4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "qemu/error-report.h"
29 #include "hw/pci/msi.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
65 AccelState parent_obj;
71 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
72 bool coalesced_flush_in_progress;
73 int broken_set_mem_region;
75 int robust_singlestep;
77 #ifdef KVM_CAP_SET_GUEST_DEBUG
78 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
82 /* The man page (and posix) say ioctl numbers are signed int, but
83 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
84 * unsigned, and treating them as signed here can break things */
85 unsigned irq_set_ioctl;
86 unsigned int sigmask_len;
88 #ifdef KVM_CAP_IRQ_ROUTING
89 struct kvm_irq_routing *irq_routes;
90 int nr_allocated_irq_routes;
91 uint32_t *used_gsi_bitmap;
92 unsigned int gsi_count;
93 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
95 KVMMemoryListener memory_listener;
99 bool kvm_kernel_irqchip;
100 bool kvm_async_interrupts_allowed;
101 bool kvm_halt_in_kernel_allowed;
102 bool kvm_eventfds_allowed;
103 bool kvm_irqfds_allowed;
104 bool kvm_resamplefds_allowed;
105 bool kvm_msi_via_irqfd_allowed;
106 bool kvm_gsi_routing_allowed;
107 bool kvm_gsi_direct_mapping;
109 bool kvm_readonly_mem_allowed;
110 bool kvm_vm_attributes_allowed;
111 bool kvm_direct_msi_allowed;
113 static const KVMCapabilityInfo kvm_required_capabilites[] = {
114 KVM_CAP_INFO(USER_MEMORY),
115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
119 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
121 KVMState *s = kvm_state;
124 for (i = 0; i < s->nr_slots; i++) {
125 if (kml->slots[i].memory_size == 0) {
126 return &kml->slots[i];
133 bool kvm_has_free_slot(MachineState *ms)
135 KVMState *s = KVM_STATE(ms->accelerator);
137 return kvm_get_free_slot(&s->memory_listener);
140 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
142 KVMSlot *slot = kvm_get_free_slot(kml);
148 fprintf(stderr, "%s: no free slot available\n", __func__);
152 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
156 KVMState *s = kvm_state;
159 for (i = 0; i < s->nr_slots; i++) {
160 KVMSlot *mem = &kml->slots[i];
162 if (start_addr == mem->start_addr &&
163 end_addr == mem->start_addr + mem->memory_size) {
172 * Find overlapping slot with lowest start address
174 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
178 KVMState *s = kvm_state;
179 KVMSlot *found = NULL;
182 for (i = 0; i < s->nr_slots; i++) {
183 KVMSlot *mem = &kml->slots[i];
185 if (mem->memory_size == 0 ||
186 (found && found->start_addr < mem->start_addr)) {
190 if (end_addr > mem->start_addr &&
191 start_addr < mem->start_addr + mem->memory_size) {
199 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
202 KVMMemoryListener *kml = &s->memory_listener;
205 for (i = 0; i < s->nr_slots; i++) {
206 KVMSlot *mem = &kml->slots[i];
208 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
209 *phys_addr = mem->start_addr + (ram - mem->ram);
217 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
219 KVMState *s = kvm_state;
220 struct kvm_userspace_memory_region mem;
222 mem.slot = slot->slot | (kml->as_id << 16);
223 mem.guest_phys_addr = slot->start_addr;
224 mem.userspace_addr = (unsigned long)slot->ram;
225 mem.flags = slot->flags;
227 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
228 /* Set the slot size to 0 before setting the slot to the desired
229 * value. This is needed based on KVM commit 75d61fbc. */
231 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
233 mem.memory_size = slot->memory_size;
234 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
237 int kvm_init_vcpu(CPUState *cpu)
239 KVMState *s = kvm_state;
243 DPRINTF("kvm_init_vcpu\n");
245 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
247 DPRINTF("kvm_create_vcpu failed\n");
253 cpu->kvm_vcpu_dirty = true;
255 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
258 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
262 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
264 if (cpu->kvm_run == MAP_FAILED) {
266 DPRINTF("mmap'ing vcpu state failed\n");
270 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
271 s->coalesced_mmio_ring =
272 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
275 ret = kvm_arch_init_vcpu(cpu);
281 * dirty pages logging control
284 static int kvm_mem_flags(MemoryRegion *mr)
286 bool readonly = mr->readonly || memory_region_is_romd(mr);
289 if (memory_region_get_dirty_log_mask(mr) != 0) {
290 flags |= KVM_MEM_LOG_DIRTY_PAGES;
292 if (readonly && kvm_readonly_mem_allowed) {
293 flags |= KVM_MEM_READONLY;
298 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
303 old_flags = mem->flags;
304 mem->flags = kvm_mem_flags(mr);
306 /* If nothing changed effectively, no need to issue ioctl */
307 if (mem->flags == old_flags) {
311 return kvm_set_user_memory_region(kml, mem);
314 static int kvm_section_update_flags(KVMMemoryListener *kml,
315 MemoryRegionSection *section)
317 hwaddr phys_addr = section->offset_within_address_space;
318 ram_addr_t size = int128_get64(section->size);
319 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
324 return kvm_slot_update_flags(kml, mem, section->mr);
328 static void kvm_log_start(MemoryListener *listener,
329 MemoryRegionSection *section,
332 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
339 r = kvm_section_update_flags(kml, section);
345 static void kvm_log_stop(MemoryListener *listener,
346 MemoryRegionSection *section,
349 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
356 r = kvm_section_update_flags(kml, section);
362 /* get kvm's dirty pages bitmap and update qemu's */
363 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
364 unsigned long *bitmap)
366 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
367 ram_addr_t pages = int128_get64(section->size) / getpagesize();
369 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
373 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
376 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
377 * This function updates qemu's dirty bitmap using
378 * memory_region_set_dirty(). This means all bits are set
381 * @start_add: start of logged region.
382 * @end_addr: end of logged region.
384 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
385 MemoryRegionSection *section)
387 KVMState *s = kvm_state;
388 unsigned long size, allocated_size = 0;
389 struct kvm_dirty_log d = {};
392 hwaddr start_addr = section->offset_within_address_space;
393 hwaddr end_addr = start_addr + int128_get64(section->size);
395 d.dirty_bitmap = NULL;
396 while (start_addr < end_addr) {
397 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
402 /* XXX bad kernel interface alert
403 * For dirty bitmap, kernel allocates array of size aligned to
404 * bits-per-long. But for case when the kernel is 64bits and
405 * the userspace is 32bits, userspace can't align to the same
406 * bits-per-long, since sizeof(long) is different between kernel
407 * and user space. This way, userspace will provide buffer which
408 * may be 4 bytes less than the kernel will use, resulting in
409 * userspace memory corruption (which is not detectable by valgrind
410 * too, in most cases).
411 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
412 * a hope that sizeof(long) wont become >8 any time soon.
414 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
415 /*HOST_LONG_BITS*/ 64) / 8;
416 if (!d.dirty_bitmap) {
417 d.dirty_bitmap = g_malloc(size);
418 } else if (size > allocated_size) {
419 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
421 allocated_size = size;
422 memset(d.dirty_bitmap, 0, allocated_size);
424 d.slot = mem->slot | (kml->as_id << 16);
425 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
426 DPRINTF("ioctl failed %d\n", errno);
431 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
432 start_addr = mem->start_addr + mem->memory_size;
434 g_free(d.dirty_bitmap);
439 static void kvm_coalesce_mmio_region(MemoryListener *listener,
440 MemoryRegionSection *secion,
441 hwaddr start, hwaddr size)
443 KVMState *s = kvm_state;
445 if (s->coalesced_mmio) {
446 struct kvm_coalesced_mmio_zone zone;
452 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
456 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
457 MemoryRegionSection *secion,
458 hwaddr start, hwaddr size)
460 KVMState *s = kvm_state;
462 if (s->coalesced_mmio) {
463 struct kvm_coalesced_mmio_zone zone;
469 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
473 int kvm_check_extension(KVMState *s, unsigned int extension)
477 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
485 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
489 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
491 /* VM wide version not implemented, use global one instead */
492 ret = kvm_check_extension(s, extension);
498 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
500 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
501 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
502 * endianness, but the memory core hands them in target endianness.
503 * For example, PPC is always treated as big-endian even if running
504 * on KVM and on PPC64LE. Correct here.
518 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
519 bool assign, uint32_t size, bool datamatch)
522 struct kvm_ioeventfd iofd = {
523 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
530 if (!kvm_enabled()) {
535 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
538 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
541 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
550 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
551 bool assign, uint32_t size, bool datamatch)
553 struct kvm_ioeventfd kick = {
554 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
556 .flags = KVM_IOEVENTFD_FLAG_PIO,
561 if (!kvm_enabled()) {
565 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
568 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
570 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
578 static int kvm_check_many_ioeventfds(void)
580 /* Userspace can use ioeventfd for io notification. This requires a host
581 * that supports eventfd(2) and an I/O thread; since eventfd does not
582 * support SIGIO it cannot interrupt the vcpu.
584 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
585 * can avoid creating too many ioeventfds.
587 #if defined(CONFIG_EVENTFD)
590 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
591 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
592 if (ioeventfds[i] < 0) {
595 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
597 close(ioeventfds[i]);
602 /* Decide whether many devices are supported or not */
603 ret = i == ARRAY_SIZE(ioeventfds);
606 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
607 close(ioeventfds[i]);
615 static const KVMCapabilityInfo *
616 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
619 if (!kvm_check_extension(s, list->value)) {
627 static void kvm_set_phys_mem(KVMMemoryListener *kml,
628 MemoryRegionSection *section, bool add)
630 KVMState *s = kvm_state;
633 MemoryRegion *mr = section->mr;
634 bool writeable = !mr->readonly && !mr->rom_device;
635 hwaddr start_addr = section->offset_within_address_space;
636 ram_addr_t size = int128_get64(section->size);
640 /* kvm works in page size chunks, but the function may be called
641 with sub-page size and unaligned start address. Pad the start
642 address to next and truncate size to previous page boundary. */
643 delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
644 delta &= ~qemu_real_host_page_mask;
650 size &= qemu_real_host_page_mask;
651 if (!size || (start_addr & ~qemu_real_host_page_mask)) {
655 if (!memory_region_is_ram(mr)) {
656 if (writeable || !kvm_readonly_mem_allowed) {
658 } else if (!mr->romd_mode) {
659 /* If the memory device is not in romd_mode, then we actually want
660 * to remove the kvm memory slot so all accesses will trap. */
665 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
668 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
673 if (add && start_addr >= mem->start_addr &&
674 (start_addr + size <= mem->start_addr + mem->memory_size) &&
675 (ram - start_addr == mem->ram - mem->start_addr)) {
676 /* The new slot fits into the existing one and comes with
677 * identical parameters - update flags and done. */
678 kvm_slot_update_flags(kml, mem, mr);
684 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
685 kvm_physical_sync_dirty_bitmap(kml, section);
688 /* unregister the overlapping slot */
689 mem->memory_size = 0;
690 err = kvm_set_user_memory_region(kml, mem);
692 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
693 __func__, strerror(-err));
697 /* Workaround for older KVM versions: we can't join slots, even not by
698 * unregistering the previous ones and then registering the larger
699 * slot. We have to maintain the existing fragmentation. Sigh.
701 * This workaround assumes that the new slot starts at the same
702 * address as the first existing one. If not or if some overlapping
703 * slot comes around later, we will fail (not seen in practice so far)
704 * - and actually require a recent KVM version. */
705 if (s->broken_set_mem_region &&
706 old.start_addr == start_addr && old.memory_size < size && add) {
707 mem = kvm_alloc_slot(kml);
708 mem->memory_size = old.memory_size;
709 mem->start_addr = old.start_addr;
711 mem->flags = kvm_mem_flags(mr);
713 err = kvm_set_user_memory_region(kml, mem);
715 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
720 start_addr += old.memory_size;
721 ram += old.memory_size;
722 size -= old.memory_size;
726 /* register prefix slot */
727 if (old.start_addr < start_addr) {
728 mem = kvm_alloc_slot(kml);
729 mem->memory_size = start_addr - old.start_addr;
730 mem->start_addr = old.start_addr;
732 mem->flags = kvm_mem_flags(mr);
734 err = kvm_set_user_memory_region(kml, mem);
736 fprintf(stderr, "%s: error registering prefix slot: %s\n",
737 __func__, strerror(-err));
739 fprintf(stderr, "%s: This is probably because your kernel's " \
740 "PAGE_SIZE is too big. Please try to use 4k " \
741 "PAGE_SIZE!\n", __func__);
747 /* register suffix slot */
748 if (old.start_addr + old.memory_size > start_addr + size) {
749 ram_addr_t size_delta;
751 mem = kvm_alloc_slot(kml);
752 mem->start_addr = start_addr + size;
753 size_delta = mem->start_addr - old.start_addr;
754 mem->memory_size = old.memory_size - size_delta;
755 mem->ram = old.ram + size_delta;
756 mem->flags = kvm_mem_flags(mr);
758 err = kvm_set_user_memory_region(kml, mem);
760 fprintf(stderr, "%s: error registering suffix slot: %s\n",
761 __func__, strerror(-err));
767 /* in case the KVM bug workaround already "consumed" the new slot */
774 mem = kvm_alloc_slot(kml);
775 mem->memory_size = size;
776 mem->start_addr = start_addr;
778 mem->flags = kvm_mem_flags(mr);
780 err = kvm_set_user_memory_region(kml, mem);
782 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
788 static void kvm_region_add(MemoryListener *listener,
789 MemoryRegionSection *section)
791 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
793 memory_region_ref(section->mr);
794 kvm_set_phys_mem(kml, section, true);
797 static void kvm_region_del(MemoryListener *listener,
798 MemoryRegionSection *section)
800 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
802 kvm_set_phys_mem(kml, section, false);
803 memory_region_unref(section->mr);
806 static void kvm_log_sync(MemoryListener *listener,
807 MemoryRegionSection *section)
809 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
812 r = kvm_physical_sync_dirty_bitmap(kml, section);
818 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
819 MemoryRegionSection *section,
820 bool match_data, uint64_t data,
823 int fd = event_notifier_get_fd(e);
826 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
827 data, true, int128_get64(section->size),
830 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
831 __func__, strerror(-r));
836 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
837 MemoryRegionSection *section,
838 bool match_data, uint64_t data,
841 int fd = event_notifier_get_fd(e);
844 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
845 data, false, int128_get64(section->size),
852 static void kvm_io_ioeventfd_add(MemoryListener *listener,
853 MemoryRegionSection *section,
854 bool match_data, uint64_t data,
857 int fd = event_notifier_get_fd(e);
860 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
861 data, true, int128_get64(section->size),
864 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
865 __func__, strerror(-r));
870 static void kvm_io_ioeventfd_del(MemoryListener *listener,
871 MemoryRegionSection *section,
872 bool match_data, uint64_t data,
876 int fd = event_notifier_get_fd(e);
879 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
880 data, false, int128_get64(section->size),
887 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
888 AddressSpace *as, int as_id)
892 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
895 for (i = 0; i < s->nr_slots; i++) {
896 kml->slots[i].slot = i;
899 kml->listener.region_add = kvm_region_add;
900 kml->listener.region_del = kvm_region_del;
901 kml->listener.log_start = kvm_log_start;
902 kml->listener.log_stop = kvm_log_stop;
903 kml->listener.log_sync = kvm_log_sync;
904 kml->listener.priority = 10;
906 memory_listener_register(&kml->listener, as);
909 static MemoryListener kvm_io_listener = {
910 .eventfd_add = kvm_io_ioeventfd_add,
911 .eventfd_del = kvm_io_ioeventfd_del,
915 static void kvm_handle_interrupt(CPUState *cpu, int mask)
917 cpu->interrupt_request |= mask;
919 if (!qemu_cpu_is_self(cpu)) {
924 int kvm_set_irq(KVMState *s, int irq, int level)
926 struct kvm_irq_level event;
929 assert(kvm_async_interrupts_enabled());
933 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
935 perror("kvm_set_irq");
939 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
942 #ifdef KVM_CAP_IRQ_ROUTING
943 typedef struct KVMMSIRoute {
944 struct kvm_irq_routing_entry kroute;
945 QTAILQ_ENTRY(KVMMSIRoute) entry;
948 static void set_gsi(KVMState *s, unsigned int gsi)
950 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
953 static void clear_gsi(KVMState *s, unsigned int gsi)
955 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
958 void kvm_init_irq_routing(KVMState *s)
962 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
964 unsigned int gsi_bits, i;
966 /* Round up so we can search ints using ffs */
967 gsi_bits = ALIGN(gsi_count, 32);
968 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
969 s->gsi_count = gsi_count;
971 /* Mark any over-allocated bits as already in use */
972 for (i = gsi_count; i < gsi_bits; i++) {
977 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
978 s->nr_allocated_irq_routes = 0;
980 if (!kvm_direct_msi_allowed) {
981 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
982 QTAILQ_INIT(&s->msi_hashtab[i]);
986 kvm_arch_init_irq_routing(s);
989 void kvm_irqchip_commit_routes(KVMState *s)
993 s->irq_routes->flags = 0;
994 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
998 static void kvm_add_routing_entry(KVMState *s,
999 struct kvm_irq_routing_entry *entry)
1001 struct kvm_irq_routing_entry *new;
1004 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1005 n = s->nr_allocated_irq_routes * 2;
1009 size = sizeof(struct kvm_irq_routing);
1010 size += n * sizeof(*new);
1011 s->irq_routes = g_realloc(s->irq_routes, size);
1012 s->nr_allocated_irq_routes = n;
1014 n = s->irq_routes->nr++;
1015 new = &s->irq_routes->entries[n];
1019 set_gsi(s, entry->gsi);
1022 static int kvm_update_routing_entry(KVMState *s,
1023 struct kvm_irq_routing_entry *new_entry)
1025 struct kvm_irq_routing_entry *entry;
1028 for (n = 0; n < s->irq_routes->nr; n++) {
1029 entry = &s->irq_routes->entries[n];
1030 if (entry->gsi != new_entry->gsi) {
1034 if(!memcmp(entry, new_entry, sizeof *entry)) {
1038 *entry = *new_entry;
1040 kvm_irqchip_commit_routes(s);
1048 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1050 struct kvm_irq_routing_entry e = {};
1052 assert(pin < s->gsi_count);
1055 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1057 e.u.irqchip.irqchip = irqchip;
1058 e.u.irqchip.pin = pin;
1059 kvm_add_routing_entry(s, &e);
1062 void kvm_irqchip_release_virq(KVMState *s, int virq)
1064 struct kvm_irq_routing_entry *e;
1067 if (kvm_gsi_direct_mapping()) {
1071 for (i = 0; i < s->irq_routes->nr; i++) {
1072 e = &s->irq_routes->entries[i];
1073 if (e->gsi == virq) {
1074 s->irq_routes->nr--;
1075 *e = s->irq_routes->entries[s->irq_routes->nr];
1081 static unsigned int kvm_hash_msi(uint32_t data)
1083 /* This is optimized for IA32 MSI layout. However, no other arch shall
1084 * repeat the mistake of not providing a direct MSI injection API. */
1088 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1090 KVMMSIRoute *route, *next;
1093 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1094 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1095 kvm_irqchip_release_virq(s, route->kroute.gsi);
1096 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1102 static int kvm_irqchip_get_virq(KVMState *s)
1104 uint32_t *word = s->used_gsi_bitmap;
1105 int max_words = ALIGN(s->gsi_count, 32) / 32;
1109 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1110 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1111 * number can succeed even though a new route entry cannot be added.
1112 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1114 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1115 kvm_flush_dynamic_msi_routes(s);
1118 /* Return the lowest unused GSI in the bitmap */
1119 for (i = 0; i < max_words; i++) {
1120 zeroes = ctz32(~word[i]);
1125 return zeroes + i * 32;
1131 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1133 unsigned int hash = kvm_hash_msi(msg.data);
1136 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1137 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1138 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1139 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1146 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1151 if (kvm_direct_msi_allowed) {
1152 msi.address_lo = (uint32_t)msg.address;
1153 msi.address_hi = msg.address >> 32;
1154 msi.data = le32_to_cpu(msg.data);
1156 memset(msi.pad, 0, sizeof(msi.pad));
1158 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1161 route = kvm_lookup_msi_route(s, msg);
1165 virq = kvm_irqchip_get_virq(s);
1170 route = g_malloc0(sizeof(KVMMSIRoute));
1171 route->kroute.gsi = virq;
1172 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1173 route->kroute.flags = 0;
1174 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1175 route->kroute.u.msi.address_hi = msg.address >> 32;
1176 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1178 kvm_add_routing_entry(s, &route->kroute);
1179 kvm_irqchip_commit_routes(s);
1181 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1185 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1187 return kvm_set_irq(s, route->kroute.gsi, 1);
1190 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg, PCIDevice *dev)
1192 struct kvm_irq_routing_entry kroute = {};
1195 if (kvm_gsi_direct_mapping()) {
1196 return kvm_arch_msi_data_to_gsi(msg.data);
1199 if (!kvm_gsi_routing_enabled()) {
1203 virq = kvm_irqchip_get_virq(s);
1209 kroute.type = KVM_IRQ_ROUTING_MSI;
1211 kroute.u.msi.address_lo = (uint32_t)msg.address;
1212 kroute.u.msi.address_hi = msg.address >> 32;
1213 kroute.u.msi.data = le32_to_cpu(msg.data);
1214 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1215 kvm_irqchip_release_virq(s, virq);
1219 kvm_add_routing_entry(s, &kroute);
1220 kvm_irqchip_commit_routes(s);
1225 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1228 struct kvm_irq_routing_entry kroute = {};
1230 if (kvm_gsi_direct_mapping()) {
1234 if (!kvm_irqchip_in_kernel()) {
1239 kroute.type = KVM_IRQ_ROUTING_MSI;
1241 kroute.u.msi.address_lo = (uint32_t)msg.address;
1242 kroute.u.msi.address_hi = msg.address >> 32;
1243 kroute.u.msi.data = le32_to_cpu(msg.data);
1244 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1248 return kvm_update_routing_entry(s, &kroute);
1251 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1254 struct kvm_irqfd irqfd = {
1257 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1261 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1262 irqfd.resamplefd = rfd;
1265 if (!kvm_irqfds_enabled()) {
1269 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1272 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1274 struct kvm_irq_routing_entry kroute = {};
1277 if (!kvm_gsi_routing_enabled()) {
1281 virq = kvm_irqchip_get_virq(s);
1287 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1289 kroute.u.adapter.summary_addr = adapter->summary_addr;
1290 kroute.u.adapter.ind_addr = adapter->ind_addr;
1291 kroute.u.adapter.summary_offset = adapter->summary_offset;
1292 kroute.u.adapter.ind_offset = adapter->ind_offset;
1293 kroute.u.adapter.adapter_id = adapter->adapter_id;
1295 kvm_add_routing_entry(s, &kroute);
1300 #else /* !KVM_CAP_IRQ_ROUTING */
1302 void kvm_init_irq_routing(KVMState *s)
1306 void kvm_irqchip_release_virq(KVMState *s, int virq)
1310 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1315 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1320 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1325 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1330 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1334 #endif /* !KVM_CAP_IRQ_ROUTING */
1336 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1337 EventNotifier *rn, int virq)
1339 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1340 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1343 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1346 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1350 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1351 EventNotifier *rn, qemu_irq irq)
1354 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1359 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1362 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1366 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1371 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1374 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1376 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1379 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1383 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1385 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1386 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1388 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1395 /* First probe and see if there's a arch-specific hook to create the
1396 * in-kernel irqchip for us */
1397 ret = kvm_arch_irqchip_create(s);
1399 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1402 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1406 kvm_kernel_irqchip = true;
1407 /* If we have an in-kernel IRQ chip then we must have asynchronous
1408 * interrupt delivery (though the reverse is not necessarily true)
1410 kvm_async_interrupts_allowed = true;
1411 kvm_halt_in_kernel_allowed = true;
1413 kvm_init_irq_routing(s);
1415 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1418 /* Find number of supported CPUs using the recommended
1419 * procedure from the kernel API documentation to cope with
1420 * older kernels that may be missing capabilities.
1422 static int kvm_recommended_vcpus(KVMState *s)
1424 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1425 return (ret) ? ret : 4;
1428 static int kvm_max_vcpus(KVMState *s)
1430 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1431 return (ret) ? ret : kvm_recommended_vcpus(s);
1434 static int kvm_init(MachineState *ms)
1436 MachineClass *mc = MACHINE_GET_CLASS(ms);
1437 static const char upgrade_note[] =
1438 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1439 "(see http://sourceforge.net/projects/kvm).\n";
1444 { "SMP", smp_cpus },
1445 { "hotpluggable", max_cpus },
1448 int soft_vcpus_limit, hard_vcpus_limit;
1450 const KVMCapabilityInfo *missing_cap;
1453 const char *kvm_type;
1455 s = KVM_STATE(ms->accelerator);
1458 * On systems where the kernel can support different base page
1459 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1460 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1461 * page size for the system though.
1463 assert(TARGET_PAGE_SIZE <= getpagesize());
1468 #ifdef KVM_CAP_SET_GUEST_DEBUG
1469 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1472 s->fd = qemu_open("/dev/kvm", O_RDWR);
1474 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1479 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1480 if (ret < KVM_API_VERSION) {
1484 fprintf(stderr, "kvm version too old\n");
1488 if (ret > KVM_API_VERSION) {
1490 fprintf(stderr, "kvm version not supported\n");
1494 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1496 /* If unspecified, use the default value */
1501 /* check the vcpu limits */
1502 soft_vcpus_limit = kvm_recommended_vcpus(s);
1503 hard_vcpus_limit = kvm_max_vcpus(s);
1506 if (nc->num > soft_vcpus_limit) {
1508 "Warning: Number of %s cpus requested (%d) exceeds "
1509 "the recommended cpus supported by KVM (%d)\n",
1510 nc->name, nc->num, soft_vcpus_limit);
1512 if (nc->num > hard_vcpus_limit) {
1513 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1514 "the maximum cpus supported by KVM (%d)\n",
1515 nc->name, nc->num, hard_vcpus_limit);
1522 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1524 type = mc->kvm_type(kvm_type);
1525 } else if (kvm_type) {
1527 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1532 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1533 } while (ret == -EINTR);
1536 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1540 if (ret == -EINVAL) {
1542 "Host kernel setup problem detected. Please verify:\n");
1543 fprintf(stderr, "- for kernels supporting the switch_amode or"
1544 " user_mode parameters, whether\n");
1546 " user space is running in primary address space\n");
1548 "- for kernels supporting the vm.allocate_pgste sysctl, "
1549 "whether it is enabled\n");
1556 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1559 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1563 fprintf(stderr, "kvm does not support %s\n%s",
1564 missing_cap->name, upgrade_note);
1568 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1570 s->broken_set_mem_region = 1;
1571 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1573 s->broken_set_mem_region = 0;
1576 #ifdef KVM_CAP_VCPU_EVENTS
1577 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1580 s->robust_singlestep =
1581 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1583 #ifdef KVM_CAP_DEBUGREGS
1584 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1587 #ifdef KVM_CAP_IRQ_ROUTING
1588 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1591 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1593 s->irq_set_ioctl = KVM_IRQ_LINE;
1594 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1595 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1598 #ifdef KVM_CAP_READONLY_MEM
1599 kvm_readonly_mem_allowed =
1600 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1603 kvm_eventfds_allowed =
1604 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1606 kvm_irqfds_allowed =
1607 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1609 kvm_resamplefds_allowed =
1610 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1612 kvm_vm_attributes_allowed =
1613 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1615 ret = kvm_arch_init(ms, s);
1620 if (machine_kernel_irqchip_allowed(ms)) {
1621 kvm_irqchip_create(ms, s);
1626 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1627 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1628 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1629 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1631 kvm_memory_listener_register(s, &s->memory_listener,
1632 &address_space_memory, 0);
1633 memory_listener_register(&kvm_io_listener,
1636 s->many_ioeventfds = kvm_check_many_ioeventfds();
1638 cpu_interrupt_handler = kvm_handle_interrupt;
1650 g_free(s->memory_listener.slots);
1655 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1657 s->sigmask_len = sigmask_len;
1660 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1661 int size, uint32_t count)
1664 uint8_t *ptr = data;
1666 for (i = 0; i < count; i++) {
1667 address_space_rw(&address_space_io, port, attrs,
1669 direction == KVM_EXIT_IO_OUT);
1674 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1676 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1677 run->internal.suberror);
1679 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1682 for (i = 0; i < run->internal.ndata; ++i) {
1683 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1684 i, (uint64_t)run->internal.data[i]);
1687 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1688 fprintf(stderr, "emulation failure\n");
1689 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1690 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1691 return EXCP_INTERRUPT;
1694 /* FIXME: Should trigger a qmp message to let management know
1695 * something went wrong.
1700 void kvm_flush_coalesced_mmio_buffer(void)
1702 KVMState *s = kvm_state;
1704 if (s->coalesced_flush_in_progress) {
1708 s->coalesced_flush_in_progress = true;
1710 if (s->coalesced_mmio_ring) {
1711 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1712 while (ring->first != ring->last) {
1713 struct kvm_coalesced_mmio *ent;
1715 ent = &ring->coalesced_mmio[ring->first];
1717 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1719 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1723 s->coalesced_flush_in_progress = false;
1726 static void do_kvm_cpu_synchronize_state(void *arg)
1728 CPUState *cpu = arg;
1730 if (!cpu->kvm_vcpu_dirty) {
1731 kvm_arch_get_registers(cpu);
1732 cpu->kvm_vcpu_dirty = true;
1736 void kvm_cpu_synchronize_state(CPUState *cpu)
1738 if (!cpu->kvm_vcpu_dirty) {
1739 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1743 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1745 CPUState *cpu = arg;
1747 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1748 cpu->kvm_vcpu_dirty = false;
1751 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1753 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1756 static void do_kvm_cpu_synchronize_post_init(void *arg)
1758 CPUState *cpu = arg;
1760 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1761 cpu->kvm_vcpu_dirty = false;
1764 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1766 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1769 int kvm_cpu_exec(CPUState *cpu)
1771 struct kvm_run *run = cpu->kvm_run;
1774 DPRINTF("kvm_cpu_exec()\n");
1776 if (kvm_arch_process_async_events(cpu)) {
1777 cpu->exit_request = 0;
1781 qemu_mutex_unlock_iothread();
1786 if (cpu->kvm_vcpu_dirty) {
1787 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1788 cpu->kvm_vcpu_dirty = false;
1791 kvm_arch_pre_run(cpu, run);
1792 if (cpu->exit_request) {
1793 DPRINTF("interrupt exit requested\n");
1795 * KVM requires us to reenter the kernel after IO exits to complete
1796 * instruction emulation. This self-signal will ensure that we
1799 qemu_cpu_kick_self();
1802 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1804 attrs = kvm_arch_post_run(cpu, run);
1807 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1808 DPRINTF("io window exit\n");
1809 ret = EXCP_INTERRUPT;
1812 fprintf(stderr, "error: kvm run failed %s\n",
1813 strerror(-run_ret));
1815 if (run_ret == -EBUSY) {
1817 "This is probably because your SMT is enabled.\n"
1818 "VCPU can only run on primary threads with all "
1819 "secondary threads offline.\n");
1826 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1827 switch (run->exit_reason) {
1829 DPRINTF("handle_io\n");
1830 /* Called outside BQL */
1831 kvm_handle_io(run->io.port, attrs,
1832 (uint8_t *)run + run->io.data_offset,
1839 DPRINTF("handle_mmio\n");
1840 /* Called outside BQL */
1841 address_space_rw(&address_space_memory,
1842 run->mmio.phys_addr, attrs,
1845 run->mmio.is_write);
1848 case KVM_EXIT_IRQ_WINDOW_OPEN:
1849 DPRINTF("irq_window_open\n");
1850 ret = EXCP_INTERRUPT;
1852 case KVM_EXIT_SHUTDOWN:
1853 DPRINTF("shutdown\n");
1854 qemu_system_reset_request();
1855 ret = EXCP_INTERRUPT;
1857 case KVM_EXIT_UNKNOWN:
1858 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1859 (uint64_t)run->hw.hardware_exit_reason);
1862 case KVM_EXIT_INTERNAL_ERROR:
1863 ret = kvm_handle_internal_error(cpu, run);
1865 case KVM_EXIT_SYSTEM_EVENT:
1866 switch (run->system_event.type) {
1867 case KVM_SYSTEM_EVENT_SHUTDOWN:
1868 qemu_system_shutdown_request();
1869 ret = EXCP_INTERRUPT;
1871 case KVM_SYSTEM_EVENT_RESET:
1872 qemu_system_reset_request();
1873 ret = EXCP_INTERRUPT;
1875 case KVM_SYSTEM_EVENT_CRASH:
1876 qemu_mutex_lock_iothread();
1877 qemu_system_guest_panicked();
1878 qemu_mutex_unlock_iothread();
1882 DPRINTF("kvm_arch_handle_exit\n");
1883 ret = kvm_arch_handle_exit(cpu, run);
1888 DPRINTF("kvm_arch_handle_exit\n");
1889 ret = kvm_arch_handle_exit(cpu, run);
1894 qemu_mutex_lock_iothread();
1897 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1898 vm_stop(RUN_STATE_INTERNAL_ERROR);
1901 cpu->exit_request = 0;
1905 int kvm_ioctl(KVMState *s, int type, ...)
1912 arg = va_arg(ap, void *);
1915 trace_kvm_ioctl(type, arg);
1916 ret = ioctl(s->fd, type, arg);
1923 int kvm_vm_ioctl(KVMState *s, int type, ...)
1930 arg = va_arg(ap, void *);
1933 trace_kvm_vm_ioctl(type, arg);
1934 ret = ioctl(s->vmfd, type, arg);
1941 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1948 arg = va_arg(ap, void *);
1951 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1952 ret = ioctl(cpu->kvm_fd, type, arg);
1959 int kvm_device_ioctl(int fd, int type, ...)
1966 arg = va_arg(ap, void *);
1969 trace_kvm_device_ioctl(fd, type, arg);
1970 ret = ioctl(fd, type, arg);
1977 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1980 struct kvm_device_attr attribute = {
1985 if (!kvm_vm_attributes_allowed) {
1989 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1990 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1994 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1996 struct kvm_device_attr attribute = {
2002 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2005 void kvm_device_access(int fd, int group, uint64_t attr,
2006 void *val, bool write)
2008 struct kvm_device_attr kvmattr;
2012 kvmattr.group = group;
2013 kvmattr.attr = attr;
2014 kvmattr.addr = (uintptr_t)val;
2016 err = kvm_device_ioctl(fd,
2017 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2020 error_report("KVM_%s_DEVICE_ATTR failed: %s\n"
2021 "Group %d attr 0x%016" PRIx64, write ? "SET" : "GET",
2022 strerror(-err), group, attr);
2027 int kvm_has_sync_mmu(void)
2029 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2032 int kvm_has_vcpu_events(void)
2034 return kvm_state->vcpu_events;
2037 int kvm_has_robust_singlestep(void)
2039 return kvm_state->robust_singlestep;
2042 int kvm_has_debugregs(void)
2044 return kvm_state->debugregs;
2047 int kvm_has_many_ioeventfds(void)
2049 if (!kvm_enabled()) {
2052 return kvm_state->many_ioeventfds;
2055 int kvm_has_gsi_routing(void)
2057 #ifdef KVM_CAP_IRQ_ROUTING
2058 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2064 int kvm_has_intx_set_mask(void)
2066 return kvm_state->intx_set_mask;
2069 void kvm_setup_guest_memory(void *start, size_t size)
2071 if (!kvm_has_sync_mmu()) {
2072 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2075 perror("qemu_madvise");
2077 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2083 #ifdef KVM_CAP_SET_GUEST_DEBUG
2084 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2087 struct kvm_sw_breakpoint *bp;
2089 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2097 int kvm_sw_breakpoints_active(CPUState *cpu)
2099 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2102 struct kvm_set_guest_debug_data {
2103 struct kvm_guest_debug dbg;
2108 static void kvm_invoke_set_guest_debug(void *data)
2110 struct kvm_set_guest_debug_data *dbg_data = data;
2112 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2116 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2118 struct kvm_set_guest_debug_data data;
2120 data.dbg.control = reinject_trap;
2122 if (cpu->singlestep_enabled) {
2123 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2125 kvm_arch_update_guest_debug(cpu, &data.dbg);
2128 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2132 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2133 target_ulong len, int type)
2135 struct kvm_sw_breakpoint *bp;
2138 if (type == GDB_BREAKPOINT_SW) {
2139 bp = kvm_find_sw_breakpoint(cpu, addr);
2145 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2148 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2154 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2156 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2163 err = kvm_update_guest_debug(cpu, 0);
2171 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2172 target_ulong len, int type)
2174 struct kvm_sw_breakpoint *bp;
2177 if (type == GDB_BREAKPOINT_SW) {
2178 bp = kvm_find_sw_breakpoint(cpu, addr);
2183 if (bp->use_count > 1) {
2188 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2193 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2196 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2203 err = kvm_update_guest_debug(cpu, 0);
2211 void kvm_remove_all_breakpoints(CPUState *cpu)
2213 struct kvm_sw_breakpoint *bp, *next;
2214 KVMState *s = cpu->kvm_state;
2217 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2218 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2219 /* Try harder to find a CPU that currently sees the breakpoint. */
2220 CPU_FOREACH(tmpcpu) {
2221 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2226 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2229 kvm_arch_remove_all_hw_breakpoints();
2232 kvm_update_guest_debug(cpu, 0);
2236 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2238 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2243 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2244 target_ulong len, int type)
2249 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2250 target_ulong len, int type)
2255 void kvm_remove_all_breakpoints(CPUState *cpu)
2258 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2260 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2262 KVMState *s = kvm_state;
2263 struct kvm_signal_mask *sigmask;
2267 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2270 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2272 sigmask->len = s->sigmask_len;
2273 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2274 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2279 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2281 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2284 int kvm_on_sigbus(int code, void *addr)
2286 return kvm_arch_on_sigbus(code, addr);
2289 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2292 struct kvm_create_device create_dev;
2294 create_dev.type = type;
2296 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2298 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2302 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2307 return test ? 0 : create_dev.fd;
2310 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2312 struct kvm_one_reg reg;
2316 reg.addr = (uintptr_t) source;
2317 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
2319 trace_kvm_failed_reg_set(id, strerror(r));
2324 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2326 struct kvm_one_reg reg;
2330 reg.addr = (uintptr_t) target;
2331 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
2333 trace_kvm_failed_reg_get(id, strerror(r));
2338 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2340 AccelClass *ac = ACCEL_CLASS(oc);
2342 ac->init_machine = kvm_init;
2343 ac->allowed = &kvm_allowed;
2346 static const TypeInfo kvm_accel_type = {
2347 .name = TYPE_KVM_ACCEL,
2348 .parent = TYPE_ACCEL,
2349 .class_init = kvm_accel_class_init,
2350 .instance_size = sizeof(KVMState),
2353 static void kvm_type_init(void)
2355 type_register_static(&kvm_accel_type);
2358 type_init(kvm_type_init);