4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
66 ram_addr_t memory_size;
72 typedef struct kvm_dirty_log KVMDirtyLog;
76 AccelState parent_obj;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int broken_set_mem_region;
87 int robust_singlestep;
89 #ifdef KVM_CAP_SET_GUEST_DEBUG
90 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
96 /* The man page (and posix) say ioctl numbers are signed int, but
97 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
98 * unsigned, and treating them as signed here can break things */
99 unsigned irq_set_ioctl;
100 unsigned int sigmask_len;
101 #ifdef KVM_CAP_IRQ_ROUTING
102 struct kvm_irq_routing *irq_routes;
103 int nr_allocated_irq_routes;
104 uint32_t *used_gsi_bitmap;
105 unsigned int gsi_count;
106 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
111 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
113 #define KVM_STATE(obj) \
114 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
117 bool kvm_kernel_irqchip;
118 bool kvm_async_interrupts_allowed;
119 bool kvm_halt_in_kernel_allowed;
120 bool kvm_eventfds_allowed;
121 bool kvm_irqfds_allowed;
122 bool kvm_resamplefds_allowed;
123 bool kvm_msi_via_irqfd_allowed;
124 bool kvm_gsi_routing_allowed;
125 bool kvm_gsi_direct_mapping;
127 bool kvm_readonly_mem_allowed;
128 bool kvm_vm_attributes_allowed;
130 static const KVMCapabilityInfo kvm_required_capabilites[] = {
131 KVM_CAP_INFO(USER_MEMORY),
132 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
136 static KVMSlot *kvm_get_free_slot(KVMState *s)
140 for (i = 0; i < s->nr_slots; i++) {
141 if (s->slots[i].memory_size == 0) {
149 bool kvm_has_free_slot(MachineState *ms)
151 return kvm_get_free_slot(KVM_STATE(ms->accelerator));
154 static KVMSlot *kvm_alloc_slot(KVMState *s)
156 KVMSlot *slot = kvm_get_free_slot(s);
162 fprintf(stderr, "%s: no free slot available\n", __func__);
166 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
172 for (i = 0; i < s->nr_slots; i++) {
173 KVMSlot *mem = &s->slots[i];
175 if (start_addr == mem->start_addr &&
176 end_addr == mem->start_addr + mem->memory_size) {
185 * Find overlapping slot with lowest start address
187 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
191 KVMSlot *found = NULL;
194 for (i = 0; i < s->nr_slots; i++) {
195 KVMSlot *mem = &s->slots[i];
197 if (mem->memory_size == 0 ||
198 (found && found->start_addr < mem->start_addr)) {
202 if (end_addr > mem->start_addr &&
203 start_addr < mem->start_addr + mem->memory_size) {
211 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
216 for (i = 0; i < s->nr_slots; i++) {
217 KVMSlot *mem = &s->slots[i];
219 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
220 *phys_addr = mem->start_addr + (ram - mem->ram);
228 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
230 struct kvm_userspace_memory_region mem;
232 mem.slot = slot->slot;
233 mem.guest_phys_addr = slot->start_addr;
234 mem.userspace_addr = (unsigned long)slot->ram;
235 mem.flags = slot->flags;
237 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
238 /* Set the slot size to 0 before setting the slot to the desired
239 * value. This is needed based on KVM commit 75d61fbc. */
241 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
243 mem.memory_size = slot->memory_size;
244 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
247 int kvm_init_vcpu(CPUState *cpu)
249 KVMState *s = kvm_state;
253 DPRINTF("kvm_init_vcpu\n");
255 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
257 DPRINTF("kvm_create_vcpu failed\n");
263 cpu->kvm_vcpu_dirty = true;
265 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
268 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
272 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
274 if (cpu->kvm_run == MAP_FAILED) {
276 DPRINTF("mmap'ing vcpu state failed\n");
280 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
281 s->coalesced_mmio_ring =
282 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
285 ret = kvm_arch_init_vcpu(cpu);
291 * dirty pages logging control
294 static int kvm_mem_flags(MemoryRegion *mr)
296 bool readonly = mr->readonly || memory_region_is_romd(mr);
299 if (memory_region_get_dirty_log_mask(mr) != 0) {
300 flags |= KVM_MEM_LOG_DIRTY_PAGES;
302 if (readonly && kvm_readonly_mem_allowed) {
303 flags |= KVM_MEM_READONLY;
308 static int kvm_slot_update_flags(KVMSlot *mem, MemoryRegion *mr)
310 KVMState *s = kvm_state;
313 old_flags = mem->flags;
314 mem->flags = kvm_mem_flags(mr);
316 /* If nothing changed effectively, no need to issue ioctl */
317 if (mem->flags == old_flags) {
321 return kvm_set_user_memory_region(s, mem);
324 static int kvm_section_update_flags(MemoryRegionSection *section)
326 KVMState *s = kvm_state;
327 hwaddr phys_addr = section->offset_within_address_space;
328 ram_addr_t size = int128_get64(section->size);
329 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
334 return kvm_slot_update_flags(mem, section->mr);
338 static void kvm_log_start(MemoryListener *listener,
339 MemoryRegionSection *section,
348 r = kvm_section_update_flags(section);
354 static void kvm_log_stop(MemoryListener *listener,
355 MemoryRegionSection *section,
364 r = kvm_section_update_flags(section);
370 /* get kvm's dirty pages bitmap and update qemu's */
371 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
372 unsigned long *bitmap)
374 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
375 ram_addr_t pages = int128_get64(section->size) / getpagesize();
377 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
381 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
384 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
385 * This function updates qemu's dirty bitmap using
386 * memory_region_set_dirty(). This means all bits are set
389 * @start_add: start of logged region.
390 * @end_addr: end of logged region.
392 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
394 KVMState *s = kvm_state;
395 unsigned long size, allocated_size = 0;
399 hwaddr start_addr = section->offset_within_address_space;
400 hwaddr end_addr = start_addr + int128_get64(section->size);
402 d.dirty_bitmap = NULL;
403 while (start_addr < end_addr) {
404 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
409 /* XXX bad kernel interface alert
410 * For dirty bitmap, kernel allocates array of size aligned to
411 * bits-per-long. But for case when the kernel is 64bits and
412 * the userspace is 32bits, userspace can't align to the same
413 * bits-per-long, since sizeof(long) is different between kernel
414 * and user space. This way, userspace will provide buffer which
415 * may be 4 bytes less than the kernel will use, resulting in
416 * userspace memory corruption (which is not detectable by valgrind
417 * too, in most cases).
418 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
419 * a hope that sizeof(long) wont become >8 any time soon.
421 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
422 /*HOST_LONG_BITS*/ 64) / 8;
423 if (!d.dirty_bitmap) {
424 d.dirty_bitmap = g_malloc(size);
425 } else if (size > allocated_size) {
426 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
428 allocated_size = size;
429 memset(d.dirty_bitmap, 0, allocated_size);
433 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
434 DPRINTF("ioctl failed %d\n", errno);
439 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
440 start_addr = mem->start_addr + mem->memory_size;
442 g_free(d.dirty_bitmap);
447 static void kvm_coalesce_mmio_region(MemoryListener *listener,
448 MemoryRegionSection *secion,
449 hwaddr start, hwaddr size)
451 KVMState *s = kvm_state;
453 if (s->coalesced_mmio) {
454 struct kvm_coalesced_mmio_zone zone;
460 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
464 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
465 MemoryRegionSection *secion,
466 hwaddr start, hwaddr size)
468 KVMState *s = kvm_state;
470 if (s->coalesced_mmio) {
471 struct kvm_coalesced_mmio_zone zone;
477 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
481 int kvm_check_extension(KVMState *s, unsigned int extension)
485 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
493 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
497 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
499 /* VM wide version not implemented, use global one instead */
500 ret = kvm_check_extension(s, extension);
506 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
508 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
509 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
510 * endianness, but the memory core hands them in target endianness.
511 * For example, PPC is always treated as big-endian even if running
512 * on KVM and on PPC64LE. Correct here.
526 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
527 bool assign, uint32_t size, bool datamatch)
530 struct kvm_ioeventfd iofd = {
531 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
538 if (!kvm_enabled()) {
543 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
546 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
549 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
558 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
559 bool assign, uint32_t size, bool datamatch)
561 struct kvm_ioeventfd kick = {
562 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
564 .flags = KVM_IOEVENTFD_FLAG_PIO,
569 if (!kvm_enabled()) {
573 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
576 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
578 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
586 static int kvm_check_many_ioeventfds(void)
588 /* Userspace can use ioeventfd for io notification. This requires a host
589 * that supports eventfd(2) and an I/O thread; since eventfd does not
590 * support SIGIO it cannot interrupt the vcpu.
592 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
593 * can avoid creating too many ioeventfds.
595 #if defined(CONFIG_EVENTFD)
598 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
599 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
600 if (ioeventfds[i] < 0) {
603 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
605 close(ioeventfds[i]);
610 /* Decide whether many devices are supported or not */
611 ret = i == ARRAY_SIZE(ioeventfds);
614 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
615 close(ioeventfds[i]);
623 static const KVMCapabilityInfo *
624 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
627 if (!kvm_check_extension(s, list->value)) {
635 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
637 KVMState *s = kvm_state;
640 MemoryRegion *mr = section->mr;
641 bool writeable = !mr->readonly && !mr->rom_device;
642 hwaddr start_addr = section->offset_within_address_space;
643 ram_addr_t size = int128_get64(section->size);
647 /* kvm works in page size chunks, but the function may be called
648 with sub-page size and unaligned start address. Pad the start
649 address to next and truncate size to previous page boundary. */
650 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
651 delta &= ~TARGET_PAGE_MASK;
657 size &= TARGET_PAGE_MASK;
658 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
662 if (!memory_region_is_ram(mr)) {
663 if (writeable || !kvm_readonly_mem_allowed) {
665 } else if (!mr->romd_mode) {
666 /* If the memory device is not in romd_mode, then we actually want
667 * to remove the kvm memory slot so all accesses will trap. */
672 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
675 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
680 if (add && start_addr >= mem->start_addr &&
681 (start_addr + size <= mem->start_addr + mem->memory_size) &&
682 (ram - start_addr == mem->ram - mem->start_addr)) {
683 /* The new slot fits into the existing one and comes with
684 * identical parameters - update flags and done. */
685 kvm_slot_update_flags(mem, mr);
691 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
692 kvm_physical_sync_dirty_bitmap(section);
695 /* unregister the overlapping slot */
696 mem->memory_size = 0;
697 err = kvm_set_user_memory_region(s, mem);
699 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
700 __func__, strerror(-err));
704 /* Workaround for older KVM versions: we can't join slots, even not by
705 * unregistering the previous ones and then registering the larger
706 * slot. We have to maintain the existing fragmentation. Sigh.
708 * This workaround assumes that the new slot starts at the same
709 * address as the first existing one. If not or if some overlapping
710 * slot comes around later, we will fail (not seen in practice so far)
711 * - and actually require a recent KVM version. */
712 if (s->broken_set_mem_region &&
713 old.start_addr == start_addr && old.memory_size < size && add) {
714 mem = kvm_alloc_slot(s);
715 mem->memory_size = old.memory_size;
716 mem->start_addr = old.start_addr;
718 mem->flags = kvm_mem_flags(mr);
720 err = kvm_set_user_memory_region(s, mem);
722 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
727 start_addr += old.memory_size;
728 ram += old.memory_size;
729 size -= old.memory_size;
733 /* register prefix slot */
734 if (old.start_addr < start_addr) {
735 mem = kvm_alloc_slot(s);
736 mem->memory_size = start_addr - old.start_addr;
737 mem->start_addr = old.start_addr;
739 mem->flags = kvm_mem_flags(mr);
741 err = kvm_set_user_memory_region(s, mem);
743 fprintf(stderr, "%s: error registering prefix slot: %s\n",
744 __func__, strerror(-err));
746 fprintf(stderr, "%s: This is probably because your kernel's " \
747 "PAGE_SIZE is too big. Please try to use 4k " \
748 "PAGE_SIZE!\n", __func__);
754 /* register suffix slot */
755 if (old.start_addr + old.memory_size > start_addr + size) {
756 ram_addr_t size_delta;
758 mem = kvm_alloc_slot(s);
759 mem->start_addr = start_addr + size;
760 size_delta = mem->start_addr - old.start_addr;
761 mem->memory_size = old.memory_size - size_delta;
762 mem->ram = old.ram + size_delta;
763 mem->flags = kvm_mem_flags(mr);
765 err = kvm_set_user_memory_region(s, mem);
767 fprintf(stderr, "%s: error registering suffix slot: %s\n",
768 __func__, strerror(-err));
774 /* in case the KVM bug workaround already "consumed" the new slot */
781 mem = kvm_alloc_slot(s);
782 mem->memory_size = size;
783 mem->start_addr = start_addr;
785 mem->flags = kvm_mem_flags(mr);
787 err = kvm_set_user_memory_region(s, mem);
789 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
795 static void kvm_region_add(MemoryListener *listener,
796 MemoryRegionSection *section)
798 memory_region_ref(section->mr);
799 kvm_set_phys_mem(section, true);
802 static void kvm_region_del(MemoryListener *listener,
803 MemoryRegionSection *section)
805 kvm_set_phys_mem(section, false);
806 memory_region_unref(section->mr);
809 static void kvm_log_sync(MemoryListener *listener,
810 MemoryRegionSection *section)
814 r = kvm_physical_sync_dirty_bitmap(section);
820 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
821 MemoryRegionSection *section,
822 bool match_data, uint64_t data,
825 int fd = event_notifier_get_fd(e);
828 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
829 data, true, int128_get64(section->size),
832 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
833 __func__, strerror(-r));
838 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
839 MemoryRegionSection *section,
840 bool match_data, uint64_t data,
843 int fd = event_notifier_get_fd(e);
846 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
847 data, false, int128_get64(section->size),
854 static void kvm_io_ioeventfd_add(MemoryListener *listener,
855 MemoryRegionSection *section,
856 bool match_data, uint64_t data,
859 int fd = event_notifier_get_fd(e);
862 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
863 data, true, int128_get64(section->size),
866 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
867 __func__, strerror(-r));
872 static void kvm_io_ioeventfd_del(MemoryListener *listener,
873 MemoryRegionSection *section,
874 bool match_data, uint64_t data,
878 int fd = event_notifier_get_fd(e);
881 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
882 data, false, int128_get64(section->size),
889 static MemoryListener kvm_memory_listener = {
890 .region_add = kvm_region_add,
891 .region_del = kvm_region_del,
892 .log_start = kvm_log_start,
893 .log_stop = kvm_log_stop,
894 .log_sync = kvm_log_sync,
895 .eventfd_add = kvm_mem_ioeventfd_add,
896 .eventfd_del = kvm_mem_ioeventfd_del,
897 .coalesced_mmio_add = kvm_coalesce_mmio_region,
898 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
902 static MemoryListener kvm_io_listener = {
903 .eventfd_add = kvm_io_ioeventfd_add,
904 .eventfd_del = kvm_io_ioeventfd_del,
908 static void kvm_handle_interrupt(CPUState *cpu, int mask)
910 cpu->interrupt_request |= mask;
912 if (!qemu_cpu_is_self(cpu)) {
917 int kvm_set_irq(KVMState *s, int irq, int level)
919 struct kvm_irq_level event;
922 assert(kvm_async_interrupts_enabled());
926 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
928 perror("kvm_set_irq");
932 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
935 #ifdef KVM_CAP_IRQ_ROUTING
936 typedef struct KVMMSIRoute {
937 struct kvm_irq_routing_entry kroute;
938 QTAILQ_ENTRY(KVMMSIRoute) entry;
941 static void set_gsi(KVMState *s, unsigned int gsi)
943 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
946 static void clear_gsi(KVMState *s, unsigned int gsi)
948 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
951 void kvm_init_irq_routing(KVMState *s)
955 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
957 unsigned int gsi_bits, i;
959 /* Round up so we can search ints using ffs */
960 gsi_bits = ALIGN(gsi_count, 32);
961 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
962 s->gsi_count = gsi_count;
964 /* Mark any over-allocated bits as already in use */
965 for (i = gsi_count; i < gsi_bits; i++) {
970 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
971 s->nr_allocated_irq_routes = 0;
973 if (!s->direct_msi) {
974 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
975 QTAILQ_INIT(&s->msi_hashtab[i]);
979 kvm_arch_init_irq_routing(s);
982 void kvm_irqchip_commit_routes(KVMState *s)
986 s->irq_routes->flags = 0;
987 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
991 static void kvm_add_routing_entry(KVMState *s,
992 struct kvm_irq_routing_entry *entry)
994 struct kvm_irq_routing_entry *new;
997 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
998 n = s->nr_allocated_irq_routes * 2;
1002 size = sizeof(struct kvm_irq_routing);
1003 size += n * sizeof(*new);
1004 s->irq_routes = g_realloc(s->irq_routes, size);
1005 s->nr_allocated_irq_routes = n;
1007 n = s->irq_routes->nr++;
1008 new = &s->irq_routes->entries[n];
1012 set_gsi(s, entry->gsi);
1015 static int kvm_update_routing_entry(KVMState *s,
1016 struct kvm_irq_routing_entry *new_entry)
1018 struct kvm_irq_routing_entry *entry;
1021 for (n = 0; n < s->irq_routes->nr; n++) {
1022 entry = &s->irq_routes->entries[n];
1023 if (entry->gsi != new_entry->gsi) {
1027 if(!memcmp(entry, new_entry, sizeof *entry)) {
1031 *entry = *new_entry;
1033 kvm_irqchip_commit_routes(s);
1041 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1043 struct kvm_irq_routing_entry e = {};
1045 assert(pin < s->gsi_count);
1048 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1050 e.u.irqchip.irqchip = irqchip;
1051 e.u.irqchip.pin = pin;
1052 kvm_add_routing_entry(s, &e);
1055 void kvm_irqchip_release_virq(KVMState *s, int virq)
1057 struct kvm_irq_routing_entry *e;
1060 if (kvm_gsi_direct_mapping()) {
1064 for (i = 0; i < s->irq_routes->nr; i++) {
1065 e = &s->irq_routes->entries[i];
1066 if (e->gsi == virq) {
1067 s->irq_routes->nr--;
1068 *e = s->irq_routes->entries[s->irq_routes->nr];
1074 static unsigned int kvm_hash_msi(uint32_t data)
1076 /* This is optimized for IA32 MSI layout. However, no other arch shall
1077 * repeat the mistake of not providing a direct MSI injection API. */
1081 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1083 KVMMSIRoute *route, *next;
1086 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1087 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1088 kvm_irqchip_release_virq(s, route->kroute.gsi);
1089 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1095 static int kvm_irqchip_get_virq(KVMState *s)
1097 uint32_t *word = s->used_gsi_bitmap;
1098 int max_words = ALIGN(s->gsi_count, 32) / 32;
1102 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1103 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1104 * number can succeed even though a new route entry cannot be added.
1105 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1107 if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) {
1108 kvm_flush_dynamic_msi_routes(s);
1111 /* Return the lowest unused GSI in the bitmap */
1112 for (i = 0; i < max_words; i++) {
1113 zeroes = ctz32(~word[i]);
1118 return zeroes + i * 32;
1124 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1126 unsigned int hash = kvm_hash_msi(msg.data);
1129 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1130 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1131 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1132 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1139 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1144 if (s->direct_msi) {
1145 msi.address_lo = (uint32_t)msg.address;
1146 msi.address_hi = msg.address >> 32;
1147 msi.data = le32_to_cpu(msg.data);
1149 memset(msi.pad, 0, sizeof(msi.pad));
1151 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1154 route = kvm_lookup_msi_route(s, msg);
1158 virq = kvm_irqchip_get_virq(s);
1163 route = g_malloc0(sizeof(KVMMSIRoute));
1164 route->kroute.gsi = virq;
1165 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1166 route->kroute.flags = 0;
1167 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1168 route->kroute.u.msi.address_hi = msg.address >> 32;
1169 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1171 kvm_add_routing_entry(s, &route->kroute);
1172 kvm_irqchip_commit_routes(s);
1174 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1178 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1180 return kvm_set_irq(s, route->kroute.gsi, 1);
1183 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1185 struct kvm_irq_routing_entry kroute = {};
1188 if (kvm_gsi_direct_mapping()) {
1189 return kvm_arch_msi_data_to_gsi(msg.data);
1192 if (!kvm_gsi_routing_enabled()) {
1196 virq = kvm_irqchip_get_virq(s);
1202 kroute.type = KVM_IRQ_ROUTING_MSI;
1204 kroute.u.msi.address_lo = (uint32_t)msg.address;
1205 kroute.u.msi.address_hi = msg.address >> 32;
1206 kroute.u.msi.data = le32_to_cpu(msg.data);
1207 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1208 kvm_irqchip_release_virq(s, virq);
1212 kvm_add_routing_entry(s, &kroute);
1213 kvm_irqchip_commit_routes(s);
1218 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1220 struct kvm_irq_routing_entry kroute = {};
1222 if (kvm_gsi_direct_mapping()) {
1226 if (!kvm_irqchip_in_kernel()) {
1231 kroute.type = KVM_IRQ_ROUTING_MSI;
1233 kroute.u.msi.address_lo = (uint32_t)msg.address;
1234 kroute.u.msi.address_hi = msg.address >> 32;
1235 kroute.u.msi.data = le32_to_cpu(msg.data);
1236 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1240 return kvm_update_routing_entry(s, &kroute);
1243 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1246 struct kvm_irqfd irqfd = {
1249 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1253 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1254 irqfd.resamplefd = rfd;
1257 if (!kvm_irqfds_enabled()) {
1261 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1264 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1266 struct kvm_irq_routing_entry kroute = {};
1269 if (!kvm_gsi_routing_enabled()) {
1273 virq = kvm_irqchip_get_virq(s);
1279 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1281 kroute.u.adapter.summary_addr = adapter->summary_addr;
1282 kroute.u.adapter.ind_addr = adapter->ind_addr;
1283 kroute.u.adapter.summary_offset = adapter->summary_offset;
1284 kroute.u.adapter.ind_offset = adapter->ind_offset;
1285 kroute.u.adapter.adapter_id = adapter->adapter_id;
1287 kvm_add_routing_entry(s, &kroute);
1288 kvm_irqchip_commit_routes(s);
1293 #else /* !KVM_CAP_IRQ_ROUTING */
1295 void kvm_init_irq_routing(KVMState *s)
1299 void kvm_irqchip_release_virq(KVMState *s, int virq)
1303 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1308 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1313 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1318 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1323 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1327 #endif /* !KVM_CAP_IRQ_ROUTING */
1329 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1330 EventNotifier *rn, int virq)
1332 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1333 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1336 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1338 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1342 static int kvm_irqchip_create(MachineState *machine, KVMState *s)
1346 if (!machine_kernel_irqchip_allowed(machine) ||
1347 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1348 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1352 /* First probe and see if there's a arch-specific hook to create the
1353 * in-kernel irqchip for us */
1354 ret = kvm_arch_irqchip_create(s);
1357 } else if (ret == 0) {
1358 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1360 fprintf(stderr, "Create kernel irqchip failed\n");
1365 kvm_kernel_irqchip = true;
1366 /* If we have an in-kernel IRQ chip then we must have asynchronous
1367 * interrupt delivery (though the reverse is not necessarily true)
1369 kvm_async_interrupts_allowed = true;
1370 kvm_halt_in_kernel_allowed = true;
1372 kvm_init_irq_routing(s);
1377 /* Find number of supported CPUs using the recommended
1378 * procedure from the kernel API documentation to cope with
1379 * older kernels that may be missing capabilities.
1381 static int kvm_recommended_vcpus(KVMState *s)
1383 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1384 return (ret) ? ret : 4;
1387 static int kvm_max_vcpus(KVMState *s)
1389 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1390 return (ret) ? ret : kvm_recommended_vcpus(s);
1393 static int kvm_init(MachineState *ms)
1395 MachineClass *mc = MACHINE_GET_CLASS(ms);
1396 static const char upgrade_note[] =
1397 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1398 "(see http://sourceforge.net/projects/kvm).\n";
1403 { "SMP", smp_cpus },
1404 { "hotpluggable", max_cpus },
1407 int soft_vcpus_limit, hard_vcpus_limit;
1409 const KVMCapabilityInfo *missing_cap;
1412 const char *kvm_type;
1414 s = KVM_STATE(ms->accelerator);
1417 * On systems where the kernel can support different base page
1418 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1419 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1420 * page size for the system though.
1422 assert(TARGET_PAGE_SIZE <= getpagesize());
1427 #ifdef KVM_CAP_SET_GUEST_DEBUG
1428 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1431 s->fd = qemu_open("/dev/kvm", O_RDWR);
1433 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1438 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1439 if (ret < KVM_API_VERSION) {
1443 fprintf(stderr, "kvm version too old\n");
1447 if (ret > KVM_API_VERSION) {
1449 fprintf(stderr, "kvm version not supported\n");
1453 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1455 /* If unspecified, use the default value */
1460 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1462 for (i = 0; i < s->nr_slots; i++) {
1463 s->slots[i].slot = i;
1466 /* check the vcpu limits */
1467 soft_vcpus_limit = kvm_recommended_vcpus(s);
1468 hard_vcpus_limit = kvm_max_vcpus(s);
1471 if (nc->num > soft_vcpus_limit) {
1473 "Warning: Number of %s cpus requested (%d) exceeds "
1474 "the recommended cpus supported by KVM (%d)\n",
1475 nc->name, nc->num, soft_vcpus_limit);
1477 if (nc->num > hard_vcpus_limit) {
1478 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1479 "the maximum cpus supported by KVM (%d)\n",
1480 nc->name, nc->num, hard_vcpus_limit);
1487 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1489 type = mc->kvm_type(kvm_type);
1490 } else if (kvm_type) {
1492 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1497 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1498 } while (ret == -EINTR);
1501 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1505 if (ret == -EINVAL) {
1507 "Host kernel setup problem detected. Please verify:\n");
1508 fprintf(stderr, "- for kernels supporting the switch_amode or"
1509 " user_mode parameters, whether\n");
1511 " user space is running in primary address space\n");
1513 "- for kernels supporting the vm.allocate_pgste sysctl, "
1514 "whether it is enabled\n");
1521 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1524 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1528 fprintf(stderr, "kvm does not support %s\n%s",
1529 missing_cap->name, upgrade_note);
1533 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1535 s->broken_set_mem_region = 1;
1536 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1538 s->broken_set_mem_region = 0;
1541 #ifdef KVM_CAP_VCPU_EVENTS
1542 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1545 s->robust_singlestep =
1546 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1548 #ifdef KVM_CAP_DEBUGREGS
1549 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1552 #ifdef KVM_CAP_XSAVE
1553 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1557 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1560 #ifdef KVM_CAP_PIT_STATE2
1561 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1564 #ifdef KVM_CAP_IRQ_ROUTING
1565 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1568 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1570 s->irq_set_ioctl = KVM_IRQ_LINE;
1571 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1572 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1575 #ifdef KVM_CAP_READONLY_MEM
1576 kvm_readonly_mem_allowed =
1577 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1580 kvm_eventfds_allowed =
1581 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1583 kvm_irqfds_allowed =
1584 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1586 kvm_resamplefds_allowed =
1587 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1589 kvm_vm_attributes_allowed =
1590 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1592 ret = kvm_arch_init(ms, s);
1597 ret = kvm_irqchip_create(ms, s);
1603 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1604 memory_listener_register(&kvm_io_listener, &address_space_io);
1606 s->many_ioeventfds = kvm_check_many_ioeventfds();
1608 cpu_interrupt_handler = kvm_handle_interrupt;
1625 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1627 s->sigmask_len = sigmask_len;
1630 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1631 int size, uint32_t count)
1634 uint8_t *ptr = data;
1636 for (i = 0; i < count; i++) {
1637 address_space_rw(&address_space_io, port, attrs,
1639 direction == KVM_EXIT_IO_OUT);
1644 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1646 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1647 run->internal.suberror);
1649 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1652 for (i = 0; i < run->internal.ndata; ++i) {
1653 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1654 i, (uint64_t)run->internal.data[i]);
1657 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1658 fprintf(stderr, "emulation failure\n");
1659 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1660 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1661 return EXCP_INTERRUPT;
1664 /* FIXME: Should trigger a qmp message to let management know
1665 * something went wrong.
1670 void kvm_flush_coalesced_mmio_buffer(void)
1672 KVMState *s = kvm_state;
1674 if (s->coalesced_flush_in_progress) {
1678 s->coalesced_flush_in_progress = true;
1680 if (s->coalesced_mmio_ring) {
1681 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1682 while (ring->first != ring->last) {
1683 struct kvm_coalesced_mmio *ent;
1685 ent = &ring->coalesced_mmio[ring->first];
1687 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1689 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1693 s->coalesced_flush_in_progress = false;
1696 static void do_kvm_cpu_synchronize_state(void *arg)
1698 CPUState *cpu = arg;
1700 if (!cpu->kvm_vcpu_dirty) {
1701 kvm_arch_get_registers(cpu);
1702 cpu->kvm_vcpu_dirty = true;
1706 void kvm_cpu_synchronize_state(CPUState *cpu)
1708 if (!cpu->kvm_vcpu_dirty) {
1709 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1713 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1715 CPUState *cpu = arg;
1717 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1718 cpu->kvm_vcpu_dirty = false;
1721 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1723 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1726 static void do_kvm_cpu_synchronize_post_init(void *arg)
1728 CPUState *cpu = arg;
1730 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1731 cpu->kvm_vcpu_dirty = false;
1734 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1736 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1739 void kvm_cpu_clean_state(CPUState *cpu)
1741 cpu->kvm_vcpu_dirty = false;
1744 int kvm_cpu_exec(CPUState *cpu)
1746 struct kvm_run *run = cpu->kvm_run;
1749 DPRINTF("kvm_cpu_exec()\n");
1751 if (kvm_arch_process_async_events(cpu)) {
1752 cpu->exit_request = 0;
1756 qemu_mutex_unlock_iothread();
1761 if (cpu->kvm_vcpu_dirty) {
1762 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1763 cpu->kvm_vcpu_dirty = false;
1766 kvm_arch_pre_run(cpu, run);
1767 if (cpu->exit_request) {
1768 DPRINTF("interrupt exit requested\n");
1770 * KVM requires us to reenter the kernel after IO exits to complete
1771 * instruction emulation. This self-signal will ensure that we
1774 qemu_cpu_kick_self();
1777 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1779 attrs = kvm_arch_post_run(cpu, run);
1782 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1783 DPRINTF("io window exit\n");
1784 ret = EXCP_INTERRUPT;
1787 fprintf(stderr, "error: kvm run failed %s\n",
1788 strerror(-run_ret));
1790 if (run_ret == -EBUSY) {
1792 "This is probably because your SMT is enabled.\n"
1793 "VCPU can only run on primary threads with all "
1794 "secondary threads offline.\n");
1801 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1802 switch (run->exit_reason) {
1804 DPRINTF("handle_io\n");
1805 /* Called outside BQL */
1806 kvm_handle_io(run->io.port, attrs,
1807 (uint8_t *)run + run->io.data_offset,
1814 DPRINTF("handle_mmio\n");
1815 /* Called outside BQL */
1816 address_space_rw(&address_space_memory,
1817 run->mmio.phys_addr, attrs,
1820 run->mmio.is_write);
1823 case KVM_EXIT_IRQ_WINDOW_OPEN:
1824 DPRINTF("irq_window_open\n");
1825 ret = EXCP_INTERRUPT;
1827 case KVM_EXIT_SHUTDOWN:
1828 DPRINTF("shutdown\n");
1829 qemu_system_reset_request();
1830 ret = EXCP_INTERRUPT;
1832 case KVM_EXIT_UNKNOWN:
1833 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1834 (uint64_t)run->hw.hardware_exit_reason);
1837 case KVM_EXIT_INTERNAL_ERROR:
1838 ret = kvm_handle_internal_error(cpu, run);
1840 case KVM_EXIT_SYSTEM_EVENT:
1841 switch (run->system_event.type) {
1842 case KVM_SYSTEM_EVENT_SHUTDOWN:
1843 qemu_system_shutdown_request();
1844 ret = EXCP_INTERRUPT;
1846 case KVM_SYSTEM_EVENT_RESET:
1847 qemu_system_reset_request();
1848 ret = EXCP_INTERRUPT;
1851 DPRINTF("kvm_arch_handle_exit\n");
1852 ret = kvm_arch_handle_exit(cpu, run);
1857 DPRINTF("kvm_arch_handle_exit\n");
1858 ret = kvm_arch_handle_exit(cpu, run);
1863 qemu_mutex_lock_iothread();
1866 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1867 vm_stop(RUN_STATE_INTERNAL_ERROR);
1870 cpu->exit_request = 0;
1874 int kvm_ioctl(KVMState *s, int type, ...)
1881 arg = va_arg(ap, void *);
1884 trace_kvm_ioctl(type, arg);
1885 ret = ioctl(s->fd, type, arg);
1892 int kvm_vm_ioctl(KVMState *s, int type, ...)
1899 arg = va_arg(ap, void *);
1902 trace_kvm_vm_ioctl(type, arg);
1903 ret = ioctl(s->vmfd, type, arg);
1910 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1917 arg = va_arg(ap, void *);
1920 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1921 ret = ioctl(cpu->kvm_fd, type, arg);
1928 int kvm_device_ioctl(int fd, int type, ...)
1935 arg = va_arg(ap, void *);
1938 trace_kvm_device_ioctl(fd, type, arg);
1939 ret = ioctl(fd, type, arg);
1946 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1949 struct kvm_device_attr attribute = {
1954 if (!kvm_vm_attributes_allowed) {
1958 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1959 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1963 int kvm_has_sync_mmu(void)
1965 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1968 int kvm_has_vcpu_events(void)
1970 return kvm_state->vcpu_events;
1973 int kvm_has_robust_singlestep(void)
1975 return kvm_state->robust_singlestep;
1978 int kvm_has_debugregs(void)
1980 return kvm_state->debugregs;
1983 int kvm_has_xsave(void)
1985 return kvm_state->xsave;
1988 int kvm_has_xcrs(void)
1990 return kvm_state->xcrs;
1993 int kvm_has_pit_state2(void)
1995 return kvm_state->pit_state2;
1998 int kvm_has_many_ioeventfds(void)
2000 if (!kvm_enabled()) {
2003 return kvm_state->many_ioeventfds;
2006 int kvm_has_gsi_routing(void)
2008 #ifdef KVM_CAP_IRQ_ROUTING
2009 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2015 int kvm_has_intx_set_mask(void)
2017 return kvm_state->intx_set_mask;
2020 void kvm_setup_guest_memory(void *start, size_t size)
2022 if (!kvm_has_sync_mmu()) {
2023 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2026 perror("qemu_madvise");
2028 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2034 #ifdef KVM_CAP_SET_GUEST_DEBUG
2035 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2038 struct kvm_sw_breakpoint *bp;
2040 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2048 int kvm_sw_breakpoints_active(CPUState *cpu)
2050 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2053 struct kvm_set_guest_debug_data {
2054 struct kvm_guest_debug dbg;
2059 static void kvm_invoke_set_guest_debug(void *data)
2061 struct kvm_set_guest_debug_data *dbg_data = data;
2063 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2067 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2069 struct kvm_set_guest_debug_data data;
2071 data.dbg.control = reinject_trap;
2073 if (cpu->singlestep_enabled) {
2074 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2076 kvm_arch_update_guest_debug(cpu, &data.dbg);
2079 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2083 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2084 target_ulong len, int type)
2086 struct kvm_sw_breakpoint *bp;
2089 if (type == GDB_BREAKPOINT_SW) {
2090 bp = kvm_find_sw_breakpoint(cpu, addr);
2096 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2099 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2105 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2107 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2114 err = kvm_update_guest_debug(cpu, 0);
2122 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2123 target_ulong len, int type)
2125 struct kvm_sw_breakpoint *bp;
2128 if (type == GDB_BREAKPOINT_SW) {
2129 bp = kvm_find_sw_breakpoint(cpu, addr);
2134 if (bp->use_count > 1) {
2139 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2144 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2147 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2154 err = kvm_update_guest_debug(cpu, 0);
2162 void kvm_remove_all_breakpoints(CPUState *cpu)
2164 struct kvm_sw_breakpoint *bp, *next;
2165 KVMState *s = cpu->kvm_state;
2168 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2169 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2170 /* Try harder to find a CPU that currently sees the breakpoint. */
2171 CPU_FOREACH(tmpcpu) {
2172 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2177 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2180 kvm_arch_remove_all_hw_breakpoints();
2183 kvm_update_guest_debug(cpu, 0);
2187 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2189 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2194 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2195 target_ulong len, int type)
2200 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2201 target_ulong len, int type)
2206 void kvm_remove_all_breakpoints(CPUState *cpu)
2209 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2211 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2213 KVMState *s = kvm_state;
2214 struct kvm_signal_mask *sigmask;
2218 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2221 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2223 sigmask->len = s->sigmask_len;
2224 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2225 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2230 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2232 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2235 int kvm_on_sigbus(int code, void *addr)
2237 return kvm_arch_on_sigbus(code, addr);
2240 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2243 struct kvm_create_device create_dev;
2245 create_dev.type = type;
2247 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2249 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2253 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2258 return test ? 0 : create_dev.fd;
2261 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2263 struct kvm_one_reg reg;
2267 reg.addr = (uintptr_t) source;
2268 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
2270 trace_kvm_failed_reg_set(id, strerror(r));
2275 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2277 struct kvm_one_reg reg;
2281 reg.addr = (uintptr_t) target;
2282 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
2284 trace_kvm_failed_reg_get(id, strerror(r));
2289 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2291 AccelClass *ac = ACCEL_CLASS(oc);
2293 ac->init_machine = kvm_init;
2294 ac->allowed = &kvm_allowed;
2297 static const TypeInfo kvm_accel_type = {
2298 .name = TYPE_KVM_ACCEL,
2299 .parent = TYPE_ACCEL,
2300 .class_init = kvm_accel_class_init,
2301 .instance_size = sizeof(KVMState),
2304 static void kvm_type_init(void)
2306 type_register_static(&kvm_accel_type);
2309 type_init(kvm_type_init);