Merge tag 'dmaengine-5.7-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[platform/kernel/linux-rpi.git] / lib / bch.c
1 /*
2  * Generic binary BCH encoding/decoding library
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 as published by
6  * the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 51
15  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Copyright © 2011 Parrot S.A.
18  *
19  * Author: Ivan Djelic <ivan.djelic@parrot.com>
20  *
21  * Description:
22  *
23  * This library provides runtime configurable encoding/decoding of binary
24  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
25  *
26  * Call init_bch to get a pointer to a newly allocated bch_control structure for
27  * the given m (Galois field order), t (error correction capability) and
28  * (optional) primitive polynomial parameters.
29  *
30  * Call encode_bch to compute and store ecc parity bytes to a given buffer.
31  * Call decode_bch to detect and locate errors in received data.
32  *
33  * On systems supporting hw BCH features, intermediate results may be provided
34  * to decode_bch in order to skip certain steps. See decode_bch() documentation
35  * for details.
36  *
37  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
38  * parameters m and t; thus allowing extra compiler optimizations and providing
39  * better (up to 2x) encoding performance. Using this option makes sense when
40  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
41  * on a particular NAND flash device.
42  *
43  * Algorithmic details:
44  *
45  * Encoding is performed by processing 32 input bits in parallel, using 4
46  * remainder lookup tables.
47  *
48  * The final stage of decoding involves the following internal steps:
49  * a. Syndrome computation
50  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
51  * c. Error locator root finding (by far the most expensive step)
52  *
53  * In this implementation, step c is not performed using the usual Chien search.
54  * Instead, an alternative approach described in [1] is used. It consists in
55  * factoring the error locator polynomial using the Berlekamp Trace algorithm
56  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
57  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
58  * much better performance than Chien search for usual (m,t) values (typically
59  * m >= 13, t < 32, see [1]).
60  *
61  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
62  * of characteristic 2, in: Western European Workshop on Research in Cryptology
63  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
64  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
65  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
66  */
67
68 #include <linux/kernel.h>
69 #include <linux/errno.h>
70 #include <linux/init.h>
71 #include <linux/module.h>
72 #include <linux/slab.h>
73 #include <linux/bitops.h>
74 #include <asm/byteorder.h>
75 #include <linux/bch.h>
76
77 #if defined(CONFIG_BCH_CONST_PARAMS)
78 #define GF_M(_p)               (CONFIG_BCH_CONST_M)
79 #define GF_T(_p)               (CONFIG_BCH_CONST_T)
80 #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
81 #define BCH_MAX_M              (CONFIG_BCH_CONST_M)
82 #define BCH_MAX_T              (CONFIG_BCH_CONST_T)
83 #else
84 #define GF_M(_p)               ((_p)->m)
85 #define GF_T(_p)               ((_p)->t)
86 #define GF_N(_p)               ((_p)->n)
87 #define BCH_MAX_M              15 /* 2KB */
88 #define BCH_MAX_T              64 /* 64 bit correction */
89 #endif
90
91 #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
92 #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
93
94 #define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
95
96 #ifndef dbg
97 #define dbg(_fmt, args...)     do {} while (0)
98 #endif
99
100 /*
101  * represent a polynomial over GF(2^m)
102  */
103 struct gf_poly {
104         unsigned int deg;    /* polynomial degree */
105         unsigned int c[0];   /* polynomial terms */
106 };
107
108 /* given its degree, compute a polynomial size in bytes */
109 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
110
111 /* polynomial of degree 1 */
112 struct gf_poly_deg1 {
113         struct gf_poly poly;
114         unsigned int   c[2];
115 };
116
117 /*
118  * same as encode_bch(), but process input data one byte at a time
119  */
120 static void encode_bch_unaligned(struct bch_control *bch,
121                                  const unsigned char *data, unsigned int len,
122                                  uint32_t *ecc)
123 {
124         int i;
125         const uint32_t *p;
126         const int l = BCH_ECC_WORDS(bch)-1;
127
128         while (len--) {
129                 p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
130
131                 for (i = 0; i < l; i++)
132                         ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
133
134                 ecc[l] = (ecc[l] << 8)^(*p);
135         }
136 }
137
138 /*
139  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
140  */
141 static void load_ecc8(struct bch_control *bch, uint32_t *dst,
142                       const uint8_t *src)
143 {
144         uint8_t pad[4] = {0, 0, 0, 0};
145         unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
146
147         for (i = 0; i < nwords; i++, src += 4)
148                 dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
149
150         memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
151         dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
152 }
153
154 /*
155  * convert 32-bit ecc words to ecc bytes
156  */
157 static void store_ecc8(struct bch_control *bch, uint8_t *dst,
158                        const uint32_t *src)
159 {
160         uint8_t pad[4];
161         unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
162
163         for (i = 0; i < nwords; i++) {
164                 *dst++ = (src[i] >> 24);
165                 *dst++ = (src[i] >> 16) & 0xff;
166                 *dst++ = (src[i] >>  8) & 0xff;
167                 *dst++ = (src[i] >>  0) & 0xff;
168         }
169         pad[0] = (src[nwords] >> 24);
170         pad[1] = (src[nwords] >> 16) & 0xff;
171         pad[2] = (src[nwords] >>  8) & 0xff;
172         pad[3] = (src[nwords] >>  0) & 0xff;
173         memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
174 }
175
176 /**
177  * encode_bch - calculate BCH ecc parity of data
178  * @bch:   BCH control structure
179  * @data:  data to encode
180  * @len:   data length in bytes
181  * @ecc:   ecc parity data, must be initialized by caller
182  *
183  * The @ecc parity array is used both as input and output parameter, in order to
184  * allow incremental computations. It should be of the size indicated by member
185  * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
186  *
187  * The exact number of computed ecc parity bits is given by member @ecc_bits of
188  * @bch; it may be less than m*t for large values of t.
189  */
190 void encode_bch(struct bch_control *bch, const uint8_t *data,
191                 unsigned int len, uint8_t *ecc)
192 {
193         const unsigned int l = BCH_ECC_WORDS(bch)-1;
194         unsigned int i, mlen;
195         unsigned long m;
196         uint32_t w, r[BCH_ECC_MAX_WORDS];
197         const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
198         const uint32_t * const tab0 = bch->mod8_tab;
199         const uint32_t * const tab1 = tab0 + 256*(l+1);
200         const uint32_t * const tab2 = tab1 + 256*(l+1);
201         const uint32_t * const tab3 = tab2 + 256*(l+1);
202         const uint32_t *pdata, *p0, *p1, *p2, *p3;
203
204         if (WARN_ON(r_bytes > sizeof(r)))
205                 return;
206
207         if (ecc) {
208                 /* load ecc parity bytes into internal 32-bit buffer */
209                 load_ecc8(bch, bch->ecc_buf, ecc);
210         } else {
211                 memset(bch->ecc_buf, 0, r_bytes);
212         }
213
214         /* process first unaligned data bytes */
215         m = ((unsigned long)data) & 3;
216         if (m) {
217                 mlen = (len < (4-m)) ? len : 4-m;
218                 encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
219                 data += mlen;
220                 len  -= mlen;
221         }
222
223         /* process 32-bit aligned data words */
224         pdata = (uint32_t *)data;
225         mlen  = len/4;
226         data += 4*mlen;
227         len  -= 4*mlen;
228         memcpy(r, bch->ecc_buf, r_bytes);
229
230         /*
231          * split each 32-bit word into 4 polynomials of weight 8 as follows:
232          *
233          * 31 ...24  23 ...16  15 ... 8  7 ... 0
234          * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
235          *                               tttttttt  mod g = r0 (precomputed)
236          *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
237          *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
238          * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
239          * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
240          */
241         while (mlen--) {
242                 /* input data is read in big-endian format */
243                 w = r[0]^cpu_to_be32(*pdata++);
244                 p0 = tab0 + (l+1)*((w >>  0) & 0xff);
245                 p1 = tab1 + (l+1)*((w >>  8) & 0xff);
246                 p2 = tab2 + (l+1)*((w >> 16) & 0xff);
247                 p3 = tab3 + (l+1)*((w >> 24) & 0xff);
248
249                 for (i = 0; i < l; i++)
250                         r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
251
252                 r[l] = p0[l]^p1[l]^p2[l]^p3[l];
253         }
254         memcpy(bch->ecc_buf, r, r_bytes);
255
256         /* process last unaligned bytes */
257         if (len)
258                 encode_bch_unaligned(bch, data, len, bch->ecc_buf);
259
260         /* store ecc parity bytes into original parity buffer */
261         if (ecc)
262                 store_ecc8(bch, ecc, bch->ecc_buf);
263 }
264 EXPORT_SYMBOL_GPL(encode_bch);
265
266 static inline int modulo(struct bch_control *bch, unsigned int v)
267 {
268         const unsigned int n = GF_N(bch);
269         while (v >= n) {
270                 v -= n;
271                 v = (v & n) + (v >> GF_M(bch));
272         }
273         return v;
274 }
275
276 /*
277  * shorter and faster modulo function, only works when v < 2N.
278  */
279 static inline int mod_s(struct bch_control *bch, unsigned int v)
280 {
281         const unsigned int n = GF_N(bch);
282         return (v < n) ? v : v-n;
283 }
284
285 static inline int deg(unsigned int poly)
286 {
287         /* polynomial degree is the most-significant bit index */
288         return fls(poly)-1;
289 }
290
291 static inline int parity(unsigned int x)
292 {
293         /*
294          * public domain code snippet, lifted from
295          * http://www-graphics.stanford.edu/~seander/bithacks.html
296          */
297         x ^= x >> 1;
298         x ^= x >> 2;
299         x = (x & 0x11111111U) * 0x11111111U;
300         return (x >> 28) & 1;
301 }
302
303 /* Galois field basic operations: multiply, divide, inverse, etc. */
304
305 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
306                                   unsigned int b)
307 {
308         return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
309                                                bch->a_log_tab[b])] : 0;
310 }
311
312 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
313 {
314         return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
315 }
316
317 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
318                                   unsigned int b)
319 {
320         return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
321                                         GF_N(bch)-bch->a_log_tab[b])] : 0;
322 }
323
324 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
325 {
326         return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
327 }
328
329 static inline unsigned int a_pow(struct bch_control *bch, int i)
330 {
331         return bch->a_pow_tab[modulo(bch, i)];
332 }
333
334 static inline int a_log(struct bch_control *bch, unsigned int x)
335 {
336         return bch->a_log_tab[x];
337 }
338
339 static inline int a_ilog(struct bch_control *bch, unsigned int x)
340 {
341         return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
342 }
343
344 /*
345  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
346  */
347 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
348                               unsigned int *syn)
349 {
350         int i, j, s;
351         unsigned int m;
352         uint32_t poly;
353         const int t = GF_T(bch);
354
355         s = bch->ecc_bits;
356
357         /* make sure extra bits in last ecc word are cleared */
358         m = ((unsigned int)s) & 31;
359         if (m)
360                 ecc[s/32] &= ~((1u << (32-m))-1);
361         memset(syn, 0, 2*t*sizeof(*syn));
362
363         /* compute v(a^j) for j=1 .. 2t-1 */
364         do {
365                 poly = *ecc++;
366                 s -= 32;
367                 while (poly) {
368                         i = deg(poly);
369                         for (j = 0; j < 2*t; j += 2)
370                                 syn[j] ^= a_pow(bch, (j+1)*(i+s));
371
372                         poly ^= (1 << i);
373                 }
374         } while (s > 0);
375
376         /* v(a^(2j)) = v(a^j)^2 */
377         for (j = 0; j < t; j++)
378                 syn[2*j+1] = gf_sqr(bch, syn[j]);
379 }
380
381 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
382 {
383         memcpy(dst, src, GF_POLY_SZ(src->deg));
384 }
385
386 static int compute_error_locator_polynomial(struct bch_control *bch,
387                                             const unsigned int *syn)
388 {
389         const unsigned int t = GF_T(bch);
390         const unsigned int n = GF_N(bch);
391         unsigned int i, j, tmp, l, pd = 1, d = syn[0];
392         struct gf_poly *elp = bch->elp;
393         struct gf_poly *pelp = bch->poly_2t[0];
394         struct gf_poly *elp_copy = bch->poly_2t[1];
395         int k, pp = -1;
396
397         memset(pelp, 0, GF_POLY_SZ(2*t));
398         memset(elp, 0, GF_POLY_SZ(2*t));
399
400         pelp->deg = 0;
401         pelp->c[0] = 1;
402         elp->deg = 0;
403         elp->c[0] = 1;
404
405         /* use simplified binary Berlekamp-Massey algorithm */
406         for (i = 0; (i < t) && (elp->deg <= t); i++) {
407                 if (d) {
408                         k = 2*i-pp;
409                         gf_poly_copy(elp_copy, elp);
410                         /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
411                         tmp = a_log(bch, d)+n-a_log(bch, pd);
412                         for (j = 0; j <= pelp->deg; j++) {
413                                 if (pelp->c[j]) {
414                                         l = a_log(bch, pelp->c[j]);
415                                         elp->c[j+k] ^= a_pow(bch, tmp+l);
416                                 }
417                         }
418                         /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
419                         tmp = pelp->deg+k;
420                         if (tmp > elp->deg) {
421                                 elp->deg = tmp;
422                                 gf_poly_copy(pelp, elp_copy);
423                                 pd = d;
424                                 pp = 2*i;
425                         }
426                 }
427                 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
428                 if (i < t-1) {
429                         d = syn[2*i+2];
430                         for (j = 1; j <= elp->deg; j++)
431                                 d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
432                 }
433         }
434         dbg("elp=%s\n", gf_poly_str(elp));
435         return (elp->deg > t) ? -1 : (int)elp->deg;
436 }
437
438 /*
439  * solve a m x m linear system in GF(2) with an expected number of solutions,
440  * and return the number of found solutions
441  */
442 static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
443                                unsigned int *sol, int nsol)
444 {
445         const int m = GF_M(bch);
446         unsigned int tmp, mask;
447         int rem, c, r, p, k, param[BCH_MAX_M];
448
449         k = 0;
450         mask = 1 << m;
451
452         /* Gaussian elimination */
453         for (c = 0; c < m; c++) {
454                 rem = 0;
455                 p = c-k;
456                 /* find suitable row for elimination */
457                 for (r = p; r < m; r++) {
458                         if (rows[r] & mask) {
459                                 if (r != p) {
460                                         tmp = rows[r];
461                                         rows[r] = rows[p];
462                                         rows[p] = tmp;
463                                 }
464                                 rem = r+1;
465                                 break;
466                         }
467                 }
468                 if (rem) {
469                         /* perform elimination on remaining rows */
470                         tmp = rows[p];
471                         for (r = rem; r < m; r++) {
472                                 if (rows[r] & mask)
473                                         rows[r] ^= tmp;
474                         }
475                 } else {
476                         /* elimination not needed, store defective row index */
477                         param[k++] = c;
478                 }
479                 mask >>= 1;
480         }
481         /* rewrite system, inserting fake parameter rows */
482         if (k > 0) {
483                 p = k;
484                 for (r = m-1; r >= 0; r--) {
485                         if ((r > m-1-k) && rows[r])
486                                 /* system has no solution */
487                                 return 0;
488
489                         rows[r] = (p && (r == param[p-1])) ?
490                                 p--, 1u << (m-r) : rows[r-p];
491                 }
492         }
493
494         if (nsol != (1 << k))
495                 /* unexpected number of solutions */
496                 return 0;
497
498         for (p = 0; p < nsol; p++) {
499                 /* set parameters for p-th solution */
500                 for (c = 0; c < k; c++)
501                         rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
502
503                 /* compute unique solution */
504                 tmp = 0;
505                 for (r = m-1; r >= 0; r--) {
506                         mask = rows[r] & (tmp|1);
507                         tmp |= parity(mask) << (m-r);
508                 }
509                 sol[p] = tmp >> 1;
510         }
511         return nsol;
512 }
513
514 /*
515  * this function builds and solves a linear system for finding roots of a degree
516  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
517  */
518 static int find_affine4_roots(struct bch_control *bch, unsigned int a,
519                               unsigned int b, unsigned int c,
520                               unsigned int *roots)
521 {
522         int i, j, k;
523         const int m = GF_M(bch);
524         unsigned int mask = 0xff, t, rows[16] = {0,};
525
526         j = a_log(bch, b);
527         k = a_log(bch, a);
528         rows[0] = c;
529
530         /* buid linear system to solve X^4+aX^2+bX+c = 0 */
531         for (i = 0; i < m; i++) {
532                 rows[i+1] = bch->a_pow_tab[4*i]^
533                         (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
534                         (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
535                 j++;
536                 k += 2;
537         }
538         /*
539          * transpose 16x16 matrix before passing it to linear solver
540          * warning: this code assumes m < 16
541          */
542         for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
543                 for (k = 0; k < 16; k = (k+j+1) & ~j) {
544                         t = ((rows[k] >> j)^rows[k+j]) & mask;
545                         rows[k] ^= (t << j);
546                         rows[k+j] ^= t;
547                 }
548         }
549         return solve_linear_system(bch, rows, roots, 4);
550 }
551
552 /*
553  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
554  */
555 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
556                                 unsigned int *roots)
557 {
558         int n = 0;
559
560         if (poly->c[0])
561                 /* poly[X] = bX+c with c!=0, root=c/b */
562                 roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
563                                    bch->a_log_tab[poly->c[1]]);
564         return n;
565 }
566
567 /*
568  * compute roots of a degree 2 polynomial over GF(2^m)
569  */
570 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
571                                 unsigned int *roots)
572 {
573         int n = 0, i, l0, l1, l2;
574         unsigned int u, v, r;
575
576         if (poly->c[0] && poly->c[1]) {
577
578                 l0 = bch->a_log_tab[poly->c[0]];
579                 l1 = bch->a_log_tab[poly->c[1]];
580                 l2 = bch->a_log_tab[poly->c[2]];
581
582                 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
583                 u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
584                 /*
585                  * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
586                  * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
587                  * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
588                  * i.e. r and r+1 are roots iff Tr(u)=0
589                  */
590                 r = 0;
591                 v = u;
592                 while (v) {
593                         i = deg(v);
594                         r ^= bch->xi_tab[i];
595                         v ^= (1 << i);
596                 }
597                 /* verify root */
598                 if ((gf_sqr(bch, r)^r) == u) {
599                         /* reverse z=a/bX transformation and compute log(1/r) */
600                         roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
601                                             bch->a_log_tab[r]+l2);
602                         roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
603                                             bch->a_log_tab[r^1]+l2);
604                 }
605         }
606         return n;
607 }
608
609 /*
610  * compute roots of a degree 3 polynomial over GF(2^m)
611  */
612 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
613                                 unsigned int *roots)
614 {
615         int i, n = 0;
616         unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
617
618         if (poly->c[0]) {
619                 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
620                 e3 = poly->c[3];
621                 c2 = gf_div(bch, poly->c[0], e3);
622                 b2 = gf_div(bch, poly->c[1], e3);
623                 a2 = gf_div(bch, poly->c[2], e3);
624
625                 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
626                 c = gf_mul(bch, a2, c2);           /* c = a2c2      */
627                 b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
628                 a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
629
630                 /* find the 4 roots of this affine polynomial */
631                 if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
632                         /* remove a2 from final list of roots */
633                         for (i = 0; i < 4; i++) {
634                                 if (tmp[i] != a2)
635                                         roots[n++] = a_ilog(bch, tmp[i]);
636                         }
637                 }
638         }
639         return n;
640 }
641
642 /*
643  * compute roots of a degree 4 polynomial over GF(2^m)
644  */
645 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
646                                 unsigned int *roots)
647 {
648         int i, l, n = 0;
649         unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
650
651         if (poly->c[0] == 0)
652                 return 0;
653
654         /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
655         e4 = poly->c[4];
656         d = gf_div(bch, poly->c[0], e4);
657         c = gf_div(bch, poly->c[1], e4);
658         b = gf_div(bch, poly->c[2], e4);
659         a = gf_div(bch, poly->c[3], e4);
660
661         /* use Y=1/X transformation to get an affine polynomial */
662         if (a) {
663                 /* first, eliminate cX by using z=X+e with ae^2+c=0 */
664                 if (c) {
665                         /* compute e such that e^2 = c/a */
666                         f = gf_div(bch, c, a);
667                         l = a_log(bch, f);
668                         l += (l & 1) ? GF_N(bch) : 0;
669                         e = a_pow(bch, l/2);
670                         /*
671                          * use transformation z=X+e:
672                          * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
673                          * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
674                          * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
675                          * z^4 + az^3 +     b'z^2 + d'
676                          */
677                         d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
678                         b = gf_mul(bch, a, e)^b;
679                 }
680                 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
681                 if (d == 0)
682                         /* assume all roots have multiplicity 1 */
683                         return 0;
684
685                 c2 = gf_inv(bch, d);
686                 b2 = gf_div(bch, a, d);
687                 a2 = gf_div(bch, b, d);
688         } else {
689                 /* polynomial is already affine */
690                 c2 = d;
691                 b2 = c;
692                 a2 = b;
693         }
694         /* find the 4 roots of this affine polynomial */
695         if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
696                 for (i = 0; i < 4; i++) {
697                         /* post-process roots (reverse transformations) */
698                         f = a ? gf_inv(bch, roots[i]) : roots[i];
699                         roots[i] = a_ilog(bch, f^e);
700                 }
701                 n = 4;
702         }
703         return n;
704 }
705
706 /*
707  * build monic, log-based representation of a polynomial
708  */
709 static void gf_poly_logrep(struct bch_control *bch,
710                            const struct gf_poly *a, int *rep)
711 {
712         int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
713
714         /* represent 0 values with -1; warning, rep[d] is not set to 1 */
715         for (i = 0; i < d; i++)
716                 rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
717 }
718
719 /*
720  * compute polynomial Euclidean division remainder in GF(2^m)[X]
721  */
722 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
723                         const struct gf_poly *b, int *rep)
724 {
725         int la, p, m;
726         unsigned int i, j, *c = a->c;
727         const unsigned int d = b->deg;
728
729         if (a->deg < d)
730                 return;
731
732         /* reuse or compute log representation of denominator */
733         if (!rep) {
734                 rep = bch->cache;
735                 gf_poly_logrep(bch, b, rep);
736         }
737
738         for (j = a->deg; j >= d; j--) {
739                 if (c[j]) {
740                         la = a_log(bch, c[j]);
741                         p = j-d;
742                         for (i = 0; i < d; i++, p++) {
743                                 m = rep[i];
744                                 if (m >= 0)
745                                         c[p] ^= bch->a_pow_tab[mod_s(bch,
746                                                                      m+la)];
747                         }
748                 }
749         }
750         a->deg = d-1;
751         while (!c[a->deg] && a->deg)
752                 a->deg--;
753 }
754
755 /*
756  * compute polynomial Euclidean division quotient in GF(2^m)[X]
757  */
758 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
759                         const struct gf_poly *b, struct gf_poly *q)
760 {
761         if (a->deg >= b->deg) {
762                 q->deg = a->deg-b->deg;
763                 /* compute a mod b (modifies a) */
764                 gf_poly_mod(bch, a, b, NULL);
765                 /* quotient is stored in upper part of polynomial a */
766                 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
767         } else {
768                 q->deg = 0;
769                 q->c[0] = 0;
770         }
771 }
772
773 /*
774  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
775  */
776 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
777                                    struct gf_poly *b)
778 {
779         struct gf_poly *tmp;
780
781         dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
782
783         if (a->deg < b->deg) {
784                 tmp = b;
785                 b = a;
786                 a = tmp;
787         }
788
789         while (b->deg > 0) {
790                 gf_poly_mod(bch, a, b, NULL);
791                 tmp = b;
792                 b = a;
793                 a = tmp;
794         }
795
796         dbg("%s\n", gf_poly_str(a));
797
798         return a;
799 }
800
801 /*
802  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
803  * This is used in Berlekamp Trace algorithm for splitting polynomials
804  */
805 static void compute_trace_bk_mod(struct bch_control *bch, int k,
806                                  const struct gf_poly *f, struct gf_poly *z,
807                                  struct gf_poly *out)
808 {
809         const int m = GF_M(bch);
810         int i, j;
811
812         /* z contains z^2j mod f */
813         z->deg = 1;
814         z->c[0] = 0;
815         z->c[1] = bch->a_pow_tab[k];
816
817         out->deg = 0;
818         memset(out, 0, GF_POLY_SZ(f->deg));
819
820         /* compute f log representation only once */
821         gf_poly_logrep(bch, f, bch->cache);
822
823         for (i = 0; i < m; i++) {
824                 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
825                 for (j = z->deg; j >= 0; j--) {
826                         out->c[j] ^= z->c[j];
827                         z->c[2*j] = gf_sqr(bch, z->c[j]);
828                         z->c[2*j+1] = 0;
829                 }
830                 if (z->deg > out->deg)
831                         out->deg = z->deg;
832
833                 if (i < m-1) {
834                         z->deg *= 2;
835                         /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
836                         gf_poly_mod(bch, z, f, bch->cache);
837                 }
838         }
839         while (!out->c[out->deg] && out->deg)
840                 out->deg--;
841
842         dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
843 }
844
845 /*
846  * factor a polynomial using Berlekamp Trace algorithm (BTA)
847  */
848 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
849                               struct gf_poly **g, struct gf_poly **h)
850 {
851         struct gf_poly *f2 = bch->poly_2t[0];
852         struct gf_poly *q  = bch->poly_2t[1];
853         struct gf_poly *tk = bch->poly_2t[2];
854         struct gf_poly *z  = bch->poly_2t[3];
855         struct gf_poly *gcd;
856
857         dbg("factoring %s...\n", gf_poly_str(f));
858
859         *g = f;
860         *h = NULL;
861
862         /* tk = Tr(a^k.X) mod f */
863         compute_trace_bk_mod(bch, k, f, z, tk);
864
865         if (tk->deg > 0) {
866                 /* compute g = gcd(f, tk) (destructive operation) */
867                 gf_poly_copy(f2, f);
868                 gcd = gf_poly_gcd(bch, f2, tk);
869                 if (gcd->deg < f->deg) {
870                         /* compute h=f/gcd(f,tk); this will modify f and q */
871                         gf_poly_div(bch, f, gcd, q);
872                         /* store g and h in-place (clobbering f) */
873                         *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
874                         gf_poly_copy(*g, gcd);
875                         gf_poly_copy(*h, q);
876                 }
877         }
878 }
879
880 /*
881  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
882  * file for details
883  */
884 static int find_poly_roots(struct bch_control *bch, unsigned int k,
885                            struct gf_poly *poly, unsigned int *roots)
886 {
887         int cnt;
888         struct gf_poly *f1, *f2;
889
890         switch (poly->deg) {
891                 /* handle low degree polynomials with ad hoc techniques */
892         case 1:
893                 cnt = find_poly_deg1_roots(bch, poly, roots);
894                 break;
895         case 2:
896                 cnt = find_poly_deg2_roots(bch, poly, roots);
897                 break;
898         case 3:
899                 cnt = find_poly_deg3_roots(bch, poly, roots);
900                 break;
901         case 4:
902                 cnt = find_poly_deg4_roots(bch, poly, roots);
903                 break;
904         default:
905                 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
906                 cnt = 0;
907                 if (poly->deg && (k <= GF_M(bch))) {
908                         factor_polynomial(bch, k, poly, &f1, &f2);
909                         if (f1)
910                                 cnt += find_poly_roots(bch, k+1, f1, roots);
911                         if (f2)
912                                 cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
913                 }
914                 break;
915         }
916         return cnt;
917 }
918
919 #if defined(USE_CHIEN_SEARCH)
920 /*
921  * exhaustive root search (Chien) implementation - not used, included only for
922  * reference/comparison tests
923  */
924 static int chien_search(struct bch_control *bch, unsigned int len,
925                         struct gf_poly *p, unsigned int *roots)
926 {
927         int m;
928         unsigned int i, j, syn, syn0, count = 0;
929         const unsigned int k = 8*len+bch->ecc_bits;
930
931         /* use a log-based representation of polynomial */
932         gf_poly_logrep(bch, p, bch->cache);
933         bch->cache[p->deg] = 0;
934         syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
935
936         for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
937                 /* compute elp(a^i) */
938                 for (j = 1, syn = syn0; j <= p->deg; j++) {
939                         m = bch->cache[j];
940                         if (m >= 0)
941                                 syn ^= a_pow(bch, m+j*i);
942                 }
943                 if (syn == 0) {
944                         roots[count++] = GF_N(bch)-i;
945                         if (count == p->deg)
946                                 break;
947                 }
948         }
949         return (count == p->deg) ? count : 0;
950 }
951 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
952 #endif /* USE_CHIEN_SEARCH */
953
954 /**
955  * decode_bch - decode received codeword and find bit error locations
956  * @bch:      BCH control structure
957  * @data:     received data, ignored if @calc_ecc is provided
958  * @len:      data length in bytes, must always be provided
959  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
960  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
961  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
962  * @errloc:   output array of error locations
963  *
964  * Returns:
965  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
966  *  invalid parameters were provided
967  *
968  * Depending on the available hw BCH support and the need to compute @calc_ecc
969  * separately (using encode_bch()), this function should be called with one of
970  * the following parameter configurations -
971  *
972  * by providing @data and @recv_ecc only:
973  *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
974  *
975  * by providing @recv_ecc and @calc_ecc:
976  *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
977  *
978  * by providing ecc = recv_ecc XOR calc_ecc:
979  *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
980  *
981  * by providing syndrome results @syn:
982  *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
983  *
984  * Once decode_bch() has successfully returned with a positive value, error
985  * locations returned in array @errloc should be interpreted as follows -
986  *
987  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
988  * data correction)
989  *
990  * if (errloc[n] < 8*len), then n-th error is located in data and can be
991  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
992  *
993  * Note that this function does not perform any data correction by itself, it
994  * merely indicates error locations.
995  */
996 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
997                const uint8_t *recv_ecc, const uint8_t *calc_ecc,
998                const unsigned int *syn, unsigned int *errloc)
999 {
1000         const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1001         unsigned int nbits;
1002         int i, err, nroots;
1003         uint32_t sum;
1004
1005         /* sanity check: make sure data length can be handled */
1006         if (8*len > (bch->n-bch->ecc_bits))
1007                 return -EINVAL;
1008
1009         /* if caller does not provide syndromes, compute them */
1010         if (!syn) {
1011                 if (!calc_ecc) {
1012                         /* compute received data ecc into an internal buffer */
1013                         if (!data || !recv_ecc)
1014                                 return -EINVAL;
1015                         encode_bch(bch, data, len, NULL);
1016                 } else {
1017                         /* load provided calculated ecc */
1018                         load_ecc8(bch, bch->ecc_buf, calc_ecc);
1019                 }
1020                 /* load received ecc or assume it was XORed in calc_ecc */
1021                 if (recv_ecc) {
1022                         load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1023                         /* XOR received and calculated ecc */
1024                         for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1025                                 bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1026                                 sum |= bch->ecc_buf[i];
1027                         }
1028                         if (!sum)
1029                                 /* no error found */
1030                                 return 0;
1031                 }
1032                 compute_syndromes(bch, bch->ecc_buf, bch->syn);
1033                 syn = bch->syn;
1034         }
1035
1036         err = compute_error_locator_polynomial(bch, syn);
1037         if (err > 0) {
1038                 nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1039                 if (err != nroots)
1040                         err = -1;
1041         }
1042         if (err > 0) {
1043                 /* post-process raw error locations for easier correction */
1044                 nbits = (len*8)+bch->ecc_bits;
1045                 for (i = 0; i < err; i++) {
1046                         if (errloc[i] >= nbits) {
1047                                 err = -1;
1048                                 break;
1049                         }
1050                         errloc[i] = nbits-1-errloc[i];
1051                         errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1052                 }
1053         }
1054         return (err >= 0) ? err : -EBADMSG;
1055 }
1056 EXPORT_SYMBOL_GPL(decode_bch);
1057
1058 /*
1059  * generate Galois field lookup tables
1060  */
1061 static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1062 {
1063         unsigned int i, x = 1;
1064         const unsigned int k = 1 << deg(poly);
1065
1066         /* primitive polynomial must be of degree m */
1067         if (k != (1u << GF_M(bch)))
1068                 return -1;
1069
1070         for (i = 0; i < GF_N(bch); i++) {
1071                 bch->a_pow_tab[i] = x;
1072                 bch->a_log_tab[x] = i;
1073                 if (i && (x == 1))
1074                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1075                         return -1;
1076                 x <<= 1;
1077                 if (x & k)
1078                         x ^= poly;
1079         }
1080         bch->a_pow_tab[GF_N(bch)] = 1;
1081         bch->a_log_tab[0] = 0;
1082
1083         return 0;
1084 }
1085
1086 /*
1087  * compute generator polynomial remainder tables for fast encoding
1088  */
1089 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1090 {
1091         int i, j, b, d;
1092         uint32_t data, hi, lo, *tab;
1093         const int l = BCH_ECC_WORDS(bch);
1094         const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1095         const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1096
1097         memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1098
1099         for (i = 0; i < 256; i++) {
1100                 /* p(X)=i is a small polynomial of weight <= 8 */
1101                 for (b = 0; b < 4; b++) {
1102                         /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1103                         tab = bch->mod8_tab + (b*256+i)*l;
1104                         data = i << (8*b);
1105                         while (data) {
1106                                 d = deg(data);
1107                                 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1108                                 data ^= g[0] >> (31-d);
1109                                 for (j = 0; j < ecclen; j++) {
1110                                         hi = (d < 31) ? g[j] << (d+1) : 0;
1111                                         lo = (j+1 < plen) ?
1112                                                 g[j+1] >> (31-d) : 0;
1113                                         tab[j] ^= hi|lo;
1114                                 }
1115                         }
1116                 }
1117         }
1118 }
1119
1120 /*
1121  * build a base for factoring degree 2 polynomials
1122  */
1123 static int build_deg2_base(struct bch_control *bch)
1124 {
1125         const int m = GF_M(bch);
1126         int i, j, r;
1127         unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
1128
1129         /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1130         for (i = 0; i < m; i++) {
1131                 for (j = 0, sum = 0; j < m; j++)
1132                         sum ^= a_pow(bch, i*(1 << j));
1133
1134                 if (sum) {
1135                         ak = bch->a_pow_tab[i];
1136                         break;
1137                 }
1138         }
1139         /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1140         remaining = m;
1141         memset(xi, 0, sizeof(xi));
1142
1143         for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1144                 y = gf_sqr(bch, x)^x;
1145                 for (i = 0; i < 2; i++) {
1146                         r = a_log(bch, y);
1147                         if (y && (r < m) && !xi[r]) {
1148                                 bch->xi_tab[r] = x;
1149                                 xi[r] = 1;
1150                                 remaining--;
1151                                 dbg("x%d = %x\n", r, x);
1152                                 break;
1153                         }
1154                         y ^= ak;
1155                 }
1156         }
1157         /* should not happen but check anyway */
1158         return remaining ? -1 : 0;
1159 }
1160
1161 static void *bch_alloc(size_t size, int *err)
1162 {
1163         void *ptr;
1164
1165         ptr = kmalloc(size, GFP_KERNEL);
1166         if (ptr == NULL)
1167                 *err = 1;
1168         return ptr;
1169 }
1170
1171 /*
1172  * compute generator polynomial for given (m,t) parameters.
1173  */
1174 static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1175 {
1176         const unsigned int m = GF_M(bch);
1177         const unsigned int t = GF_T(bch);
1178         int n, err = 0;
1179         unsigned int i, j, nbits, r, word, *roots;
1180         struct gf_poly *g;
1181         uint32_t *genpoly;
1182
1183         g = bch_alloc(GF_POLY_SZ(m*t), &err);
1184         roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1185         genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1186
1187         if (err) {
1188                 kfree(genpoly);
1189                 genpoly = NULL;
1190                 goto finish;
1191         }
1192
1193         /* enumerate all roots of g(X) */
1194         memset(roots , 0, (bch->n+1)*sizeof(*roots));
1195         for (i = 0; i < t; i++) {
1196                 for (j = 0, r = 2*i+1; j < m; j++) {
1197                         roots[r] = 1;
1198                         r = mod_s(bch, 2*r);
1199                 }
1200         }
1201         /* build generator polynomial g(X) */
1202         g->deg = 0;
1203         g->c[0] = 1;
1204         for (i = 0; i < GF_N(bch); i++) {
1205                 if (roots[i]) {
1206                         /* multiply g(X) by (X+root) */
1207                         r = bch->a_pow_tab[i];
1208                         g->c[g->deg+1] = 1;
1209                         for (j = g->deg; j > 0; j--)
1210                                 g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1211
1212                         g->c[0] = gf_mul(bch, g->c[0], r);
1213                         g->deg++;
1214                 }
1215         }
1216         /* store left-justified binary representation of g(X) */
1217         n = g->deg+1;
1218         i = 0;
1219
1220         while (n > 0) {
1221                 nbits = (n > 32) ? 32 : n;
1222                 for (j = 0, word = 0; j < nbits; j++) {
1223                         if (g->c[n-1-j])
1224                                 word |= 1u << (31-j);
1225                 }
1226                 genpoly[i++] = word;
1227                 n -= nbits;
1228         }
1229         bch->ecc_bits = g->deg;
1230
1231 finish:
1232         kfree(g);
1233         kfree(roots);
1234
1235         return genpoly;
1236 }
1237
1238 /**
1239  * init_bch - initialize a BCH encoder/decoder
1240  * @m:          Galois field order, should be in the range 5-15
1241  * @t:          maximum error correction capability, in bits
1242  * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1243  *
1244  * Returns:
1245  *  a newly allocated BCH control structure if successful, NULL otherwise
1246  *
1247  * This initialization can take some time, as lookup tables are built for fast
1248  * encoding/decoding; make sure not to call this function from a time critical
1249  * path. Usually, init_bch() should be called on module/driver init and
1250  * free_bch() should be called to release memory on exit.
1251  *
1252  * You may provide your own primitive polynomial of degree @m in argument
1253  * @prim_poly, or let init_bch() use its default polynomial.
1254  *
1255  * Once init_bch() has successfully returned a pointer to a newly allocated
1256  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1257  * the structure.
1258  */
1259 struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1260 {
1261         int err = 0;
1262         unsigned int i, words;
1263         uint32_t *genpoly;
1264         struct bch_control *bch = NULL;
1265
1266         const int min_m = 5;
1267
1268         /* default primitive polynomials */
1269         static const unsigned int prim_poly_tab[] = {
1270                 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1271                 0x402b, 0x8003,
1272         };
1273
1274 #if defined(CONFIG_BCH_CONST_PARAMS)
1275         if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1276                 printk(KERN_ERR "bch encoder/decoder was configured to support "
1277                        "parameters m=%d, t=%d only!\n",
1278                        CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1279                 goto fail;
1280         }
1281 #endif
1282         if ((m < min_m) || (m > BCH_MAX_M))
1283                 /*
1284                  * values of m greater than 15 are not currently supported;
1285                  * supporting m > 15 would require changing table base type
1286                  * (uint16_t) and a small patch in matrix transposition
1287                  */
1288                 goto fail;
1289
1290         if (t > BCH_MAX_T)
1291                 /*
1292                  * we can support larger than 64 bits if necessary, at the
1293                  * cost of higher stack usage.
1294                  */
1295                 goto fail;
1296
1297         /* sanity checks */
1298         if ((t < 1) || (m*t >= ((1 << m)-1)))
1299                 /* invalid t value */
1300                 goto fail;
1301
1302         /* select a primitive polynomial for generating GF(2^m) */
1303         if (prim_poly == 0)
1304                 prim_poly = prim_poly_tab[m-min_m];
1305
1306         bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1307         if (bch == NULL)
1308                 goto fail;
1309
1310         bch->m = m;
1311         bch->t = t;
1312         bch->n = (1 << m)-1;
1313         words  = DIV_ROUND_UP(m*t, 32);
1314         bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1315         bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1316         bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1317         bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1318         bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1319         bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1320         bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1321         bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1322         bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1323         bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1324
1325         for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1326                 bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1327
1328         if (err)
1329                 goto fail;
1330
1331         err = build_gf_tables(bch, prim_poly);
1332         if (err)
1333                 goto fail;
1334
1335         /* use generator polynomial for computing encoding tables */
1336         genpoly = compute_generator_polynomial(bch);
1337         if (genpoly == NULL)
1338                 goto fail;
1339
1340         build_mod8_tables(bch, genpoly);
1341         kfree(genpoly);
1342
1343         err = build_deg2_base(bch);
1344         if (err)
1345                 goto fail;
1346
1347         return bch;
1348
1349 fail:
1350         free_bch(bch);
1351         return NULL;
1352 }
1353 EXPORT_SYMBOL_GPL(init_bch);
1354
1355 /**
1356  *  free_bch - free the BCH control structure
1357  *  @bch:    BCH control structure to release
1358  */
1359 void free_bch(struct bch_control *bch)
1360 {
1361         unsigned int i;
1362
1363         if (bch) {
1364                 kfree(bch->a_pow_tab);
1365                 kfree(bch->a_log_tab);
1366                 kfree(bch->mod8_tab);
1367                 kfree(bch->ecc_buf);
1368                 kfree(bch->ecc_buf2);
1369                 kfree(bch->xi_tab);
1370                 kfree(bch->syn);
1371                 kfree(bch->cache);
1372                 kfree(bch->elp);
1373
1374                 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1375                         kfree(bch->poly_2t[i]);
1376
1377                 kfree(bch);
1378         }
1379 }
1380 EXPORT_SYMBOL_GPL(free_bch);
1381
1382 MODULE_LICENSE("GPL");
1383 MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1384 MODULE_DESCRIPTION("Binary BCH encoder/decoder");