rpmsg: smd: Register rpmsg user space interface for edges
[platform/kernel/linux-exynos.git] / lib / bitmap.c
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/page.h>
20
21 /*
22  * bitmaps provide an array of bits, implemented using an an
23  * array of unsigned longs.  The number of valid bits in a
24  * given bitmap does _not_ need to be an exact multiple of
25  * BITS_PER_LONG.
26  *
27  * The possible unused bits in the last, partially used word
28  * of a bitmap are 'don't care'.  The implementation makes
29  * no particular effort to keep them zero.  It ensures that
30  * their value will not affect the results of any operation.
31  * The bitmap operations that return Boolean (bitmap_empty,
32  * for example) or scalar (bitmap_weight, for example) results
33  * carefully filter out these unused bits from impacting their
34  * results.
35  *
36  * These operations actually hold to a slightly stronger rule:
37  * if you don't input any bitmaps to these ops that have some
38  * unused bits set, then they won't output any set unused bits
39  * in output bitmaps.
40  *
41  * The byte ordering of bitmaps is more natural on little
42  * endian architectures.  See the big-endian headers
43  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
44  * for the best explanations of this ordering.
45  */
46
47 int __bitmap_equal(const unsigned long *bitmap1,
48                 const unsigned long *bitmap2, unsigned int bits)
49 {
50         unsigned int k, lim = bits/BITS_PER_LONG;
51         for (k = 0; k < lim; ++k)
52                 if (bitmap1[k] != bitmap2[k])
53                         return 0;
54
55         if (bits % BITS_PER_LONG)
56                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
57                         return 0;
58
59         return 1;
60 }
61 EXPORT_SYMBOL(__bitmap_equal);
62
63 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
64 {
65         unsigned int k, lim = bits/BITS_PER_LONG;
66         for (k = 0; k < lim; ++k)
67                 dst[k] = ~src[k];
68
69         if (bits % BITS_PER_LONG)
70                 dst[k] = ~src[k];
71 }
72 EXPORT_SYMBOL(__bitmap_complement);
73
74 /**
75  * __bitmap_shift_right - logical right shift of the bits in a bitmap
76  *   @dst : destination bitmap
77  *   @src : source bitmap
78  *   @shift : shift by this many bits
79  *   @nbits : bitmap size, in bits
80  *
81  * Shifting right (dividing) means moving bits in the MS -> LS bit
82  * direction.  Zeros are fed into the vacated MS positions and the
83  * LS bits shifted off the bottom are lost.
84  */
85 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
86                         unsigned shift, unsigned nbits)
87 {
88         unsigned k, lim = BITS_TO_LONGS(nbits);
89         unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
90         unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
91         for (k = 0; off + k < lim; ++k) {
92                 unsigned long upper, lower;
93
94                 /*
95                  * If shift is not word aligned, take lower rem bits of
96                  * word above and make them the top rem bits of result.
97                  */
98                 if (!rem || off + k + 1 >= lim)
99                         upper = 0;
100                 else {
101                         upper = src[off + k + 1];
102                         if (off + k + 1 == lim - 1)
103                                 upper &= mask;
104                         upper <<= (BITS_PER_LONG - rem);
105                 }
106                 lower = src[off + k];
107                 if (off + k == lim - 1)
108                         lower &= mask;
109                 lower >>= rem;
110                 dst[k] = lower | upper;
111         }
112         if (off)
113                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
114 }
115 EXPORT_SYMBOL(__bitmap_shift_right);
116
117
118 /**
119  * __bitmap_shift_left - logical left shift of the bits in a bitmap
120  *   @dst : destination bitmap
121  *   @src : source bitmap
122  *   @shift : shift by this many bits
123  *   @nbits : bitmap size, in bits
124  *
125  * Shifting left (multiplying) means moving bits in the LS -> MS
126  * direction.  Zeros are fed into the vacated LS bit positions
127  * and those MS bits shifted off the top are lost.
128  */
129
130 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
131                         unsigned int shift, unsigned int nbits)
132 {
133         int k;
134         unsigned int lim = BITS_TO_LONGS(nbits);
135         unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
136         for (k = lim - off - 1; k >= 0; --k) {
137                 unsigned long upper, lower;
138
139                 /*
140                  * If shift is not word aligned, take upper rem bits of
141                  * word below and make them the bottom rem bits of result.
142                  */
143                 if (rem && k > 0)
144                         lower = src[k - 1] >> (BITS_PER_LONG - rem);
145                 else
146                         lower = 0;
147                 upper = src[k] << rem;
148                 dst[k + off] = lower | upper;
149         }
150         if (off)
151                 memset(dst, 0, off*sizeof(unsigned long));
152 }
153 EXPORT_SYMBOL(__bitmap_shift_left);
154
155 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
156                                 const unsigned long *bitmap2, unsigned int bits)
157 {
158         unsigned int k;
159         unsigned int lim = bits/BITS_PER_LONG;
160         unsigned long result = 0;
161
162         for (k = 0; k < lim; k++)
163                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
164         if (bits % BITS_PER_LONG)
165                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
166                            BITMAP_LAST_WORD_MASK(bits));
167         return result != 0;
168 }
169 EXPORT_SYMBOL(__bitmap_and);
170
171 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
172                                 const unsigned long *bitmap2, unsigned int bits)
173 {
174         unsigned int k;
175         unsigned int nr = BITS_TO_LONGS(bits);
176
177         for (k = 0; k < nr; k++)
178                 dst[k] = bitmap1[k] | bitmap2[k];
179 }
180 EXPORT_SYMBOL(__bitmap_or);
181
182 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
183                                 const unsigned long *bitmap2, unsigned int bits)
184 {
185         unsigned int k;
186         unsigned int nr = BITS_TO_LONGS(bits);
187
188         for (k = 0; k < nr; k++)
189                 dst[k] = bitmap1[k] ^ bitmap2[k];
190 }
191 EXPORT_SYMBOL(__bitmap_xor);
192
193 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
194                                 const unsigned long *bitmap2, unsigned int bits)
195 {
196         unsigned int k;
197         unsigned int lim = bits/BITS_PER_LONG;
198         unsigned long result = 0;
199
200         for (k = 0; k < lim; k++)
201                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
202         if (bits % BITS_PER_LONG)
203                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
204                            BITMAP_LAST_WORD_MASK(bits));
205         return result != 0;
206 }
207 EXPORT_SYMBOL(__bitmap_andnot);
208
209 int __bitmap_intersects(const unsigned long *bitmap1,
210                         const unsigned long *bitmap2, unsigned int bits)
211 {
212         unsigned int k, lim = bits/BITS_PER_LONG;
213         for (k = 0; k < lim; ++k)
214                 if (bitmap1[k] & bitmap2[k])
215                         return 1;
216
217         if (bits % BITS_PER_LONG)
218                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
219                         return 1;
220         return 0;
221 }
222 EXPORT_SYMBOL(__bitmap_intersects);
223
224 int __bitmap_subset(const unsigned long *bitmap1,
225                     const unsigned long *bitmap2, unsigned int bits)
226 {
227         unsigned int k, lim = bits/BITS_PER_LONG;
228         for (k = 0; k < lim; ++k)
229                 if (bitmap1[k] & ~bitmap2[k])
230                         return 0;
231
232         if (bits % BITS_PER_LONG)
233                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
234                         return 0;
235         return 1;
236 }
237 EXPORT_SYMBOL(__bitmap_subset);
238
239 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
240 {
241         unsigned int k, lim = bits/BITS_PER_LONG;
242         int w = 0;
243
244         for (k = 0; k < lim; k++)
245                 w += hweight_long(bitmap[k]);
246
247         if (bits % BITS_PER_LONG)
248                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
249
250         return w;
251 }
252 EXPORT_SYMBOL(__bitmap_weight);
253
254 void bitmap_set(unsigned long *map, unsigned int start, int len)
255 {
256         unsigned long *p = map + BIT_WORD(start);
257         const unsigned int size = start + len;
258         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
259         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
260
261         while (len - bits_to_set >= 0) {
262                 *p |= mask_to_set;
263                 len -= bits_to_set;
264                 bits_to_set = BITS_PER_LONG;
265                 mask_to_set = ~0UL;
266                 p++;
267         }
268         if (len) {
269                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
270                 *p |= mask_to_set;
271         }
272 }
273 EXPORT_SYMBOL(bitmap_set);
274
275 void bitmap_clear(unsigned long *map, unsigned int start, int len)
276 {
277         unsigned long *p = map + BIT_WORD(start);
278         const unsigned int size = start + len;
279         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
280         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
281
282         while (len - bits_to_clear >= 0) {
283                 *p &= ~mask_to_clear;
284                 len -= bits_to_clear;
285                 bits_to_clear = BITS_PER_LONG;
286                 mask_to_clear = ~0UL;
287                 p++;
288         }
289         if (len) {
290                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
291                 *p &= ~mask_to_clear;
292         }
293 }
294 EXPORT_SYMBOL(bitmap_clear);
295
296 /**
297  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
298  * @map: The address to base the search on
299  * @size: The bitmap size in bits
300  * @start: The bitnumber to start searching at
301  * @nr: The number of zeroed bits we're looking for
302  * @align_mask: Alignment mask for zero area
303  * @align_offset: Alignment offset for zero area.
304  *
305  * The @align_mask should be one less than a power of 2; the effect is that
306  * the bit offset of all zero areas this function finds plus @align_offset
307  * is multiple of that power of 2.
308  */
309 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
310                                              unsigned long size,
311                                              unsigned long start,
312                                              unsigned int nr,
313                                              unsigned long align_mask,
314                                              unsigned long align_offset)
315 {
316         unsigned long index, end, i;
317 again:
318         index = find_next_zero_bit(map, size, start);
319
320         /* Align allocation */
321         index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
322
323         end = index + nr;
324         if (end > size)
325                 return end;
326         i = find_next_bit(map, end, index);
327         if (i < end) {
328                 start = i + 1;
329                 goto again;
330         }
331         return index;
332 }
333 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
334
335 /*
336  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
337  * second version by Paul Jackson, third by Joe Korty.
338  */
339
340 #define CHUNKSZ                         32
341 #define nbits_to_hold_value(val)        fls(val)
342 #define BASEDEC 10              /* fancier cpuset lists input in decimal */
343
344 /**
345  * __bitmap_parse - convert an ASCII hex string into a bitmap.
346  * @buf: pointer to buffer containing string.
347  * @buflen: buffer size in bytes.  If string is smaller than this
348  *    then it must be terminated with a \0.
349  * @is_user: location of buffer, 0 indicates kernel space
350  * @maskp: pointer to bitmap array that will contain result.
351  * @nmaskbits: size of bitmap, in bits.
352  *
353  * Commas group hex digits into chunks.  Each chunk defines exactly 32
354  * bits of the resultant bitmask.  No chunk may specify a value larger
355  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
356  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
357  * characters and for grouping errors such as "1,,5", ",44", "," and "".
358  * Leading and trailing whitespace accepted, but not embedded whitespace.
359  */
360 int __bitmap_parse(const char *buf, unsigned int buflen,
361                 int is_user, unsigned long *maskp,
362                 int nmaskbits)
363 {
364         int c, old_c, totaldigits, ndigits, nchunks, nbits;
365         u32 chunk;
366         const char __user __force *ubuf = (const char __user __force *)buf;
367
368         bitmap_zero(maskp, nmaskbits);
369
370         nchunks = nbits = totaldigits = c = 0;
371         do {
372                 chunk = 0;
373                 ndigits = totaldigits;
374
375                 /* Get the next chunk of the bitmap */
376                 while (buflen) {
377                         old_c = c;
378                         if (is_user) {
379                                 if (__get_user(c, ubuf++))
380                                         return -EFAULT;
381                         }
382                         else
383                                 c = *buf++;
384                         buflen--;
385                         if (isspace(c))
386                                 continue;
387
388                         /*
389                          * If the last character was a space and the current
390                          * character isn't '\0', we've got embedded whitespace.
391                          * This is a no-no, so throw an error.
392                          */
393                         if (totaldigits && c && isspace(old_c))
394                                 return -EINVAL;
395
396                         /* A '\0' or a ',' signal the end of the chunk */
397                         if (c == '\0' || c == ',')
398                                 break;
399
400                         if (!isxdigit(c))
401                                 return -EINVAL;
402
403                         /*
404                          * Make sure there are at least 4 free bits in 'chunk'.
405                          * If not, this hexdigit will overflow 'chunk', so
406                          * throw an error.
407                          */
408                         if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
409                                 return -EOVERFLOW;
410
411                         chunk = (chunk << 4) | hex_to_bin(c);
412                         totaldigits++;
413                 }
414                 if (ndigits == totaldigits)
415                         return -EINVAL;
416                 if (nchunks == 0 && chunk == 0)
417                         continue;
418
419                 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
420                 *maskp |= chunk;
421                 nchunks++;
422                 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
423                 if (nbits > nmaskbits)
424                         return -EOVERFLOW;
425         } while (buflen && c == ',');
426
427         return 0;
428 }
429 EXPORT_SYMBOL(__bitmap_parse);
430
431 /**
432  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
433  *
434  * @ubuf: pointer to user buffer containing string.
435  * @ulen: buffer size in bytes.  If string is smaller than this
436  *    then it must be terminated with a \0.
437  * @maskp: pointer to bitmap array that will contain result.
438  * @nmaskbits: size of bitmap, in bits.
439  *
440  * Wrapper for __bitmap_parse(), providing it with user buffer.
441  *
442  * We cannot have this as an inline function in bitmap.h because it needs
443  * linux/uaccess.h to get the access_ok() declaration and this causes
444  * cyclic dependencies.
445  */
446 int bitmap_parse_user(const char __user *ubuf,
447                         unsigned int ulen, unsigned long *maskp,
448                         int nmaskbits)
449 {
450         if (!access_ok(VERIFY_READ, ubuf, ulen))
451                 return -EFAULT;
452         return __bitmap_parse((const char __force *)ubuf,
453                                 ulen, 1, maskp, nmaskbits);
454
455 }
456 EXPORT_SYMBOL(bitmap_parse_user);
457
458 /**
459  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
460  * @list: indicates whether the bitmap must be list
461  * @buf: page aligned buffer into which string is placed
462  * @maskp: pointer to bitmap to convert
463  * @nmaskbits: size of bitmap, in bits
464  *
465  * Output format is a comma-separated list of decimal numbers and
466  * ranges if list is specified or hex digits grouped into comma-separated
467  * sets of 8 digits/set. Returns the number of characters written to buf.
468  *
469  * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
470  * sufficient storage remains at @buf to accommodate the
471  * bitmap_print_to_pagebuf() output.
472  */
473 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
474                             int nmaskbits)
475 {
476         ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
477         int n = 0;
478
479         if (len > 1)
480                 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
481                            scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
482         return n;
483 }
484 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
485
486 /**
487  * __bitmap_parselist - convert list format ASCII string to bitmap
488  * @buf: read nul-terminated user string from this buffer
489  * @buflen: buffer size in bytes.  If string is smaller than this
490  *    then it must be terminated with a \0.
491  * @is_user: location of buffer, 0 indicates kernel space
492  * @maskp: write resulting mask here
493  * @nmaskbits: number of bits in mask to be written
494  *
495  * Input format is a comma-separated list of decimal numbers and
496  * ranges.  Consecutively set bits are shown as two hyphen-separated
497  * decimal numbers, the smallest and largest bit numbers set in
498  * the range.
499  * Optionally each range can be postfixed to denote that only parts of it
500  * should be set. The range will divided to groups of specific size.
501  * From each group will be used only defined amount of bits.
502  * Syntax: range:used_size/group_size
503  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
504  *
505  * Returns 0 on success, -errno on invalid input strings.
506  * Error values:
507  *    %-EINVAL: second number in range smaller than first
508  *    %-EINVAL: invalid character in string
509  *    %-ERANGE: bit number specified too large for mask
510  */
511 static int __bitmap_parselist(const char *buf, unsigned int buflen,
512                 int is_user, unsigned long *maskp,
513                 int nmaskbits)
514 {
515         unsigned int a, b, old_a, old_b;
516         unsigned int group_size, used_size;
517         int c, old_c, totaldigits, ndigits;
518         const char __user __force *ubuf = (const char __user __force *)buf;
519         int at_start, in_range, in_partial_range;
520
521         totaldigits = c = 0;
522         old_a = old_b = 0;
523         group_size = used_size = 0;
524         bitmap_zero(maskp, nmaskbits);
525         do {
526                 at_start = 1;
527                 in_range = 0;
528                 in_partial_range = 0;
529                 a = b = 0;
530                 ndigits = totaldigits;
531
532                 /* Get the next cpu# or a range of cpu#'s */
533                 while (buflen) {
534                         old_c = c;
535                         if (is_user) {
536                                 if (__get_user(c, ubuf++))
537                                         return -EFAULT;
538                         } else
539                                 c = *buf++;
540                         buflen--;
541                         if (isspace(c))
542                                 continue;
543
544                         /* A '\0' or a ',' signal the end of a cpu# or range */
545                         if (c == '\0' || c == ',')
546                                 break;
547                         /*
548                         * whitespaces between digits are not allowed,
549                         * but it's ok if whitespaces are on head or tail.
550                         * when old_c is whilespace,
551                         * if totaldigits == ndigits, whitespace is on head.
552                         * if whitespace is on tail, it should not run here.
553                         * as c was ',' or '\0',
554                         * the last code line has broken the current loop.
555                         */
556                         if ((totaldigits != ndigits) && isspace(old_c))
557                                 return -EINVAL;
558
559                         if (c == '/') {
560                                 used_size = a;
561                                 at_start = 1;
562                                 in_range = 0;
563                                 a = b = 0;
564                                 continue;
565                         }
566
567                         if (c == ':') {
568                                 old_a = a;
569                                 old_b = b;
570                                 at_start = 1;
571                                 in_range = 0;
572                                 in_partial_range = 1;
573                                 a = b = 0;
574                                 continue;
575                         }
576
577                         if (c == '-') {
578                                 if (at_start || in_range)
579                                         return -EINVAL;
580                                 b = 0;
581                                 in_range = 1;
582                                 at_start = 1;
583                                 continue;
584                         }
585
586                         if (!isdigit(c))
587                                 return -EINVAL;
588
589                         b = b * 10 + (c - '0');
590                         if (!in_range)
591                                 a = b;
592                         at_start = 0;
593                         totaldigits++;
594                 }
595                 if (ndigits == totaldigits)
596                         continue;
597                 if (in_partial_range) {
598                         group_size = a;
599                         a = old_a;
600                         b = old_b;
601                         old_a = old_b = 0;
602                 }
603                 /* if no digit is after '-', it's wrong*/
604                 if (at_start && in_range)
605                         return -EINVAL;
606                 if (!(a <= b) || !(used_size <= group_size))
607                         return -EINVAL;
608                 if (b >= nmaskbits)
609                         return -ERANGE;
610                 while (a <= b) {
611                         if (in_partial_range) {
612                                 static int pos_in_group = 1;
613
614                                 if (pos_in_group <= used_size)
615                                         set_bit(a, maskp);
616
617                                 if (a == b || ++pos_in_group > group_size)
618                                         pos_in_group = 1;
619                         } else
620                                 set_bit(a, maskp);
621                         a++;
622                 }
623         } while (buflen && c == ',');
624         return 0;
625 }
626
627 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
628 {
629         char *nl  = strchrnul(bp, '\n');
630         int len = nl - bp;
631
632         return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
633 }
634 EXPORT_SYMBOL(bitmap_parselist);
635
636
637 /**
638  * bitmap_parselist_user()
639  *
640  * @ubuf: pointer to user buffer containing string.
641  * @ulen: buffer size in bytes.  If string is smaller than this
642  *    then it must be terminated with a \0.
643  * @maskp: pointer to bitmap array that will contain result.
644  * @nmaskbits: size of bitmap, in bits.
645  *
646  * Wrapper for bitmap_parselist(), providing it with user buffer.
647  *
648  * We cannot have this as an inline function in bitmap.h because it needs
649  * linux/uaccess.h to get the access_ok() declaration and this causes
650  * cyclic dependencies.
651  */
652 int bitmap_parselist_user(const char __user *ubuf,
653                         unsigned int ulen, unsigned long *maskp,
654                         int nmaskbits)
655 {
656         if (!access_ok(VERIFY_READ, ubuf, ulen))
657                 return -EFAULT;
658         return __bitmap_parselist((const char __force *)ubuf,
659                                         ulen, 1, maskp, nmaskbits);
660 }
661 EXPORT_SYMBOL(bitmap_parselist_user);
662
663
664 /**
665  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
666  *      @buf: pointer to a bitmap
667  *      @pos: a bit position in @buf (0 <= @pos < @nbits)
668  *      @nbits: number of valid bit positions in @buf
669  *
670  * Map the bit at position @pos in @buf (of length @nbits) to the
671  * ordinal of which set bit it is.  If it is not set or if @pos
672  * is not a valid bit position, map to -1.
673  *
674  * If for example, just bits 4 through 7 are set in @buf, then @pos
675  * values 4 through 7 will get mapped to 0 through 3, respectively,
676  * and other @pos values will get mapped to -1.  When @pos value 7
677  * gets mapped to (returns) @ord value 3 in this example, that means
678  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
679  *
680  * The bit positions 0 through @bits are valid positions in @buf.
681  */
682 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
683 {
684         if (pos >= nbits || !test_bit(pos, buf))
685                 return -1;
686
687         return __bitmap_weight(buf, pos);
688 }
689
690 /**
691  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
692  *      @buf: pointer to bitmap
693  *      @ord: ordinal bit position (n-th set bit, n >= 0)
694  *      @nbits: number of valid bit positions in @buf
695  *
696  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
697  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
698  * >= weight(buf), returns @nbits.
699  *
700  * If for example, just bits 4 through 7 are set in @buf, then @ord
701  * values 0 through 3 will get mapped to 4 through 7, respectively,
702  * and all other @ord values returns @nbits.  When @ord value 3
703  * gets mapped to (returns) @pos value 7 in this example, that means
704  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
705  *
706  * The bit positions 0 through @nbits-1 are valid positions in @buf.
707  */
708 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
709 {
710         unsigned int pos;
711
712         for (pos = find_first_bit(buf, nbits);
713              pos < nbits && ord;
714              pos = find_next_bit(buf, nbits, pos + 1))
715                 ord--;
716
717         return pos;
718 }
719
720 /**
721  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
722  *      @dst: remapped result
723  *      @src: subset to be remapped
724  *      @old: defines domain of map
725  *      @new: defines range of map
726  *      @nbits: number of bits in each of these bitmaps
727  *
728  * Let @old and @new define a mapping of bit positions, such that
729  * whatever position is held by the n-th set bit in @old is mapped
730  * to the n-th set bit in @new.  In the more general case, allowing
731  * for the possibility that the weight 'w' of @new is less than the
732  * weight of @old, map the position of the n-th set bit in @old to
733  * the position of the m-th set bit in @new, where m == n % w.
734  *
735  * If either of the @old and @new bitmaps are empty, or if @src and
736  * @dst point to the same location, then this routine copies @src
737  * to @dst.
738  *
739  * The positions of unset bits in @old are mapped to themselves
740  * (the identify map).
741  *
742  * Apply the above specified mapping to @src, placing the result in
743  * @dst, clearing any bits previously set in @dst.
744  *
745  * For example, lets say that @old has bits 4 through 7 set, and
746  * @new has bits 12 through 15 set.  This defines the mapping of bit
747  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
748  * bit positions unchanged.  So if say @src comes into this routine
749  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
750  * 13 and 15 set.
751  */
752 void bitmap_remap(unsigned long *dst, const unsigned long *src,
753                 const unsigned long *old, const unsigned long *new,
754                 unsigned int nbits)
755 {
756         unsigned int oldbit, w;
757
758         if (dst == src)         /* following doesn't handle inplace remaps */
759                 return;
760         bitmap_zero(dst, nbits);
761
762         w = bitmap_weight(new, nbits);
763         for_each_set_bit(oldbit, src, nbits) {
764                 int n = bitmap_pos_to_ord(old, oldbit, nbits);
765
766                 if (n < 0 || w == 0)
767                         set_bit(oldbit, dst);   /* identity map */
768                 else
769                         set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
770         }
771 }
772 EXPORT_SYMBOL(bitmap_remap);
773
774 /**
775  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
776  *      @oldbit: bit position to be mapped
777  *      @old: defines domain of map
778  *      @new: defines range of map
779  *      @bits: number of bits in each of these bitmaps
780  *
781  * Let @old and @new define a mapping of bit positions, such that
782  * whatever position is held by the n-th set bit in @old is mapped
783  * to the n-th set bit in @new.  In the more general case, allowing
784  * for the possibility that the weight 'w' of @new is less than the
785  * weight of @old, map the position of the n-th set bit in @old to
786  * the position of the m-th set bit in @new, where m == n % w.
787  *
788  * The positions of unset bits in @old are mapped to themselves
789  * (the identify map).
790  *
791  * Apply the above specified mapping to bit position @oldbit, returning
792  * the new bit position.
793  *
794  * For example, lets say that @old has bits 4 through 7 set, and
795  * @new has bits 12 through 15 set.  This defines the mapping of bit
796  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
797  * bit positions unchanged.  So if say @oldbit is 5, then this routine
798  * returns 13.
799  */
800 int bitmap_bitremap(int oldbit, const unsigned long *old,
801                                 const unsigned long *new, int bits)
802 {
803         int w = bitmap_weight(new, bits);
804         int n = bitmap_pos_to_ord(old, oldbit, bits);
805         if (n < 0 || w == 0)
806                 return oldbit;
807         else
808                 return bitmap_ord_to_pos(new, n % w, bits);
809 }
810 EXPORT_SYMBOL(bitmap_bitremap);
811
812 /**
813  * bitmap_onto - translate one bitmap relative to another
814  *      @dst: resulting translated bitmap
815  *      @orig: original untranslated bitmap
816  *      @relmap: bitmap relative to which translated
817  *      @bits: number of bits in each of these bitmaps
818  *
819  * Set the n-th bit of @dst iff there exists some m such that the
820  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
821  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
822  * (If you understood the previous sentence the first time your
823  * read it, you're overqualified for your current job.)
824  *
825  * In other words, @orig is mapped onto (surjectively) @dst,
826  * using the map { <n, m> | the n-th bit of @relmap is the
827  * m-th set bit of @relmap }.
828  *
829  * Any set bits in @orig above bit number W, where W is the
830  * weight of (number of set bits in) @relmap are mapped nowhere.
831  * In particular, if for all bits m set in @orig, m >= W, then
832  * @dst will end up empty.  In situations where the possibility
833  * of such an empty result is not desired, one way to avoid it is
834  * to use the bitmap_fold() operator, below, to first fold the
835  * @orig bitmap over itself so that all its set bits x are in the
836  * range 0 <= x < W.  The bitmap_fold() operator does this by
837  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
838  *
839  * Example [1] for bitmap_onto():
840  *  Let's say @relmap has bits 30-39 set, and @orig has bits
841  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
842  *  @dst will have bits 31, 33, 35, 37 and 39 set.
843  *
844  *  When bit 0 is set in @orig, it means turn on the bit in
845  *  @dst corresponding to whatever is the first bit (if any)
846  *  that is turned on in @relmap.  Since bit 0 was off in the
847  *  above example, we leave off that bit (bit 30) in @dst.
848  *
849  *  When bit 1 is set in @orig (as in the above example), it
850  *  means turn on the bit in @dst corresponding to whatever
851  *  is the second bit that is turned on in @relmap.  The second
852  *  bit in @relmap that was turned on in the above example was
853  *  bit 31, so we turned on bit 31 in @dst.
854  *
855  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
856  *  because they were the 4th, 6th, 8th and 10th set bits
857  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
858  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
859  *
860  *  When bit 11 is set in @orig, it means turn on the bit in
861  *  @dst corresponding to whatever is the twelfth bit that is
862  *  turned on in @relmap.  In the above example, there were
863  *  only ten bits turned on in @relmap (30..39), so that bit
864  *  11 was set in @orig had no affect on @dst.
865  *
866  * Example [2] for bitmap_fold() + bitmap_onto():
867  *  Let's say @relmap has these ten bits set:
868  *              40 41 42 43 45 48 53 61 74 95
869  *  (for the curious, that's 40 plus the first ten terms of the
870  *  Fibonacci sequence.)
871  *
872  *  Further lets say we use the following code, invoking
873  *  bitmap_fold() then bitmap_onto, as suggested above to
874  *  avoid the possibility of an empty @dst result:
875  *
876  *      unsigned long *tmp;     // a temporary bitmap's bits
877  *
878  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
879  *      bitmap_onto(dst, tmp, relmap, bits);
880  *
881  *  Then this table shows what various values of @dst would be, for
882  *  various @orig's.  I list the zero-based positions of each set bit.
883  *  The tmp column shows the intermediate result, as computed by
884  *  using bitmap_fold() to fold the @orig bitmap modulo ten
885  *  (the weight of @relmap).
886  *
887  *      @orig           tmp            @dst
888  *      0                0             40
889  *      1                1             41
890  *      9                9             95
891  *      10               0             40 (*)
892  *      1 3 5 7          1 3 5 7       41 43 48 61
893  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
894  *      0 9 18 27        0 9 8 7       40 61 74 95
895  *      0 10 20 30       0             40
896  *      0 11 22 33       0 1 2 3       40 41 42 43
897  *      0 12 24 36       0 2 4 6       40 42 45 53
898  *      78 102 211       1 2 8         41 42 74 (*)
899  *
900  * (*) For these marked lines, if we hadn't first done bitmap_fold()
901  *     into tmp, then the @dst result would have been empty.
902  *
903  * If either of @orig or @relmap is empty (no set bits), then @dst
904  * will be returned empty.
905  *
906  * If (as explained above) the only set bits in @orig are in positions
907  * m where m >= W, (where W is the weight of @relmap) then @dst will
908  * once again be returned empty.
909  *
910  * All bits in @dst not set by the above rule are cleared.
911  */
912 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
913                         const unsigned long *relmap, unsigned int bits)
914 {
915         unsigned int n, m;      /* same meaning as in above comment */
916
917         if (dst == orig)        /* following doesn't handle inplace mappings */
918                 return;
919         bitmap_zero(dst, bits);
920
921         /*
922          * The following code is a more efficient, but less
923          * obvious, equivalent to the loop:
924          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
925          *              n = bitmap_ord_to_pos(orig, m, bits);
926          *              if (test_bit(m, orig))
927          *                      set_bit(n, dst);
928          *      }
929          */
930
931         m = 0;
932         for_each_set_bit(n, relmap, bits) {
933                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
934                 if (test_bit(m, orig))
935                         set_bit(n, dst);
936                 m++;
937         }
938 }
939 EXPORT_SYMBOL(bitmap_onto);
940
941 /**
942  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
943  *      @dst: resulting smaller bitmap
944  *      @orig: original larger bitmap
945  *      @sz: specified size
946  *      @nbits: number of bits in each of these bitmaps
947  *
948  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
949  * Clear all other bits in @dst.  See further the comment and
950  * Example [2] for bitmap_onto() for why and how to use this.
951  */
952 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
953                         unsigned int sz, unsigned int nbits)
954 {
955         unsigned int oldbit;
956
957         if (dst == orig)        /* following doesn't handle inplace mappings */
958                 return;
959         bitmap_zero(dst, nbits);
960
961         for_each_set_bit(oldbit, orig, nbits)
962                 set_bit(oldbit % sz, dst);
963 }
964 EXPORT_SYMBOL(bitmap_fold);
965
966 /*
967  * Common code for bitmap_*_region() routines.
968  *      bitmap: array of unsigned longs corresponding to the bitmap
969  *      pos: the beginning of the region
970  *      order: region size (log base 2 of number of bits)
971  *      reg_op: operation(s) to perform on that region of bitmap
972  *
973  * Can set, verify and/or release a region of bits in a bitmap,
974  * depending on which combination of REG_OP_* flag bits is set.
975  *
976  * A region of a bitmap is a sequence of bits in the bitmap, of
977  * some size '1 << order' (a power of two), aligned to that same
978  * '1 << order' power of two.
979  *
980  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
981  * Returns 0 in all other cases and reg_ops.
982  */
983
984 enum {
985         REG_OP_ISFREE,          /* true if region is all zero bits */
986         REG_OP_ALLOC,           /* set all bits in region */
987         REG_OP_RELEASE,         /* clear all bits in region */
988 };
989
990 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
991 {
992         int nbits_reg;          /* number of bits in region */
993         int index;              /* index first long of region in bitmap */
994         int offset;             /* bit offset region in bitmap[index] */
995         int nlongs_reg;         /* num longs spanned by region in bitmap */
996         int nbitsinlong;        /* num bits of region in each spanned long */
997         unsigned long mask;     /* bitmask for one long of region */
998         int i;                  /* scans bitmap by longs */
999         int ret = 0;            /* return value */
1000
1001         /*
1002          * Either nlongs_reg == 1 (for small orders that fit in one long)
1003          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1004          */
1005         nbits_reg = 1 << order;
1006         index = pos / BITS_PER_LONG;
1007         offset = pos - (index * BITS_PER_LONG);
1008         nlongs_reg = BITS_TO_LONGS(nbits_reg);
1009         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1010
1011         /*
1012          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1013          * overflows if nbitsinlong == BITS_PER_LONG.
1014          */
1015         mask = (1UL << (nbitsinlong - 1));
1016         mask += mask - 1;
1017         mask <<= offset;
1018
1019         switch (reg_op) {
1020         case REG_OP_ISFREE:
1021                 for (i = 0; i < nlongs_reg; i++) {
1022                         if (bitmap[index + i] & mask)
1023                                 goto done;
1024                 }
1025                 ret = 1;        /* all bits in region free (zero) */
1026                 break;
1027
1028         case REG_OP_ALLOC:
1029                 for (i = 0; i < nlongs_reg; i++)
1030                         bitmap[index + i] |= mask;
1031                 break;
1032
1033         case REG_OP_RELEASE:
1034                 for (i = 0; i < nlongs_reg; i++)
1035                         bitmap[index + i] &= ~mask;
1036                 break;
1037         }
1038 done:
1039         return ret;
1040 }
1041
1042 /**
1043  * bitmap_find_free_region - find a contiguous aligned mem region
1044  *      @bitmap: array of unsigned longs corresponding to the bitmap
1045  *      @bits: number of bits in the bitmap
1046  *      @order: region size (log base 2 of number of bits) to find
1047  *
1048  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1049  * allocate them (set them to one).  Only consider regions of length
1050  * a power (@order) of two, aligned to that power of two, which
1051  * makes the search algorithm much faster.
1052  *
1053  * Return the bit offset in bitmap of the allocated region,
1054  * or -errno on failure.
1055  */
1056 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1057 {
1058         unsigned int pos, end;          /* scans bitmap by regions of size order */
1059
1060         for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1061                 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1062                         continue;
1063                 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1064                 return pos;
1065         }
1066         return -ENOMEM;
1067 }
1068 EXPORT_SYMBOL(bitmap_find_free_region);
1069
1070 /**
1071  * bitmap_release_region - release allocated bitmap region
1072  *      @bitmap: array of unsigned longs corresponding to the bitmap
1073  *      @pos: beginning of bit region to release
1074  *      @order: region size (log base 2 of number of bits) to release
1075  *
1076  * This is the complement to __bitmap_find_free_region() and releases
1077  * the found region (by clearing it in the bitmap).
1078  *
1079  * No return value.
1080  */
1081 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1082 {
1083         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1084 }
1085 EXPORT_SYMBOL(bitmap_release_region);
1086
1087 /**
1088  * bitmap_allocate_region - allocate bitmap region
1089  *      @bitmap: array of unsigned longs corresponding to the bitmap
1090  *      @pos: beginning of bit region to allocate
1091  *      @order: region size (log base 2 of number of bits) to allocate
1092  *
1093  * Allocate (set bits in) a specified region of a bitmap.
1094  *
1095  * Return 0 on success, or %-EBUSY if specified region wasn't
1096  * free (not all bits were zero).
1097  */
1098 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1099 {
1100         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1101                 return -EBUSY;
1102         return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1103 }
1104 EXPORT_SYMBOL(bitmap_allocate_region);
1105
1106 /**
1107  * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1108  *      @bitmap: array of unsigned longs, the destination bitmap, non NULL
1109  *      @nbits: number of bits in @bitmap
1110  *      @buf: array of u32 (in host byte order), the source bitmap, non NULL
1111  *      @nwords: number of u32 words in @buf
1112  *
1113  * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1114  * bits between nword and nbits in @bitmap (if any) are cleared. In
1115  * last word of @bitmap, the bits beyond nbits (if any) are kept
1116  * unchanged.
1117  *
1118  * Return the number of bits effectively copied.
1119  */
1120 unsigned int
1121 bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1122                      const u32 *buf, unsigned int nwords)
1123 {
1124         unsigned int dst_idx, src_idx;
1125
1126         for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1127                 unsigned long part = 0;
1128
1129                 if (src_idx < nwords)
1130                         part = buf[src_idx++];
1131
1132 #if BITS_PER_LONG == 64
1133                 if (src_idx < nwords)
1134                         part |= ((unsigned long) buf[src_idx++]) << 32;
1135 #endif
1136
1137                 if (dst_idx < nbits/BITS_PER_LONG)
1138                         bitmap[dst_idx] = part;
1139                 else {
1140                         unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1141
1142                         bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1143                                 | (part & mask);
1144                 }
1145         }
1146
1147         return min_t(unsigned int, nbits, 32*nwords);
1148 }
1149 EXPORT_SYMBOL(bitmap_from_u32array);
1150
1151 /**
1152  * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1153  *      @buf: array of u32 (in host byte order), the dest bitmap, non NULL
1154  *      @nwords: number of u32 words in @buf
1155  *      @bitmap: array of unsigned longs, the source bitmap, non NULL
1156  *      @nbits: number of bits in @bitmap
1157  *
1158  * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1159  * bits after nbits in @buf (if any) are cleared.
1160  *
1161  * Return the number of bits effectively copied.
1162  */
1163 unsigned int
1164 bitmap_to_u32array(u32 *buf, unsigned int nwords,
1165                    const unsigned long *bitmap, unsigned int nbits)
1166 {
1167         unsigned int dst_idx = 0, src_idx = 0;
1168
1169         while (dst_idx < nwords) {
1170                 unsigned long part = 0;
1171
1172                 if (src_idx < BITS_TO_LONGS(nbits)) {
1173                         part = bitmap[src_idx];
1174                         if (src_idx >= nbits/BITS_PER_LONG)
1175                                 part &= BITMAP_LAST_WORD_MASK(nbits);
1176                         src_idx++;
1177                 }
1178
1179                 buf[dst_idx++] = part & 0xffffffffUL;
1180
1181 #if BITS_PER_LONG == 64
1182                 if (dst_idx < nwords) {
1183                         part >>= 32;
1184                         buf[dst_idx++] = part & 0xffffffffUL;
1185                 }
1186 #endif
1187         }
1188
1189         return min_t(unsigned int, nbits, 32*nwords);
1190 }
1191 EXPORT_SYMBOL(bitmap_to_u32array);
1192
1193 /**
1194  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1195  * @dst:   destination buffer
1196  * @src:   bitmap to copy
1197  * @nbits: number of bits in the bitmap
1198  *
1199  * Require nbits % BITS_PER_LONG == 0.
1200  */
1201 #ifdef __BIG_ENDIAN
1202 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1203 {
1204         unsigned int i;
1205
1206         for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1207                 if (BITS_PER_LONG == 64)
1208                         dst[i] = cpu_to_le64(src[i]);
1209                 else
1210                         dst[i] = cpu_to_le32(src[i]);
1211         }
1212 }
1213 EXPORT_SYMBOL(bitmap_copy_le);
1214 #endif