1 /* Generic associative array implementation.
3 * See Documentation/assoc_array.txt for information.
5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6 * Written by David Howells (dhowells@redhat.com)
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public Licence
10 * as published by the Free Software Foundation; either version
11 * 2 of the Licence, or (at your option) any later version.
14 #include <linux/slab.h>
15 #include <linux/err.h>
16 #include <linux/assoc_array_priv.h>
19 * Iterate over an associative array. The caller must hold the RCU read lock
22 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
23 const struct assoc_array_ptr *stop,
24 int (*iterator)(const void *leaf,
28 const struct assoc_array_shortcut *shortcut;
29 const struct assoc_array_node *node;
30 const struct assoc_array_ptr *cursor, *ptr, *parent;
31 unsigned long has_meta;
37 if (assoc_array_ptr_is_shortcut(cursor)) {
38 /* Descend through a shortcut */
39 shortcut = assoc_array_ptr_to_shortcut(cursor);
40 smp_read_barrier_depends();
41 cursor = ACCESS_ONCE(shortcut->next_node);
44 node = assoc_array_ptr_to_node(cursor);
45 smp_read_barrier_depends();
48 /* We perform two passes of each node.
50 * The first pass does all the leaves in this node. This means we
51 * don't miss any leaves if the node is split up by insertion whilst
52 * we're iterating over the branches rooted here (we may, however, see
56 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
57 ptr = ACCESS_ONCE(node->slots[slot]);
58 has_meta |= (unsigned long)ptr;
59 if (ptr && assoc_array_ptr_is_leaf(ptr)) {
60 /* We need a barrier between the read of the pointer
61 * and dereferencing the pointer - but only if we are
62 * actually going to dereference it.
64 smp_read_barrier_depends();
66 /* Invoke the callback */
67 ret = iterator(assoc_array_ptr_to_leaf(ptr),
74 /* The second pass attends to all the metadata pointers. If we follow
75 * one of these we may find that we don't come back here, but rather go
76 * back to a replacement node with the leaves in a different layout.
78 * We are guaranteed to make progress, however, as the slot number for
79 * a particular portion of the key space cannot change - and we
80 * continue at the back pointer + 1.
82 if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
87 node = assoc_array_ptr_to_node(cursor);
88 smp_read_barrier_depends();
90 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
91 ptr = ACCESS_ONCE(node->slots[slot]);
92 if (assoc_array_ptr_is_meta(ptr)) {
99 /* Move up to the parent (may need to skip back over a shortcut) */
100 parent = ACCESS_ONCE(node->back_pointer);
101 slot = node->parent_slot;
105 if (assoc_array_ptr_is_shortcut(parent)) {
106 shortcut = assoc_array_ptr_to_shortcut(parent);
107 smp_read_barrier_depends();
109 parent = ACCESS_ONCE(shortcut->back_pointer);
110 slot = shortcut->parent_slot;
115 /* Ascend to next slot in parent node */
122 * assoc_array_iterate - Pass all objects in the array to a callback
123 * @array: The array to iterate over.
124 * @iterator: The callback function.
125 * @iterator_data: Private data for the callback function.
127 * Iterate over all the objects in an associative array. Each one will be
128 * presented to the iterator function.
130 * If the array is being modified concurrently with the iteration then it is
131 * possible that some objects in the array will be passed to the iterator
132 * callback more than once - though every object should be passed at least
133 * once. If this is undesirable then the caller must lock against modification
134 * for the duration of this function.
136 * The function will return 0 if no objects were in the array or else it will
137 * return the result of the last iterator function called. Iteration stops
138 * immediately if any call to the iteration function results in a non-zero
141 * The caller should hold the RCU read lock or better if concurrent
142 * modification is possible.
144 int assoc_array_iterate(const struct assoc_array *array,
145 int (*iterator)(const void *object,
146 void *iterator_data),
149 struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
153 return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
156 enum assoc_array_walk_status {
157 assoc_array_walk_tree_empty,
158 assoc_array_walk_found_terminal_node,
159 assoc_array_walk_found_wrong_shortcut,
162 struct assoc_array_walk_result {
164 struct assoc_array_node *node; /* Node in which leaf might be found */
169 struct assoc_array_shortcut *shortcut;
172 unsigned long sc_segments;
173 unsigned long dissimilarity;
178 * Navigate through the internal tree looking for the closest node to the key.
180 static enum assoc_array_walk_status
181 assoc_array_walk(const struct assoc_array *array,
182 const struct assoc_array_ops *ops,
183 const void *index_key,
184 struct assoc_array_walk_result *result)
186 struct assoc_array_shortcut *shortcut;
187 struct assoc_array_node *node;
188 struct assoc_array_ptr *cursor, *ptr;
189 unsigned long sc_segments, dissimilarity;
190 unsigned long segments;
191 int level, sc_level, next_sc_level;
194 pr_devel("-->%s()\n", __func__);
196 cursor = ACCESS_ONCE(array->root);
198 return assoc_array_walk_tree_empty;
202 /* Use segments from the key for the new leaf to navigate through the
203 * internal tree, skipping through nodes and shortcuts that are on
204 * route to the destination. Eventually we'll come to a slot that is
205 * either empty or contains a leaf at which point we've found a node in
206 * which the leaf we're looking for might be found or into which it
207 * should be inserted.
210 segments = ops->get_key_chunk(index_key, level);
211 pr_devel("segments[%d]: %lx\n", level, segments);
213 if (assoc_array_ptr_is_shortcut(cursor))
214 goto follow_shortcut;
217 node = assoc_array_ptr_to_node(cursor);
218 smp_read_barrier_depends();
220 slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
221 slot &= ASSOC_ARRAY_FAN_MASK;
222 ptr = ACCESS_ONCE(node->slots[slot]);
224 pr_devel("consider slot %x [ix=%d type=%lu]\n",
225 slot, level, (unsigned long)ptr & 3);
227 if (!assoc_array_ptr_is_meta(ptr)) {
228 /* The node doesn't have a node/shortcut pointer in the slot
229 * corresponding to the index key that we have to follow.
231 result->terminal_node.node = node;
232 result->terminal_node.level = level;
233 result->terminal_node.slot = slot;
234 pr_devel("<--%s() = terminal_node\n", __func__);
235 return assoc_array_walk_found_terminal_node;
238 if (assoc_array_ptr_is_node(ptr)) {
239 /* There is a pointer to a node in the slot corresponding to
240 * this index key segment, so we need to follow it.
243 level += ASSOC_ARRAY_LEVEL_STEP;
244 if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
249 /* There is a shortcut in the slot corresponding to the index key
250 * segment. We follow the shortcut if its partial index key matches
251 * this leaf's. Otherwise we need to split the shortcut.
255 shortcut = assoc_array_ptr_to_shortcut(cursor);
256 smp_read_barrier_depends();
257 pr_devel("shortcut to %d\n", shortcut->skip_to_level);
258 sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
259 BUG_ON(sc_level > shortcut->skip_to_level);
262 /* Check the leaf against the shortcut's index key a word at a
263 * time, trimming the final word (the shortcut stores the index
264 * key completely from the root to the shortcut's target).
266 if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
267 segments = ops->get_key_chunk(index_key, sc_level);
269 sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
270 dissimilarity = segments ^ sc_segments;
272 if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
273 /* Trim segments that are beyond the shortcut */
274 int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
275 dissimilarity &= ~(ULONG_MAX << shift);
276 next_sc_level = shortcut->skip_to_level;
278 next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
279 next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
282 if (dissimilarity != 0) {
283 /* This shortcut points elsewhere */
284 result->wrong_shortcut.shortcut = shortcut;
285 result->wrong_shortcut.level = level;
286 result->wrong_shortcut.sc_level = sc_level;
287 result->wrong_shortcut.sc_segments = sc_segments;
288 result->wrong_shortcut.dissimilarity = dissimilarity;
289 return assoc_array_walk_found_wrong_shortcut;
292 sc_level = next_sc_level;
293 } while (sc_level < shortcut->skip_to_level);
295 /* The shortcut matches the leaf's index to this point. */
296 cursor = ACCESS_ONCE(shortcut->next_node);
297 if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
307 * assoc_array_find - Find an object by index key
308 * @array: The associative array to search.
309 * @ops: The operations to use.
310 * @index_key: The key to the object.
312 * Find an object in an associative array by walking through the internal tree
313 * to the node that should contain the object and then searching the leaves
314 * there. NULL is returned if the requested object was not found in the array.
316 * The caller must hold the RCU read lock or better.
318 void *assoc_array_find(const struct assoc_array *array,
319 const struct assoc_array_ops *ops,
320 const void *index_key)
322 struct assoc_array_walk_result result;
323 const struct assoc_array_node *node;
324 const struct assoc_array_ptr *ptr;
328 if (assoc_array_walk(array, ops, index_key, &result) !=
329 assoc_array_walk_found_terminal_node)
332 node = result.terminal_node.node;
333 smp_read_barrier_depends();
335 /* If the target key is available to us, it's has to be pointed to by
338 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
339 ptr = ACCESS_ONCE(node->slots[slot]);
340 if (ptr && assoc_array_ptr_is_leaf(ptr)) {
341 /* We need a barrier between the read of the pointer
342 * and dereferencing the pointer - but only if we are
343 * actually going to dereference it.
345 leaf = assoc_array_ptr_to_leaf(ptr);
346 smp_read_barrier_depends();
347 if (ops->compare_object(leaf, index_key))
356 * Destructively iterate over an associative array. The caller must prevent
357 * other simultaneous accesses.
359 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
360 const struct assoc_array_ops *ops)
362 struct assoc_array_shortcut *shortcut;
363 struct assoc_array_node *node;
364 struct assoc_array_ptr *cursor, *parent = NULL;
367 pr_devel("-->%s()\n", __func__);
376 if (assoc_array_ptr_is_shortcut(cursor)) {
377 /* Descend through a shortcut */
378 pr_devel("[%d] shortcut\n", slot);
379 BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
380 shortcut = assoc_array_ptr_to_shortcut(cursor);
381 BUG_ON(shortcut->back_pointer != parent);
382 BUG_ON(slot != -1 && shortcut->parent_slot != slot);
384 cursor = shortcut->next_node;
386 BUG_ON(!assoc_array_ptr_is_node(cursor));
389 pr_devel("[%d] node\n", slot);
390 node = assoc_array_ptr_to_node(cursor);
391 BUG_ON(node->back_pointer != parent);
392 BUG_ON(slot != -1 && node->parent_slot != slot);
396 pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
397 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
398 struct assoc_array_ptr *ptr = node->slots[slot];
401 if (assoc_array_ptr_is_meta(ptr)) {
408 pr_devel("[%d] free leaf\n", slot);
409 ops->free_object(assoc_array_ptr_to_leaf(ptr));
413 parent = node->back_pointer;
414 slot = node->parent_slot;
415 pr_devel("free node\n");
420 /* Move back up to the parent (may need to free a shortcut on
422 if (assoc_array_ptr_is_shortcut(parent)) {
423 shortcut = assoc_array_ptr_to_shortcut(parent);
424 BUG_ON(shortcut->next_node != cursor);
426 parent = shortcut->back_pointer;
427 slot = shortcut->parent_slot;
428 pr_devel("free shortcut\n");
433 BUG_ON(!assoc_array_ptr_is_node(parent));
436 /* Ascend to next slot in parent node */
437 pr_devel("ascend to %p[%d]\n", parent, slot);
439 node = assoc_array_ptr_to_node(cursor);
445 * assoc_array_destroy - Destroy an associative array
446 * @array: The array to destroy.
447 * @ops: The operations to use.
449 * Discard all metadata and free all objects in an associative array. The
450 * array will be empty and ready to use again upon completion. This function
453 * The caller must prevent all other accesses whilst this takes place as no
454 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
455 * accesses to continue. On the other hand, no memory allocation is required.
457 void assoc_array_destroy(struct assoc_array *array,
458 const struct assoc_array_ops *ops)
460 assoc_array_destroy_subtree(array->root, ops);
465 * Handle insertion into an empty tree.
467 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
469 struct assoc_array_node *new_n0;
471 pr_devel("-->%s()\n", __func__);
473 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
477 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
478 edit->leaf_p = &new_n0->slots[0];
479 edit->adjust_count_on = new_n0;
480 edit->set[0].ptr = &edit->array->root;
481 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
483 pr_devel("<--%s() = ok [no root]\n", __func__);
488 * Handle insertion into a terminal node.
490 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
491 const struct assoc_array_ops *ops,
492 const void *index_key,
493 struct assoc_array_walk_result *result)
495 struct assoc_array_shortcut *shortcut, *new_s0;
496 struct assoc_array_node *node, *new_n0, *new_n1, *side;
497 struct assoc_array_ptr *ptr;
498 unsigned long dissimilarity, base_seg, blank;
502 int slot, next_slot, free_slot, i, j;
504 node = result->terminal_node.node;
505 level = result->terminal_node.level;
506 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
508 pr_devel("-->%s()\n", __func__);
510 /* We arrived at a node which doesn't have an onward node or shortcut
511 * pointer that we have to follow. This means that (a) the leaf we
512 * want must go here (either by insertion or replacement) or (b) we
513 * need to split this node and insert in one of the fragments.
517 /* Firstly, we have to check the leaves in this node to see if there's
518 * a matching one we should replace in place.
520 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
521 ptr = node->slots[i];
526 if (ops->compare_object(assoc_array_ptr_to_leaf(ptr), index_key)) {
527 pr_devel("replace in slot %d\n", i);
528 edit->leaf_p = &node->slots[i];
529 edit->dead_leaf = node->slots[i];
530 pr_devel("<--%s() = ok [replace]\n", __func__);
535 /* If there is a free slot in this node then we can just insert the
538 if (free_slot >= 0) {
539 pr_devel("insert in free slot %d\n", free_slot);
540 edit->leaf_p = &node->slots[free_slot];
541 edit->adjust_count_on = node;
542 pr_devel("<--%s() = ok [insert]\n", __func__);
546 /* The node has no spare slots - so we're either going to have to split
547 * it or insert another node before it.
549 * Whatever, we're going to need at least two new nodes - so allocate
550 * those now. We may also need a new shortcut, but we deal with that
553 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
556 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
557 new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
560 edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
562 /* We need to find out how similar the leaves are. */
563 pr_devel("no spare slots\n");
565 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
566 ptr = node->slots[i];
567 if (assoc_array_ptr_is_meta(ptr)) {
568 edit->segment_cache[i] = 0xff;
572 base_seg = ops->get_object_key_chunk(
573 assoc_array_ptr_to_leaf(ptr), level);
574 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
575 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
579 pr_devel("have meta\n");
583 /* The node contains only leaves */
585 base_seg = edit->segment_cache[0];
586 for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
587 dissimilarity |= edit->segment_cache[i] ^ base_seg;
589 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
591 if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
592 /* The old leaves all cluster in the same slot. We will need
593 * to insert a shortcut if the new node wants to cluster with them.
595 if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
596 goto all_leaves_cluster_together;
598 /* Otherwise we can just insert a new node ahead of the old
601 goto present_leaves_cluster_but_not_new_leaf;
605 pr_devel("split node\n");
607 /* We need to split the current node; we know that the node doesn't
608 * simply contain a full set of leaves that cluster together (it
609 * contains meta pointers and/or non-clustering leaves).
611 * We need to expel at least two leaves out of a set consisting of the
612 * leaves in the node and the new leaf.
614 * We need a new node (n0) to replace the current one and a new node to
615 * take the expelled nodes (n1).
617 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
618 new_n0->back_pointer = node->back_pointer;
619 new_n0->parent_slot = node->parent_slot;
620 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
621 new_n1->parent_slot = -1; /* Need to calculate this */
624 pr_devel("do_split_node\n");
626 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
627 new_n1->nr_leaves_on_branch = 0;
629 /* Begin by finding two matching leaves. There have to be at least two
630 * that match - even if there are meta pointers - because any leaf that
631 * would match a slot with a meta pointer in it must be somewhere
632 * behind that meta pointer and cannot be here. Further, given N
633 * remaining leaf slots, we now have N+1 leaves to go in them.
635 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
636 slot = edit->segment_cache[i];
638 for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
639 if (edit->segment_cache[j] == slot)
640 goto found_slot_for_multiple_occupancy;
642 found_slot_for_multiple_occupancy:
643 pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
644 BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
645 BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
646 BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
648 new_n1->parent_slot = slot;
650 /* Metadata pointers cannot change slot */
651 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
652 if (assoc_array_ptr_is_meta(node->slots[i]))
653 new_n0->slots[i] = node->slots[i];
655 new_n0->slots[i] = NULL;
656 BUG_ON(new_n0->slots[slot] != NULL);
657 new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
659 /* Filter the leaf pointers between the new nodes */
662 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
663 if (assoc_array_ptr_is_meta(node->slots[i]))
665 if (edit->segment_cache[i] == slot) {
666 new_n1->slots[next_slot++] = node->slots[i];
667 new_n1->nr_leaves_on_branch++;
671 } while (new_n0->slots[free_slot] != NULL);
672 new_n0->slots[free_slot] = node->slots[i];
676 pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
678 if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
681 } while (new_n0->slots[free_slot] != NULL);
682 edit->leaf_p = &new_n0->slots[free_slot];
683 edit->adjust_count_on = new_n0;
685 edit->leaf_p = &new_n1->slots[next_slot++];
686 edit->adjust_count_on = new_n1;
689 BUG_ON(next_slot <= 1);
691 edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
692 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
693 if (edit->segment_cache[i] == 0xff) {
694 ptr = node->slots[i];
695 BUG_ON(assoc_array_ptr_is_leaf(ptr));
696 if (assoc_array_ptr_is_node(ptr)) {
697 side = assoc_array_ptr_to_node(ptr);
698 edit->set_backpointers[i] = &side->back_pointer;
700 shortcut = assoc_array_ptr_to_shortcut(ptr);
701 edit->set_backpointers[i] = &shortcut->back_pointer;
706 ptr = node->back_pointer;
708 edit->set[0].ptr = &edit->array->root;
709 else if (assoc_array_ptr_is_node(ptr))
710 edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
712 edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
713 edit->excised_meta[0] = assoc_array_node_to_ptr(node);
714 pr_devel("<--%s() = ok [split node]\n", __func__);
717 present_leaves_cluster_but_not_new_leaf:
718 /* All the old leaves cluster in the same slot, but the new leaf wants
719 * to go into a different slot, so we create a new node to hold the new
720 * leaf and a pointer to a new node holding all the old leaves.
722 pr_devel("present leaves cluster but not new leaf\n");
724 new_n0->back_pointer = node->back_pointer;
725 new_n0->parent_slot = node->parent_slot;
726 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
727 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
728 new_n1->parent_slot = edit->segment_cache[0];
729 new_n1->nr_leaves_on_branch = node->nr_leaves_on_branch;
730 edit->adjust_count_on = new_n0;
732 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
733 new_n1->slots[i] = node->slots[i];
735 new_n0->slots[edit->segment_cache[0]] = assoc_array_node_to_ptr(new_n0);
736 edit->leaf_p = &new_n0->slots[edit->segment_cache[ASSOC_ARRAY_FAN_OUT]];
738 edit->set[0].ptr = &assoc_array_ptr_to_node(node->back_pointer)->slots[node->parent_slot];
739 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
740 edit->excised_meta[0] = assoc_array_node_to_ptr(node);
741 pr_devel("<--%s() = ok [insert node before]\n", __func__);
744 all_leaves_cluster_together:
745 /* All the leaves, new and old, want to cluster together in this node
746 * in the same slot, so we have to replace this node with a shortcut to
747 * skip over the identical parts of the key and then place a pair of
748 * nodes, one inside the other, at the end of the shortcut and
749 * distribute the keys between them.
751 * Firstly we need to work out where the leaves start diverging as a
752 * bit position into their keys so that we know how big the shortcut
755 * We only need to make a single pass of N of the N+1 leaves because if
756 * any keys differ between themselves at bit X then at least one of
757 * them must also differ with the base key at bit X or before.
759 pr_devel("all leaves cluster together\n");
761 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
762 int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
769 BUG_ON(diff == INT_MAX);
770 BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
772 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
773 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
775 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
776 keylen * sizeof(unsigned long), GFP_KERNEL);
779 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
781 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
782 new_s0->back_pointer = node->back_pointer;
783 new_s0->parent_slot = node->parent_slot;
784 new_s0->next_node = assoc_array_node_to_ptr(new_n0);
785 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
786 new_n0->parent_slot = 0;
787 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
788 new_n1->parent_slot = -1; /* Need to calculate this */
790 new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
791 pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
794 for (i = 0; i < keylen; i++)
795 new_s0->index_key[i] =
796 ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
798 blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
799 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
800 new_s0->index_key[keylen - 1] &= ~blank;
802 /* This now reduces to a node splitting exercise for which we'll need
803 * to regenerate the disparity table.
805 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
806 ptr = node->slots[i];
807 base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
809 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
810 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
813 base_seg = ops->get_key_chunk(index_key, level);
814 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
815 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
820 * Handle insertion into the middle of a shortcut.
822 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
823 const struct assoc_array_ops *ops,
824 struct assoc_array_walk_result *result)
826 struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
827 struct assoc_array_node *node, *new_n0, *side;
828 unsigned long sc_segments, dissimilarity, blank;
830 int level, sc_level, diff;
833 shortcut = result->wrong_shortcut.shortcut;
834 level = result->wrong_shortcut.level;
835 sc_level = result->wrong_shortcut.sc_level;
836 sc_segments = result->wrong_shortcut.sc_segments;
837 dissimilarity = result->wrong_shortcut.dissimilarity;
839 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
840 __func__, level, dissimilarity, sc_level);
842 /* We need to split a shortcut and insert a node between the two
843 * pieces. Zero-length pieces will be dispensed with entirely.
845 * First of all, we need to find out in which level the first
848 diff = __ffs(dissimilarity);
849 diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
850 diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
851 pr_devel("diff=%d\n", diff);
853 if (!shortcut->back_pointer) {
854 edit->set[0].ptr = &edit->array->root;
855 } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
856 node = assoc_array_ptr_to_node(shortcut->back_pointer);
857 edit->set[0].ptr = &node->slots[shortcut->parent_slot];
862 edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
864 /* Create a new node now since we're going to need it anyway */
865 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
868 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
869 edit->adjust_count_on = new_n0;
871 /* Insert a new shortcut before the new node if this segment isn't of
872 * zero length - otherwise we just connect the new node directly to the
875 level += ASSOC_ARRAY_LEVEL_STEP;
877 pr_devel("pre-shortcut %d...%d\n", level, diff);
878 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
879 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
881 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
882 keylen * sizeof(unsigned long), GFP_KERNEL);
885 edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
886 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
887 new_s0->back_pointer = shortcut->back_pointer;
888 new_s0->parent_slot = shortcut->parent_slot;
889 new_s0->next_node = assoc_array_node_to_ptr(new_n0);
890 new_s0->skip_to_level = diff;
892 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
893 new_n0->parent_slot = 0;
895 memcpy(new_s0->index_key, shortcut->index_key,
896 keylen * sizeof(unsigned long));
898 blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
899 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
900 new_s0->index_key[keylen - 1] &= ~blank;
902 pr_devel("no pre-shortcut\n");
903 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
904 new_n0->back_pointer = shortcut->back_pointer;
905 new_n0->parent_slot = shortcut->parent_slot;
908 side = assoc_array_ptr_to_node(shortcut->next_node);
909 new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
911 /* We need to know which slot in the new node is going to take a
914 sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
915 sc_slot &= ASSOC_ARRAY_FAN_MASK;
917 pr_devel("new slot %lx >> %d -> %d\n",
918 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
920 /* Determine whether we need to follow the new node with a replacement
921 * for the current shortcut. We could in theory reuse the current
922 * shortcut if its parent slot number doesn't change - but that's a
923 * 1-in-16 chance so not worth expending the code upon.
925 level = diff + ASSOC_ARRAY_LEVEL_STEP;
926 if (level < shortcut->skip_to_level) {
927 pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
928 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
929 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
931 new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
932 keylen * sizeof(unsigned long), GFP_KERNEL);
935 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
937 new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
938 new_s1->parent_slot = sc_slot;
939 new_s1->next_node = shortcut->next_node;
940 new_s1->skip_to_level = shortcut->skip_to_level;
942 new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
944 memcpy(new_s1->index_key, shortcut->index_key,
945 keylen * sizeof(unsigned long));
947 edit->set[1].ptr = &side->back_pointer;
948 edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
950 pr_devel("no post-shortcut\n");
952 /* We don't have to replace the pointed-to node as long as we
953 * use memory barriers to make sure the parent slot number is
954 * changed before the back pointer (the parent slot number is
955 * irrelevant to the old parent shortcut).
957 new_n0->slots[sc_slot] = shortcut->next_node;
958 edit->set_parent_slot[0].p = &side->parent_slot;
959 edit->set_parent_slot[0].to = sc_slot;
960 edit->set[1].ptr = &side->back_pointer;
961 edit->set[1].to = assoc_array_node_to_ptr(new_n0);
964 /* Install the new leaf in a spare slot in the new node. */
966 edit->leaf_p = &new_n0->slots[1];
968 edit->leaf_p = &new_n0->slots[0];
970 pr_devel("<--%s() = ok [split shortcut]\n", __func__);
975 * assoc_array_insert - Script insertion of an object into an associative array
976 * @array: The array to insert into.
977 * @ops: The operations to use.
978 * @index_key: The key to insert at.
979 * @object: The object to insert.
981 * Precalculate and preallocate a script for the insertion or replacement of an
982 * object in an associative array. This results in an edit script that can
983 * either be applied or cancelled.
985 * The function returns a pointer to an edit script or -ENOMEM.
987 * The caller should lock against other modifications and must continue to hold
988 * the lock until assoc_array_apply_edit() has been called.
990 * Accesses to the tree may take place concurrently with this function,
991 * provided they hold the RCU read lock.
993 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
994 const struct assoc_array_ops *ops,
995 const void *index_key,
998 struct assoc_array_walk_result result;
999 struct assoc_array_edit *edit;
1001 pr_devel("-->%s()\n", __func__);
1003 /* The leaf pointer we're given must not have the bottom bit set as we
1004 * use those for type-marking the pointer. NULL pointers are also not
1005 * allowed as they indicate an empty slot but we have to allow them
1006 * here as they can be updated later.
1008 BUG_ON(assoc_array_ptr_is_meta(object));
1010 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1012 return ERR_PTR(-ENOMEM);
1013 edit->array = array;
1015 edit->leaf = assoc_array_leaf_to_ptr(object);
1016 edit->adjust_count_by = 1;
1018 switch (assoc_array_walk(array, ops, index_key, &result)) {
1019 case assoc_array_walk_tree_empty:
1020 /* Allocate a root node if there isn't one yet */
1021 if (!assoc_array_insert_in_empty_tree(edit))
1025 case assoc_array_walk_found_terminal_node:
1026 /* We found a node that doesn't have a node/shortcut pointer in
1027 * the slot corresponding to the index key that we have to
1030 if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1035 case assoc_array_walk_found_wrong_shortcut:
1036 /* We found a shortcut that didn't match our key in a slot we
1039 if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1045 /* Clean up after an out of memory error */
1046 pr_devel("enomem\n");
1047 assoc_array_cancel_edit(edit);
1048 return ERR_PTR(-ENOMEM);
1052 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1053 * @edit: The edit script to modify.
1054 * @object: The object pointer to set.
1056 * Change the object to be inserted in an edit script. The object pointed to
1057 * by the old object is not freed. This must be done prior to applying the
1060 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1063 edit->leaf = assoc_array_leaf_to_ptr(object);
1066 struct assoc_array_delete_collapse_context {
1067 struct assoc_array_node *node;
1068 const void *skip_leaf;
1073 * Subtree collapse to node iterator.
1075 static int assoc_array_delete_collapse_iterator(const void *leaf,
1076 void *iterator_data)
1078 struct assoc_array_delete_collapse_context *collapse = iterator_data;
1080 if (leaf == collapse->skip_leaf)
1083 BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1085 collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1090 * assoc_array_delete - Script deletion of an object from an associative array
1091 * @array: The array to search.
1092 * @ops: The operations to use.
1093 * @index_key: The key to the object.
1095 * Precalculate and preallocate a script for the deletion of an object from an
1096 * associative array. This results in an edit script that can either be
1097 * applied or cancelled.
1099 * The function returns a pointer to an edit script if the object was found,
1100 * NULL if the object was not found or -ENOMEM.
1102 * The caller should lock against other modifications and must continue to hold
1103 * the lock until assoc_array_apply_edit() has been called.
1105 * Accesses to the tree may take place concurrently with this function,
1106 * provided they hold the RCU read lock.
1108 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1109 const struct assoc_array_ops *ops,
1110 const void *index_key)
1112 struct assoc_array_delete_collapse_context collapse;
1113 struct assoc_array_walk_result result;
1114 struct assoc_array_node *node, *new_n0;
1115 struct assoc_array_edit *edit;
1116 struct assoc_array_ptr *ptr;
1120 pr_devel("-->%s()\n", __func__);
1122 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1124 return ERR_PTR(-ENOMEM);
1125 edit->array = array;
1127 edit->adjust_count_by = -1;
1129 switch (assoc_array_walk(array, ops, index_key, &result)) {
1130 case assoc_array_walk_found_terminal_node:
1131 /* We found a node that should contain the leaf we've been
1132 * asked to remove - *if* it's in the tree.
1134 pr_devel("terminal_node\n");
1135 node = result.terminal_node.node;
1137 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1138 ptr = node->slots[slot];
1140 assoc_array_ptr_is_leaf(ptr) &&
1141 ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1145 case assoc_array_walk_tree_empty:
1146 case assoc_array_walk_found_wrong_shortcut:
1148 assoc_array_cancel_edit(edit);
1149 pr_devel("not found\n");
1154 BUG_ON(array->nr_leaves_on_tree <= 0);
1156 /* In the simplest form of deletion we just clear the slot and release
1157 * the leaf after a suitable interval.
1159 edit->dead_leaf = node->slots[slot];
1160 edit->set[0].ptr = &node->slots[slot];
1161 edit->set[0].to = NULL;
1162 edit->adjust_count_on = node;
1164 /* If that concludes erasure of the last leaf, then delete the entire
1167 if (array->nr_leaves_on_tree == 1) {
1168 edit->set[1].ptr = &array->root;
1169 edit->set[1].to = NULL;
1170 edit->adjust_count_on = NULL;
1171 edit->excised_subtree = array->root;
1172 pr_devel("all gone\n");
1176 /* However, we'd also like to clear up some metadata blocks if we
1179 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1180 * leaves in it, then attempt to collapse it - and attempt to
1181 * recursively collapse up the tree.
1183 * We could also try and collapse in partially filled subtrees to take
1184 * up space in this node.
1186 if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1187 struct assoc_array_node *parent, *grandparent;
1188 struct assoc_array_ptr *ptr;
1190 /* First of all, we need to know if this node has metadata so
1191 * that we don't try collapsing if all the leaves are already
1195 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1196 ptr = node->slots[i];
1197 if (assoc_array_ptr_is_meta(ptr)) {
1203 pr_devel("leaves: %ld [m=%d]\n",
1204 node->nr_leaves_on_branch - 1, has_meta);
1206 /* Look further up the tree to see if we can collapse this node
1207 * into a more proximal node too.
1211 pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1213 ptr = parent->back_pointer;
1216 if (assoc_array_ptr_is_shortcut(ptr)) {
1217 struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1218 ptr = s->back_pointer;
1223 grandparent = assoc_array_ptr_to_node(ptr);
1224 if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1225 parent = grandparent;
1230 /* There's no point collapsing if the original node has no meta
1231 * pointers to discard and if we didn't merge into one of that
1234 if (has_meta || parent != node) {
1237 /* Create a new node to collapse into */
1238 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1241 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1243 new_n0->back_pointer = node->back_pointer;
1244 new_n0->parent_slot = node->parent_slot;
1245 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1246 edit->adjust_count_on = new_n0;
1248 collapse.node = new_n0;
1249 collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1251 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1253 assoc_array_delete_collapse_iterator,
1255 pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1256 BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1258 if (!node->back_pointer) {
1259 edit->set[1].ptr = &array->root;
1260 } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1262 } else if (assoc_array_ptr_is_node(node->back_pointer)) {
1263 struct assoc_array_node *p =
1264 assoc_array_ptr_to_node(node->back_pointer);
1265 edit->set[1].ptr = &p->slots[node->parent_slot];
1266 } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1267 struct assoc_array_shortcut *s =
1268 assoc_array_ptr_to_shortcut(node->back_pointer);
1269 edit->set[1].ptr = &s->next_node;
1271 edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1272 edit->excised_subtree = assoc_array_node_to_ptr(node);
1279 /* Clean up after an out of memory error */
1280 pr_devel("enomem\n");
1281 assoc_array_cancel_edit(edit);
1282 return ERR_PTR(-ENOMEM);
1286 * assoc_array_clear - Script deletion of all objects from an associative array
1287 * @array: The array to clear.
1288 * @ops: The operations to use.
1290 * Precalculate and preallocate a script for the deletion of all the objects
1291 * from an associative array. This results in an edit script that can either
1292 * be applied or cancelled.
1294 * The function returns a pointer to an edit script if there are objects to be
1295 * deleted, NULL if there are no objects in the array or -ENOMEM.
1297 * The caller should lock against other modifications and must continue to hold
1298 * the lock until assoc_array_apply_edit() has been called.
1300 * Accesses to the tree may take place concurrently with this function,
1301 * provided they hold the RCU read lock.
1303 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1304 const struct assoc_array_ops *ops)
1306 struct assoc_array_edit *edit;
1308 pr_devel("-->%s()\n", __func__);
1313 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1315 return ERR_PTR(-ENOMEM);
1316 edit->array = array;
1318 edit->set[1].ptr = &array->root;
1319 edit->set[1].to = NULL;
1320 edit->excised_subtree = array->root;
1321 edit->ops_for_excised_subtree = ops;
1322 pr_devel("all gone\n");
1327 * Handle the deferred destruction after an applied edit.
1329 static void assoc_array_rcu_cleanup(struct rcu_head *head)
1331 struct assoc_array_edit *edit =
1332 container_of(head, struct assoc_array_edit, rcu);
1335 pr_devel("-->%s()\n", __func__);
1337 if (edit->dead_leaf)
1338 edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1339 for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1340 if (edit->excised_meta[i])
1341 kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1343 if (edit->excised_subtree) {
1344 BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1345 if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1346 struct assoc_array_node *n =
1347 assoc_array_ptr_to_node(edit->excised_subtree);
1348 n->back_pointer = NULL;
1350 struct assoc_array_shortcut *s =
1351 assoc_array_ptr_to_shortcut(edit->excised_subtree);
1352 s->back_pointer = NULL;
1354 assoc_array_destroy_subtree(edit->excised_subtree,
1355 edit->ops_for_excised_subtree);
1362 * assoc_array_apply_edit - Apply an edit script to an associative array
1363 * @edit: The script to apply.
1365 * Apply an edit script to an associative array to effect an insertion,
1366 * deletion or clearance. As the edit script includes preallocated memory,
1367 * this is guaranteed not to fail.
1369 * The edit script, dead objects and dead metadata will be scheduled for
1370 * destruction after an RCU grace period to permit those doing read-only
1371 * accesses on the array to continue to do so under the RCU read lock whilst
1372 * the edit is taking place.
1374 void assoc_array_apply_edit(struct assoc_array_edit *edit)
1376 struct assoc_array_shortcut *shortcut;
1377 struct assoc_array_node *node;
1378 struct assoc_array_ptr *ptr;
1381 pr_devel("-->%s()\n", __func__);
1385 *edit->leaf_p = edit->leaf;
1388 for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1389 if (edit->set_parent_slot[i].p)
1390 *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1393 for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1394 if (edit->set_backpointers[i])
1395 *edit->set_backpointers[i] = edit->set_backpointers_to;
1398 for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1399 if (edit->set[i].ptr)
1400 *edit->set[i].ptr = edit->set[i].to;
1402 if (edit->array->root == NULL) {
1403 edit->array->nr_leaves_on_tree = 0;
1404 } else if (edit->adjust_count_on) {
1405 node = edit->adjust_count_on;
1407 node->nr_leaves_on_branch += edit->adjust_count_by;
1409 ptr = node->back_pointer;
1412 if (assoc_array_ptr_is_shortcut(ptr)) {
1413 shortcut = assoc_array_ptr_to_shortcut(ptr);
1414 ptr = shortcut->back_pointer;
1418 BUG_ON(!assoc_array_ptr_is_node(ptr));
1419 node = assoc_array_ptr_to_node(ptr);
1422 edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1425 call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1429 * assoc_array_cancel_edit - Discard an edit script.
1430 * @edit: The script to discard.
1432 * Free an edit script and all the preallocated data it holds without making
1433 * any changes to the associative array it was intended for.
1435 * NOTE! In the case of an insertion script, this does _not_ release the leaf
1436 * that was to be inserted. That is left to the caller.
1438 void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1440 struct assoc_array_ptr *ptr;
1443 pr_devel("-->%s()\n", __func__);
1445 /* Clean up after an out of memory error */
1446 for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1447 ptr = edit->new_meta[i];
1449 if (assoc_array_ptr_is_node(ptr))
1450 kfree(assoc_array_ptr_to_node(ptr));
1452 kfree(assoc_array_ptr_to_shortcut(ptr));
1459 * assoc_array_gc - Garbage collect an associative array.
1460 * @array: The array to clean.
1461 * @ops: The operations to use.
1462 * @iterator: A callback function to pass judgement on each object.
1463 * @iterator_data: Private data for the callback function.
1465 * Collect garbage from an associative array and pack down the internal tree to
1468 * The iterator function is asked to pass judgement upon each object in the
1469 * array. If it returns false, the object is discard and if it returns true,
1470 * the object is kept. If it returns true, it must increment the object's
1471 * usage count (or whatever it needs to do to retain it) before returning.
1473 * This function returns 0 if successful or -ENOMEM if out of memory. In the
1474 * latter case, the array is not changed.
1476 * The caller should lock against other modifications and must continue to hold
1477 * the lock until assoc_array_apply_edit() has been called.
1479 * Accesses to the tree may take place concurrently with this function,
1480 * provided they hold the RCU read lock.
1482 int assoc_array_gc(struct assoc_array *array,
1483 const struct assoc_array_ops *ops,
1484 bool (*iterator)(void *object, void *iterator_data),
1485 void *iterator_data)
1487 struct assoc_array_shortcut *shortcut, *new_s;
1488 struct assoc_array_node *node, *new_n;
1489 struct assoc_array_edit *edit;
1490 struct assoc_array_ptr *cursor, *ptr;
1491 struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1492 unsigned long nr_leaves_on_tree;
1493 int keylen, slot, nr_free, next_slot, i;
1495 pr_devel("-->%s()\n", __func__);
1500 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1503 edit->array = array;
1505 edit->ops_for_excised_subtree = ops;
1506 edit->set[0].ptr = &array->root;
1507 edit->excised_subtree = array->root;
1509 new_root = new_parent = NULL;
1510 new_ptr_pp = &new_root;
1511 cursor = array->root;
1514 /* If this point is a shortcut, then we need to duplicate it and
1515 * advance the target cursor.
1517 if (assoc_array_ptr_is_shortcut(cursor)) {
1518 shortcut = assoc_array_ptr_to_shortcut(cursor);
1519 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1520 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1521 new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1522 keylen * sizeof(unsigned long), GFP_KERNEL);
1525 pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1526 memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1527 keylen * sizeof(unsigned long)));
1528 new_s->back_pointer = new_parent;
1529 new_s->parent_slot = shortcut->parent_slot;
1530 *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1531 new_ptr_pp = &new_s->next_node;
1532 cursor = shortcut->next_node;
1535 /* Duplicate the node at this position */
1536 node = assoc_array_ptr_to_node(cursor);
1537 new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1540 pr_devel("dup node %p -> %p\n", node, new_n);
1541 new_n->back_pointer = new_parent;
1542 new_n->parent_slot = node->parent_slot;
1543 *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1548 /* Filter across any leaves and gc any subtrees */
1549 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1550 ptr = node->slots[slot];
1554 if (assoc_array_ptr_is_leaf(ptr)) {
1555 if (iterator(assoc_array_ptr_to_leaf(ptr),
1557 /* The iterator will have done any reference
1558 * counting on the object for us.
1560 new_n->slots[slot] = ptr;
1564 new_ptr_pp = &new_n->slots[slot];
1569 pr_devel("-- compress node %p --\n", new_n);
1571 /* Count up the number of empty slots in this node and work out the
1572 * subtree leaf count.
1574 new_n->nr_leaves_on_branch = 0;
1576 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1577 ptr = new_n->slots[slot];
1580 else if (assoc_array_ptr_is_leaf(ptr))
1581 new_n->nr_leaves_on_branch++;
1583 pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1585 /* See what we can fold in */
1587 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1588 struct assoc_array_shortcut *s;
1589 struct assoc_array_node *child;
1591 ptr = new_n->slots[slot];
1592 if (!ptr || assoc_array_ptr_is_leaf(ptr))
1596 if (assoc_array_ptr_is_shortcut(ptr)) {
1597 s = assoc_array_ptr_to_shortcut(ptr);
1601 child = assoc_array_ptr_to_node(ptr);
1602 new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1604 if (child->nr_leaves_on_branch <= nr_free + 1) {
1605 /* Fold the child node into this one */
1606 pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1607 slot, child->nr_leaves_on_branch, nr_free + 1,
1610 /* We would already have reaped an intervening shortcut
1611 * on the way back up the tree.
1615 new_n->slots[slot] = NULL;
1617 if (slot < next_slot)
1619 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1620 struct assoc_array_ptr *p = child->slots[i];
1623 BUG_ON(assoc_array_ptr_is_meta(p));
1624 while (new_n->slots[next_slot])
1626 BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1627 new_n->slots[next_slot++] = p;
1632 pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1633 slot, child->nr_leaves_on_branch, nr_free + 1,
1638 pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1640 nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1642 /* Excise this node if it is singly occupied by a shortcut */
1643 if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1644 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1645 if ((ptr = new_n->slots[slot]))
1648 if (assoc_array_ptr_is_meta(ptr) &&
1649 assoc_array_ptr_is_shortcut(ptr)) {
1650 pr_devel("excise node %p with 1 shortcut\n", new_n);
1651 new_s = assoc_array_ptr_to_shortcut(ptr);
1652 new_parent = new_n->back_pointer;
1653 slot = new_n->parent_slot;
1656 new_s->back_pointer = NULL;
1657 new_s->parent_slot = 0;
1662 if (assoc_array_ptr_is_shortcut(new_parent)) {
1663 /* We can discard any preceding shortcut also */
1664 struct assoc_array_shortcut *s =
1665 assoc_array_ptr_to_shortcut(new_parent);
1667 pr_devel("excise preceding shortcut\n");
1669 new_parent = new_s->back_pointer = s->back_pointer;
1670 slot = new_s->parent_slot = s->parent_slot;
1673 new_s->back_pointer = NULL;
1674 new_s->parent_slot = 0;
1680 new_s->back_pointer = new_parent;
1681 new_s->parent_slot = slot;
1682 new_n = assoc_array_ptr_to_node(new_parent);
1683 new_n->slots[slot] = ptr;
1684 goto ascend_old_tree;
1688 /* Excise any shortcuts we might encounter that point to nodes that
1689 * only contain leaves.
1691 ptr = new_n->back_pointer;
1695 if (assoc_array_ptr_is_shortcut(ptr)) {
1696 new_s = assoc_array_ptr_to_shortcut(ptr);
1697 new_parent = new_s->back_pointer;
1698 slot = new_s->parent_slot;
1700 if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1701 struct assoc_array_node *n;
1703 pr_devel("excise shortcut\n");
1704 new_n->back_pointer = new_parent;
1705 new_n->parent_slot = slot;
1708 new_root = assoc_array_node_to_ptr(new_n);
1712 n = assoc_array_ptr_to_node(new_parent);
1713 n->slots[slot] = assoc_array_node_to_ptr(new_n);
1718 new_n = assoc_array_ptr_to_node(new_parent);
1721 ptr = node->back_pointer;
1722 if (assoc_array_ptr_is_shortcut(ptr)) {
1723 shortcut = assoc_array_ptr_to_shortcut(ptr);
1724 slot = shortcut->parent_slot;
1725 cursor = shortcut->back_pointer;
1729 slot = node->parent_slot;
1733 node = assoc_array_ptr_to_node(cursor);
1738 edit->set[0].to = new_root;
1739 assoc_array_apply_edit(edit);
1740 array->nr_leaves_on_tree = nr_leaves_on_tree;
1744 pr_devel("enomem\n");
1745 assoc_array_destroy_subtree(new_root, edit->ops);