1 // SPDX-License-Identifier: GPL-2.0
3 * Generic binary BCH encoding/decoding library
5 * Copyright © 2011 Parrot S.A.
7 * Author: Ivan Djelic <ivan.djelic@parrot.com>
11 * This library provides runtime configurable encoding/decoding of binary
12 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
14 * Call init_bch to get a pointer to a newly allocated bch_control structure for
15 * the given m (Galois field order), t (error correction capability) and
16 * (optional) primitive polynomial parameters.
18 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
19 * Call decode_bch to detect and locate errors in received data.
21 * On systems supporting hw BCH features, intermediate results may be provided
22 * to decode_bch in order to skip certain steps. See decode_bch() documentation
25 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
26 * parameters m and t; thus allowing extra compiler optimizations and providing
27 * better (up to 2x) encoding performance. Using this option makes sense when
28 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
29 * on a particular NAND flash device.
31 * Algorithmic details:
33 * Encoding is performed by processing 32 input bits in parallel, using 4
34 * remainder lookup tables.
36 * The final stage of decoding involves the following internal steps:
37 * a. Syndrome computation
38 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
39 * c. Error locator root finding (by far the most expensive step)
41 * In this implementation, step c is not performed using the usual Chien search.
42 * Instead, an alternative approach described in [1] is used. It consists in
43 * factoring the error locator polynomial using the Berlekamp Trace algorithm
44 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
45 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
46 * much better performance than Chien search for usual (m,t) values (typically
47 * m >= 13, t < 32, see [1]).
49 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
50 * of characteristic 2, in: Western European Workshop on Research in Cryptology
51 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
52 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
53 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
60 #include <ubi_uboot.h>
61 #include <dm/devres.h>
63 #include <linux/bitops.h>
66 #if defined(__FreeBSD__)
67 #include <sys/endian.h>
68 #elif defined(__APPLE__)
69 #include <machine/endian.h>
70 #include <libkern/OSByteOrder.h>
79 #if defined(__APPLE__)
80 #define cpu_to_be32 OSSwapHostToBigInt32
82 #define cpu_to_be32 htobe32
84 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
85 #define kmalloc(size, flags) malloc(size)
86 #define kzalloc(size, flags) calloc(1, size)
88 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
91 #include <asm/byteorder.h>
92 #include <linux/bch.h>
94 #if defined(CONFIG_BCH_CONST_PARAMS)
95 #define GF_M(_p) (CONFIG_BCH_CONST_M)
96 #define GF_T(_p) (CONFIG_BCH_CONST_T)
97 #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
99 #define GF_M(_p) ((_p)->m)
100 #define GF_T(_p) ((_p)->t)
101 #define GF_N(_p) ((_p)->n)
104 #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
105 #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
108 #define dbg(_fmt, args...) do {} while (0)
112 * represent a polynomial over GF(2^m)
115 unsigned int deg; /* polynomial degree */
116 unsigned int c[0]; /* polynomial terms */
119 /* given its degree, compute a polynomial size in bytes */
120 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
122 /* polynomial of degree 1 */
123 struct gf_poly_deg1 {
129 #if !defined(__DragonFly__) && !defined(__FreeBSD__) && !defined(__APPLE__)
130 static int fls(int x)
136 if (!(x & 0xffff0000u)) {
140 if (!(x & 0xff000000u)) {
144 if (!(x & 0xf0000000u)) {
148 if (!(x & 0xc0000000u)) {
152 if (!(x & 0x80000000u)) {
162 * same as encode_bch(), but process input data one byte at a time
164 static void encode_bch_unaligned(struct bch_control *bch,
165 const unsigned char *data, unsigned int len,
170 const int l = BCH_ECC_WORDS(bch)-1;
173 p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
175 for (i = 0; i < l; i++)
176 ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
178 ecc[l] = (ecc[l] << 8)^(*p);
183 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
185 static void load_ecc8(struct bch_control *bch, uint32_t *dst,
188 uint8_t pad[4] = {0, 0, 0, 0};
189 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
191 for (i = 0; i < nwords; i++, src += 4)
192 dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
194 memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
195 dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
199 * convert 32-bit ecc words to ecc bytes
201 static void store_ecc8(struct bch_control *bch, uint8_t *dst,
205 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
207 for (i = 0; i < nwords; i++) {
208 *dst++ = (src[i] >> 24);
209 *dst++ = (src[i] >> 16) & 0xff;
210 *dst++ = (src[i] >> 8) & 0xff;
211 *dst++ = (src[i] >> 0) & 0xff;
213 pad[0] = (src[nwords] >> 24);
214 pad[1] = (src[nwords] >> 16) & 0xff;
215 pad[2] = (src[nwords] >> 8) & 0xff;
216 pad[3] = (src[nwords] >> 0) & 0xff;
217 memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
221 * encode_bch - calculate BCH ecc parity of data
222 * @bch: BCH control structure
223 * @data: data to encode
224 * @len: data length in bytes
225 * @ecc: ecc parity data, must be initialized by caller
227 * The @ecc parity array is used both as input and output parameter, in order to
228 * allow incremental computations. It should be of the size indicated by member
229 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
231 * The exact number of computed ecc parity bits is given by member @ecc_bits of
232 * @bch; it may be less than m*t for large values of t.
234 void encode_bch(struct bch_control *bch, const uint8_t *data,
235 unsigned int len, uint8_t *ecc)
237 const unsigned int l = BCH_ECC_WORDS(bch)-1;
238 unsigned int i, mlen;
241 const uint32_t * const tab0 = bch->mod8_tab;
242 const uint32_t * const tab1 = tab0 + 256*(l+1);
243 const uint32_t * const tab2 = tab1 + 256*(l+1);
244 const uint32_t * const tab3 = tab2 + 256*(l+1);
245 const uint32_t *pdata, *p0, *p1, *p2, *p3;
248 /* load ecc parity bytes into internal 32-bit buffer */
249 load_ecc8(bch, bch->ecc_buf, ecc);
251 memset(bch->ecc_buf, 0, sizeof(r));
254 /* process first unaligned data bytes */
255 m = ((unsigned long)data) & 3;
257 mlen = (len < (4-m)) ? len : 4-m;
258 encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
263 /* process 32-bit aligned data words */
264 pdata = (uint32_t *)data;
268 memcpy(r, bch->ecc_buf, sizeof(r));
271 * split each 32-bit word into 4 polynomials of weight 8 as follows:
273 * 31 ...24 23 ...16 15 ... 8 7 ... 0
274 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
275 * tttttttt mod g = r0 (precomputed)
276 * zzzzzzzz 00000000 mod g = r1 (precomputed)
277 * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
278 * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
279 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
282 /* input data is read in big-endian format */
283 w = r[0]^cpu_to_be32(*pdata++);
284 p0 = tab0 + (l+1)*((w >> 0) & 0xff);
285 p1 = tab1 + (l+1)*((w >> 8) & 0xff);
286 p2 = tab2 + (l+1)*((w >> 16) & 0xff);
287 p3 = tab3 + (l+1)*((w >> 24) & 0xff);
289 for (i = 0; i < l; i++)
290 r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
292 r[l] = p0[l]^p1[l]^p2[l]^p3[l];
294 memcpy(bch->ecc_buf, r, sizeof(r));
296 /* process last unaligned bytes */
298 encode_bch_unaligned(bch, data, len, bch->ecc_buf);
300 /* store ecc parity bytes into original parity buffer */
302 store_ecc8(bch, ecc, bch->ecc_buf);
305 static inline int modulo(struct bch_control *bch, unsigned int v)
307 const unsigned int n = GF_N(bch);
310 v = (v & n) + (v >> GF_M(bch));
316 * shorter and faster modulo function, only works when v < 2N.
318 static inline int mod_s(struct bch_control *bch, unsigned int v)
320 const unsigned int n = GF_N(bch);
321 return (v < n) ? v : v-n;
324 static inline int deg(unsigned int poly)
326 /* polynomial degree is the most-significant bit index */
330 static inline int parity(unsigned int x)
333 * public domain code snippet, lifted from
334 * http://www-graphics.stanford.edu/~seander/bithacks.html
338 x = (x & 0x11111111U) * 0x11111111U;
339 return (x >> 28) & 1;
342 /* Galois field basic operations: multiply, divide, inverse, etc. */
344 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
347 return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
348 bch->a_log_tab[b])] : 0;
351 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
353 return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
356 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
359 return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
360 GF_N(bch)-bch->a_log_tab[b])] : 0;
363 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
365 return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
368 static inline unsigned int a_pow(struct bch_control *bch, int i)
370 return bch->a_pow_tab[modulo(bch, i)];
373 static inline int a_log(struct bch_control *bch, unsigned int x)
375 return bch->a_log_tab[x];
378 static inline int a_ilog(struct bch_control *bch, unsigned int x)
380 return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
384 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
386 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
392 const int t = GF_T(bch);
396 /* make sure extra bits in last ecc word are cleared */
397 m = ((unsigned int)s) & 31;
399 ecc[s/32] &= ~((1u << (32-m))-1);
400 memset(syn, 0, 2*t*sizeof(*syn));
402 /* compute v(a^j) for j=1 .. 2t-1 */
408 for (j = 0; j < 2*t; j += 2)
409 syn[j] ^= a_pow(bch, (j+1)*(i+s));
415 /* v(a^(2j)) = v(a^j)^2 */
416 for (j = 0; j < t; j++)
417 syn[2*j+1] = gf_sqr(bch, syn[j]);
420 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
422 memcpy(dst, src, GF_POLY_SZ(src->deg));
425 static int compute_error_locator_polynomial(struct bch_control *bch,
426 const unsigned int *syn)
428 const unsigned int t = GF_T(bch);
429 const unsigned int n = GF_N(bch);
430 unsigned int i, j, tmp, l, pd = 1, d = syn[0];
431 struct gf_poly *elp = bch->elp;
432 struct gf_poly *pelp = bch->poly_2t[0];
433 struct gf_poly *elp_copy = bch->poly_2t[1];
436 memset(pelp, 0, GF_POLY_SZ(2*t));
437 memset(elp, 0, GF_POLY_SZ(2*t));
444 /* use simplified binary Berlekamp-Massey algorithm */
445 for (i = 0; (i < t) && (elp->deg <= t); i++) {
448 gf_poly_copy(elp_copy, elp);
449 /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
450 tmp = a_log(bch, d)+n-a_log(bch, pd);
451 for (j = 0; j <= pelp->deg; j++) {
453 l = a_log(bch, pelp->c[j]);
454 elp->c[j+k] ^= a_pow(bch, tmp+l);
457 /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
459 if (tmp > elp->deg) {
461 gf_poly_copy(pelp, elp_copy);
466 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
469 for (j = 1; j <= elp->deg; j++)
470 d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
473 dbg("elp=%s\n", gf_poly_str(elp));
474 return (elp->deg > t) ? -1 : (int)elp->deg;
478 * solve a m x m linear system in GF(2) with an expected number of solutions,
479 * and return the number of found solutions
481 static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
482 unsigned int *sol, int nsol)
484 const int m = GF_M(bch);
485 unsigned int tmp, mask;
486 int rem, c, r, p, k, param[m];
491 /* Gaussian elimination */
492 for (c = 0; c < m; c++) {
495 /* find suitable row for elimination */
496 for (r = p; r < m; r++) {
497 if (rows[r] & mask) {
508 /* perform elimination on remaining rows */
510 for (r = rem; r < m; r++) {
515 /* elimination not needed, store defective row index */
520 /* rewrite system, inserting fake parameter rows */
523 for (r = m-1; r >= 0; r--) {
524 if ((r > m-1-k) && rows[r])
525 /* system has no solution */
528 rows[r] = (p && (r == param[p-1])) ?
529 p--, 1u << (m-r) : rows[r-p];
533 if (nsol != (1 << k))
534 /* unexpected number of solutions */
537 for (p = 0; p < nsol; p++) {
538 /* set parameters for p-th solution */
539 for (c = 0; c < k; c++)
540 rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
542 /* compute unique solution */
544 for (r = m-1; r >= 0; r--) {
545 mask = rows[r] & (tmp|1);
546 tmp |= parity(mask) << (m-r);
554 * this function builds and solves a linear system for finding roots of a degree
555 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
557 static int find_affine4_roots(struct bch_control *bch, unsigned int a,
558 unsigned int b, unsigned int c,
562 const int m = GF_M(bch);
563 unsigned int mask = 0xff, t, rows[16] = {0,};
569 /* buid linear system to solve X^4+aX^2+bX+c = 0 */
570 for (i = 0; i < m; i++) {
571 rows[i+1] = bch->a_pow_tab[4*i]^
572 (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
573 (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
578 * transpose 16x16 matrix before passing it to linear solver
579 * warning: this code assumes m < 16
581 for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
582 for (k = 0; k < 16; k = (k+j+1) & ~j) {
583 t = ((rows[k] >> j)^rows[k+j]) & mask;
588 return solve_linear_system(bch, rows, roots, 4);
592 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
594 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
600 /* poly[X] = bX+c with c!=0, root=c/b */
601 roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
602 bch->a_log_tab[poly->c[1]]);
607 * compute roots of a degree 2 polynomial over GF(2^m)
609 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
612 int n = 0, i, l0, l1, l2;
613 unsigned int u, v, r;
615 if (poly->c[0] && poly->c[1]) {
617 l0 = bch->a_log_tab[poly->c[0]];
618 l1 = bch->a_log_tab[poly->c[1]];
619 l2 = bch->a_log_tab[poly->c[2]];
621 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
622 u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
624 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
625 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
626 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
627 * i.e. r and r+1 are roots iff Tr(u)=0
637 if ((gf_sqr(bch, r)^r) == u) {
638 /* reverse z=a/bX transformation and compute log(1/r) */
639 roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
640 bch->a_log_tab[r]+l2);
641 roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
642 bch->a_log_tab[r^1]+l2);
649 * compute roots of a degree 3 polynomial over GF(2^m)
651 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
655 unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
658 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
660 c2 = gf_div(bch, poly->c[0], e3);
661 b2 = gf_div(bch, poly->c[1], e3);
662 a2 = gf_div(bch, poly->c[2], e3);
664 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
665 c = gf_mul(bch, a2, c2); /* c = a2c2 */
666 b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */
667 a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */
669 /* find the 4 roots of this affine polynomial */
670 if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
671 /* remove a2 from final list of roots */
672 for (i = 0; i < 4; i++) {
674 roots[n++] = a_ilog(bch, tmp[i]);
682 * compute roots of a degree 4 polynomial over GF(2^m)
684 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
688 unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
693 /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
695 d = gf_div(bch, poly->c[0], e4);
696 c = gf_div(bch, poly->c[1], e4);
697 b = gf_div(bch, poly->c[2], e4);
698 a = gf_div(bch, poly->c[3], e4);
700 /* use Y=1/X transformation to get an affine polynomial */
702 /* first, eliminate cX by using z=X+e with ae^2+c=0 */
704 /* compute e such that e^2 = c/a */
705 f = gf_div(bch, c, a);
707 l += (l & 1) ? GF_N(bch) : 0;
710 * use transformation z=X+e:
711 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
712 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
713 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
714 * z^4 + az^3 + b'z^2 + d'
716 d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
717 b = gf_mul(bch, a, e)^b;
719 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
721 /* assume all roots have multiplicity 1 */
725 b2 = gf_div(bch, a, d);
726 a2 = gf_div(bch, b, d);
728 /* polynomial is already affine */
733 /* find the 4 roots of this affine polynomial */
734 if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
735 for (i = 0; i < 4; i++) {
736 /* post-process roots (reverse transformations) */
737 f = a ? gf_inv(bch, roots[i]) : roots[i];
738 roots[i] = a_ilog(bch, f^e);
746 * build monic, log-based representation of a polynomial
748 static void gf_poly_logrep(struct bch_control *bch,
749 const struct gf_poly *a, int *rep)
751 int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
753 /* represent 0 values with -1; warning, rep[d] is not set to 1 */
754 for (i = 0; i < d; i++)
755 rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
759 * compute polynomial Euclidean division remainder in GF(2^m)[X]
761 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
762 const struct gf_poly *b, int *rep)
765 unsigned int i, j, *c = a->c;
766 const unsigned int d = b->deg;
771 /* reuse or compute log representation of denominator */
774 gf_poly_logrep(bch, b, rep);
777 for (j = a->deg; j >= d; j--) {
779 la = a_log(bch, c[j]);
781 for (i = 0; i < d; i++, p++) {
784 c[p] ^= bch->a_pow_tab[mod_s(bch,
790 while (!c[a->deg] && a->deg)
795 * compute polynomial Euclidean division quotient in GF(2^m)[X]
797 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
798 const struct gf_poly *b, struct gf_poly *q)
800 if (a->deg >= b->deg) {
801 q->deg = a->deg-b->deg;
802 /* compute a mod b (modifies a) */
803 gf_poly_mod(bch, a, b, NULL);
804 /* quotient is stored in upper part of polynomial a */
805 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
813 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
815 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
820 dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
822 if (a->deg < b->deg) {
829 gf_poly_mod(bch, a, b, NULL);
835 dbg("%s\n", gf_poly_str(a));
841 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
842 * This is used in Berlekamp Trace algorithm for splitting polynomials
844 static void compute_trace_bk_mod(struct bch_control *bch, int k,
845 const struct gf_poly *f, struct gf_poly *z,
848 const int m = GF_M(bch);
851 /* z contains z^2j mod f */
854 z->c[1] = bch->a_pow_tab[k];
857 memset(out, 0, GF_POLY_SZ(f->deg));
859 /* compute f log representation only once */
860 gf_poly_logrep(bch, f, bch->cache);
862 for (i = 0; i < m; i++) {
863 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
864 for (j = z->deg; j >= 0; j--) {
865 out->c[j] ^= z->c[j];
866 z->c[2*j] = gf_sqr(bch, z->c[j]);
869 if (z->deg > out->deg)
874 /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
875 gf_poly_mod(bch, z, f, bch->cache);
878 while (!out->c[out->deg] && out->deg)
881 dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
885 * factor a polynomial using Berlekamp Trace algorithm (BTA)
887 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
888 struct gf_poly **g, struct gf_poly **h)
890 struct gf_poly *f2 = bch->poly_2t[0];
891 struct gf_poly *q = bch->poly_2t[1];
892 struct gf_poly *tk = bch->poly_2t[2];
893 struct gf_poly *z = bch->poly_2t[3];
896 dbg("factoring %s...\n", gf_poly_str(f));
901 /* tk = Tr(a^k.X) mod f */
902 compute_trace_bk_mod(bch, k, f, z, tk);
905 /* compute g = gcd(f, tk) (destructive operation) */
907 gcd = gf_poly_gcd(bch, f2, tk);
908 if (gcd->deg < f->deg) {
909 /* compute h=f/gcd(f,tk); this will modify f and q */
910 gf_poly_div(bch, f, gcd, q);
911 /* store g and h in-place (clobbering f) */
912 *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
913 gf_poly_copy(*g, gcd);
920 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
923 static int find_poly_roots(struct bch_control *bch, unsigned int k,
924 struct gf_poly *poly, unsigned int *roots)
927 struct gf_poly *f1, *f2;
930 /* handle low degree polynomials with ad hoc techniques */
932 cnt = find_poly_deg1_roots(bch, poly, roots);
935 cnt = find_poly_deg2_roots(bch, poly, roots);
938 cnt = find_poly_deg3_roots(bch, poly, roots);
941 cnt = find_poly_deg4_roots(bch, poly, roots);
944 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
946 if (poly->deg && (k <= GF_M(bch))) {
947 factor_polynomial(bch, k, poly, &f1, &f2);
949 cnt += find_poly_roots(bch, k+1, f1, roots);
951 cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
958 #if defined(USE_CHIEN_SEARCH)
960 * exhaustive root search (Chien) implementation - not used, included only for
961 * reference/comparison tests
963 static int chien_search(struct bch_control *bch, unsigned int len,
964 struct gf_poly *p, unsigned int *roots)
967 unsigned int i, j, syn, syn0, count = 0;
968 const unsigned int k = 8*len+bch->ecc_bits;
970 /* use a log-based representation of polynomial */
971 gf_poly_logrep(bch, p, bch->cache);
972 bch->cache[p->deg] = 0;
973 syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
975 for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
976 /* compute elp(a^i) */
977 for (j = 1, syn = syn0; j <= p->deg; j++) {
980 syn ^= a_pow(bch, m+j*i);
983 roots[count++] = GF_N(bch)-i;
988 return (count == p->deg) ? count : 0;
990 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
991 #endif /* USE_CHIEN_SEARCH */
994 * decode_bch - decode received codeword and find bit error locations
995 * @bch: BCH control structure
996 * @data: received data, ignored if @calc_ecc is provided
997 * @len: data length in bytes, must always be provided
998 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
999 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
1000 * @syn: hw computed syndrome data (if NULL, syndrome is calculated)
1001 * @errloc: output array of error locations
1004 * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
1005 * invalid parameters were provided
1007 * Depending on the available hw BCH support and the need to compute @calc_ecc
1008 * separately (using encode_bch()), this function should be called with one of
1009 * the following parameter configurations -
1011 * by providing @data and @recv_ecc only:
1012 * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
1014 * by providing @recv_ecc and @calc_ecc:
1015 * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1017 * by providing ecc = recv_ecc XOR calc_ecc:
1018 * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1020 * by providing syndrome results @syn:
1021 * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1023 * Once decode_bch() has successfully returned with a positive value, error
1024 * locations returned in array @errloc should be interpreted as follows -
1026 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1029 * if (errloc[n] < 8*len), then n-th error is located in data and can be
1030 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1032 * Note that this function does not perform any data correction by itself, it
1033 * merely indicates error locations.
1035 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
1036 const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1037 const unsigned int *syn, unsigned int *errloc)
1039 const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1044 /* sanity check: make sure data length can be handled */
1045 if (8*len > (bch->n-bch->ecc_bits))
1048 /* if caller does not provide syndromes, compute them */
1051 /* compute received data ecc into an internal buffer */
1052 if (!data || !recv_ecc)
1054 encode_bch(bch, data, len, NULL);
1056 /* load provided calculated ecc */
1057 load_ecc8(bch, bch->ecc_buf, calc_ecc);
1059 /* load received ecc or assume it was XORed in calc_ecc */
1061 load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1062 /* XOR received and calculated ecc */
1063 for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1064 bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1065 sum |= bch->ecc_buf[i];
1068 /* no error found */
1071 compute_syndromes(bch, bch->ecc_buf, bch->syn);
1075 err = compute_error_locator_polynomial(bch, syn);
1077 nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1082 /* post-process raw error locations for easier correction */
1083 nbits = (len*8)+bch->ecc_bits;
1084 for (i = 0; i < err; i++) {
1085 if (errloc[i] >= nbits) {
1089 errloc[i] = nbits-1-errloc[i];
1090 errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1093 return (err >= 0) ? err : -EBADMSG;
1097 * generate Galois field lookup tables
1099 static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1101 unsigned int i, x = 1;
1102 const unsigned int k = 1 << deg(poly);
1104 /* primitive polynomial must be of degree m */
1105 if (k != (1u << GF_M(bch)))
1108 for (i = 0; i < GF_N(bch); i++) {
1109 bch->a_pow_tab[i] = x;
1110 bch->a_log_tab[x] = i;
1112 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1118 bch->a_pow_tab[GF_N(bch)] = 1;
1119 bch->a_log_tab[0] = 0;
1125 * compute generator polynomial remainder tables for fast encoding
1127 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1130 uint32_t data, hi, lo, *tab;
1131 const int l = BCH_ECC_WORDS(bch);
1132 const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1133 const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1135 memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1137 for (i = 0; i < 256; i++) {
1138 /* p(X)=i is a small polynomial of weight <= 8 */
1139 for (b = 0; b < 4; b++) {
1140 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1141 tab = bch->mod8_tab + (b*256+i)*l;
1145 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1146 data ^= g[0] >> (31-d);
1147 for (j = 0; j < ecclen; j++) {
1148 hi = (d < 31) ? g[j] << (d+1) : 0;
1150 g[j+1] >> (31-d) : 0;
1159 * build a base for factoring degree 2 polynomials
1161 static int build_deg2_base(struct bch_control *bch)
1163 const int m = GF_M(bch);
1165 unsigned int sum, x, y, remaining, ak = 0, xi[m];
1167 /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1168 for (i = 0; i < m; i++) {
1169 for (j = 0, sum = 0; j < m; j++)
1170 sum ^= a_pow(bch, i*(1 << j));
1173 ak = bch->a_pow_tab[i];
1177 /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1179 memset(xi, 0, sizeof(xi));
1181 for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1182 y = gf_sqr(bch, x)^x;
1183 for (i = 0; i < 2; i++) {
1185 if (y && (r < m) && !xi[r]) {
1189 dbg("x%d = %x\n", r, x);
1195 /* should not happen but check anyway */
1196 return remaining ? -1 : 0;
1199 static void *bch_alloc(size_t size, int *err)
1203 ptr = kmalloc(size, GFP_KERNEL);
1210 * compute generator polynomial for given (m,t) parameters.
1212 static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1214 const unsigned int m = GF_M(bch);
1215 const unsigned int t = GF_T(bch);
1217 unsigned int i, j, nbits, r, word, *roots;
1221 g = bch_alloc(GF_POLY_SZ(m*t), &err);
1222 roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1223 genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1231 /* enumerate all roots of g(X) */
1232 memset(roots , 0, (bch->n+1)*sizeof(*roots));
1233 for (i = 0; i < t; i++) {
1234 for (j = 0, r = 2*i+1; j < m; j++) {
1236 r = mod_s(bch, 2*r);
1239 /* build generator polynomial g(X) */
1242 for (i = 0; i < GF_N(bch); i++) {
1244 /* multiply g(X) by (X+root) */
1245 r = bch->a_pow_tab[i];
1247 for (j = g->deg; j > 0; j--)
1248 g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1250 g->c[0] = gf_mul(bch, g->c[0], r);
1254 /* store left-justified binary representation of g(X) */
1259 nbits = (n > 32) ? 32 : n;
1260 for (j = 0, word = 0; j < nbits; j++) {
1262 word |= 1u << (31-j);
1264 genpoly[i++] = word;
1267 bch->ecc_bits = g->deg;
1277 * init_bch - initialize a BCH encoder/decoder
1278 * @m: Galois field order, should be in the range 5-15
1279 * @t: maximum error correction capability, in bits
1280 * @prim_poly: user-provided primitive polynomial (or 0 to use default)
1283 * a newly allocated BCH control structure if successful, NULL otherwise
1285 * This initialization can take some time, as lookup tables are built for fast
1286 * encoding/decoding; make sure not to call this function from a time critical
1287 * path. Usually, init_bch() should be called on module/driver init and
1288 * free_bch() should be called to release memory on exit.
1290 * You may provide your own primitive polynomial of degree @m in argument
1291 * @prim_poly, or let init_bch() use its default polynomial.
1293 * Once init_bch() has successfully returned a pointer to a newly allocated
1294 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1297 struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1300 unsigned int i, words;
1302 struct bch_control *bch = NULL;
1304 const int min_m = 5;
1305 const int max_m = 15;
1307 /* default primitive polynomials */
1308 static const unsigned int prim_poly_tab[] = {
1309 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1313 #if defined(CONFIG_BCH_CONST_PARAMS)
1314 if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1315 printk(KERN_ERR "bch encoder/decoder was configured to support "
1316 "parameters m=%d, t=%d only!\n",
1317 CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1321 if ((m < min_m) || (m > max_m))
1323 * values of m greater than 15 are not currently supported;
1324 * supporting m > 15 would require changing table base type
1325 * (uint16_t) and a small patch in matrix transposition
1330 if ((t < 1) || (m*t >= ((1 << m)-1)))
1331 /* invalid t value */
1334 /* select a primitive polynomial for generating GF(2^m) */
1336 prim_poly = prim_poly_tab[m-min_m];
1338 bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1344 bch->n = (1 << m)-1;
1345 words = DIV_ROUND_UP(m*t, 32);
1346 bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1347 bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1348 bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1349 bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1350 bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1351 bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1352 bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1353 bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
1354 bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
1355 bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1357 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1358 bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1363 err = build_gf_tables(bch, prim_poly);
1367 /* use generator polynomial for computing encoding tables */
1368 genpoly = compute_generator_polynomial(bch);
1369 if (genpoly == NULL)
1372 build_mod8_tables(bch, genpoly);
1375 err = build_deg2_base(bch);
1387 * free_bch - free the BCH control structure
1388 * @bch: BCH control structure to release
1390 void free_bch(struct bch_control *bch)
1395 kfree(bch->a_pow_tab);
1396 kfree(bch->a_log_tab);
1397 kfree(bch->mod8_tab);
1398 kfree(bch->ecc_buf);
1399 kfree(bch->ecc_buf2);
1405 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1406 kfree(bch->poly_2t[i]);