         if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
646                 return -EINVAL;
647
648         if (r->end >= r->nbits)
649                 return -ERANGE;
650
651         return 0;
652 }
653
654 static const char *bitmap_getnum(const char *str, unsigned int *num,
655                                  unsigned int lastbit)
656 {
657         unsigned long long n;
658         unsigned int len;
659
660         if (str[0] == 'N') {
661                 *num = lastbit;
662                 return str + 1;
663         }
664
665         len = _parse_integer(str, 10, &n);
666         if (!len)
667                 return ERR_PTR(-EINVAL);
668         if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
669                 return ERR_PTR(-EOVERFLOW);
670
671         *num = n;
672         return str + len;
673 }
674
675 static inline bool end_of_str(char c)
676 {
677         return c == '\0' || c == '\n';
678 }
679
680 static inline bool __end_of_region(char c)
681 {
682         return isspace(c) || c == ',';
683 }
684
685 static inline bool end_of_region(char c)
686 {
687         return __end_of_region(c) || end_of_str(c);
688 }
689
690 /*
691  * The format allows commas and whitespaces at the beginning
692  * of the region.
693  */
694 static const char *bitmap_find_region(const char *str)
695 {
696         while (__end_of_region(*str))
697                 str++;
698
699         return end_of_str(*str) ? NULL : str;
700 }
701
702 static const char *bitmap_find_region_reverse(const char *start, const char *end)
703 {
704         while (start <= end && __end_of_region(*end))
705                 end--;
706
707         return end;
708 }
709
710 static const char *bitmap_parse_region(const char *str, struct region *r)
711 {
712         unsigned int lastbit = r->nbits - 1;
713
714         if (!strncasecmp(str, "all", 3)) {
715                 r->start = 0;
716                 r->end = lastbit;
717                 str += 3;
718
719                 goto check_pattern;
720         }
721
722         str = bitmap_getnum(str, &r->start, lastbit);
723         if (IS_ERR(str))
724                 return str;
725
726         if (end_of_region(*str))
727                 goto no_end;
728
729         if (*str != '-')
730                 return ERR_PTR(-EINVAL);
731
732         str = bitmap_getnum(str + 1, &r->end, lastbit);
733         if (IS_ERR(str))
734                 return str;
735
736 check_pattern:
737         if (end_of_region(*str))
738                 goto no_pattern;
739
740         if (*str != ':')
741                 return ERR_PTR(-EINVAL);
742
743         str = bitmap_getnum(str + 1, &r->off, lastbit);
744         if (IS_ERR(str))
745                 return str;
746
747         if (*str != '/')
748                 return ERR_PTR(-EINVAL);
749
750         return bitmap_getnum(str + 1, &r->group_len, lastbit);
751
752 no_end:
753         r->end = r->start;
754 no_pattern:
755         r->off = r->end + 1;
756         r->group_len = r->end + 1;
757
758         return end_of_str(*str) ? NULL : str;
759 }
760
761 /**
762  * bitmap_parselist - convert list format ASCII string to bitmap
763  * @buf: read user string from this buffer; must be terminated
764  *    with a \0 or \n.
765  * @maskp: write resulting mask here
766  * @nmaskbits: number of bits in mask to be written
767  *
768  * Input format is a comma-separated list of decimal numbers and
769  * ranges.  Consecutively set bits are shown as two hyphen-separated
770  * decimal numbers, the smallest and largest bit numbers set in
771  * the range.
772  * Optionally each range can be postfixed to denote that only parts of it
773  * should be set. The range will divided to groups of specific size.
774  * From each group will be used only defined amount of bits.
775  * Syntax: range:used_size/group_size
776  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
777  * The value 'N' can be used as a dynamically substituted token for the
778  * maximum allowed value; i.e (nmaskbits - 1).  Keep in mind that it is
779  * dynamic, so if system changes cause the bitmap width to change, such
780  * as more cores in a CPU list, then any ranges using N will also change.
781  *
782  * Returns: 0 on success, -errno on invalid input strings. Error values:
783  *
784  *   - ``-EINVAL``: wrong region format
785  *   - ``-EINVAL``: invalid character in string
786  *   - ``-ERANGE``: bit number specified too large for mask
787  *   - ``-EOVERFLOW``: integer overflow in the input parameters
788  */
789 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
790 {
791         struct region r;
792         long ret;
793
794         r.nbits = nmaskbits;
795         bitmap_zero(maskp, r.nbits);
796
797         while (buf) {
798                 buf = bitmap_find_region(buf);
799                 if (buf == NULL)
800                         return 0;
801
802                 buf = bitmap_parse_region(buf, &r);
803                 if (IS_ERR(buf))
804                         return PTR_ERR(buf);
805
806                 ret = bitmap_check_region(&r);
807                 if (ret)
808                         return ret;
809
810                 bitmap_set_region(&r, maskp);
811         }
812
813         return 0;
814 }
815 EXPORT_SYMBOL(bitmap_parselist);
816
817
818 /**
819  * bitmap_parselist_user() - convert user buffer's list format ASCII
820  * string to bitmap
821  *
822  * @ubuf: pointer to user buffer containing string.
823  * @ulen: buffer size in bytes.  If string is smaller than this
824  *    then it must be terminated with a \0.
825  * @maskp: pointer to bitmap array that will contain result.
826  * @nmaskbits: size of bitmap, in bits.
827  *
828  * Wrapper for bitmap_parselist(), providing it with user buffer.
829  */
830 int bitmap_parselist_user(const char __user *ubuf,
831                         unsigned int ulen, unsigned long *maskp,
832                         int nmaskbits)
833 {
834         char *buf;
835         int ret;
836
837         buf = memdup_user_nul(ubuf, ulen);
838         if (IS_ERR(buf))
839                 return PTR_ERR(buf);
840
841         ret = bitmap_parselist(buf, maskp, nmaskbits);
842
843         kfree(buf);
844         return ret;
845 }
846 EXPORT_SYMBOL(bitmap_parselist_user);
847
848 static const char *bitmap_get_x32_reverse(const char *start,
849                                         const char *end, u32 *num)
850 {
851         u32 ret = 0;
852         int c, i;
853
854         for (i = 0; i < 32; i += 4) {
855                 c = hex_to_bin(*end--);
856                 if (c < 0)
857                         return ERR_PTR(-EINVAL);
858
859                 ret |= c << i;
860
861                 if (start > end || __end_of_region(*end))
862                         goto out;
863         }
864
865         if (hex_to_bin(*end--) >= 0)
866                 return ERR_PTR(-EOVERFLOW);
867 out:
868         *num = ret;
869         return end;
870 }
871
872 /**
873  * bitmap_parse - convert an ASCII hex string into a bitmap.
874  * @start: pointer to buffer containing string.
875  * @buflen: buffer size in bytes.  If string is smaller than this
876  *    then it must be terminated with a \0 or \n. In that case,
877  *    UINT_MAX may be provided instead of string length.
878  * @maskp: pointer to bitmap array that will contain result.
879  * @nmaskbits: size of bitmap, in bits.
880  *
881  * Commas group hex digits into chunks.  Each chunk defines exactly 32
882  * bits of the resultant bitmask.  No chunk may specify a value larger
883  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
884  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
885  * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
886  * Leading, embedded and trailing whitespace accepted.
887  */
888 int bitmap_parse(const char *start, unsigned int buflen,
889                 unsigned long *maskp, int nmaskbits)
890 {
891         const char *end = strnchrnul(start, buflen, '\n') - 1;
892         int chunks = BITS_TO_U32(nmaskbits);
893         u32 *bitmap = (u32 *)maskp;
894         int unset_bit;
895         int chunk;
896
897         for (chunk = 0; ; chunk++) {
898                 end = bitmap_find_region_reverse(start, end);
899                 if (start > end)
900                         break;
901
902                 if (!chunks--)
903                         return -EOVERFLOW;
904
905 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
906                 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
907 #else
908                 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
909 #endif
910                 if (IS_ERR(end))
911                         return PTR_ERR(end);
912         }
913
914         unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
915         if (unset_bit < nmaskbits) {
916                 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
917                 return 0;
918         }
919
920         if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
921                 return -EOVERFLOW;
922
923         return 0;
924 }
925 EXPORT_SYMBOL(bitmap_parse);
926
927 /**
928  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
929  *      @buf: pointer to a bitmap
930  *      @pos: a bit position in @buf (0 <= @pos < @nbits)
931  *      @nbits: number of valid bit positions in @buf
932  *
933  * Map the bit at position @pos in @buf (of length @nbits) to the
934  * ordinal of which set bit it is.  If it is not set or if @pos
935  * is not a valid bit position, map to -1.
936  *
937  * If for example, just bits 4 through 7 are set in @buf, then @pos
938  * values 4 through 7 will get mapped to 0 through 3, respectively,
939  * and other @pos values will get mapped to -1.  When @pos value 7
940  * gets mapped to (returns) @ord value 3 in this example, that means
941  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
942  *
943  * The bit positions 0 through @bits are valid positions in @buf.
944  */
945 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
946 {
947         if (pos >= nbits || !test_bit(pos, buf))
948                 return -1;
949
950         return __bitmap_weight(buf, pos);
951 }
952
953 /**
954  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
955  *      @buf: pointer to bitmap
956  *      @ord: ordinal bit position (n-th set bit, n >= 0)
957  *      @nbits: number of valid bit positions in @buf
958  *
959  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
960  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
961  * >= weight(buf), returns @nbits.
962  *
963  * If for example, just bits 4 through 7 are set in @buf, then @ord
964  * values 0 through 3 will get mapped to 4 through 7, respectively,
965  * and all other @ord values returns @nbits.  When @ord value 3
966  * gets mapped to (returns) @pos value 7 in this example, that means
967  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
968  *
969  * The bit positions 0 through @nbits-1 are valid positions in @buf.
970  */
971 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
972 {
973         unsigned int pos;
974
975         for (pos = find_first_bit(buf, nbits);
976              pos < nbits && ord;
977              pos = find_next_bit(buf, nbits, pos + 1))
978                 ord--;
979
980         return pos;
981 }
982
983 /**
984  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
985  *      @dst: remapped result
986  *      @src: subset to be remapped
987  *      @old: defines domain of map
988  *      @new: defines range of map
989  *      @nbits: number of bits in each of these bitmaps
990  *
991  * Let @old and @new define a mapping of bit positions, such that
992  * whatever position is held by the n-th set bit in @old is mapped
993  * to the n-th set bit in @new.  In the more general case, allowing
994  * for the possibility that the weight 'w' of @new is less than the
995  * weight of @old, map the position of the n-th set bit in @old to
996  * the position of the m-th set bit in @new, where m == n % w.
997  *
998  * If either of the @old and @new bitmaps are empty, or if @src and
999  * @dst point to the same location, then this routine copies @src
1000  * to @dst.
1001  *
1002  * The positions of unset bits in @old are mapped to themselves
1003  * (the identify map).
1004  *
1005  * Apply the above specified mapping to @src, placing the result in
1006  * @dst, clearing any bits previously set in @dst.
1007  *
1008  * For example, lets say that @old has bits 4 through 7 set, and
1009  * @new has bits 12 through 15 set.  This defines the mapping of bit
1010  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
1011  * bit positions unchanged.  So if say @src comes into this routine
1012  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
1013  * 13 and 15 set.
1014  */
1015 void bitmap_remap(unsigned long *dst, const unsigned long *src,
1016                 const unsigned long *old, const unsigned long *new,
1017                 unsigned int nbits)
1018 {
1019         unsigned int oldbit, w;
1020
1021         if (dst == src)         /* following doesn't handle inplace remaps */
1022                 return;
1023         bitmap_zero(dst, nbits);
1024
1025         w = bitmap_weight(new, nbits);
1026         for_each_set_bit(oldbit, src, nbits) {
1027                 int n = bitmap_pos_to_ord(old, oldbit, nbits);
1028
1029                 if (n < 0 || w == 0)
1030                         set_bit(oldbit, dst);   /* identity map */
1031                 else
1032                         set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
1033         }
1034 }
1035 EXPORT_SYMBOL(bitmap_remap);
1036
1037 /**
1038  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
1039  *      @oldbit: bit position to be mapped
1040  *      @old: defines domain of map
1041  *      @new: defines range of map
1042  *      @bits: number of bits in each of these bitmaps
1043  *
1044  * Let @old and @new define a mapping of bit positions, such that
1045  * whatever position is held by the n-th set bit in @old is mapped
1046  * to the n-th set bit in @new.  In the more general case, allowing
1047  * for the possibility that the weight 'w' of @new is less than the
1048  * weight of @old, map the position of the n-th set bit in @old to
1049  * the position of the m-th set bit in @new, where m == n % w.
1050  *
1051  * The positions of unset bits in @old are mapped to themselves
1052  * (the identify map).
1053  *
1054  * Apply the above specified mapping to bit position @oldbit, returning
1055  * the new bit position.
1056  *
1057  * For example, lets say that @old has bits 4 through 7 set, and
1058  * @new has bits 12 through 15 set.  This defines the mapping of bit
1059  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
1060  * bit positions unchanged.  So if say @oldbit is 5, then this routine
1061  * returns 13.
1062  */
1063 int bitmap_bitremap(int oldbit, const unsigned long *old,
1064                                 const unsigned long *new, int bits)
1065 {
1066         int w = bitmap_weight(new, bits);
1067         int n = bitmap_pos_to_ord(old, oldbit, bits);
1068         if (n < 0 || w == 0)
1069                 return oldbit;
1070         else
1071                 return bitmap_ord_to_pos(new, n % w, bits);
1072 }
1073 EXPORT_SYMBOL(bitmap_bitremap);
1074
1075 #ifdef CONFIG_NUMA
1076 /**
1077  * bitmap_onto - translate one bitmap relative to another
1078  *      @dst: resulting translated bitmap
1079  *      @orig: original untranslated bitmap
1080  *      @relmap: bitmap relative to which translated
1081  *      @bits: number of bits in each of these bitmaps
1082  *
1083  * Set the n-th bit of @dst iff there exists some m such that the
1084  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
1085  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
1086  * (If you understood the previous sentence the first time your
1087  * read it, you're overqualified for your current job.)
1088  *
1089  * In other words, @orig is mapped onto (surjectively) @dst,
1090  * using the map { <n, m> | the n-th bit of @relmap is the
1091  * m-th set bit of @relmap }.
1092  *
1093  * Any set bits in @orig above bit number W, where W is the
1094  * weight of (number of set bits in) @relmap are mapped nowhere.
1095  * In particular, if for all bits m set in @orig, m >= W, then
1096  * @dst will end up empty.  In situations where the possibility
1097  * of such an empty result is not desired, one way to avoid it is
1098  * to use the bitmap_fold() operator, below, to first fold the
1099  * @orig bitmap over itself so that all its set bits x are in the
1100  * range 0 <= x < W.  The bitmap_fold() operator does this by
1101  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
1102  *
1103  * Example [1] for bitmap_onto():
1104  *  Let's say @relmap has bits 30-39 set, and @orig has bits
1105  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
1106  *  @dst will have bits 31, 33, 35, 37 and 39 set.
1107  *
1108  *  When bit 0 is set in @orig, it means turn on the bit in
1109  *  @dst corresponding to whatever is the first bit (if any)
1110  *  that is turned on in @relmap.  Since bit 0 was off in the
1111  *  above example, we leave off that bit (bit 30) in @dst.
1112  *
1113  *  When bit 1 is set in @orig (as in the above example), it
1114  *  means turn on the bit in @dst corresponding to whatever
1115  *  is the second bit that is turned on in @relmap.  The second
1116  *  bit in @relmap that was turned on in the above example was
1117  *  bit 31, so we turned on bit 31 in @dst.
1118  *
1119  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
1120  *  because they were the 4th, 6th, 8th and 10th set bits
1121  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
1122  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
1123  *
1124  *  When bit 11 is set in @orig, it means turn on the bit in
1125  *  @dst corresponding to whatever is the twelfth bit that is
1126  *  turned on in @relmap.  In the above example, there were
1127  *  only ten bits turned on in @relmap (30..39), so that bit
1128  *  11 was set in @orig had no affect on @dst.
1129  *
1130  * Example [2] for bitmap_fold() + bitmap_onto():
1131  *  Let's say @relmap has these ten bits set::
1132  *
1133  *              40 41 42 43 45 48 53 61 74 95
1134  *
1135  *  (for the curious, that's 40 plus the first ten terms of the
1136  *  Fibonacci sequence.)
1137  *
1138  *  Further lets say we use the following code, invoking
1139  *  bitmap_fold() then bitmap_onto, as suggested above to
1140  *  avoid the possibility of an empty @dst result::
1141  *
1142  *      unsigned long *tmp;     // a temporary bitmap's bits
1143  *
1144  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
1145  *      bitmap_onto(dst, tmp, relmap, bits);
1146  *
1147  *  Then this table shows what various values of @dst would be, for
1148  *  various @orig's.  I list the zero-based positions of each set bit.
1149  *  The tmp column shows the intermediate result, as computed by
1150  *  using bitmap_fold() to fold the @orig bitmap modulo ten
1151  *  (the weight of @relmap):
1152  *
1153  *      =============== ============== =================
1154  *      @orig           tmp            @dst
1155  *      0                0             40
1156  *      1                1             41
1157  *      9                9             95
1158  *      10               0             40 [#f1]_
1159  *      1 3 5 7          1 3 5 7       41 43 48 61
1160  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
1161  *      0 9 18 27        0 9 8 7       40 61 74 95
1162  *      0 10 20 30       0             40
1163  *      0 11 22 33       0 1 2 3       40 41 42 43
1164  *      0 12 24 36       0 2 4 6       40 42 45 53
1165  *      78 102 211       1 2 8         41 42 74 [#f1]_
1166  *      =============== ============== =================
1167  *
1168  * .. [#f1]
1169  *
1170  *     For these marked lines, if we hadn't first done bitmap_fold()
1171  *     into tmp, then the @dst result would have been empty.
1172  *
1173  * If either of @orig or @relmap is empty (no set bits), then @dst
1174  * will be returned empty.
1175  *
1176  * If (as explained above) the only set bits in @orig are in positions
1177  * m where m >= W, (where W is the weight of @relmap) then @dst will
1178  * once again be returned empty.
1179  *
1180  * All bits in @dst not set by the above rule are cleared.
1181  */
1182 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1183                         const unsigned long *relmap, unsigned int bits)
1184 {
1185         unsigned int n, m;      /* same meaning as in above comment */
1186
1187         if (dst == orig)        /* following doesn't handle inplace mappings */
1188                 return;
1189         bitmap_zero(dst, bits);
1190
1191         /*
1192          * The following code is a more efficient, but less
1193          * obvious, equivalent to the loop:
1194          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1195          *              n = bitmap_ord_to_pos(orig, m, bits);
1196          *              if (test_bit(m, orig))
1197          *                      set_bit(n, dst);
1198          *      }
1199          */
1200
1201         m = 0;
1202         for_each_set_bit(n, relmap, bits) {
1203                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1204                 if (test_bit(m, orig))
1205                         set_bit(n, dst);
1206                 m++;
1207         }
1208 }
1209
1210 /**
1211  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1212  *      @dst: resulting smaller bitmap
1213  *      @orig: original larger bitmap
1214  *      @sz: specified size
1215  *      @nbits: number of bits in each of these bitmaps
1216  *
1217  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1218  * Clear all other bits in @dst.  See further the comment and
1219  * Example [2] for bitmap_onto() for why and how to use this.
1220  */
1221 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1222                         unsigned int sz, unsigned int nbits)
1223 {
1224         unsigned int oldbit;
1225
1226         if (dst == orig)        /* following doesn't handle inplace mappings */
1227                 return;
1228         bitmap_zero(dst, nbits);
1229
1230         for_each_set_bit(oldbit, orig, nbits)
1231                 set_bit(oldbit % sz, dst);
1232 }
1233 #endif /* CONFIG_NUMA */
1234
1235 /*
1236  * Common code for bitmap_*_region() routines.
1237  *      bitmap: array of unsigned longs corresponding to the bitmap
1238  *      pos: the beginning of the region
1239  *      order: region size (log base 2 of number of bits)
1240  *      reg_op: operation(s) to perform on that region of bitmap
1241  *
1242  * Can set, verify and/or release a region of bits in a bitmap,
1243  * depending on which combination of REG_OP_* flag bits is set.
1244  *
1245  * A region of a bitmap is a sequence of bits in the bitmap, of
1246  * some size '1 << order' (a power of two), aligned to that same
1247  * '1 << order' power of two.
1248  *
1249  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1250  * Returns 0 in all other cases and reg_ops.
1251  */
1252
1253 enum {
1254         REG_OP_ISFREE,          /* true if region is all zero bits */
1255         REG_OP_ALLOC,           /* set all bits in region */
1256         REG_OP_RELEASE,         /* clear all bits in region */
1257 };
1258
1259 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1260 {
1261         int nbits_reg;          /* number of bits in region */
1262         int index;              /* index first long of region in bitmap */
1263         int offset;             /* bit offset region in bitmap[index] */
1264         int nlongs_reg;         /* num longs spanned by region in bitmap */
1265         int nbitsinlong;        /* num bits of region in each spanned long */
1266         unsigned long mask;     /* bitmask for one long of region */
1267         int i;                  /* scans bitmap by longs */
1268         int ret = 0;            /* return value */
1269
1270         /*
1271          * Either nlongs_reg == 1 (for small orders that fit in one long)
1272          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1273          */
1274         nbits_reg = 1 << order;
1275         index = pos / BITS_PER_LONG;
1276         offset = pos - (index * BITS_PER_LONG);
1277         nlongs_reg = BITS_TO_LONGS(nbits_reg);
1278         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1279
1280         /*
1281          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1282          * overflows if nbitsinlong == BITS_PER_LONG.
1283          */
1284         mask = (1UL << (nbitsinlong - 1));
1285         mask += mask - 1;
1286         mask <<= offset;
1287
1288         switch (reg_op) {
1289         case REG_OP_ISFREE:
1290                 for (i = 0; i < nlongs_reg; i++) {
1291                         if (bitmap[index + i] & mask)
1292                                 goto done;
1293                 }
1294                 ret = 1;        /* all bits in region free (zero) */
1295                 break;
1296
1297         case REG_OP_ALLOC:
1298                 for (i = 0; i < nlongs_reg; i++)
1299                         bitmap[index + i] |= mask;
1300                 break;
1301
1302         case REG_OP_RELEASE:
1303                 for (i = 0; i < nlongs_reg; i++)
1304                         bitmap[index + i] &= ~mask;
1305                 break;
1306         }
1307 done:
1308         return ret;
1309 }
1310
1311 /**
1312  * bitmap_find_free_region - find a contiguous aligned mem region
1313  *      @bitmap: array of unsigned longs corresponding to the bitmap
1314  *      @bits: number of bits in the bitmap
1315  *      @order: region size (log base 2 of number of bits) to find
1316  *
1317  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1318  * allocate them (set them to one).  Only consider regions of length
1319  * a power (@order) of two, aligned to that power of two, which
1320  * makes the search algorithm much faster.
1321  *
1322  * Return the bit offset in bitmap of the allocated region,
1323  * or -errno on failure.
1324  */
1325 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1326 {
1327         unsigned int pos, end;          /* scans bitmap by regions of size order */
1328
1329         for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1330                 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1331                         continue;
1332                 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1333                 return pos;
1334         }
1335         return -ENOMEM;
1336 }
1337 EXPORT_SYMBOL(bitmap_find_free_region);
1338
1339 /**
1340  * bitmap_release_region - release allocated bitmap region
1341  *      @bitmap: array of unsigned longs corresponding to the bitmap
1342  *      @pos: beginning of bit region to release
1343  *      @order: region size (log base 2 of number of bits) to release
1344  *
1345  * This is the complement to __bitmap_find_free_region() and releases
1346  * the found region (by clearing it in the bitmap).
1347  *
1348  * No return value.
1349  */
1350 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1351 {
1352         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1353 }
1354 EXPORT_SYMBOL(bitmap_release_region);
1355
1356 /**
1357  * bitmap_allocate_region - allocate bitmap region
1358  *      @bitmap: array of unsigned longs corresponding to the bitmap
1359  *      @pos: beginning of bit region to allocate
1360  *      @order: region size (log base 2 of number of bits) to allocate
1361  *
1362  * Allocate (set bits in) a specified region of a bitmap.
1363  *
1364  * Return 0 on success, or %-EBUSY if specified region wasn't
1365  * free (not all bits were zero).
1366  */
1367 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1368 {
1369         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1370                 return -EBUSY;
1371         return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1372 }
1373 EXPORT_SYMBOL(bitmap_allocate_region);
1374
1375 /**
1376  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1377  * @dst:   destination buffer
1378  * @src:   bitmap to copy
1379  * @nbits: number of bits in the bitmap
1380  *
1381  * Require nbits % BITS_PER_LONG == 0.
1382  */
1383 #ifdef __BIG_ENDIAN
1384 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1385 {
1386         unsigned int i;
1387
1388         for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1389                 if (BITS_PER_LONG == 64)
1390                         dst[i] = cpu_to_le64(src[i]);
1391                 else
1392                         dst[i] = cpu_to_le32(src[i]);
1393         }
1394 }
1395 EXPORT_SYMBOL(bitmap_copy_le);
1396 #endif
1397
1398 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1399 {
1400         return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1401                              flags);
1402 }
1403 EXPORT_SYMBOL(bitmap_alloc);
1404
1405 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1406 {
1407         return bitmap_alloc(nbits, flags | __GFP_ZERO);
1408 }
1409 EXPORT_SYMBOL(bitmap_zalloc);
1410
1411 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
1412 {
1413         return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1414                                   flags, node);
1415 }
1416 EXPORT_SYMBOL(bitmap_alloc_node);
1417
1418 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
1419 {
1420         return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
1421 }
1422 EXPORT_SYMBOL(bitmap_zalloc_node);
1423
1424 void bitmap_free(const unsigned long *bitmap)
1425 {
1426         kfree(bitmap);
1427 }
1428 EXPORT_SYMBOL(bitmap_free);
1429
1430 static void devm_bitmap_free(void *data)
1431 {
1432         unsigned long *bitmap = data;
1433
1434         bitmap_free(bitmap);
1435 }
1436
1437 unsigned long *devm_bitmap_alloc(struct device *dev,
1438                                  unsigned int nbits, gfp_t flags)
1439 {
1440         unsigned long *bitmap;
1441         int ret;
1442
1443         bitmap = bitmap_alloc(nbits, flags);
1444         if (!bitmap)
1445                 return NULL;
1446
1447         ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
1448         if (ret)
1449                 return NULL;
1450
1451         return bitmap;
1452 }
1453 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
1454
1455 unsigned long *devm_bitmap_zalloc(struct device *dev,
1456                                   unsigned int nbits, gfp_t flags)
1457 {
1458         return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
1459 }
1460 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
1461
1462 #if BITS_PER_LONG == 64
1463 /**
1464  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1465  *      @bitmap: array of unsigned longs, the destination bitmap
1466  *      @buf: array of u32 (in host byte order), the source bitmap
1467  *      @nbits: number of bits in @bitmap
1468  */
1469 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1470 {
1471         unsigned int i, halfwords;
1472
1473         halfwords = DIV_ROUND_UP(nbits, 32);
1474         for (i = 0; i < halfwords; i++) {
1475                 bitmap[i/2] = (unsigned long) buf[i];
1476                 if (++i < halfwords)
1477                         bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1478         }
1479
1480         /* Clear tail bits in last word beyond nbits. */
1481         if (nbits % BITS_PER_LONG)
1482                 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1483 }
1484 EXPORT_SYMBOL(bitmap_from_arr32);
1485
1486 /**
1487  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1488  *      @buf: array of u32 (in host byte order), the dest bitmap
1489  *      @bitmap: array of unsigned longs, the source bitmap
1490  *      @nbits: number of bits in @bitmap
1491  */
1492 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1493 {
1494         unsigned int i, halfwords;
1495
1496         halfwords = DIV_ROUND_UP(nbits, 32);
1497         for (i = 0; i < halfwords; i++) {
1498                 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1499                 if (++i < halfwords)
1500                         buf[i] = (u32) (bitmap[i/2] >> 32);
1501         }
1502
1503         /* Clear tail bits in last element of array beyond nbits. */
1504         if (nbits % BITS_PER_LONG)
1505                 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1506 }
1507 EXPORT_SYMBOL(bitmap_to_arr32);
1508
1509 #endif