Merge tag 'mtd/fixes-for-6.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
358 {
359         return local_read(&bpage->page->commit);
360 }
361
362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364         free_page((unsigned long)bpage->page);
365         kfree(bpage);
366 }
367
368 /*
369  * We need to fit the time_stamp delta into 27 bits.
370  */
371 static inline bool test_time_stamp(u64 delta)
372 {
373         return !!(delta & TS_DELTA_TEST);
374 }
375
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380
381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383         struct buffer_data_page field;
384
385         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386                          "offset:0;\tsize:%u;\tsigned:%u;\n",
387                          (unsigned int)sizeof(field.time_stamp),
388                          (unsigned int)is_signed_type(u64));
389
390         trace_seq_printf(s, "\tfield: local_t commit;\t"
391                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
392                          (unsigned int)offsetof(typeof(field), commit),
393                          (unsigned int)sizeof(field.commit),
394                          (unsigned int)is_signed_type(long));
395
396         trace_seq_printf(s, "\tfield: int overwrite;\t"
397                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
398                          (unsigned int)offsetof(typeof(field), commit),
399                          1,
400                          (unsigned int)is_signed_type(long));
401
402         trace_seq_printf(s, "\tfield: char data;\t"
403                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
404                          (unsigned int)offsetof(typeof(field), data),
405                          (unsigned int)BUF_PAGE_SIZE,
406                          (unsigned int)is_signed_type(char));
407
408         return !trace_seq_has_overflowed(s);
409 }
410
411 struct rb_irq_work {
412         struct irq_work                 work;
413         wait_queue_head_t               waiters;
414         wait_queue_head_t               full_waiters;
415         long                            wait_index;
416         bool                            waiters_pending;
417         bool                            full_waiters_pending;
418         bool                            wakeup_full;
419 };
420
421 /*
422  * Structure to hold event state and handle nested events.
423  */
424 struct rb_event_info {
425         u64                     ts;
426         u64                     delta;
427         u64                     before;
428         u64                     after;
429         unsigned long           length;
430         struct buffer_page      *tail_page;
431         int                     add_timestamp;
432 };
433
434 /*
435  * Used for the add_timestamp
436  *  NONE
437  *  EXTEND - wants a time extend
438  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
439  *  FORCE - force a full time stamp.
440  */
441 enum {
442         RB_ADD_STAMP_NONE               = 0,
443         RB_ADD_STAMP_EXTEND             = BIT(1),
444         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
445         RB_ADD_STAMP_FORCE              = BIT(3)
446 };
447 /*
448  * Used for which event context the event is in.
449  *  TRANSITION = 0
450  *  NMI     = 1
451  *  IRQ     = 2
452  *  SOFTIRQ = 3
453  *  NORMAL  = 4
454  *
455  * See trace_recursive_lock() comment below for more details.
456  */
457 enum {
458         RB_CTX_TRANSITION,
459         RB_CTX_NMI,
460         RB_CTX_IRQ,
461         RB_CTX_SOFTIRQ,
462         RB_CTX_NORMAL,
463         RB_CTX_MAX
464 };
465
466 #if BITS_PER_LONG == 32
467 #define RB_TIME_32
468 #endif
469
470 /* To test on 64 bit machines */
471 //#define RB_TIME_32
472
473 #ifdef RB_TIME_32
474
475 struct rb_time_struct {
476         local_t         cnt;
477         local_t         top;
478         local_t         bottom;
479         local_t         msb;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484         local64_t       time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488
489 #define MAX_NEST        5
490
491 /*
492  * head_page == tail_page && head == tail then buffer is empty.
493  */
494 struct ring_buffer_per_cpu {
495         int                             cpu;
496         atomic_t                        record_disabled;
497         atomic_t                        resize_disabled;
498         struct trace_buffer     *buffer;
499         raw_spinlock_t                  reader_lock;    /* serialize readers */
500         arch_spinlock_t                 lock;
501         struct lock_class_key           lock_key;
502         struct buffer_data_page         *free_page;
503         unsigned long                   nr_pages;
504         unsigned int                    current_context;
505         struct list_head                *pages;
506         struct buffer_page              *head_page;     /* read from head */
507         struct buffer_page              *tail_page;     /* write to tail */
508         struct buffer_page              *commit_page;   /* committed pages */
509         struct buffer_page              *reader_page;
510         unsigned long                   lost_events;
511         unsigned long                   last_overrun;
512         unsigned long                   nest;
513         local_t                         entries_bytes;
514         local_t                         entries;
515         local_t                         overrun;
516         local_t                         commit_overrun;
517         local_t                         dropped_events;
518         local_t                         committing;
519         local_t                         commits;
520         local_t                         pages_touched;
521         local_t                         pages_lost;
522         local_t                         pages_read;
523         long                            last_pages_touch;
524         size_t                          shortest_full;
525         unsigned long                   read;
526         unsigned long                   read_bytes;
527         rb_time_t                       write_stamp;
528         rb_time_t                       before_stamp;
529         u64                             event_stamp[MAX_NEST];
530         u64                             read_stamp;
531         /* pages removed since last reset */
532         unsigned long                   pages_removed;
533         /* ring buffer pages to update, > 0 to add, < 0 to remove */
534         long                            nr_pages_to_update;
535         struct list_head                new_pages; /* new pages to add */
536         struct work_struct              update_pages_work;
537         struct completion               update_done;
538
539         struct rb_irq_work              irq_work;
540 };
541
542 struct trace_buffer {
543         unsigned                        flags;
544         int                             cpus;
545         atomic_t                        record_disabled;
546         atomic_t                        resizing;
547         cpumask_var_t                   cpumask;
548
549         struct lock_class_key           *reader_lock_key;
550
551         struct mutex                    mutex;
552
553         struct ring_buffer_per_cpu      **buffers;
554
555         struct hlist_node               node;
556         u64                             (*clock)(void);
557
558         struct rb_irq_work              irq_work;
559         bool                            time_stamp_abs;
560 };
561
562 struct ring_buffer_iter {
563         struct ring_buffer_per_cpu      *cpu_buffer;
564         unsigned long                   head;
565         unsigned long                   next_event;
566         struct buffer_page              *head_page;
567         struct buffer_page              *cache_reader_page;
568         unsigned long                   cache_read;
569         unsigned long                   cache_pages_removed;
570         u64                             read_stamp;
571         u64                             page_stamp;
572         struct ring_buffer_event        *event;
573         int                             missed_events;
574 };
575
576 #ifdef RB_TIME_32
577
578 /*
579  * On 32 bit machines, local64_t is very expensive. As the ring
580  * buffer doesn't need all the features of a true 64 bit atomic,
581  * on 32 bit, it uses these functions (64 still uses local64_t).
582  *
583  * For the ring buffer, 64 bit required operations for the time is
584  * the following:
585  *
586  *  - Reads may fail if it interrupted a modification of the time stamp.
587  *      It will succeed if it did not interrupt another write even if
588  *      the read itself is interrupted by a write.
589  *      It returns whether it was successful or not.
590  *
591  *  - Writes always succeed and will overwrite other writes and writes
592  *      that were done by events interrupting the current write.
593  *
594  *  - A write followed by a read of the same time stamp will always succeed,
595  *      but may not contain the same value.
596  *
597  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
598  *      Other than that, it acts like a normal cmpxchg.
599  *
600  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
602  *
603  * The two most significant bits of each half holds a 2 bit counter (0-3).
604  * Each update will increment this counter by one.
605  * When reading the top and bottom, if the two counter bits match then the
606  *  top and bottom together make a valid 60 bit number.
607  */
608 #define RB_TIME_SHIFT   30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610 #define RB_TIME_MSB_SHIFT        60
611
612 static inline int rb_time_cnt(unsigned long val)
613 {
614         return (val >> RB_TIME_SHIFT) & 3;
615 }
616
617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
618 {
619         u64 val;
620
621         val = top & RB_TIME_VAL_MASK;
622         val <<= RB_TIME_SHIFT;
623         val |= bottom & RB_TIME_VAL_MASK;
624
625         return val;
626 }
627
628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
629 {
630         unsigned long top, bottom, msb;
631         unsigned long c;
632
633         /*
634          * If the read is interrupted by a write, then the cnt will
635          * be different. Loop until both top and bottom have been read
636          * without interruption.
637          */
638         do {
639                 c = local_read(&t->cnt);
640                 top = local_read(&t->top);
641                 bottom = local_read(&t->bottom);
642                 msb = local_read(&t->msb);
643         } while (c != local_read(&t->cnt));
644
645         *cnt = rb_time_cnt(top);
646
647         /* If top and bottom counts don't match, this interrupted a write */
648         if (*cnt != rb_time_cnt(bottom))
649                 return false;
650
651         /* The shift to msb will lose its cnt bits */
652         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
653         return true;
654 }
655
656 static bool rb_time_read(rb_time_t *t, u64 *ret)
657 {
658         unsigned long cnt;
659
660         return __rb_time_read(t, ret, &cnt);
661 }
662
663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
664 {
665         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
666 }
667
668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
669                                  unsigned long *msb)
670 {
671         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
672         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
673         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
674 }
675
676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
677 {
678         val = rb_time_val_cnt(val, cnt);
679         local_set(t, val);
680 }
681
682 static void rb_time_set(rb_time_t *t, u64 val)
683 {
684         unsigned long cnt, top, bottom, msb;
685
686         rb_time_split(val, &top, &bottom, &msb);
687
688         /* Writes always succeed with a valid number even if it gets interrupted. */
689         do {
690                 cnt = local_inc_return(&t->cnt);
691                 rb_time_val_set(&t->top, top, cnt);
692                 rb_time_val_set(&t->bottom, bottom, cnt);
693                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
694         } while (cnt != local_read(&t->cnt));
695 }
696
697 static inline bool
698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
699 {
700         return local_try_cmpxchg(l, &expect, set);
701 }
702
703 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
704 {
705         unsigned long cnt, top, bottom, msb;
706         unsigned long cnt2, top2, bottom2, msb2;
707         u64 val;
708
709         /* The cmpxchg always fails if it interrupted an update */
710          if (!__rb_time_read(t, &val, &cnt2))
711                  return false;
712
713          if (val != expect)
714                  return false;
715
716          cnt = local_read(&t->cnt);
717          if ((cnt & 3) != cnt2)
718                  return false;
719
720          cnt2 = cnt + 1;
721
722          rb_time_split(val, &top, &bottom, &msb);
723          top = rb_time_val_cnt(top, cnt);
724          bottom = rb_time_val_cnt(bottom, cnt);
725
726          rb_time_split(set, &top2, &bottom2, &msb2);
727          top2 = rb_time_val_cnt(top2, cnt2);
728          bottom2 = rb_time_val_cnt(bottom2, cnt2);
729
730         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
731                 return false;
732         if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
733                 return false;
734         if (!rb_time_read_cmpxchg(&t->top, top, top2))
735                 return false;
736         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
737                 return false;
738         return true;
739 }
740
741 #else /* 64 bits */
742
743 /* local64_t always succeeds */
744
745 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
746 {
747         *ret = local64_read(&t->time);
748         return true;
749 }
750 static void rb_time_set(rb_time_t *t, u64 val)
751 {
752         local64_set(&t->time, val);
753 }
754
755 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
756 {
757         return local64_try_cmpxchg(&t->time, &expect, set);
758 }
759 #endif
760
761 /*
762  * Enable this to make sure that the event passed to
763  * ring_buffer_event_time_stamp() is not committed and also
764  * is on the buffer that it passed in.
765  */
766 //#define RB_VERIFY_EVENT
767 #ifdef RB_VERIFY_EVENT
768 static struct list_head *rb_list_head(struct list_head *list);
769 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
770                          void *event)
771 {
772         struct buffer_page *page = cpu_buffer->commit_page;
773         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
774         struct list_head *next;
775         long commit, write;
776         unsigned long addr = (unsigned long)event;
777         bool done = false;
778         int stop = 0;
779
780         /* Make sure the event exists and is not committed yet */
781         do {
782                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
783                         done = true;
784                 commit = local_read(&page->page->commit);
785                 write = local_read(&page->write);
786                 if (addr >= (unsigned long)&page->page->data[commit] &&
787                     addr < (unsigned long)&page->page->data[write])
788                         return;
789
790                 next = rb_list_head(page->list.next);
791                 page = list_entry(next, struct buffer_page, list);
792         } while (!done);
793         WARN_ON_ONCE(1);
794 }
795 #else
796 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
797                          void *event)
798 {
799 }
800 #endif
801
802 /*
803  * The absolute time stamp drops the 5 MSBs and some clocks may
804  * require them. The rb_fix_abs_ts() will take a previous full
805  * time stamp, and add the 5 MSB of that time stamp on to the
806  * saved absolute time stamp. Then they are compared in case of
807  * the unlikely event that the latest time stamp incremented
808  * the 5 MSB.
809  */
810 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
811 {
812         if (save_ts & TS_MSB) {
813                 abs |= save_ts & TS_MSB;
814                 /* Check for overflow */
815                 if (unlikely(abs < save_ts))
816                         abs += 1ULL << 59;
817         }
818         return abs;
819 }
820
821 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
822
823 /**
824  * ring_buffer_event_time_stamp - return the event's current time stamp
825  * @buffer: The buffer that the event is on
826  * @event: the event to get the time stamp of
827  *
828  * Note, this must be called after @event is reserved, and before it is
829  * committed to the ring buffer. And must be called from the same
830  * context where the event was reserved (normal, softirq, irq, etc).
831  *
832  * Returns the time stamp associated with the current event.
833  * If the event has an extended time stamp, then that is used as
834  * the time stamp to return.
835  * In the highly unlikely case that the event was nested more than
836  * the max nesting, then the write_stamp of the buffer is returned,
837  * otherwise  current time is returned, but that really neither of
838  * the last two cases should ever happen.
839  */
840 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
841                                  struct ring_buffer_event *event)
842 {
843         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
844         unsigned int nest;
845         u64 ts;
846
847         /* If the event includes an absolute time, then just use that */
848         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
849                 ts = rb_event_time_stamp(event);
850                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
851         }
852
853         nest = local_read(&cpu_buffer->committing);
854         verify_event(cpu_buffer, event);
855         if (WARN_ON_ONCE(!nest))
856                 goto fail;
857
858         /* Read the current saved nesting level time stamp */
859         if (likely(--nest < MAX_NEST))
860                 return cpu_buffer->event_stamp[nest];
861
862         /* Shouldn't happen, warn if it does */
863         WARN_ONCE(1, "nest (%d) greater than max", nest);
864
865  fail:
866         /* Can only fail on 32 bit */
867         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
868                 /* Screw it, just read the current time */
869                 ts = rb_time_stamp(cpu_buffer->buffer);
870
871         return ts;
872 }
873
874 /**
875  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
876  * @buffer: The ring_buffer to get the number of pages from
877  * @cpu: The cpu of the ring_buffer to get the number of pages from
878  *
879  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
880  */
881 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
882 {
883         return buffer->buffers[cpu]->nr_pages;
884 }
885
886 /**
887  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
888  * @buffer: The ring_buffer to get the number of pages from
889  * @cpu: The cpu of the ring_buffer to get the number of pages from
890  *
891  * Returns the number of pages that have content in the ring buffer.
892  */
893 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
894 {
895         size_t read;
896         size_t lost;
897         size_t cnt;
898
899         read = local_read(&buffer->buffers[cpu]->pages_read);
900         lost = local_read(&buffer->buffers[cpu]->pages_lost);
901         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
902
903         if (WARN_ON_ONCE(cnt < lost))
904                 return 0;
905
906         cnt -= lost;
907
908         /* The reader can read an empty page, but not more than that */
909         if (cnt < read) {
910                 WARN_ON_ONCE(read > cnt + 1);
911                 return 0;
912         }
913
914         return cnt - read;
915 }
916
917 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
918 {
919         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
920         size_t nr_pages;
921         size_t dirty;
922
923         nr_pages = cpu_buffer->nr_pages;
924         if (!nr_pages || !full)
925                 return true;
926
927         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
928
929         return (dirty * 100) > (full * nr_pages);
930 }
931
932 /*
933  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
934  *
935  * Schedules a delayed work to wake up any task that is blocked on the
936  * ring buffer waiters queue.
937  */
938 static void rb_wake_up_waiters(struct irq_work *work)
939 {
940         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
941
942         wake_up_all(&rbwork->waiters);
943         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
944                 rbwork->wakeup_full = false;
945                 rbwork->full_waiters_pending = false;
946                 wake_up_all(&rbwork->full_waiters);
947         }
948 }
949
950 /**
951  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
952  * @buffer: The ring buffer to wake waiters on
953  * @cpu: The CPU buffer to wake waiters on
954  *
955  * In the case of a file that represents a ring buffer is closing,
956  * it is prudent to wake up any waiters that are on this.
957  */
958 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
959 {
960         struct ring_buffer_per_cpu *cpu_buffer;
961         struct rb_irq_work *rbwork;
962
963         if (!buffer)
964                 return;
965
966         if (cpu == RING_BUFFER_ALL_CPUS) {
967
968                 /* Wake up individual ones too. One level recursion */
969                 for_each_buffer_cpu(buffer, cpu)
970                         ring_buffer_wake_waiters(buffer, cpu);
971
972                 rbwork = &buffer->irq_work;
973         } else {
974                 if (WARN_ON_ONCE(!buffer->buffers))
975                         return;
976                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
977                         return;
978
979                 cpu_buffer = buffer->buffers[cpu];
980                 /* The CPU buffer may not have been initialized yet */
981                 if (!cpu_buffer)
982                         return;
983                 rbwork = &cpu_buffer->irq_work;
984         }
985
986         rbwork->wait_index++;
987         /* make sure the waiters see the new index */
988         smp_wmb();
989
990         rb_wake_up_waiters(&rbwork->work);
991 }
992
993 /**
994  * ring_buffer_wait - wait for input to the ring buffer
995  * @buffer: buffer to wait on
996  * @cpu: the cpu buffer to wait on
997  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
998  *
999  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1000  * as data is added to any of the @buffer's cpu buffers. Otherwise
1001  * it will wait for data to be added to a specific cpu buffer.
1002  */
1003 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1004 {
1005         struct ring_buffer_per_cpu *cpu_buffer;
1006         DEFINE_WAIT(wait);
1007         struct rb_irq_work *work;
1008         long wait_index;
1009         int ret = 0;
1010
1011         /*
1012          * Depending on what the caller is waiting for, either any
1013          * data in any cpu buffer, or a specific buffer, put the
1014          * caller on the appropriate wait queue.
1015          */
1016         if (cpu == RING_BUFFER_ALL_CPUS) {
1017                 work = &buffer->irq_work;
1018                 /* Full only makes sense on per cpu reads */
1019                 full = 0;
1020         } else {
1021                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1022                         return -ENODEV;
1023                 cpu_buffer = buffer->buffers[cpu];
1024                 work = &cpu_buffer->irq_work;
1025         }
1026
1027         wait_index = READ_ONCE(work->wait_index);
1028
1029         while (true) {
1030                 if (full)
1031                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1032                 else
1033                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1034
1035                 /*
1036                  * The events can happen in critical sections where
1037                  * checking a work queue can cause deadlocks.
1038                  * After adding a task to the queue, this flag is set
1039                  * only to notify events to try to wake up the queue
1040                  * using irq_work.
1041                  *
1042                  * We don't clear it even if the buffer is no longer
1043                  * empty. The flag only causes the next event to run
1044                  * irq_work to do the work queue wake up. The worse
1045                  * that can happen if we race with !trace_empty() is that
1046                  * an event will cause an irq_work to try to wake up
1047                  * an empty queue.
1048                  *
1049                  * There's no reason to protect this flag either, as
1050                  * the work queue and irq_work logic will do the necessary
1051                  * synchronization for the wake ups. The only thing
1052                  * that is necessary is that the wake up happens after
1053                  * a task has been queued. It's OK for spurious wake ups.
1054                  */
1055                 if (full)
1056                         work->full_waiters_pending = true;
1057                 else
1058                         work->waiters_pending = true;
1059
1060                 if (signal_pending(current)) {
1061                         ret = -EINTR;
1062                         break;
1063                 }
1064
1065                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1066                         break;
1067
1068                 if (cpu != RING_BUFFER_ALL_CPUS &&
1069                     !ring_buffer_empty_cpu(buffer, cpu)) {
1070                         unsigned long flags;
1071                         bool pagebusy;
1072                         bool done;
1073
1074                         if (!full)
1075                                 break;
1076
1077                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1078                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1079                         done = !pagebusy && full_hit(buffer, cpu, full);
1080
1081                         if (!cpu_buffer->shortest_full ||
1082                             cpu_buffer->shortest_full > full)
1083                                 cpu_buffer->shortest_full = full;
1084                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1085                         if (done)
1086                                 break;
1087                 }
1088
1089                 schedule();
1090
1091                 /* Make sure to see the new wait index */
1092                 smp_rmb();
1093                 if (wait_index != work->wait_index)
1094                         break;
1095         }
1096
1097         if (full)
1098                 finish_wait(&work->full_waiters, &wait);
1099         else
1100                 finish_wait(&work->waiters, &wait);
1101
1102         return ret;
1103 }
1104
1105 /**
1106  * ring_buffer_poll_wait - poll on buffer input
1107  * @buffer: buffer to wait on
1108  * @cpu: the cpu buffer to wait on
1109  * @filp: the file descriptor
1110  * @poll_table: The poll descriptor
1111  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1112  *
1113  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1114  * as data is added to any of the @buffer's cpu buffers. Otherwise
1115  * it will wait for data to be added to a specific cpu buffer.
1116  *
1117  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1118  * zero otherwise.
1119  */
1120 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1121                           struct file *filp, poll_table *poll_table, int full)
1122 {
1123         struct ring_buffer_per_cpu *cpu_buffer;
1124         struct rb_irq_work *work;
1125
1126         if (cpu == RING_BUFFER_ALL_CPUS) {
1127                 work = &buffer->irq_work;
1128                 full = 0;
1129         } else {
1130                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1131                         return -EINVAL;
1132
1133                 cpu_buffer = buffer->buffers[cpu];
1134                 work = &cpu_buffer->irq_work;
1135         }
1136
1137         if (full) {
1138                 poll_wait(filp, &work->full_waiters, poll_table);
1139                 work->full_waiters_pending = true;
1140                 if (!cpu_buffer->shortest_full ||
1141                     cpu_buffer->shortest_full > full)
1142                         cpu_buffer->shortest_full = full;
1143         } else {
1144                 poll_wait(filp, &work->waiters, poll_table);
1145                 work->waiters_pending = true;
1146         }
1147
1148         /*
1149          * There's a tight race between setting the waiters_pending and
1150          * checking if the ring buffer is empty.  Once the waiters_pending bit
1151          * is set, the next event will wake the task up, but we can get stuck
1152          * if there's only a single event in.
1153          *
1154          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1155          * but adding a memory barrier to all events will cause too much of a
1156          * performance hit in the fast path.  We only need a memory barrier when
1157          * the buffer goes from empty to having content.  But as this race is
1158          * extremely small, and it's not a problem if another event comes in, we
1159          * will fix it later.
1160          */
1161         smp_mb();
1162
1163         if (full)
1164                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1165
1166         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1167             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1168                 return EPOLLIN | EPOLLRDNORM;
1169         return 0;
1170 }
1171
1172 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1173 #define RB_WARN_ON(b, cond)                                             \
1174         ({                                                              \
1175                 int _____ret = unlikely(cond);                          \
1176                 if (_____ret) {                                         \
1177                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1178                                 struct ring_buffer_per_cpu *__b =       \
1179                                         (void *)b;                      \
1180                                 atomic_inc(&__b->buffer->record_disabled); \
1181                         } else                                          \
1182                                 atomic_inc(&b->record_disabled);        \
1183                         WARN_ON(1);                                     \
1184                 }                                                       \
1185                 _____ret;                                               \
1186         })
1187
1188 /* Up this if you want to test the TIME_EXTENTS and normalization */
1189 #define DEBUG_SHIFT 0
1190
1191 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1192 {
1193         u64 ts;
1194
1195         /* Skip retpolines :-( */
1196         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1197                 ts = trace_clock_local();
1198         else
1199                 ts = buffer->clock();
1200
1201         /* shift to debug/test normalization and TIME_EXTENTS */
1202         return ts << DEBUG_SHIFT;
1203 }
1204
1205 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1206 {
1207         u64 time;
1208
1209         preempt_disable_notrace();
1210         time = rb_time_stamp(buffer);
1211         preempt_enable_notrace();
1212
1213         return time;
1214 }
1215 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1216
1217 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1218                                       int cpu, u64 *ts)
1219 {
1220         /* Just stupid testing the normalize function and deltas */
1221         *ts >>= DEBUG_SHIFT;
1222 }
1223 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1224
1225 /*
1226  * Making the ring buffer lockless makes things tricky.
1227  * Although writes only happen on the CPU that they are on,
1228  * and they only need to worry about interrupts. Reads can
1229  * happen on any CPU.
1230  *
1231  * The reader page is always off the ring buffer, but when the
1232  * reader finishes with a page, it needs to swap its page with
1233  * a new one from the buffer. The reader needs to take from
1234  * the head (writes go to the tail). But if a writer is in overwrite
1235  * mode and wraps, it must push the head page forward.
1236  *
1237  * Here lies the problem.
1238  *
1239  * The reader must be careful to replace only the head page, and
1240  * not another one. As described at the top of the file in the
1241  * ASCII art, the reader sets its old page to point to the next
1242  * page after head. It then sets the page after head to point to
1243  * the old reader page. But if the writer moves the head page
1244  * during this operation, the reader could end up with the tail.
1245  *
1246  * We use cmpxchg to help prevent this race. We also do something
1247  * special with the page before head. We set the LSB to 1.
1248  *
1249  * When the writer must push the page forward, it will clear the
1250  * bit that points to the head page, move the head, and then set
1251  * the bit that points to the new head page.
1252  *
1253  * We also don't want an interrupt coming in and moving the head
1254  * page on another writer. Thus we use the second LSB to catch
1255  * that too. Thus:
1256  *
1257  * head->list->prev->next        bit 1          bit 0
1258  *                              -------        -------
1259  * Normal page                     0              0
1260  * Points to head page             0              1
1261  * New head page                   1              0
1262  *
1263  * Note we can not trust the prev pointer of the head page, because:
1264  *
1265  * +----+       +-----+        +-----+
1266  * |    |------>|  T  |---X--->|  N  |
1267  * |    |<------|     |        |     |
1268  * +----+       +-----+        +-----+
1269  *   ^                           ^ |
1270  *   |          +-----+          | |
1271  *   +----------|  R  |----------+ |
1272  *              |     |<-----------+
1273  *              +-----+
1274  *
1275  * Key:  ---X-->  HEAD flag set in pointer
1276  *         T      Tail page
1277  *         R      Reader page
1278  *         N      Next page
1279  *
1280  * (see __rb_reserve_next() to see where this happens)
1281  *
1282  *  What the above shows is that the reader just swapped out
1283  *  the reader page with a page in the buffer, but before it
1284  *  could make the new header point back to the new page added
1285  *  it was preempted by a writer. The writer moved forward onto
1286  *  the new page added by the reader and is about to move forward
1287  *  again.
1288  *
1289  *  You can see, it is legitimate for the previous pointer of
1290  *  the head (or any page) not to point back to itself. But only
1291  *  temporarily.
1292  */
1293
1294 #define RB_PAGE_NORMAL          0UL
1295 #define RB_PAGE_HEAD            1UL
1296 #define RB_PAGE_UPDATE          2UL
1297
1298
1299 #define RB_FLAG_MASK            3UL
1300
1301 /* PAGE_MOVED is not part of the mask */
1302 #define RB_PAGE_MOVED           4UL
1303
1304 /*
1305  * rb_list_head - remove any bit
1306  */
1307 static struct list_head *rb_list_head(struct list_head *list)
1308 {
1309         unsigned long val = (unsigned long)list;
1310
1311         return (struct list_head *)(val & ~RB_FLAG_MASK);
1312 }
1313
1314 /*
1315  * rb_is_head_page - test if the given page is the head page
1316  *
1317  * Because the reader may move the head_page pointer, we can
1318  * not trust what the head page is (it may be pointing to
1319  * the reader page). But if the next page is a header page,
1320  * its flags will be non zero.
1321  */
1322 static inline int
1323 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1324 {
1325         unsigned long val;
1326
1327         val = (unsigned long)list->next;
1328
1329         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1330                 return RB_PAGE_MOVED;
1331
1332         return val & RB_FLAG_MASK;
1333 }
1334
1335 /*
1336  * rb_is_reader_page
1337  *
1338  * The unique thing about the reader page, is that, if the
1339  * writer is ever on it, the previous pointer never points
1340  * back to the reader page.
1341  */
1342 static bool rb_is_reader_page(struct buffer_page *page)
1343 {
1344         struct list_head *list = page->list.prev;
1345
1346         return rb_list_head(list->next) != &page->list;
1347 }
1348
1349 /*
1350  * rb_set_list_to_head - set a list_head to be pointing to head.
1351  */
1352 static void rb_set_list_to_head(struct list_head *list)
1353 {
1354         unsigned long *ptr;
1355
1356         ptr = (unsigned long *)&list->next;
1357         *ptr |= RB_PAGE_HEAD;
1358         *ptr &= ~RB_PAGE_UPDATE;
1359 }
1360
1361 /*
1362  * rb_head_page_activate - sets up head page
1363  */
1364 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1365 {
1366         struct buffer_page *head;
1367
1368         head = cpu_buffer->head_page;
1369         if (!head)
1370                 return;
1371
1372         /*
1373          * Set the previous list pointer to have the HEAD flag.
1374          */
1375         rb_set_list_to_head(head->list.prev);
1376 }
1377
1378 static void rb_list_head_clear(struct list_head *list)
1379 {
1380         unsigned long *ptr = (unsigned long *)&list->next;
1381
1382         *ptr &= ~RB_FLAG_MASK;
1383 }
1384
1385 /*
1386  * rb_head_page_deactivate - clears head page ptr (for free list)
1387  */
1388 static void
1389 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1390 {
1391         struct list_head *hd;
1392
1393         /* Go through the whole list and clear any pointers found. */
1394         rb_list_head_clear(cpu_buffer->pages);
1395
1396         list_for_each(hd, cpu_buffer->pages)
1397                 rb_list_head_clear(hd);
1398 }
1399
1400 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1401                             struct buffer_page *head,
1402                             struct buffer_page *prev,
1403                             int old_flag, int new_flag)
1404 {
1405         struct list_head *list;
1406         unsigned long val = (unsigned long)&head->list;
1407         unsigned long ret;
1408
1409         list = &prev->list;
1410
1411         val &= ~RB_FLAG_MASK;
1412
1413         ret = cmpxchg((unsigned long *)&list->next,
1414                       val | old_flag, val | new_flag);
1415
1416         /* check if the reader took the page */
1417         if ((ret & ~RB_FLAG_MASK) != val)
1418                 return RB_PAGE_MOVED;
1419
1420         return ret & RB_FLAG_MASK;
1421 }
1422
1423 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1424                                    struct buffer_page *head,
1425                                    struct buffer_page *prev,
1426                                    int old_flag)
1427 {
1428         return rb_head_page_set(cpu_buffer, head, prev,
1429                                 old_flag, RB_PAGE_UPDATE);
1430 }
1431
1432 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1433                                  struct buffer_page *head,
1434                                  struct buffer_page *prev,
1435                                  int old_flag)
1436 {
1437         return rb_head_page_set(cpu_buffer, head, prev,
1438                                 old_flag, RB_PAGE_HEAD);
1439 }
1440
1441 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1442                                    struct buffer_page *head,
1443                                    struct buffer_page *prev,
1444                                    int old_flag)
1445 {
1446         return rb_head_page_set(cpu_buffer, head, prev,
1447                                 old_flag, RB_PAGE_NORMAL);
1448 }
1449
1450 static inline void rb_inc_page(struct buffer_page **bpage)
1451 {
1452         struct list_head *p = rb_list_head((*bpage)->list.next);
1453
1454         *bpage = list_entry(p, struct buffer_page, list);
1455 }
1456
1457 static struct buffer_page *
1458 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1459 {
1460         struct buffer_page *head;
1461         struct buffer_page *page;
1462         struct list_head *list;
1463         int i;
1464
1465         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1466                 return NULL;
1467
1468         /* sanity check */
1469         list = cpu_buffer->pages;
1470         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1471                 return NULL;
1472
1473         page = head = cpu_buffer->head_page;
1474         /*
1475          * It is possible that the writer moves the header behind
1476          * where we started, and we miss in one loop.
1477          * A second loop should grab the header, but we'll do
1478          * three loops just because I'm paranoid.
1479          */
1480         for (i = 0; i < 3; i++) {
1481                 do {
1482                         if (rb_is_head_page(page, page->list.prev)) {
1483                                 cpu_buffer->head_page = page;
1484                                 return page;
1485                         }
1486                         rb_inc_page(&page);
1487                 } while (page != head);
1488         }
1489
1490         RB_WARN_ON(cpu_buffer, 1);
1491
1492         return NULL;
1493 }
1494
1495 static bool rb_head_page_replace(struct buffer_page *old,
1496                                 struct buffer_page *new)
1497 {
1498         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1499         unsigned long val;
1500
1501         val = *ptr & ~RB_FLAG_MASK;
1502         val |= RB_PAGE_HEAD;
1503
1504         return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1505 }
1506
1507 /*
1508  * rb_tail_page_update - move the tail page forward
1509  */
1510 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1511                                struct buffer_page *tail_page,
1512                                struct buffer_page *next_page)
1513 {
1514         unsigned long old_entries;
1515         unsigned long old_write;
1516
1517         /*
1518          * The tail page now needs to be moved forward.
1519          *
1520          * We need to reset the tail page, but without messing
1521          * with possible erasing of data brought in by interrupts
1522          * that have moved the tail page and are currently on it.
1523          *
1524          * We add a counter to the write field to denote this.
1525          */
1526         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1527         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1528
1529         local_inc(&cpu_buffer->pages_touched);
1530         /*
1531          * Just make sure we have seen our old_write and synchronize
1532          * with any interrupts that come in.
1533          */
1534         barrier();
1535
1536         /*
1537          * If the tail page is still the same as what we think
1538          * it is, then it is up to us to update the tail
1539          * pointer.
1540          */
1541         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1542                 /* Zero the write counter */
1543                 unsigned long val = old_write & ~RB_WRITE_MASK;
1544                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1545
1546                 /*
1547                  * This will only succeed if an interrupt did
1548                  * not come in and change it. In which case, we
1549                  * do not want to modify it.
1550                  *
1551                  * We add (void) to let the compiler know that we do not care
1552                  * about the return value of these functions. We use the
1553                  * cmpxchg to only update if an interrupt did not already
1554                  * do it for us. If the cmpxchg fails, we don't care.
1555                  */
1556                 (void)local_cmpxchg(&next_page->write, old_write, val);
1557                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1558
1559                 /*
1560                  * No need to worry about races with clearing out the commit.
1561                  * it only can increment when a commit takes place. But that
1562                  * only happens in the outer most nested commit.
1563                  */
1564                 local_set(&next_page->page->commit, 0);
1565
1566                 /* Again, either we update tail_page or an interrupt does */
1567                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1568         }
1569 }
1570
1571 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1572                           struct buffer_page *bpage)
1573 {
1574         unsigned long val = (unsigned long)bpage;
1575
1576         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1577 }
1578
1579 /**
1580  * rb_check_pages - integrity check of buffer pages
1581  * @cpu_buffer: CPU buffer with pages to test
1582  *
1583  * As a safety measure we check to make sure the data pages have not
1584  * been corrupted.
1585  */
1586 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587 {
1588         struct list_head *head = rb_list_head(cpu_buffer->pages);
1589         struct list_head *tmp;
1590
1591         if (RB_WARN_ON(cpu_buffer,
1592                         rb_list_head(rb_list_head(head->next)->prev) != head))
1593                 return;
1594
1595         if (RB_WARN_ON(cpu_buffer,
1596                         rb_list_head(rb_list_head(head->prev)->next) != head))
1597                 return;
1598
1599         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1600                 if (RB_WARN_ON(cpu_buffer,
1601                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1602                         return;
1603
1604                 if (RB_WARN_ON(cpu_buffer,
1605                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1606                         return;
1607         }
1608 }
1609
1610 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1611                 long nr_pages, struct list_head *pages)
1612 {
1613         struct buffer_page *bpage, *tmp;
1614         bool user_thread = current->mm != NULL;
1615         gfp_t mflags;
1616         long i;
1617
1618         /*
1619          * Check if the available memory is there first.
1620          * Note, si_mem_available() only gives us a rough estimate of available
1621          * memory. It may not be accurate. But we don't care, we just want
1622          * to prevent doing any allocation when it is obvious that it is
1623          * not going to succeed.
1624          */
1625         i = si_mem_available();
1626         if (i < nr_pages)
1627                 return -ENOMEM;
1628
1629         /*
1630          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1631          * gracefully without invoking oom-killer and the system is not
1632          * destabilized.
1633          */
1634         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1635
1636         /*
1637          * If a user thread allocates too much, and si_mem_available()
1638          * reports there's enough memory, even though there is not.
1639          * Make sure the OOM killer kills this thread. This can happen
1640          * even with RETRY_MAYFAIL because another task may be doing
1641          * an allocation after this task has taken all memory.
1642          * This is the task the OOM killer needs to take out during this
1643          * loop, even if it was triggered by an allocation somewhere else.
1644          */
1645         if (user_thread)
1646                 set_current_oom_origin();
1647         for (i = 0; i < nr_pages; i++) {
1648                 struct page *page;
1649
1650                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1651                                     mflags, cpu_to_node(cpu_buffer->cpu));
1652                 if (!bpage)
1653                         goto free_pages;
1654
1655                 rb_check_bpage(cpu_buffer, bpage);
1656
1657                 list_add(&bpage->list, pages);
1658
1659                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1660                 if (!page)
1661                         goto free_pages;
1662                 bpage->page = page_address(page);
1663                 rb_init_page(bpage->page);
1664
1665                 if (user_thread && fatal_signal_pending(current))
1666                         goto free_pages;
1667         }
1668         if (user_thread)
1669                 clear_current_oom_origin();
1670
1671         return 0;
1672
1673 free_pages:
1674         list_for_each_entry_safe(bpage, tmp, pages, list) {
1675                 list_del_init(&bpage->list);
1676                 free_buffer_page(bpage);
1677         }
1678         if (user_thread)
1679                 clear_current_oom_origin();
1680
1681         return -ENOMEM;
1682 }
1683
1684 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1685                              unsigned long nr_pages)
1686 {
1687         LIST_HEAD(pages);
1688
1689         WARN_ON(!nr_pages);
1690
1691         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1692                 return -ENOMEM;
1693
1694         /*
1695          * The ring buffer page list is a circular list that does not
1696          * start and end with a list head. All page list items point to
1697          * other pages.
1698          */
1699         cpu_buffer->pages = pages.next;
1700         list_del(&pages);
1701
1702         cpu_buffer->nr_pages = nr_pages;
1703
1704         rb_check_pages(cpu_buffer);
1705
1706         return 0;
1707 }
1708
1709 static struct ring_buffer_per_cpu *
1710 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1711 {
1712         struct ring_buffer_per_cpu *cpu_buffer;
1713         struct buffer_page *bpage;
1714         struct page *page;
1715         int ret;
1716
1717         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1718                                   GFP_KERNEL, cpu_to_node(cpu));
1719         if (!cpu_buffer)
1720                 return NULL;
1721
1722         cpu_buffer->cpu = cpu;
1723         cpu_buffer->buffer = buffer;
1724         raw_spin_lock_init(&cpu_buffer->reader_lock);
1725         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1726         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1727         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1728         init_completion(&cpu_buffer->update_done);
1729         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1730         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1731         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1732
1733         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1734                             GFP_KERNEL, cpu_to_node(cpu));
1735         if (!bpage)
1736                 goto fail_free_buffer;
1737
1738         rb_check_bpage(cpu_buffer, bpage);
1739
1740         cpu_buffer->reader_page = bpage;
1741         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1742         if (!page)
1743                 goto fail_free_reader;
1744         bpage->page = page_address(page);
1745         rb_init_page(bpage->page);
1746
1747         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1748         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1749
1750         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1751         if (ret < 0)
1752                 goto fail_free_reader;
1753
1754         cpu_buffer->head_page
1755                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1756         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1757
1758         rb_head_page_activate(cpu_buffer);
1759
1760         return cpu_buffer;
1761
1762  fail_free_reader:
1763         free_buffer_page(cpu_buffer->reader_page);
1764
1765  fail_free_buffer:
1766         kfree(cpu_buffer);
1767         return NULL;
1768 }
1769
1770 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1771 {
1772         struct list_head *head = cpu_buffer->pages;
1773         struct buffer_page *bpage, *tmp;
1774
1775         irq_work_sync(&cpu_buffer->irq_work.work);
1776
1777         free_buffer_page(cpu_buffer->reader_page);
1778
1779         if (head) {
1780                 rb_head_page_deactivate(cpu_buffer);
1781
1782                 list_for_each_entry_safe(bpage, tmp, head, list) {
1783                         list_del_init(&bpage->list);
1784                         free_buffer_page(bpage);
1785                 }
1786                 bpage = list_entry(head, struct buffer_page, list);
1787                 free_buffer_page(bpage);
1788         }
1789
1790         kfree(cpu_buffer);
1791 }
1792
1793 /**
1794  * __ring_buffer_alloc - allocate a new ring_buffer
1795  * @size: the size in bytes per cpu that is needed.
1796  * @flags: attributes to set for the ring buffer.
1797  * @key: ring buffer reader_lock_key.
1798  *
1799  * Currently the only flag that is available is the RB_FL_OVERWRITE
1800  * flag. This flag means that the buffer will overwrite old data
1801  * when the buffer wraps. If this flag is not set, the buffer will
1802  * drop data when the tail hits the head.
1803  */
1804 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1805                                         struct lock_class_key *key)
1806 {
1807         struct trace_buffer *buffer;
1808         long nr_pages;
1809         int bsize;
1810         int cpu;
1811         int ret;
1812
1813         /* keep it in its own cache line */
1814         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1815                          GFP_KERNEL);
1816         if (!buffer)
1817                 return NULL;
1818
1819         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1820                 goto fail_free_buffer;
1821
1822         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1823         buffer->flags = flags;
1824         buffer->clock = trace_clock_local;
1825         buffer->reader_lock_key = key;
1826
1827         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1828         init_waitqueue_head(&buffer->irq_work.waiters);
1829
1830         /* need at least two pages */
1831         if (nr_pages < 2)
1832                 nr_pages = 2;
1833
1834         buffer->cpus = nr_cpu_ids;
1835
1836         bsize = sizeof(void *) * nr_cpu_ids;
1837         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1838                                   GFP_KERNEL);
1839         if (!buffer->buffers)
1840                 goto fail_free_cpumask;
1841
1842         cpu = raw_smp_processor_id();
1843         cpumask_set_cpu(cpu, buffer->cpumask);
1844         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1845         if (!buffer->buffers[cpu])
1846                 goto fail_free_buffers;
1847
1848         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1849         if (ret < 0)
1850                 goto fail_free_buffers;
1851
1852         mutex_init(&buffer->mutex);
1853
1854         return buffer;
1855
1856  fail_free_buffers:
1857         for_each_buffer_cpu(buffer, cpu) {
1858                 if (buffer->buffers[cpu])
1859                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1860         }
1861         kfree(buffer->buffers);
1862
1863  fail_free_cpumask:
1864         free_cpumask_var(buffer->cpumask);
1865
1866  fail_free_buffer:
1867         kfree(buffer);
1868         return NULL;
1869 }
1870 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1871
1872 /**
1873  * ring_buffer_free - free a ring buffer.
1874  * @buffer: the buffer to free.
1875  */
1876 void
1877 ring_buffer_free(struct trace_buffer *buffer)
1878 {
1879         int cpu;
1880
1881         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1882
1883         irq_work_sync(&buffer->irq_work.work);
1884
1885         for_each_buffer_cpu(buffer, cpu)
1886                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1887
1888         kfree(buffer->buffers);
1889         free_cpumask_var(buffer->cpumask);
1890
1891         kfree(buffer);
1892 }
1893 EXPORT_SYMBOL_GPL(ring_buffer_free);
1894
1895 void ring_buffer_set_clock(struct trace_buffer *buffer,
1896                            u64 (*clock)(void))
1897 {
1898         buffer->clock = clock;
1899 }
1900
1901 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1902 {
1903         buffer->time_stamp_abs = abs;
1904 }
1905
1906 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1907 {
1908         return buffer->time_stamp_abs;
1909 }
1910
1911 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1912
1913 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1914 {
1915         return local_read(&bpage->entries) & RB_WRITE_MASK;
1916 }
1917
1918 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1919 {
1920         return local_read(&bpage->write) & RB_WRITE_MASK;
1921 }
1922
1923 static bool
1924 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1925 {
1926         struct list_head *tail_page, *to_remove, *next_page;
1927         struct buffer_page *to_remove_page, *tmp_iter_page;
1928         struct buffer_page *last_page, *first_page;
1929         unsigned long nr_removed;
1930         unsigned long head_bit;
1931         int page_entries;
1932
1933         head_bit = 0;
1934
1935         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1936         atomic_inc(&cpu_buffer->record_disabled);
1937         /*
1938          * We don't race with the readers since we have acquired the reader
1939          * lock. We also don't race with writers after disabling recording.
1940          * This makes it easy to figure out the first and the last page to be
1941          * removed from the list. We unlink all the pages in between including
1942          * the first and last pages. This is done in a busy loop so that we
1943          * lose the least number of traces.
1944          * The pages are freed after we restart recording and unlock readers.
1945          */
1946         tail_page = &cpu_buffer->tail_page->list;
1947
1948         /*
1949          * tail page might be on reader page, we remove the next page
1950          * from the ring buffer
1951          */
1952         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1953                 tail_page = rb_list_head(tail_page->next);
1954         to_remove = tail_page;
1955
1956         /* start of pages to remove */
1957         first_page = list_entry(rb_list_head(to_remove->next),
1958                                 struct buffer_page, list);
1959
1960         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1961                 to_remove = rb_list_head(to_remove)->next;
1962                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1963         }
1964         /* Read iterators need to reset themselves when some pages removed */
1965         cpu_buffer->pages_removed += nr_removed;
1966
1967         next_page = rb_list_head(to_remove)->next;
1968
1969         /*
1970          * Now we remove all pages between tail_page and next_page.
1971          * Make sure that we have head_bit value preserved for the
1972          * next page
1973          */
1974         tail_page->next = (struct list_head *)((unsigned long)next_page |
1975                                                 head_bit);
1976         next_page = rb_list_head(next_page);
1977         next_page->prev = tail_page;
1978
1979         /* make sure pages points to a valid page in the ring buffer */
1980         cpu_buffer->pages = next_page;
1981
1982         /* update head page */
1983         if (head_bit)
1984                 cpu_buffer->head_page = list_entry(next_page,
1985                                                 struct buffer_page, list);
1986
1987         /* pages are removed, resume tracing and then free the pages */
1988         atomic_dec(&cpu_buffer->record_disabled);
1989         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1990
1991         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1992
1993         /* last buffer page to remove */
1994         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1995                                 list);
1996         tmp_iter_page = first_page;
1997
1998         do {
1999                 cond_resched();
2000
2001                 to_remove_page = tmp_iter_page;
2002                 rb_inc_page(&tmp_iter_page);
2003
2004                 /* update the counters */
2005                 page_entries = rb_page_entries(to_remove_page);
2006                 if (page_entries) {
2007                         /*
2008                          * If something was added to this page, it was full
2009                          * since it is not the tail page. So we deduct the
2010                          * bytes consumed in ring buffer from here.
2011                          * Increment overrun to account for the lost events.
2012                          */
2013                         local_add(page_entries, &cpu_buffer->overrun);
2014                         local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2015                         local_inc(&cpu_buffer->pages_lost);
2016                 }
2017
2018                 /*
2019                  * We have already removed references to this list item, just
2020                  * free up the buffer_page and its page
2021                  */
2022                 free_buffer_page(to_remove_page);
2023                 nr_removed--;
2024
2025         } while (to_remove_page != last_page);
2026
2027         RB_WARN_ON(cpu_buffer, nr_removed);
2028
2029         return nr_removed == 0;
2030 }
2031
2032 static bool
2033 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2034 {
2035         struct list_head *pages = &cpu_buffer->new_pages;
2036         unsigned long flags;
2037         bool success;
2038         int retries;
2039
2040         /* Can be called at early boot up, where interrupts must not been enabled */
2041         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2042         /*
2043          * We are holding the reader lock, so the reader page won't be swapped
2044          * in the ring buffer. Now we are racing with the writer trying to
2045          * move head page and the tail page.
2046          * We are going to adapt the reader page update process where:
2047          * 1. We first splice the start and end of list of new pages between
2048          *    the head page and its previous page.
2049          * 2. We cmpxchg the prev_page->next to point from head page to the
2050          *    start of new pages list.
2051          * 3. Finally, we update the head->prev to the end of new list.
2052          *
2053          * We will try this process 10 times, to make sure that we don't keep
2054          * spinning.
2055          */
2056         retries = 10;
2057         success = false;
2058         while (retries--) {
2059                 struct list_head *head_page, *prev_page, *r;
2060                 struct list_head *last_page, *first_page;
2061                 struct list_head *head_page_with_bit;
2062                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2063
2064                 if (!hpage)
2065                         break;
2066                 head_page = &hpage->list;
2067                 prev_page = head_page->prev;
2068
2069                 first_page = pages->next;
2070                 last_page  = pages->prev;
2071
2072                 head_page_with_bit = (struct list_head *)
2073                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2074
2075                 last_page->next = head_page_with_bit;
2076                 first_page->prev = prev_page;
2077
2078                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2079
2080                 if (r == head_page_with_bit) {
2081                         /*
2082                          * yay, we replaced the page pointer to our new list,
2083                          * now, we just have to update to head page's prev
2084                          * pointer to point to end of list
2085                          */
2086                         head_page->prev = last_page;
2087                         success = true;
2088                         break;
2089                 }
2090         }
2091
2092         if (success)
2093                 INIT_LIST_HEAD(pages);
2094         /*
2095          * If we weren't successful in adding in new pages, warn and stop
2096          * tracing
2097          */
2098         RB_WARN_ON(cpu_buffer, !success);
2099         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2100
2101         /* free pages if they weren't inserted */
2102         if (!success) {
2103                 struct buffer_page *bpage, *tmp;
2104                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2105                                          list) {
2106                         list_del_init(&bpage->list);
2107                         free_buffer_page(bpage);
2108                 }
2109         }
2110         return success;
2111 }
2112
2113 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2114 {
2115         bool success;
2116
2117         if (cpu_buffer->nr_pages_to_update > 0)
2118                 success = rb_insert_pages(cpu_buffer);
2119         else
2120                 success = rb_remove_pages(cpu_buffer,
2121                                         -cpu_buffer->nr_pages_to_update);
2122
2123         if (success)
2124                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2125 }
2126
2127 static void update_pages_handler(struct work_struct *work)
2128 {
2129         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2130                         struct ring_buffer_per_cpu, update_pages_work);
2131         rb_update_pages(cpu_buffer);
2132         complete(&cpu_buffer->update_done);
2133 }
2134
2135 /**
2136  * ring_buffer_resize - resize the ring buffer
2137  * @buffer: the buffer to resize.
2138  * @size: the new size.
2139  * @cpu_id: the cpu buffer to resize
2140  *
2141  * Minimum size is 2 * BUF_PAGE_SIZE.
2142  *
2143  * Returns 0 on success and < 0 on failure.
2144  */
2145 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2146                         int cpu_id)
2147 {
2148         struct ring_buffer_per_cpu *cpu_buffer;
2149         unsigned long nr_pages;
2150         int cpu, err;
2151
2152         /*
2153          * Always succeed at resizing a non-existent buffer:
2154          */
2155         if (!buffer)
2156                 return 0;
2157
2158         /* Make sure the requested buffer exists */
2159         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2160             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2161                 return 0;
2162
2163         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2164
2165         /* we need a minimum of two pages */
2166         if (nr_pages < 2)
2167                 nr_pages = 2;
2168
2169         /* prevent another thread from changing buffer sizes */
2170         mutex_lock(&buffer->mutex);
2171         atomic_inc(&buffer->resizing);
2172
2173         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2174                 /*
2175                  * Don't succeed if resizing is disabled, as a reader might be
2176                  * manipulating the ring buffer and is expecting a sane state while
2177                  * this is true.
2178                  */
2179                 for_each_buffer_cpu(buffer, cpu) {
2180                         cpu_buffer = buffer->buffers[cpu];
2181                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2182                                 err = -EBUSY;
2183                                 goto out_err_unlock;
2184                         }
2185                 }
2186
2187                 /* calculate the pages to update */
2188                 for_each_buffer_cpu(buffer, cpu) {
2189                         cpu_buffer = buffer->buffers[cpu];
2190
2191                         cpu_buffer->nr_pages_to_update = nr_pages -
2192                                                         cpu_buffer->nr_pages;
2193                         /*
2194                          * nothing more to do for removing pages or no update
2195                          */
2196                         if (cpu_buffer->nr_pages_to_update <= 0)
2197                                 continue;
2198                         /*
2199                          * to add pages, make sure all new pages can be
2200                          * allocated without receiving ENOMEM
2201                          */
2202                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2203                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2204                                                 &cpu_buffer->new_pages)) {
2205                                 /* not enough memory for new pages */
2206                                 err = -ENOMEM;
2207                                 goto out_err;
2208                         }
2209
2210                         cond_resched();
2211                 }
2212
2213                 cpus_read_lock();
2214                 /*
2215                  * Fire off all the required work handlers
2216                  * We can't schedule on offline CPUs, but it's not necessary
2217                  * since we can change their buffer sizes without any race.
2218                  */
2219                 for_each_buffer_cpu(buffer, cpu) {
2220                         cpu_buffer = buffer->buffers[cpu];
2221                         if (!cpu_buffer->nr_pages_to_update)
2222                                 continue;
2223
2224                         /* Can't run something on an offline CPU. */
2225                         if (!cpu_online(cpu)) {
2226                                 rb_update_pages(cpu_buffer);
2227                                 cpu_buffer->nr_pages_to_update = 0;
2228                         } else {
2229                                 /* Run directly if possible. */
2230                                 migrate_disable();
2231                                 if (cpu != smp_processor_id()) {
2232                                         migrate_enable();
2233                                         schedule_work_on(cpu,
2234                                                          &cpu_buffer->update_pages_work);
2235                                 } else {
2236                                         update_pages_handler(&cpu_buffer->update_pages_work);
2237                                         migrate_enable();
2238                                 }
2239                         }
2240                 }
2241
2242                 /* wait for all the updates to complete */
2243                 for_each_buffer_cpu(buffer, cpu) {
2244                         cpu_buffer = buffer->buffers[cpu];
2245                         if (!cpu_buffer->nr_pages_to_update)
2246                                 continue;
2247
2248                         if (cpu_online(cpu))
2249                                 wait_for_completion(&cpu_buffer->update_done);
2250                         cpu_buffer->nr_pages_to_update = 0;
2251                 }
2252
2253                 cpus_read_unlock();
2254         } else {
2255                 cpu_buffer = buffer->buffers[cpu_id];
2256
2257                 if (nr_pages == cpu_buffer->nr_pages)
2258                         goto out;
2259
2260                 /*
2261                  * Don't succeed if resizing is disabled, as a reader might be
2262                  * manipulating the ring buffer and is expecting a sane state while
2263                  * this is true.
2264                  */
2265                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2266                         err = -EBUSY;
2267                         goto out_err_unlock;
2268                 }
2269
2270                 cpu_buffer->nr_pages_to_update = nr_pages -
2271                                                 cpu_buffer->nr_pages;
2272
2273                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2274                 if (cpu_buffer->nr_pages_to_update > 0 &&
2275                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2276                                             &cpu_buffer->new_pages)) {
2277                         err = -ENOMEM;
2278                         goto out_err;
2279                 }
2280
2281                 cpus_read_lock();
2282
2283                 /* Can't run something on an offline CPU. */
2284                 if (!cpu_online(cpu_id))
2285                         rb_update_pages(cpu_buffer);
2286                 else {
2287                         /* Run directly if possible. */
2288                         migrate_disable();
2289                         if (cpu_id == smp_processor_id()) {
2290                                 rb_update_pages(cpu_buffer);
2291                                 migrate_enable();
2292                         } else {
2293                                 migrate_enable();
2294                                 schedule_work_on(cpu_id,
2295                                                  &cpu_buffer->update_pages_work);
2296                                 wait_for_completion(&cpu_buffer->update_done);
2297                         }
2298                 }
2299
2300                 cpu_buffer->nr_pages_to_update = 0;
2301                 cpus_read_unlock();
2302         }
2303
2304  out:
2305         /*
2306          * The ring buffer resize can happen with the ring buffer
2307          * enabled, so that the update disturbs the tracing as little
2308          * as possible. But if the buffer is disabled, we do not need
2309          * to worry about that, and we can take the time to verify
2310          * that the buffer is not corrupt.
2311          */
2312         if (atomic_read(&buffer->record_disabled)) {
2313                 atomic_inc(&buffer->record_disabled);
2314                 /*
2315                  * Even though the buffer was disabled, we must make sure
2316                  * that it is truly disabled before calling rb_check_pages.
2317                  * There could have been a race between checking
2318                  * record_disable and incrementing it.
2319                  */
2320                 synchronize_rcu();
2321                 for_each_buffer_cpu(buffer, cpu) {
2322                         cpu_buffer = buffer->buffers[cpu];
2323                         rb_check_pages(cpu_buffer);
2324                 }
2325                 atomic_dec(&buffer->record_disabled);
2326         }
2327
2328         atomic_dec(&buffer->resizing);
2329         mutex_unlock(&buffer->mutex);
2330         return 0;
2331
2332  out_err:
2333         for_each_buffer_cpu(buffer, cpu) {
2334                 struct buffer_page *bpage, *tmp;
2335
2336                 cpu_buffer = buffer->buffers[cpu];
2337                 cpu_buffer->nr_pages_to_update = 0;
2338
2339                 if (list_empty(&cpu_buffer->new_pages))
2340                         continue;
2341
2342                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2343                                         list) {
2344                         list_del_init(&bpage->list);
2345                         free_buffer_page(bpage);
2346                 }
2347         }
2348  out_err_unlock:
2349         atomic_dec(&buffer->resizing);
2350         mutex_unlock(&buffer->mutex);
2351         return err;
2352 }
2353 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2354
2355 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2356 {
2357         mutex_lock(&buffer->mutex);
2358         if (val)
2359                 buffer->flags |= RB_FL_OVERWRITE;
2360         else
2361                 buffer->flags &= ~RB_FL_OVERWRITE;
2362         mutex_unlock(&buffer->mutex);
2363 }
2364 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2365
2366 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2367 {
2368         return bpage->page->data + index;
2369 }
2370
2371 static __always_inline struct ring_buffer_event *
2372 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2373 {
2374         return __rb_page_index(cpu_buffer->reader_page,
2375                                cpu_buffer->reader_page->read);
2376 }
2377
2378 static struct ring_buffer_event *
2379 rb_iter_head_event(struct ring_buffer_iter *iter)
2380 {
2381         struct ring_buffer_event *event;
2382         struct buffer_page *iter_head_page = iter->head_page;
2383         unsigned long commit;
2384         unsigned length;
2385
2386         if (iter->head != iter->next_event)
2387                 return iter->event;
2388
2389         /*
2390          * When the writer goes across pages, it issues a cmpxchg which
2391          * is a mb(), which will synchronize with the rmb here.
2392          * (see rb_tail_page_update() and __rb_reserve_next())
2393          */
2394         commit = rb_page_commit(iter_head_page);
2395         smp_rmb();
2396
2397         /* An event needs to be at least 8 bytes in size */
2398         if (iter->head > commit - 8)
2399                 goto reset;
2400
2401         event = __rb_page_index(iter_head_page, iter->head);
2402         length = rb_event_length(event);
2403
2404         /*
2405          * READ_ONCE() doesn't work on functions and we don't want the
2406          * compiler doing any crazy optimizations with length.
2407          */
2408         barrier();
2409
2410         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2411                 /* Writer corrupted the read? */
2412                 goto reset;
2413
2414         memcpy(iter->event, event, length);
2415         /*
2416          * If the page stamp is still the same after this rmb() then the
2417          * event was safely copied without the writer entering the page.
2418          */
2419         smp_rmb();
2420
2421         /* Make sure the page didn't change since we read this */
2422         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2423             commit > rb_page_commit(iter_head_page))
2424                 goto reset;
2425
2426         iter->next_event = iter->head + length;
2427         return iter->event;
2428  reset:
2429         /* Reset to the beginning */
2430         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2431         iter->head = 0;
2432         iter->next_event = 0;
2433         iter->missed_events = 1;
2434         return NULL;
2435 }
2436
2437 /* Size is determined by what has been committed */
2438 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2439 {
2440         return rb_page_commit(bpage);
2441 }
2442
2443 static __always_inline unsigned
2444 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2445 {
2446         return rb_page_commit(cpu_buffer->commit_page);
2447 }
2448
2449 static __always_inline unsigned
2450 rb_event_index(struct ring_buffer_event *event)
2451 {
2452         unsigned long addr = (unsigned long)event;
2453
2454         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2455 }
2456
2457 static void rb_inc_iter(struct ring_buffer_iter *iter)
2458 {
2459         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2460
2461         /*
2462          * The iterator could be on the reader page (it starts there).
2463          * But the head could have moved, since the reader was
2464          * found. Check for this case and assign the iterator
2465          * to the head page instead of next.
2466          */
2467         if (iter->head_page == cpu_buffer->reader_page)
2468                 iter->head_page = rb_set_head_page(cpu_buffer);
2469         else
2470                 rb_inc_page(&iter->head_page);
2471
2472         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2473         iter->head = 0;
2474         iter->next_event = 0;
2475 }
2476
2477 /*
2478  * rb_handle_head_page - writer hit the head page
2479  *
2480  * Returns: +1 to retry page
2481  *           0 to continue
2482  *          -1 on error
2483  */
2484 static int
2485 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2486                     struct buffer_page *tail_page,
2487                     struct buffer_page *next_page)
2488 {
2489         struct buffer_page *new_head;
2490         int entries;
2491         int type;
2492         int ret;
2493
2494         entries = rb_page_entries(next_page);
2495
2496         /*
2497          * The hard part is here. We need to move the head
2498          * forward, and protect against both readers on
2499          * other CPUs and writers coming in via interrupts.
2500          */
2501         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2502                                        RB_PAGE_HEAD);
2503
2504         /*
2505          * type can be one of four:
2506          *  NORMAL - an interrupt already moved it for us
2507          *  HEAD   - we are the first to get here.
2508          *  UPDATE - we are the interrupt interrupting
2509          *           a current move.
2510          *  MOVED  - a reader on another CPU moved the next
2511          *           pointer to its reader page. Give up
2512          *           and try again.
2513          */
2514
2515         switch (type) {
2516         case RB_PAGE_HEAD:
2517                 /*
2518                  * We changed the head to UPDATE, thus
2519                  * it is our responsibility to update
2520                  * the counters.
2521                  */
2522                 local_add(entries, &cpu_buffer->overrun);
2523                 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2524                 local_inc(&cpu_buffer->pages_lost);
2525
2526                 /*
2527                  * The entries will be zeroed out when we move the
2528                  * tail page.
2529                  */
2530
2531                 /* still more to do */
2532                 break;
2533
2534         case RB_PAGE_UPDATE:
2535                 /*
2536                  * This is an interrupt that interrupt the
2537                  * previous update. Still more to do.
2538                  */
2539                 break;
2540         case RB_PAGE_NORMAL:
2541                 /*
2542                  * An interrupt came in before the update
2543                  * and processed this for us.
2544                  * Nothing left to do.
2545                  */
2546                 return 1;
2547         case RB_PAGE_MOVED:
2548                 /*
2549                  * The reader is on another CPU and just did
2550                  * a swap with our next_page.
2551                  * Try again.
2552                  */
2553                 return 1;
2554         default:
2555                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2556                 return -1;
2557         }
2558
2559         /*
2560          * Now that we are here, the old head pointer is
2561          * set to UPDATE. This will keep the reader from
2562          * swapping the head page with the reader page.
2563          * The reader (on another CPU) will spin till
2564          * we are finished.
2565          *
2566          * We just need to protect against interrupts
2567          * doing the job. We will set the next pointer
2568          * to HEAD. After that, we set the old pointer
2569          * to NORMAL, but only if it was HEAD before.
2570          * otherwise we are an interrupt, and only
2571          * want the outer most commit to reset it.
2572          */
2573         new_head = next_page;
2574         rb_inc_page(&new_head);
2575
2576         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2577                                     RB_PAGE_NORMAL);
2578
2579         /*
2580          * Valid returns are:
2581          *  HEAD   - an interrupt came in and already set it.
2582          *  NORMAL - One of two things:
2583          *            1) We really set it.
2584          *            2) A bunch of interrupts came in and moved
2585          *               the page forward again.
2586          */
2587         switch (ret) {
2588         case RB_PAGE_HEAD:
2589         case RB_PAGE_NORMAL:
2590                 /* OK */
2591                 break;
2592         default:
2593                 RB_WARN_ON(cpu_buffer, 1);
2594                 return -1;
2595         }
2596
2597         /*
2598          * It is possible that an interrupt came in,
2599          * set the head up, then more interrupts came in
2600          * and moved it again. When we get back here,
2601          * the page would have been set to NORMAL but we
2602          * just set it back to HEAD.
2603          *
2604          * How do you detect this? Well, if that happened
2605          * the tail page would have moved.
2606          */
2607         if (ret == RB_PAGE_NORMAL) {
2608                 struct buffer_page *buffer_tail_page;
2609
2610                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2611                 /*
2612                  * If the tail had moved passed next, then we need
2613                  * to reset the pointer.
2614                  */
2615                 if (buffer_tail_page != tail_page &&
2616                     buffer_tail_page != next_page)
2617                         rb_head_page_set_normal(cpu_buffer, new_head,
2618                                                 next_page,
2619                                                 RB_PAGE_HEAD);
2620         }
2621
2622         /*
2623          * If this was the outer most commit (the one that
2624          * changed the original pointer from HEAD to UPDATE),
2625          * then it is up to us to reset it to NORMAL.
2626          */
2627         if (type == RB_PAGE_HEAD) {
2628                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2629                                               tail_page,
2630                                               RB_PAGE_UPDATE);
2631                 if (RB_WARN_ON(cpu_buffer,
2632                                ret != RB_PAGE_UPDATE))
2633                         return -1;
2634         }
2635
2636         return 0;
2637 }
2638
2639 static inline void
2640 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2641               unsigned long tail, struct rb_event_info *info)
2642 {
2643         struct buffer_page *tail_page = info->tail_page;
2644         struct ring_buffer_event *event;
2645         unsigned long length = info->length;
2646
2647         /*
2648          * Only the event that crossed the page boundary
2649          * must fill the old tail_page with padding.
2650          */
2651         if (tail >= BUF_PAGE_SIZE) {
2652                 /*
2653                  * If the page was filled, then we still need
2654                  * to update the real_end. Reset it to zero
2655                  * and the reader will ignore it.
2656                  */
2657                 if (tail == BUF_PAGE_SIZE)
2658                         tail_page->real_end = 0;
2659
2660                 local_sub(length, &tail_page->write);
2661                 return;
2662         }
2663
2664         event = __rb_page_index(tail_page, tail);
2665
2666         /*
2667          * Save the original length to the meta data.
2668          * This will be used by the reader to add lost event
2669          * counter.
2670          */
2671         tail_page->real_end = tail;
2672
2673         /*
2674          * If this event is bigger than the minimum size, then
2675          * we need to be careful that we don't subtract the
2676          * write counter enough to allow another writer to slip
2677          * in on this page.
2678          * We put in a discarded commit instead, to make sure
2679          * that this space is not used again, and this space will
2680          * not be accounted into 'entries_bytes'.
2681          *
2682          * If we are less than the minimum size, we don't need to
2683          * worry about it.
2684          */
2685         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2686                 /* No room for any events */
2687
2688                 /* Mark the rest of the page with padding */
2689                 rb_event_set_padding(event);
2690
2691                 /* Make sure the padding is visible before the write update */
2692                 smp_wmb();
2693
2694                 /* Set the write back to the previous setting */
2695                 local_sub(length, &tail_page->write);
2696                 return;
2697         }
2698
2699         /* Put in a discarded event */
2700         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2701         event->type_len = RINGBUF_TYPE_PADDING;
2702         /* time delta must be non zero */
2703         event->time_delta = 1;
2704
2705         /* account for padding bytes */
2706         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2707
2708         /* Make sure the padding is visible before the tail_page->write update */
2709         smp_wmb();
2710
2711         /* Set write to end of buffer */
2712         length = (tail + length) - BUF_PAGE_SIZE;
2713         local_sub(length, &tail_page->write);
2714 }
2715
2716 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2717
2718 /*
2719  * This is the slow path, force gcc not to inline it.
2720  */
2721 static noinline struct ring_buffer_event *
2722 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2723              unsigned long tail, struct rb_event_info *info)
2724 {
2725         struct buffer_page *tail_page = info->tail_page;
2726         struct buffer_page *commit_page = cpu_buffer->commit_page;
2727         struct trace_buffer *buffer = cpu_buffer->buffer;
2728         struct buffer_page *next_page;
2729         int ret;
2730
2731         next_page = tail_page;
2732
2733         rb_inc_page(&next_page);
2734
2735         /*
2736          * If for some reason, we had an interrupt storm that made
2737          * it all the way around the buffer, bail, and warn
2738          * about it.
2739          */
2740         if (unlikely(next_page == commit_page)) {
2741                 local_inc(&cpu_buffer->commit_overrun);
2742                 goto out_reset;
2743         }
2744
2745         /*
2746          * This is where the fun begins!
2747          *
2748          * We are fighting against races between a reader that
2749          * could be on another CPU trying to swap its reader
2750          * page with the buffer head.
2751          *
2752          * We are also fighting against interrupts coming in and
2753          * moving the head or tail on us as well.
2754          *
2755          * If the next page is the head page then we have filled
2756          * the buffer, unless the commit page is still on the
2757          * reader page.
2758          */
2759         if (rb_is_head_page(next_page, &tail_page->list)) {
2760
2761                 /*
2762                  * If the commit is not on the reader page, then
2763                  * move the header page.
2764                  */
2765                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2766                         /*
2767                          * If we are not in overwrite mode,
2768                          * this is easy, just stop here.
2769                          */
2770                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2771                                 local_inc(&cpu_buffer->dropped_events);
2772                                 goto out_reset;
2773                         }
2774
2775                         ret = rb_handle_head_page(cpu_buffer,
2776                                                   tail_page,
2777                                                   next_page);
2778                         if (ret < 0)
2779                                 goto out_reset;
2780                         if (ret)
2781                                 goto out_again;
2782                 } else {
2783                         /*
2784                          * We need to be careful here too. The
2785                          * commit page could still be on the reader
2786                          * page. We could have a small buffer, and
2787                          * have filled up the buffer with events
2788                          * from interrupts and such, and wrapped.
2789                          *
2790                          * Note, if the tail page is also on the
2791                          * reader_page, we let it move out.
2792                          */
2793                         if (unlikely((cpu_buffer->commit_page !=
2794                                       cpu_buffer->tail_page) &&
2795                                      (cpu_buffer->commit_page ==
2796                                       cpu_buffer->reader_page))) {
2797                                 local_inc(&cpu_buffer->commit_overrun);
2798                                 goto out_reset;
2799                         }
2800                 }
2801         }
2802
2803         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2804
2805  out_again:
2806
2807         rb_reset_tail(cpu_buffer, tail, info);
2808
2809         /* Commit what we have for now. */
2810         rb_end_commit(cpu_buffer);
2811         /* rb_end_commit() decs committing */
2812         local_inc(&cpu_buffer->committing);
2813
2814         /* fail and let the caller try again */
2815         return ERR_PTR(-EAGAIN);
2816
2817  out_reset:
2818         /* reset write */
2819         rb_reset_tail(cpu_buffer, tail, info);
2820
2821         return NULL;
2822 }
2823
2824 /* Slow path */
2825 static struct ring_buffer_event *
2826 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2827 {
2828         if (abs)
2829                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2830         else
2831                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2832
2833         /* Not the first event on the page, or not delta? */
2834         if (abs || rb_event_index(event)) {
2835                 event->time_delta = delta & TS_MASK;
2836                 event->array[0] = delta >> TS_SHIFT;
2837         } else {
2838                 /* nope, just zero it */
2839                 event->time_delta = 0;
2840                 event->array[0] = 0;
2841         }
2842
2843         return skip_time_extend(event);
2844 }
2845
2846 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2847 static inline bool sched_clock_stable(void)
2848 {
2849         return true;
2850 }
2851 #endif
2852
2853 static void
2854 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2855                    struct rb_event_info *info)
2856 {
2857         u64 write_stamp;
2858
2859         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2860                   (unsigned long long)info->delta,
2861                   (unsigned long long)info->ts,
2862                   (unsigned long long)info->before,
2863                   (unsigned long long)info->after,
2864                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2865                   sched_clock_stable() ? "" :
2866                   "If you just came from a suspend/resume,\n"
2867                   "please switch to the trace global clock:\n"
2868                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2869                   "or add trace_clock=global to the kernel command line\n");
2870 }
2871
2872 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2873                                       struct ring_buffer_event **event,
2874                                       struct rb_event_info *info,
2875                                       u64 *delta,
2876                                       unsigned int *length)
2877 {
2878         bool abs = info->add_timestamp &
2879                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2880
2881         if (unlikely(info->delta > (1ULL << 59))) {
2882                 /*
2883                  * Some timers can use more than 59 bits, and when a timestamp
2884                  * is added to the buffer, it will lose those bits.
2885                  */
2886                 if (abs && (info->ts & TS_MSB)) {
2887                         info->delta &= ABS_TS_MASK;
2888
2889                 /* did the clock go backwards */
2890                 } else if (info->before == info->after && info->before > info->ts) {
2891                         /* not interrupted */
2892                         static int once;
2893
2894                         /*
2895                          * This is possible with a recalibrating of the TSC.
2896                          * Do not produce a call stack, but just report it.
2897                          */
2898                         if (!once) {
2899                                 once++;
2900                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2901                                         info->before, info->ts);
2902                         }
2903                 } else
2904                         rb_check_timestamp(cpu_buffer, info);
2905                 if (!abs)
2906                         info->delta = 0;
2907         }
2908         *event = rb_add_time_stamp(*event, info->delta, abs);
2909         *length -= RB_LEN_TIME_EXTEND;
2910         *delta = 0;
2911 }
2912
2913 /**
2914  * rb_update_event - update event type and data
2915  * @cpu_buffer: The per cpu buffer of the @event
2916  * @event: the event to update
2917  * @info: The info to update the @event with (contains length and delta)
2918  *
2919  * Update the type and data fields of the @event. The length
2920  * is the actual size that is written to the ring buffer,
2921  * and with this, we can determine what to place into the
2922  * data field.
2923  */
2924 static void
2925 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2926                 struct ring_buffer_event *event,
2927                 struct rb_event_info *info)
2928 {
2929         unsigned length = info->length;
2930         u64 delta = info->delta;
2931         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2932
2933         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2934                 cpu_buffer->event_stamp[nest] = info->ts;
2935
2936         /*
2937          * If we need to add a timestamp, then we
2938          * add it to the start of the reserved space.
2939          */
2940         if (unlikely(info->add_timestamp))
2941                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2942
2943         event->time_delta = delta;
2944         length -= RB_EVNT_HDR_SIZE;
2945         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2946                 event->type_len = 0;
2947                 event->array[0] = length;
2948         } else
2949                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2950 }
2951
2952 static unsigned rb_calculate_event_length(unsigned length)
2953 {
2954         struct ring_buffer_event event; /* Used only for sizeof array */
2955
2956         /* zero length can cause confusions */
2957         if (!length)
2958                 length++;
2959
2960         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2961                 length += sizeof(event.array[0]);
2962
2963         length += RB_EVNT_HDR_SIZE;
2964         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2965
2966         /*
2967          * In case the time delta is larger than the 27 bits for it
2968          * in the header, we need to add a timestamp. If another
2969          * event comes in when trying to discard this one to increase
2970          * the length, then the timestamp will be added in the allocated
2971          * space of this event. If length is bigger than the size needed
2972          * for the TIME_EXTEND, then padding has to be used. The events
2973          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2974          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2975          * As length is a multiple of 4, we only need to worry if it
2976          * is 12 (RB_LEN_TIME_EXTEND + 4).
2977          */
2978         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2979                 length += RB_ALIGNMENT;
2980
2981         return length;
2982 }
2983
2984 static u64 rb_time_delta(struct ring_buffer_event *event)
2985 {
2986         switch (event->type_len) {
2987         case RINGBUF_TYPE_PADDING:
2988                 return 0;
2989
2990         case RINGBUF_TYPE_TIME_EXTEND:
2991                 return rb_event_time_stamp(event);
2992
2993         case RINGBUF_TYPE_TIME_STAMP:
2994                 return 0;
2995
2996         case RINGBUF_TYPE_DATA:
2997                 return event->time_delta;
2998         default:
2999                 return 0;
3000         }
3001 }
3002
3003 static inline bool
3004 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3005                   struct ring_buffer_event *event)
3006 {
3007         unsigned long new_index, old_index;
3008         struct buffer_page *bpage;
3009         unsigned long addr;
3010         u64 write_stamp;
3011         u64 delta;
3012
3013         new_index = rb_event_index(event);
3014         old_index = new_index + rb_event_ts_length(event);
3015         addr = (unsigned long)event;
3016         addr &= PAGE_MASK;
3017
3018         bpage = READ_ONCE(cpu_buffer->tail_page);
3019
3020         delta = rb_time_delta(event);
3021
3022         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3023                 return false;
3024
3025         /* Make sure the write stamp is read before testing the location */
3026         barrier();
3027
3028         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3029                 unsigned long write_mask =
3030                         local_read(&bpage->write) & ~RB_WRITE_MASK;
3031                 unsigned long event_length = rb_event_length(event);
3032
3033                 /* Something came in, can't discard */
3034                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3035                                        write_stamp, write_stamp - delta))
3036                         return false;
3037
3038                 /*
3039                  * It's possible that the event time delta is zero
3040                  * (has the same time stamp as the previous event)
3041                  * in which case write_stamp and before_stamp could
3042                  * be the same. In such a case, force before_stamp
3043                  * to be different than write_stamp. It doesn't
3044                  * matter what it is, as long as its different.
3045                  */
3046                 if (!delta)
3047                         rb_time_set(&cpu_buffer->before_stamp, 0);
3048
3049                 /*
3050                  * If an event were to come in now, it would see that the
3051                  * write_stamp and the before_stamp are different, and assume
3052                  * that this event just added itself before updating
3053                  * the write stamp. The interrupting event will fix the
3054                  * write stamp for us, and use the before stamp as its delta.
3055                  */
3056
3057                 /*
3058                  * This is on the tail page. It is possible that
3059                  * a write could come in and move the tail page
3060                  * and write to the next page. That is fine
3061                  * because we just shorten what is on this page.
3062                  */
3063                 old_index += write_mask;
3064                 new_index += write_mask;
3065
3066                 /* caution: old_index gets updated on cmpxchg failure */
3067                 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3068                         /* update counters */
3069                         local_sub(event_length, &cpu_buffer->entries_bytes);
3070                         return true;
3071                 }
3072         }
3073
3074         /* could not discard */
3075         return false;
3076 }
3077
3078 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3079 {
3080         local_inc(&cpu_buffer->committing);
3081         local_inc(&cpu_buffer->commits);
3082 }
3083
3084 static __always_inline void
3085 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3086 {
3087         unsigned long max_count;
3088
3089         /*
3090          * We only race with interrupts and NMIs on this CPU.
3091          * If we own the commit event, then we can commit
3092          * all others that interrupted us, since the interruptions
3093          * are in stack format (they finish before they come
3094          * back to us). This allows us to do a simple loop to
3095          * assign the commit to the tail.
3096          */
3097  again:
3098         max_count = cpu_buffer->nr_pages * 100;
3099
3100         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3101                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3102                         return;
3103                 if (RB_WARN_ON(cpu_buffer,
3104                                rb_is_reader_page(cpu_buffer->tail_page)))
3105                         return;
3106                 /*
3107                  * No need for a memory barrier here, as the update
3108                  * of the tail_page did it for this page.
3109                  */
3110                 local_set(&cpu_buffer->commit_page->page->commit,
3111                           rb_page_write(cpu_buffer->commit_page));
3112                 rb_inc_page(&cpu_buffer->commit_page);
3113                 /* add barrier to keep gcc from optimizing too much */
3114                 barrier();
3115         }
3116         while (rb_commit_index(cpu_buffer) !=
3117                rb_page_write(cpu_buffer->commit_page)) {
3118
3119                 /* Make sure the readers see the content of what is committed. */
3120                 smp_wmb();
3121                 local_set(&cpu_buffer->commit_page->page->commit,
3122                           rb_page_write(cpu_buffer->commit_page));
3123                 RB_WARN_ON(cpu_buffer,
3124                            local_read(&cpu_buffer->commit_page->page->commit) &
3125                            ~RB_WRITE_MASK);
3126                 barrier();
3127         }
3128
3129         /* again, keep gcc from optimizing */
3130         barrier();
3131
3132         /*
3133          * If an interrupt came in just after the first while loop
3134          * and pushed the tail page forward, we will be left with
3135          * a dangling commit that will never go forward.
3136          */
3137         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3138                 goto again;
3139 }
3140
3141 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3142 {
3143         unsigned long commits;
3144
3145         if (RB_WARN_ON(cpu_buffer,
3146                        !local_read(&cpu_buffer->committing)))
3147                 return;
3148
3149  again:
3150         commits = local_read(&cpu_buffer->commits);
3151         /* synchronize with interrupts */
3152         barrier();
3153         if (local_read(&cpu_buffer->committing) == 1)
3154                 rb_set_commit_to_write(cpu_buffer);
3155
3156         local_dec(&cpu_buffer->committing);
3157
3158         /* synchronize with interrupts */
3159         barrier();
3160
3161         /*
3162          * Need to account for interrupts coming in between the
3163          * updating of the commit page and the clearing of the
3164          * committing counter.
3165          */
3166         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3167             !local_read(&cpu_buffer->committing)) {
3168                 local_inc(&cpu_buffer->committing);
3169                 goto again;
3170         }
3171 }
3172
3173 static inline void rb_event_discard(struct ring_buffer_event *event)
3174 {
3175         if (extended_time(event))
3176                 event = skip_time_extend(event);
3177
3178         /* array[0] holds the actual length for the discarded event */
3179         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3180         event->type_len = RINGBUF_TYPE_PADDING;
3181         /* time delta must be non zero */
3182         if (!event->time_delta)
3183                 event->time_delta = 1;
3184 }
3185
3186 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3187 {
3188         local_inc(&cpu_buffer->entries);
3189         rb_end_commit(cpu_buffer);
3190 }
3191
3192 static __always_inline void
3193 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3194 {
3195         if (buffer->irq_work.waiters_pending) {
3196                 buffer->irq_work.waiters_pending = false;
3197                 /* irq_work_queue() supplies it's own memory barriers */
3198                 irq_work_queue(&buffer->irq_work.work);
3199         }
3200
3201         if (cpu_buffer->irq_work.waiters_pending) {
3202                 cpu_buffer->irq_work.waiters_pending = false;
3203                 /* irq_work_queue() supplies it's own memory barriers */
3204                 irq_work_queue(&cpu_buffer->irq_work.work);
3205         }
3206
3207         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3208                 return;
3209
3210         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3211                 return;
3212
3213         if (!cpu_buffer->irq_work.full_waiters_pending)
3214                 return;
3215
3216         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3217
3218         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3219                 return;
3220
3221         cpu_buffer->irq_work.wakeup_full = true;
3222         cpu_buffer->irq_work.full_waiters_pending = false;
3223         /* irq_work_queue() supplies it's own memory barriers */
3224         irq_work_queue(&cpu_buffer->irq_work.work);
3225 }
3226
3227 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3228 # define do_ring_buffer_record_recursion()      \
3229         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3230 #else
3231 # define do_ring_buffer_record_recursion() do { } while (0)
3232 #endif
3233
3234 /*
3235  * The lock and unlock are done within a preempt disable section.
3236  * The current_context per_cpu variable can only be modified
3237  * by the current task between lock and unlock. But it can
3238  * be modified more than once via an interrupt. To pass this
3239  * information from the lock to the unlock without having to
3240  * access the 'in_interrupt()' functions again (which do show
3241  * a bit of overhead in something as critical as function tracing,
3242  * we use a bitmask trick.
3243  *
3244  *  bit 1 =  NMI context
3245  *  bit 2 =  IRQ context
3246  *  bit 3 =  SoftIRQ context
3247  *  bit 4 =  normal context.
3248  *
3249  * This works because this is the order of contexts that can
3250  * preempt other contexts. A SoftIRQ never preempts an IRQ
3251  * context.
3252  *
3253  * When the context is determined, the corresponding bit is
3254  * checked and set (if it was set, then a recursion of that context
3255  * happened).
3256  *
3257  * On unlock, we need to clear this bit. To do so, just subtract
3258  * 1 from the current_context and AND it to itself.
3259  *
3260  * (binary)
3261  *  101 - 1 = 100
3262  *  101 & 100 = 100 (clearing bit zero)
3263  *
3264  *  1010 - 1 = 1001
3265  *  1010 & 1001 = 1000 (clearing bit 1)
3266  *
3267  * The least significant bit can be cleared this way, and it
3268  * just so happens that it is the same bit corresponding to
3269  * the current context.
3270  *
3271  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3272  * is set when a recursion is detected at the current context, and if
3273  * the TRANSITION bit is already set, it will fail the recursion.
3274  * This is needed because there's a lag between the changing of
3275  * interrupt context and updating the preempt count. In this case,
3276  * a false positive will be found. To handle this, one extra recursion
3277  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3278  * bit is already set, then it is considered a recursion and the function
3279  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3280  *
3281  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3282  * to be cleared. Even if it wasn't the context that set it. That is,
3283  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3284  * is called before preempt_count() is updated, since the check will
3285  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3286  * NMI then comes in, it will set the NMI bit, but when the NMI code
3287  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3288  * and leave the NMI bit set. But this is fine, because the interrupt
3289  * code that set the TRANSITION bit will then clear the NMI bit when it
3290  * calls trace_recursive_unlock(). If another NMI comes in, it will
3291  * set the TRANSITION bit and continue.
3292  *
3293  * Note: The TRANSITION bit only handles a single transition between context.
3294  */
3295
3296 static __always_inline bool
3297 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3298 {
3299         unsigned int val = cpu_buffer->current_context;
3300         int bit = interrupt_context_level();
3301
3302         bit = RB_CTX_NORMAL - bit;
3303
3304         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3305                 /*
3306                  * It is possible that this was called by transitioning
3307                  * between interrupt context, and preempt_count() has not
3308                  * been updated yet. In this case, use the TRANSITION bit.
3309                  */
3310                 bit = RB_CTX_TRANSITION;
3311                 if (val & (1 << (bit + cpu_buffer->nest))) {
3312                         do_ring_buffer_record_recursion();
3313                         return true;
3314                 }
3315         }
3316
3317         val |= (1 << (bit + cpu_buffer->nest));
3318         cpu_buffer->current_context = val;
3319
3320         return false;
3321 }
3322
3323 static __always_inline void
3324 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3325 {
3326         cpu_buffer->current_context &=
3327                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3328 }
3329
3330 /* The recursive locking above uses 5 bits */
3331 #define NESTED_BITS 5
3332
3333 /**
3334  * ring_buffer_nest_start - Allow to trace while nested
3335  * @buffer: The ring buffer to modify
3336  *
3337  * The ring buffer has a safety mechanism to prevent recursion.
3338  * But there may be a case where a trace needs to be done while
3339  * tracing something else. In this case, calling this function
3340  * will allow this function to nest within a currently active
3341  * ring_buffer_lock_reserve().
3342  *
3343  * Call this function before calling another ring_buffer_lock_reserve() and
3344  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3345  */
3346 void ring_buffer_nest_start(struct trace_buffer *buffer)
3347 {
3348         struct ring_buffer_per_cpu *cpu_buffer;
3349         int cpu;
3350
3351         /* Enabled by ring_buffer_nest_end() */
3352         preempt_disable_notrace();
3353         cpu = raw_smp_processor_id();
3354         cpu_buffer = buffer->buffers[cpu];
3355         /* This is the shift value for the above recursive locking */
3356         cpu_buffer->nest += NESTED_BITS;
3357 }
3358
3359 /**
3360  * ring_buffer_nest_end - Allow to trace while nested
3361  * @buffer: The ring buffer to modify
3362  *
3363  * Must be called after ring_buffer_nest_start() and after the
3364  * ring_buffer_unlock_commit().
3365  */
3366 void ring_buffer_nest_end(struct trace_buffer *buffer)
3367 {
3368         struct ring_buffer_per_cpu *cpu_buffer;
3369         int cpu;
3370
3371         /* disabled by ring_buffer_nest_start() */
3372         cpu = raw_smp_processor_id();
3373         cpu_buffer = buffer->buffers[cpu];
3374         /* This is the shift value for the above recursive locking */
3375         cpu_buffer->nest -= NESTED_BITS;
3376         preempt_enable_notrace();
3377 }
3378
3379 /**
3380  * ring_buffer_unlock_commit - commit a reserved
3381  * @buffer: The buffer to commit to
3382  *
3383  * This commits the data to the ring buffer, and releases any locks held.
3384  *
3385  * Must be paired with ring_buffer_lock_reserve.
3386  */
3387 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3388 {
3389         struct ring_buffer_per_cpu *cpu_buffer;
3390         int cpu = raw_smp_processor_id();
3391
3392         cpu_buffer = buffer->buffers[cpu];
3393
3394         rb_commit(cpu_buffer);
3395
3396         rb_wakeups(buffer, cpu_buffer);
3397
3398         trace_recursive_unlock(cpu_buffer);
3399
3400         preempt_enable_notrace();
3401
3402         return 0;
3403 }
3404 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3405
3406 /* Special value to validate all deltas on a page. */
3407 #define CHECK_FULL_PAGE         1L
3408
3409 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3410 static void dump_buffer_page(struct buffer_data_page *bpage,
3411                              struct rb_event_info *info,
3412                              unsigned long tail)
3413 {
3414         struct ring_buffer_event *event;
3415         u64 ts, delta;
3416         int e;
3417
3418         ts = bpage->time_stamp;
3419         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3420
3421         for (e = 0; e < tail; e += rb_event_length(event)) {
3422
3423                 event = (struct ring_buffer_event *)(bpage->data + e);
3424
3425                 switch (event->type_len) {
3426
3427                 case RINGBUF_TYPE_TIME_EXTEND:
3428                         delta = rb_event_time_stamp(event);
3429                         ts += delta;
3430                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3431                         break;
3432
3433                 case RINGBUF_TYPE_TIME_STAMP:
3434                         delta = rb_event_time_stamp(event);
3435                         ts = rb_fix_abs_ts(delta, ts);
3436                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3437                         break;
3438
3439                 case RINGBUF_TYPE_PADDING:
3440                         ts += event->time_delta;
3441                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3442                         break;
3443
3444                 case RINGBUF_TYPE_DATA:
3445                         ts += event->time_delta;
3446                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3447                         break;
3448
3449                 default:
3450                         break;
3451                 }
3452         }
3453 }
3454
3455 static DEFINE_PER_CPU(atomic_t, checking);
3456 static atomic_t ts_dump;
3457
3458 /*
3459  * Check if the current event time stamp matches the deltas on
3460  * the buffer page.
3461  */
3462 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3463                          struct rb_event_info *info,
3464                          unsigned long tail)
3465 {
3466         struct ring_buffer_event *event;
3467         struct buffer_data_page *bpage;
3468         u64 ts, delta;
3469         bool full = false;
3470         int e;
3471
3472         bpage = info->tail_page->page;
3473
3474         if (tail == CHECK_FULL_PAGE) {
3475                 full = true;
3476                 tail = local_read(&bpage->commit);
3477         } else if (info->add_timestamp &
3478                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3479                 /* Ignore events with absolute time stamps */
3480                 return;
3481         }
3482
3483         /*
3484          * Do not check the first event (skip possible extends too).
3485          * Also do not check if previous events have not been committed.
3486          */
3487         if (tail <= 8 || tail > local_read(&bpage->commit))
3488                 return;
3489
3490         /*
3491          * If this interrupted another event, 
3492          */
3493         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3494                 goto out;
3495
3496         ts = bpage->time_stamp;
3497
3498         for (e = 0; e < tail; e += rb_event_length(event)) {
3499
3500                 event = (struct ring_buffer_event *)(bpage->data + e);
3501
3502                 switch (event->type_len) {
3503
3504                 case RINGBUF_TYPE_TIME_EXTEND:
3505                         delta = rb_event_time_stamp(event);
3506                         ts += delta;
3507                         break;
3508
3509                 case RINGBUF_TYPE_TIME_STAMP:
3510                         delta = rb_event_time_stamp(event);
3511                         ts = rb_fix_abs_ts(delta, ts);
3512                         break;
3513
3514                 case RINGBUF_TYPE_PADDING:
3515                         if (event->time_delta == 1)
3516                                 break;
3517                         fallthrough;
3518                 case RINGBUF_TYPE_DATA:
3519                         ts += event->time_delta;
3520                         break;
3521
3522                 default:
3523                         RB_WARN_ON(cpu_buffer, 1);
3524                 }
3525         }
3526         if ((full && ts > info->ts) ||
3527             (!full && ts + info->delta != info->ts)) {
3528                 /* If another report is happening, ignore this one */
3529                 if (atomic_inc_return(&ts_dump) != 1) {
3530                         atomic_dec(&ts_dump);
3531                         goto out;
3532                 }
3533                 atomic_inc(&cpu_buffer->record_disabled);
3534                 /* There's some cases in boot up that this can happen */
3535                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3536                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3537                         cpu_buffer->cpu,
3538                         ts + info->delta, info->ts, info->delta,
3539                         info->before, info->after,
3540                         full ? " (full)" : "");
3541                 dump_buffer_page(bpage, info, tail);
3542                 atomic_dec(&ts_dump);
3543                 /* Do not re-enable checking */
3544                 return;
3545         }
3546 out:
3547         atomic_dec(this_cpu_ptr(&checking));
3548 }
3549 #else
3550 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3551                          struct rb_event_info *info,
3552                          unsigned long tail)
3553 {
3554 }
3555 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3556
3557 static struct ring_buffer_event *
3558 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3559                   struct rb_event_info *info)
3560 {
3561         struct ring_buffer_event *event;
3562         struct buffer_page *tail_page;
3563         unsigned long tail, write, w;
3564         bool a_ok;
3565         bool b_ok;
3566
3567         /* Don't let the compiler play games with cpu_buffer->tail_page */
3568         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3569
3570  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3571         barrier();
3572         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3573         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3574         barrier();
3575         info->ts = rb_time_stamp(cpu_buffer->buffer);
3576
3577         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3578                 info->delta = info->ts;
3579         } else {
3580                 /*
3581                  * If interrupting an event time update, we may need an
3582                  * absolute timestamp.
3583                  * Don't bother if this is the start of a new page (w == 0).
3584                  */
3585                 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3586                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3587                         info->length += RB_LEN_TIME_EXTEND;
3588                 } else {
3589                         info->delta = info->ts - info->after;
3590                         if (unlikely(test_time_stamp(info->delta))) {
3591                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3592                                 info->length += RB_LEN_TIME_EXTEND;
3593                         }
3594                 }
3595         }
3596
3597  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3598
3599  /*C*/  write = local_add_return(info->length, &tail_page->write);
3600
3601         /* set write to only the index of the write */
3602         write &= RB_WRITE_MASK;
3603
3604         tail = write - info->length;
3605
3606         /* See if we shot pass the end of this buffer page */
3607         if (unlikely(write > BUF_PAGE_SIZE)) {
3608                 /* before and after may now different, fix it up*/
3609                 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3610                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3611                 if (a_ok && b_ok && info->before != info->after)
3612                         (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3613                                               info->before, info->after);
3614                 if (a_ok && b_ok)
3615                         check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3616                 return rb_move_tail(cpu_buffer, tail, info);
3617         }
3618
3619         if (likely(tail == w)) {
3620                 u64 save_before;
3621                 bool s_ok;
3622
3623                 /* Nothing interrupted us between A and C */
3624  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3625                 barrier();
3626  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3627                 RB_WARN_ON(cpu_buffer, !s_ok);
3628                 if (likely(!(info->add_timestamp &
3629                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3630                         /* This did not interrupt any time update */
3631                         info->delta = info->ts - info->after;
3632                 else
3633                         /* Just use full timestamp for interrupting event */
3634                         info->delta = info->ts;
3635                 barrier();
3636                 check_buffer(cpu_buffer, info, tail);
3637                 if (unlikely(info->ts != save_before)) {
3638                         /* SLOW PATH - Interrupted between C and E */
3639
3640                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3641                         RB_WARN_ON(cpu_buffer, !a_ok);
3642
3643                         /* Write stamp must only go forward */
3644                         if (save_before > info->after) {
3645                                 /*
3646                                  * We do not care about the result, only that
3647                                  * it gets updated atomically.
3648                                  */
3649                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3650                                                       info->after, save_before);
3651                         }
3652                 }
3653         } else {
3654                 u64 ts;
3655                 /* SLOW PATH - Interrupted between A and C */
3656                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3657                 /* Was interrupted before here, write_stamp must be valid */
3658                 RB_WARN_ON(cpu_buffer, !a_ok);
3659                 ts = rb_time_stamp(cpu_buffer->buffer);
3660                 barrier();
3661  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3662                     info->after < ts &&
3663                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3664                                     info->after, ts)) {
3665                         /* Nothing came after this event between C and E */
3666                         info->delta = ts - info->after;
3667                 } else {
3668                         /*
3669                          * Interrupted between C and E:
3670                          * Lost the previous events time stamp. Just set the
3671                          * delta to zero, and this will be the same time as
3672                          * the event this event interrupted. And the events that
3673                          * came after this will still be correct (as they would
3674                          * have built their delta on the previous event.
3675                          */
3676                         info->delta = 0;
3677                 }
3678                 info->ts = ts;
3679                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3680         }
3681
3682         /*
3683          * If this is the first commit on the page, then it has the same
3684          * timestamp as the page itself.
3685          */
3686         if (unlikely(!tail && !(info->add_timestamp &
3687                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3688                 info->delta = 0;
3689
3690         /* We reserved something on the buffer */
3691
3692         event = __rb_page_index(tail_page, tail);
3693         rb_update_event(cpu_buffer, event, info);
3694
3695         local_inc(&tail_page->entries);
3696
3697         /*
3698          * If this is the first commit on the page, then update
3699          * its timestamp.
3700          */
3701         if (unlikely(!tail))
3702                 tail_page->page->time_stamp = info->ts;
3703
3704         /* account for these added bytes */
3705         local_add(info->length, &cpu_buffer->entries_bytes);
3706
3707         return event;
3708 }
3709
3710 static __always_inline struct ring_buffer_event *
3711 rb_reserve_next_event(struct trace_buffer *buffer,
3712                       struct ring_buffer_per_cpu *cpu_buffer,
3713                       unsigned long length)
3714 {
3715         struct ring_buffer_event *event;
3716         struct rb_event_info info;
3717         int nr_loops = 0;
3718         int add_ts_default;
3719
3720         rb_start_commit(cpu_buffer);
3721         /* The commit page can not change after this */
3722
3723 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3724         /*
3725          * Due to the ability to swap a cpu buffer from a buffer
3726          * it is possible it was swapped before we committed.
3727          * (committing stops a swap). We check for it here and
3728          * if it happened, we have to fail the write.
3729          */
3730         barrier();
3731         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3732                 local_dec(&cpu_buffer->committing);
3733                 local_dec(&cpu_buffer->commits);
3734                 return NULL;
3735         }
3736 #endif
3737
3738         info.length = rb_calculate_event_length(length);
3739
3740         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3741                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3742                 info.length += RB_LEN_TIME_EXTEND;
3743         } else {
3744                 add_ts_default = RB_ADD_STAMP_NONE;
3745         }
3746
3747  again:
3748         info.add_timestamp = add_ts_default;
3749         info.delta = 0;
3750
3751         /*
3752          * We allow for interrupts to reenter here and do a trace.
3753          * If one does, it will cause this original code to loop
3754          * back here. Even with heavy interrupts happening, this
3755          * should only happen a few times in a row. If this happens
3756          * 1000 times in a row, there must be either an interrupt
3757          * storm or we have something buggy.
3758          * Bail!
3759          */
3760         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3761                 goto out_fail;
3762
3763         event = __rb_reserve_next(cpu_buffer, &info);
3764
3765         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3766                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3767                         info.length -= RB_LEN_TIME_EXTEND;
3768                 goto again;
3769         }
3770
3771         if (likely(event))
3772                 return event;
3773  out_fail:
3774         rb_end_commit(cpu_buffer);
3775         return NULL;
3776 }
3777
3778 /**
3779  * ring_buffer_lock_reserve - reserve a part of the buffer
3780  * @buffer: the ring buffer to reserve from
3781  * @length: the length of the data to reserve (excluding event header)
3782  *
3783  * Returns a reserved event on the ring buffer to copy directly to.
3784  * The user of this interface will need to get the body to write into
3785  * and can use the ring_buffer_event_data() interface.
3786  *
3787  * The length is the length of the data needed, not the event length
3788  * which also includes the event header.
3789  *
3790  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3791  * If NULL is returned, then nothing has been allocated or locked.
3792  */
3793 struct ring_buffer_event *
3794 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3795 {
3796         struct ring_buffer_per_cpu *cpu_buffer;
3797         struct ring_buffer_event *event;
3798         int cpu;
3799
3800         /* If we are tracing schedule, we don't want to recurse */
3801         preempt_disable_notrace();
3802
3803         if (unlikely(atomic_read(&buffer->record_disabled)))
3804                 goto out;
3805
3806         cpu = raw_smp_processor_id();
3807
3808         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3809                 goto out;
3810
3811         cpu_buffer = buffer->buffers[cpu];
3812
3813         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3814                 goto out;
3815
3816         if (unlikely(length > BUF_MAX_DATA_SIZE))
3817                 goto out;
3818
3819         if (unlikely(trace_recursive_lock(cpu_buffer)))
3820                 goto out;
3821
3822         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3823         if (!event)
3824                 goto out_unlock;
3825
3826         return event;
3827
3828  out_unlock:
3829         trace_recursive_unlock(cpu_buffer);
3830  out:
3831         preempt_enable_notrace();
3832         return NULL;
3833 }
3834 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3835
3836 /*
3837  * Decrement the entries to the page that an event is on.
3838  * The event does not even need to exist, only the pointer
3839  * to the page it is on. This may only be called before the commit
3840  * takes place.
3841  */
3842 static inline void
3843 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3844                    struct ring_buffer_event *event)
3845 {
3846         unsigned long addr = (unsigned long)event;
3847         struct buffer_page *bpage = cpu_buffer->commit_page;
3848         struct buffer_page *start;
3849
3850         addr &= PAGE_MASK;
3851
3852         /* Do the likely case first */
3853         if (likely(bpage->page == (void *)addr)) {
3854                 local_dec(&bpage->entries);
3855                 return;
3856         }
3857
3858         /*
3859          * Because the commit page may be on the reader page we
3860          * start with the next page and check the end loop there.
3861          */
3862         rb_inc_page(&bpage);
3863         start = bpage;
3864         do {
3865                 if (bpage->page == (void *)addr) {
3866                         local_dec(&bpage->entries);
3867                         return;
3868                 }
3869                 rb_inc_page(&bpage);
3870         } while (bpage != start);
3871
3872         /* commit not part of this buffer?? */
3873         RB_WARN_ON(cpu_buffer, 1);
3874 }
3875
3876 /**
3877  * ring_buffer_discard_commit - discard an event that has not been committed
3878  * @buffer: the ring buffer
3879  * @event: non committed event to discard
3880  *
3881  * Sometimes an event that is in the ring buffer needs to be ignored.
3882  * This function lets the user discard an event in the ring buffer
3883  * and then that event will not be read later.
3884  *
3885  * This function only works if it is called before the item has been
3886  * committed. It will try to free the event from the ring buffer
3887  * if another event has not been added behind it.
3888  *
3889  * If another event has been added behind it, it will set the event
3890  * up as discarded, and perform the commit.
3891  *
3892  * If this function is called, do not call ring_buffer_unlock_commit on
3893  * the event.
3894  */
3895 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3896                                 struct ring_buffer_event *event)
3897 {
3898         struct ring_buffer_per_cpu *cpu_buffer;
3899         int cpu;
3900
3901         /* The event is discarded regardless */
3902         rb_event_discard(event);
3903
3904         cpu = smp_processor_id();
3905         cpu_buffer = buffer->buffers[cpu];
3906
3907         /*
3908          * This must only be called if the event has not been
3909          * committed yet. Thus we can assume that preemption
3910          * is still disabled.
3911          */
3912         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3913
3914         rb_decrement_entry(cpu_buffer, event);
3915         if (rb_try_to_discard(cpu_buffer, event))
3916                 goto out;
3917
3918  out:
3919         rb_end_commit(cpu_buffer);
3920
3921         trace_recursive_unlock(cpu_buffer);
3922
3923         preempt_enable_notrace();
3924
3925 }
3926 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3927
3928 /**
3929  * ring_buffer_write - write data to the buffer without reserving
3930  * @buffer: The ring buffer to write to.
3931  * @length: The length of the data being written (excluding the event header)
3932  * @data: The data to write to the buffer.
3933  *
3934  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3935  * one function. If you already have the data to write to the buffer, it
3936  * may be easier to simply call this function.
3937  *
3938  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3939  * and not the length of the event which would hold the header.
3940  */
3941 int ring_buffer_write(struct trace_buffer *buffer,
3942                       unsigned long length,
3943                       void *data)
3944 {
3945         struct ring_buffer_per_cpu *cpu_buffer;
3946         struct ring_buffer_event *event;
3947         void *body;
3948         int ret = -EBUSY;
3949         int cpu;
3950
3951         preempt_disable_notrace();
3952
3953         if (atomic_read(&buffer->record_disabled))
3954                 goto out;
3955
3956         cpu = raw_smp_processor_id();
3957
3958         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3959                 goto out;
3960
3961         cpu_buffer = buffer->buffers[cpu];
3962
3963         if (atomic_read(&cpu_buffer->record_disabled))
3964                 goto out;
3965
3966         if (length > BUF_MAX_DATA_SIZE)
3967                 goto out;
3968
3969         if (unlikely(trace_recursive_lock(cpu_buffer)))
3970                 goto out;
3971
3972         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3973         if (!event)
3974                 goto out_unlock;
3975
3976         body = rb_event_data(event);
3977
3978         memcpy(body, data, length);
3979
3980         rb_commit(cpu_buffer);
3981
3982         rb_wakeups(buffer, cpu_buffer);
3983
3984         ret = 0;
3985
3986  out_unlock:
3987         trace_recursive_unlock(cpu_buffer);
3988
3989  out:
3990         preempt_enable_notrace();
3991
3992         return ret;
3993 }
3994 EXPORT_SYMBOL_GPL(ring_buffer_write);
3995
3996 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3997 {
3998         struct buffer_page *reader = cpu_buffer->reader_page;
3999         struct buffer_page *head = rb_set_head_page(cpu_buffer);
4000         struct buffer_page *commit = cpu_buffer->commit_page;
4001
4002         /* In case of error, head will be NULL */
4003         if (unlikely(!head))
4004                 return true;
4005
4006         /* Reader should exhaust content in reader page */
4007         if (reader->read != rb_page_commit(reader))
4008                 return false;
4009
4010         /*
4011          * If writers are committing on the reader page, knowing all
4012          * committed content has been read, the ring buffer is empty.
4013          */
4014         if (commit == reader)
4015                 return true;
4016
4017         /*
4018          * If writers are committing on a page other than reader page
4019          * and head page, there should always be content to read.
4020          */
4021         if (commit != head)
4022                 return false;
4023
4024         /*
4025          * Writers are committing on the head page, we just need
4026          * to care about there're committed data, and the reader will
4027          * swap reader page with head page when it is to read data.
4028          */
4029         return rb_page_commit(commit) == 0;
4030 }
4031
4032 /**
4033  * ring_buffer_record_disable - stop all writes into the buffer
4034  * @buffer: The ring buffer to stop writes to.
4035  *
4036  * This prevents all writes to the buffer. Any attempt to write
4037  * to the buffer after this will fail and return NULL.
4038  *
4039  * The caller should call synchronize_rcu() after this.
4040  */
4041 void ring_buffer_record_disable(struct trace_buffer *buffer)
4042 {
4043         atomic_inc(&buffer->record_disabled);
4044 }
4045 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4046
4047 /**
4048  * ring_buffer_record_enable - enable writes to the buffer
4049  * @buffer: The ring buffer to enable writes
4050  *
4051  * Note, multiple disables will need the same number of enables
4052  * to truly enable the writing (much like preempt_disable).
4053  */
4054 void ring_buffer_record_enable(struct trace_buffer *buffer)
4055 {
4056         atomic_dec(&buffer->record_disabled);
4057 }
4058 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4059
4060 /**
4061  * ring_buffer_record_off - stop all writes into the buffer
4062  * @buffer: The ring buffer to stop writes to.
4063  *
4064  * This prevents all writes to the buffer. Any attempt to write
4065  * to the buffer after this will fail and return NULL.
4066  *
4067  * This is different than ring_buffer_record_disable() as
4068  * it works like an on/off switch, where as the disable() version
4069  * must be paired with a enable().
4070  */
4071 void ring_buffer_record_off(struct trace_buffer *buffer)
4072 {
4073         unsigned int rd;
4074         unsigned int new_rd;
4075
4076         rd = atomic_read(&buffer->record_disabled);
4077         do {
4078                 new_rd = rd | RB_BUFFER_OFF;
4079         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4080 }
4081 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4082
4083 /**
4084  * ring_buffer_record_on - restart writes into the buffer
4085  * @buffer: The ring buffer to start writes to.
4086  *
4087  * This enables all writes to the buffer that was disabled by
4088  * ring_buffer_record_off().
4089  *
4090  * This is different than ring_buffer_record_enable() as
4091  * it works like an on/off switch, where as the enable() version
4092  * must be paired with a disable().
4093  */
4094 void ring_buffer_record_on(struct trace_buffer *buffer)
4095 {
4096         unsigned int rd;
4097         unsigned int new_rd;
4098
4099         rd = atomic_read(&buffer->record_disabled);
4100         do {
4101                 new_rd = rd & ~RB_BUFFER_OFF;
4102         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4103 }
4104 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4105
4106 /**
4107  * ring_buffer_record_is_on - return true if the ring buffer can write
4108  * @buffer: The ring buffer to see if write is enabled
4109  *
4110  * Returns true if the ring buffer is in a state that it accepts writes.
4111  */
4112 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4113 {
4114         return !atomic_read(&buffer->record_disabled);
4115 }
4116
4117 /**
4118  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4119  * @buffer: The ring buffer to see if write is set enabled
4120  *
4121  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4122  * Note that this does NOT mean it is in a writable state.
4123  *
4124  * It may return true when the ring buffer has been disabled by
4125  * ring_buffer_record_disable(), as that is a temporary disabling of
4126  * the ring buffer.
4127  */
4128 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4129 {
4130         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4131 }
4132
4133 /**
4134  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4135  * @buffer: The ring buffer to stop writes to.
4136  * @cpu: The CPU buffer to stop
4137  *
4138  * This prevents all writes to the buffer. Any attempt to write
4139  * to the buffer after this will fail and return NULL.
4140  *
4141  * The caller should call synchronize_rcu() after this.
4142  */
4143 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4144 {
4145         struct ring_buffer_per_cpu *cpu_buffer;
4146
4147         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4148                 return;
4149
4150         cpu_buffer = buffer->buffers[cpu];
4151         atomic_inc(&cpu_buffer->record_disabled);
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4154
4155 /**
4156  * ring_buffer_record_enable_cpu - enable writes to the buffer
4157  * @buffer: The ring buffer to enable writes
4158  * @cpu: The CPU to enable.
4159  *
4160  * Note, multiple disables will need the same number of enables
4161  * to truly enable the writing (much like preempt_disable).
4162  */
4163 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4164 {
4165         struct ring_buffer_per_cpu *cpu_buffer;
4166
4167         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168                 return;
4169
4170         cpu_buffer = buffer->buffers[cpu];
4171         atomic_dec(&cpu_buffer->record_disabled);
4172 }
4173 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4174
4175 /*
4176  * The total entries in the ring buffer is the running counter
4177  * of entries entered into the ring buffer, minus the sum of
4178  * the entries read from the ring buffer and the number of
4179  * entries that were overwritten.
4180  */
4181 static inline unsigned long
4182 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4183 {
4184         return local_read(&cpu_buffer->entries) -
4185                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4186 }
4187
4188 /**
4189  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4190  * @buffer: The ring buffer
4191  * @cpu: The per CPU buffer to read from.
4192  */
4193 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4194 {
4195         unsigned long flags;
4196         struct ring_buffer_per_cpu *cpu_buffer;
4197         struct buffer_page *bpage;
4198         u64 ret = 0;
4199
4200         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4201                 return 0;
4202
4203         cpu_buffer = buffer->buffers[cpu];
4204         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4205         /*
4206          * if the tail is on reader_page, oldest time stamp is on the reader
4207          * page
4208          */
4209         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4210                 bpage = cpu_buffer->reader_page;
4211         else
4212                 bpage = rb_set_head_page(cpu_buffer);
4213         if (bpage)
4214                 ret = bpage->page->time_stamp;
4215         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4216
4217         return ret;
4218 }
4219 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4220
4221 /**
4222  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4223  * @buffer: The ring buffer
4224  * @cpu: The per CPU buffer to read from.
4225  */
4226 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4227 {
4228         struct ring_buffer_per_cpu *cpu_buffer;
4229         unsigned long ret;
4230
4231         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4232                 return 0;
4233
4234         cpu_buffer = buffer->buffers[cpu];
4235         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4236
4237         return ret;
4238 }
4239 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4240
4241 /**
4242  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4243  * @buffer: The ring buffer
4244  * @cpu: The per CPU buffer to get the entries from.
4245  */
4246 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4247 {
4248         struct ring_buffer_per_cpu *cpu_buffer;
4249
4250         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4251                 return 0;
4252
4253         cpu_buffer = buffer->buffers[cpu];
4254
4255         return rb_num_of_entries(cpu_buffer);
4256 }
4257 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4258
4259 /**
4260  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4261  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4262  * @buffer: The ring buffer
4263  * @cpu: The per CPU buffer to get the number of overruns from
4264  */
4265 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4266 {
4267         struct ring_buffer_per_cpu *cpu_buffer;
4268         unsigned long ret;
4269
4270         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4271                 return 0;
4272
4273         cpu_buffer = buffer->buffers[cpu];
4274         ret = local_read(&cpu_buffer->overrun);
4275
4276         return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4279
4280 /**
4281  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4282  * commits failing due to the buffer wrapping around while there are uncommitted
4283  * events, such as during an interrupt storm.
4284  * @buffer: The ring buffer
4285  * @cpu: The per CPU buffer to get the number of overruns from
4286  */
4287 unsigned long
4288 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4289 {
4290         struct ring_buffer_per_cpu *cpu_buffer;
4291         unsigned long ret;
4292
4293         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4294                 return 0;
4295
4296         cpu_buffer = buffer->buffers[cpu];
4297         ret = local_read(&cpu_buffer->commit_overrun);
4298
4299         return ret;
4300 }
4301 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4302
4303 /**
4304  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4305  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4306  * @buffer: The ring buffer
4307  * @cpu: The per CPU buffer to get the number of overruns from
4308  */
4309 unsigned long
4310 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4311 {
4312         struct ring_buffer_per_cpu *cpu_buffer;
4313         unsigned long ret;
4314
4315         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4316                 return 0;
4317
4318         cpu_buffer = buffer->buffers[cpu];
4319         ret = local_read(&cpu_buffer->dropped_events);
4320
4321         return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4324
4325 /**
4326  * ring_buffer_read_events_cpu - get the number of events successfully read
4327  * @buffer: The ring buffer
4328  * @cpu: The per CPU buffer to get the number of events read
4329  */
4330 unsigned long
4331 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4332 {
4333         struct ring_buffer_per_cpu *cpu_buffer;
4334
4335         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4336                 return 0;
4337
4338         cpu_buffer = buffer->buffers[cpu];
4339         return cpu_buffer->read;
4340 }
4341 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4342
4343 /**
4344  * ring_buffer_entries - get the number of entries in a buffer
4345  * @buffer: The ring buffer
4346  *
4347  * Returns the total number of entries in the ring buffer
4348  * (all CPU entries)
4349  */
4350 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4351 {
4352         struct ring_buffer_per_cpu *cpu_buffer;
4353         unsigned long entries = 0;
4354         int cpu;
4355
4356         /* if you care about this being correct, lock the buffer */
4357         for_each_buffer_cpu(buffer, cpu) {
4358                 cpu_buffer = buffer->buffers[cpu];
4359                 entries += rb_num_of_entries(cpu_buffer);
4360         }
4361
4362         return entries;
4363 }
4364 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4365
4366 /**
4367  * ring_buffer_overruns - get the number of overruns in buffer
4368  * @buffer: The ring buffer
4369  *
4370  * Returns the total number of overruns in the ring buffer
4371  * (all CPU entries)
4372  */
4373 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4374 {
4375         struct ring_buffer_per_cpu *cpu_buffer;
4376         unsigned long overruns = 0;
4377         int cpu;
4378
4379         /* if you care about this being correct, lock the buffer */
4380         for_each_buffer_cpu(buffer, cpu) {
4381                 cpu_buffer = buffer->buffers[cpu];
4382                 overruns += local_read(&cpu_buffer->overrun);
4383         }
4384
4385         return overruns;
4386 }
4387 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4388
4389 static void rb_iter_reset(struct ring_buffer_iter *iter)
4390 {
4391         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4392
4393         /* Iterator usage is expected to have record disabled */
4394         iter->head_page = cpu_buffer->reader_page;
4395         iter->head = cpu_buffer->reader_page->read;
4396         iter->next_event = iter->head;
4397
4398         iter->cache_reader_page = iter->head_page;
4399         iter->cache_read = cpu_buffer->read;
4400         iter->cache_pages_removed = cpu_buffer->pages_removed;
4401
4402         if (iter->head) {
4403                 iter->read_stamp = cpu_buffer->read_stamp;
4404                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4405         } else {
4406                 iter->read_stamp = iter->head_page->page->time_stamp;
4407                 iter->page_stamp = iter->read_stamp;
4408         }
4409 }
4410
4411 /**
4412  * ring_buffer_iter_reset - reset an iterator
4413  * @iter: The iterator to reset
4414  *
4415  * Resets the iterator, so that it will start from the beginning
4416  * again.
4417  */
4418 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4419 {
4420         struct ring_buffer_per_cpu *cpu_buffer;
4421         unsigned long flags;
4422
4423         if (!iter)
4424                 return;
4425
4426         cpu_buffer = iter->cpu_buffer;
4427
4428         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4429         rb_iter_reset(iter);
4430         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4433
4434 /**
4435  * ring_buffer_iter_empty - check if an iterator has no more to read
4436  * @iter: The iterator to check
4437  */
4438 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4439 {
4440         struct ring_buffer_per_cpu *cpu_buffer;
4441         struct buffer_page *reader;
4442         struct buffer_page *head_page;
4443         struct buffer_page *commit_page;
4444         struct buffer_page *curr_commit_page;
4445         unsigned commit;
4446         u64 curr_commit_ts;
4447         u64 commit_ts;
4448
4449         cpu_buffer = iter->cpu_buffer;
4450         reader = cpu_buffer->reader_page;
4451         head_page = cpu_buffer->head_page;
4452         commit_page = cpu_buffer->commit_page;
4453         commit_ts = commit_page->page->time_stamp;
4454
4455         /*
4456          * When the writer goes across pages, it issues a cmpxchg which
4457          * is a mb(), which will synchronize with the rmb here.
4458          * (see rb_tail_page_update())
4459          */
4460         smp_rmb();
4461         commit = rb_page_commit(commit_page);
4462         /* We want to make sure that the commit page doesn't change */
4463         smp_rmb();
4464
4465         /* Make sure commit page didn't change */
4466         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4467         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4468
4469         /* If the commit page changed, then there's more data */
4470         if (curr_commit_page != commit_page ||
4471             curr_commit_ts != commit_ts)
4472                 return 0;
4473
4474         /* Still racy, as it may return a false positive, but that's OK */
4475         return ((iter->head_page == commit_page && iter->head >= commit) ||
4476                 (iter->head_page == reader && commit_page == head_page &&
4477                  head_page->read == commit &&
4478                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4479 }
4480 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4481
4482 static void
4483 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4484                      struct ring_buffer_event *event)
4485 {
4486         u64 delta;
4487
4488         switch (event->type_len) {
4489         case RINGBUF_TYPE_PADDING:
4490                 return;
4491
4492         case RINGBUF_TYPE_TIME_EXTEND:
4493                 delta = rb_event_time_stamp(event);
4494                 cpu_buffer->read_stamp += delta;
4495                 return;
4496
4497         case RINGBUF_TYPE_TIME_STAMP:
4498                 delta = rb_event_time_stamp(event);
4499                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4500                 cpu_buffer->read_stamp = delta;
4501                 return;
4502
4503         case RINGBUF_TYPE_DATA:
4504                 cpu_buffer->read_stamp += event->time_delta;
4505                 return;
4506
4507         default:
4508                 RB_WARN_ON(cpu_buffer, 1);
4509         }
4510 }
4511
4512 static void
4513 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4514                           struct ring_buffer_event *event)
4515 {
4516         u64 delta;
4517
4518         switch (event->type_len) {
4519         case RINGBUF_TYPE_PADDING:
4520                 return;
4521
4522         case RINGBUF_TYPE_TIME_EXTEND:
4523                 delta = rb_event_time_stamp(event);
4524                 iter->read_stamp += delta;
4525                 return;
4526
4527         case RINGBUF_TYPE_TIME_STAMP:
4528                 delta = rb_event_time_stamp(event);
4529                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4530                 iter->read_stamp = delta;
4531                 return;
4532
4533         case RINGBUF_TYPE_DATA:
4534                 iter->read_stamp += event->time_delta;
4535                 return;
4536
4537         default:
4538                 RB_WARN_ON(iter->cpu_buffer, 1);
4539         }
4540 }
4541
4542 static struct buffer_page *
4543 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4544 {
4545         struct buffer_page *reader = NULL;
4546         unsigned long overwrite;
4547         unsigned long flags;
4548         int nr_loops = 0;
4549         bool ret;
4550
4551         local_irq_save(flags);
4552         arch_spin_lock(&cpu_buffer->lock);
4553
4554  again:
4555         /*
4556          * This should normally only loop twice. But because the
4557          * start of the reader inserts an empty page, it causes
4558          * a case where we will loop three times. There should be no
4559          * reason to loop four times (that I know of).
4560          */
4561         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4562                 reader = NULL;
4563                 goto out;
4564         }
4565
4566         reader = cpu_buffer->reader_page;
4567
4568         /* If there's more to read, return this page */
4569         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4570                 goto out;
4571
4572         /* Never should we have an index greater than the size */
4573         if (RB_WARN_ON(cpu_buffer,
4574                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4575                 goto out;
4576
4577         /* check if we caught up to the tail */
4578         reader = NULL;
4579         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4580                 goto out;
4581
4582         /* Don't bother swapping if the ring buffer is empty */
4583         if (rb_num_of_entries(cpu_buffer) == 0)
4584                 goto out;
4585
4586         /*
4587          * Reset the reader page to size zero.
4588          */
4589         local_set(&cpu_buffer->reader_page->write, 0);
4590         local_set(&cpu_buffer->reader_page->entries, 0);
4591         local_set(&cpu_buffer->reader_page->page->commit, 0);
4592         cpu_buffer->reader_page->real_end = 0;
4593
4594  spin:
4595         /*
4596          * Splice the empty reader page into the list around the head.
4597          */
4598         reader = rb_set_head_page(cpu_buffer);
4599         if (!reader)
4600                 goto out;
4601         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4602         cpu_buffer->reader_page->list.prev = reader->list.prev;
4603
4604         /*
4605          * cpu_buffer->pages just needs to point to the buffer, it
4606          *  has no specific buffer page to point to. Lets move it out
4607          *  of our way so we don't accidentally swap it.
4608          */
4609         cpu_buffer->pages = reader->list.prev;
4610
4611         /* The reader page will be pointing to the new head */
4612         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4613
4614         /*
4615          * We want to make sure we read the overruns after we set up our
4616          * pointers to the next object. The writer side does a
4617          * cmpxchg to cross pages which acts as the mb on the writer
4618          * side. Note, the reader will constantly fail the swap
4619          * while the writer is updating the pointers, so this
4620          * guarantees that the overwrite recorded here is the one we
4621          * want to compare with the last_overrun.
4622          */
4623         smp_mb();
4624         overwrite = local_read(&(cpu_buffer->overrun));
4625
4626         /*
4627          * Here's the tricky part.
4628          *
4629          * We need to move the pointer past the header page.
4630          * But we can only do that if a writer is not currently
4631          * moving it. The page before the header page has the
4632          * flag bit '1' set if it is pointing to the page we want.
4633          * but if the writer is in the process of moving it
4634          * than it will be '2' or already moved '0'.
4635          */
4636
4637         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4638
4639         /*
4640          * If we did not convert it, then we must try again.
4641          */
4642         if (!ret)
4643                 goto spin;
4644
4645         /*
4646          * Yay! We succeeded in replacing the page.
4647          *
4648          * Now make the new head point back to the reader page.
4649          */
4650         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4651         rb_inc_page(&cpu_buffer->head_page);
4652
4653         local_inc(&cpu_buffer->pages_read);
4654
4655         /* Finally update the reader page to the new head */
4656         cpu_buffer->reader_page = reader;
4657         cpu_buffer->reader_page->read = 0;
4658
4659         if (overwrite != cpu_buffer->last_overrun) {
4660                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4661                 cpu_buffer->last_overrun = overwrite;
4662         }
4663
4664         goto again;
4665
4666  out:
4667         /* Update the read_stamp on the first event */
4668         if (reader && reader->read == 0)
4669                 cpu_buffer->read_stamp = reader->page->time_stamp;
4670
4671         arch_spin_unlock(&cpu_buffer->lock);
4672         local_irq_restore(flags);
4673
4674         /*
4675          * The writer has preempt disable, wait for it. But not forever
4676          * Although, 1 second is pretty much "forever"
4677          */
4678 #define USECS_WAIT      1000000
4679         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4680                 /* If the write is past the end of page, a writer is still updating it */
4681                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4682                         break;
4683
4684                 udelay(1);
4685
4686                 /* Get the latest version of the reader write value */
4687                 smp_rmb();
4688         }
4689
4690         /* The writer is not moving forward? Something is wrong */
4691         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4692                 reader = NULL;
4693
4694         /*
4695          * Make sure we see any padding after the write update
4696          * (see rb_reset_tail()).
4697          *
4698          * In addition, a writer may be writing on the reader page
4699          * if the page has not been fully filled, so the read barrier
4700          * is also needed to make sure we see the content of what is
4701          * committed by the writer (see rb_set_commit_to_write()).
4702          */
4703         smp_rmb();
4704
4705
4706         return reader;
4707 }
4708
4709 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4710 {
4711         struct ring_buffer_event *event;
4712         struct buffer_page *reader;
4713         unsigned length;
4714
4715         reader = rb_get_reader_page(cpu_buffer);
4716
4717         /* This function should not be called when buffer is empty */
4718         if (RB_WARN_ON(cpu_buffer, !reader))
4719                 return;
4720
4721         event = rb_reader_event(cpu_buffer);
4722
4723         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4724                 cpu_buffer->read++;
4725
4726         rb_update_read_stamp(cpu_buffer, event);
4727
4728         length = rb_event_length(event);
4729         cpu_buffer->reader_page->read += length;
4730         cpu_buffer->read_bytes += length;
4731 }
4732
4733 static void rb_advance_iter(struct ring_buffer_iter *iter)
4734 {
4735         struct ring_buffer_per_cpu *cpu_buffer;
4736
4737         cpu_buffer = iter->cpu_buffer;
4738
4739         /* If head == next_event then we need to jump to the next event */
4740         if (iter->head == iter->next_event) {
4741                 /* If the event gets overwritten again, there's nothing to do */
4742                 if (rb_iter_head_event(iter) == NULL)
4743                         return;
4744         }
4745
4746         iter->head = iter->next_event;
4747
4748         /*
4749          * Check if we are at the end of the buffer.
4750          */
4751         if (iter->next_event >= rb_page_size(iter->head_page)) {
4752                 /* discarded commits can make the page empty */
4753                 if (iter->head_page == cpu_buffer->commit_page)
4754                         return;
4755                 rb_inc_iter(iter);
4756                 return;
4757         }
4758
4759         rb_update_iter_read_stamp(iter, iter->event);
4760 }
4761
4762 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4763 {
4764         return cpu_buffer->lost_events;
4765 }
4766
4767 static struct ring_buffer_event *
4768 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4769                unsigned long *lost_events)
4770 {
4771         struct ring_buffer_event *event;
4772         struct buffer_page *reader;
4773         int nr_loops = 0;
4774
4775         if (ts)
4776                 *ts = 0;
4777  again:
4778         /*
4779          * We repeat when a time extend is encountered.
4780          * Since the time extend is always attached to a data event,
4781          * we should never loop more than once.
4782          * (We never hit the following condition more than twice).
4783          */
4784         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4785                 return NULL;
4786
4787         reader = rb_get_reader_page(cpu_buffer);
4788         if (!reader)
4789                 return NULL;
4790
4791         event = rb_reader_event(cpu_buffer);
4792
4793         switch (event->type_len) {
4794         case RINGBUF_TYPE_PADDING:
4795                 if (rb_null_event(event))
4796                         RB_WARN_ON(cpu_buffer, 1);
4797                 /*
4798                  * Because the writer could be discarding every
4799                  * event it creates (which would probably be bad)
4800                  * if we were to go back to "again" then we may never
4801                  * catch up, and will trigger the warn on, or lock
4802                  * the box. Return the padding, and we will release
4803                  * the current locks, and try again.
4804                  */
4805                 return event;
4806
4807         case RINGBUF_TYPE_TIME_EXTEND:
4808                 /* Internal data, OK to advance */
4809                 rb_advance_reader(cpu_buffer);
4810                 goto again;
4811
4812         case RINGBUF_TYPE_TIME_STAMP:
4813                 if (ts) {
4814                         *ts = rb_event_time_stamp(event);
4815                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4816                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4817                                                          cpu_buffer->cpu, ts);
4818                 }
4819                 /* Internal data, OK to advance */
4820                 rb_advance_reader(cpu_buffer);
4821                 goto again;
4822
4823         case RINGBUF_TYPE_DATA:
4824                 if (ts && !(*ts)) {
4825                         *ts = cpu_buffer->read_stamp + event->time_delta;
4826                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4827                                                          cpu_buffer->cpu, ts);
4828                 }
4829                 if (lost_events)
4830                         *lost_events = rb_lost_events(cpu_buffer);
4831                 return event;
4832
4833         default:
4834                 RB_WARN_ON(cpu_buffer, 1);
4835         }
4836
4837         return NULL;
4838 }
4839 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4840
4841 static struct ring_buffer_event *
4842 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4843 {
4844         struct trace_buffer *buffer;
4845         struct ring_buffer_per_cpu *cpu_buffer;
4846         struct ring_buffer_event *event;
4847         int nr_loops = 0;
4848
4849         if (ts)
4850                 *ts = 0;
4851
4852         cpu_buffer = iter->cpu_buffer;
4853         buffer = cpu_buffer->buffer;
4854
4855         /*
4856          * Check if someone performed a consuming read to the buffer
4857          * or removed some pages from the buffer. In these cases,
4858          * iterator was invalidated and we need to reset it.
4859          */
4860         if (unlikely(iter->cache_read != cpu_buffer->read ||
4861                      iter->cache_reader_page != cpu_buffer->reader_page ||
4862                      iter->cache_pages_removed != cpu_buffer->pages_removed))
4863                 rb_iter_reset(iter);
4864
4865  again:
4866         if (ring_buffer_iter_empty(iter))
4867                 return NULL;
4868
4869         /*
4870          * As the writer can mess with what the iterator is trying
4871          * to read, just give up if we fail to get an event after
4872          * three tries. The iterator is not as reliable when reading
4873          * the ring buffer with an active write as the consumer is.
4874          * Do not warn if the three failures is reached.
4875          */
4876         if (++nr_loops > 3)
4877                 return NULL;
4878
4879         if (rb_per_cpu_empty(cpu_buffer))
4880                 return NULL;
4881
4882         if (iter->head >= rb_page_size(iter->head_page)) {
4883                 rb_inc_iter(iter);
4884                 goto again;
4885         }
4886
4887         event = rb_iter_head_event(iter);
4888         if (!event)
4889                 goto again;
4890
4891         switch (event->type_len) {
4892         case RINGBUF_TYPE_PADDING:
4893                 if (rb_null_event(event)) {
4894                         rb_inc_iter(iter);
4895                         goto again;
4896                 }
4897                 rb_advance_iter(iter);
4898                 return event;
4899
4900         case RINGBUF_TYPE_TIME_EXTEND:
4901                 /* Internal data, OK to advance */
4902                 rb_advance_iter(iter);
4903                 goto again;
4904
4905         case RINGBUF_TYPE_TIME_STAMP:
4906                 if (ts) {
4907                         *ts = rb_event_time_stamp(event);
4908                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4909                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4910                                                          cpu_buffer->cpu, ts);
4911                 }
4912                 /* Internal data, OK to advance */
4913                 rb_advance_iter(iter);
4914                 goto again;
4915
4916         case RINGBUF_TYPE_DATA:
4917                 if (ts && !(*ts)) {
4918                         *ts = iter->read_stamp + event->time_delta;
4919                         ring_buffer_normalize_time_stamp(buffer,
4920                                                          cpu_buffer->cpu, ts);
4921                 }
4922                 return event;
4923
4924         default:
4925                 RB_WARN_ON(cpu_buffer, 1);
4926         }
4927
4928         return NULL;
4929 }
4930 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4931
4932 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4933 {
4934         if (likely(!in_nmi())) {
4935                 raw_spin_lock(&cpu_buffer->reader_lock);
4936                 return true;
4937         }
4938
4939         /*
4940          * If an NMI die dumps out the content of the ring buffer
4941          * trylock must be used to prevent a deadlock if the NMI
4942          * preempted a task that holds the ring buffer locks. If
4943          * we get the lock then all is fine, if not, then continue
4944          * to do the read, but this can corrupt the ring buffer,
4945          * so it must be permanently disabled from future writes.
4946          * Reading from NMI is a oneshot deal.
4947          */
4948         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4949                 return true;
4950
4951         /* Continue without locking, but disable the ring buffer */
4952         atomic_inc(&cpu_buffer->record_disabled);
4953         return false;
4954 }
4955
4956 static inline void
4957 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4958 {
4959         if (likely(locked))
4960                 raw_spin_unlock(&cpu_buffer->reader_lock);
4961 }
4962
4963 /**
4964  * ring_buffer_peek - peek at the next event to be read
4965  * @buffer: The ring buffer to read
4966  * @cpu: The cpu to peak at
4967  * @ts: The timestamp counter of this event.
4968  * @lost_events: a variable to store if events were lost (may be NULL)
4969  *
4970  * This will return the event that will be read next, but does
4971  * not consume the data.
4972  */
4973 struct ring_buffer_event *
4974 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4975                  unsigned long *lost_events)
4976 {
4977         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4978         struct ring_buffer_event *event;
4979         unsigned long flags;
4980         bool dolock;
4981
4982         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4983                 return NULL;
4984
4985  again:
4986         local_irq_save(flags);
4987         dolock = rb_reader_lock(cpu_buffer);
4988         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4989         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4990                 rb_advance_reader(cpu_buffer);
4991         rb_reader_unlock(cpu_buffer, dolock);
4992         local_irq_restore(flags);
4993
4994         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4995                 goto again;
4996
4997         return event;
4998 }
4999
5000 /** ring_buffer_iter_dropped - report if there are dropped events
5001  * @iter: The ring buffer iterator
5002  *
5003  * Returns true if there was dropped events since the last peek.
5004  */
5005 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5006 {
5007         bool ret = iter->missed_events != 0;
5008
5009         iter->missed_events = 0;
5010         return ret;
5011 }
5012 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5013
5014 /**
5015  * ring_buffer_iter_peek - peek at the next event to be read
5016  * @iter: The ring buffer iterator
5017  * @ts: The timestamp counter of this event.
5018  *
5019  * This will return the event that will be read next, but does
5020  * not increment the iterator.
5021  */
5022 struct ring_buffer_event *
5023 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5024 {
5025         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5026         struct ring_buffer_event *event;
5027         unsigned long flags;
5028
5029  again:
5030         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5031         event = rb_iter_peek(iter, ts);
5032         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5033
5034         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5035                 goto again;
5036
5037         return event;
5038 }
5039
5040 /**
5041  * ring_buffer_consume - return an event and consume it
5042  * @buffer: The ring buffer to get the next event from
5043  * @cpu: the cpu to read the buffer from
5044  * @ts: a variable to store the timestamp (may be NULL)
5045  * @lost_events: a variable to store if events were lost (may be NULL)
5046  *
5047  * Returns the next event in the ring buffer, and that event is consumed.
5048  * Meaning, that sequential reads will keep returning a different event,
5049  * and eventually empty the ring buffer if the producer is slower.
5050  */
5051 struct ring_buffer_event *
5052 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5053                     unsigned long *lost_events)
5054 {
5055         struct ring_buffer_per_cpu *cpu_buffer;
5056         struct ring_buffer_event *event = NULL;
5057         unsigned long flags;
5058         bool dolock;
5059
5060  again:
5061         /* might be called in atomic */
5062         preempt_disable();
5063
5064         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5065                 goto out;
5066
5067         cpu_buffer = buffer->buffers[cpu];
5068         local_irq_save(flags);
5069         dolock = rb_reader_lock(cpu_buffer);
5070
5071         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5072         if (event) {
5073                 cpu_buffer->lost_events = 0;
5074                 rb_advance_reader(cpu_buffer);
5075         }
5076
5077         rb_reader_unlock(cpu_buffer, dolock);
5078         local_irq_restore(flags);
5079
5080  out:
5081         preempt_enable();
5082
5083         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5084                 goto again;
5085
5086         return event;
5087 }
5088 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5089
5090 /**
5091  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5092  * @buffer: The ring buffer to read from
5093  * @cpu: The cpu buffer to iterate over
5094  * @flags: gfp flags to use for memory allocation
5095  *
5096  * This performs the initial preparations necessary to iterate
5097  * through the buffer.  Memory is allocated, buffer recording
5098  * is disabled, and the iterator pointer is returned to the caller.
5099  *
5100  * Disabling buffer recording prevents the reading from being
5101  * corrupted. This is not a consuming read, so a producer is not
5102  * expected.
5103  *
5104  * After a sequence of ring_buffer_read_prepare calls, the user is
5105  * expected to make at least one call to ring_buffer_read_prepare_sync.
5106  * Afterwards, ring_buffer_read_start is invoked to get things going
5107  * for real.
5108  *
5109  * This overall must be paired with ring_buffer_read_finish.
5110  */
5111 struct ring_buffer_iter *
5112 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5113 {
5114         struct ring_buffer_per_cpu *cpu_buffer;
5115         struct ring_buffer_iter *iter;
5116
5117         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5118                 return NULL;
5119
5120         iter = kzalloc(sizeof(*iter), flags);
5121         if (!iter)
5122                 return NULL;
5123
5124         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5125         if (!iter->event) {
5126                 kfree(iter);
5127                 return NULL;
5128         }
5129
5130         cpu_buffer = buffer->buffers[cpu];
5131
5132         iter->cpu_buffer = cpu_buffer;
5133
5134         atomic_inc(&cpu_buffer->resize_disabled);
5135
5136         return iter;
5137 }
5138 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5139
5140 /**
5141  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5142  *
5143  * All previously invoked ring_buffer_read_prepare calls to prepare
5144  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5145  * calls on those iterators are allowed.
5146  */
5147 void
5148 ring_buffer_read_prepare_sync(void)
5149 {
5150         synchronize_rcu();
5151 }
5152 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5153
5154 /**
5155  * ring_buffer_read_start - start a non consuming read of the buffer
5156  * @iter: The iterator returned by ring_buffer_read_prepare
5157  *
5158  * This finalizes the startup of an iteration through the buffer.
5159  * The iterator comes from a call to ring_buffer_read_prepare and
5160  * an intervening ring_buffer_read_prepare_sync must have been
5161  * performed.
5162  *
5163  * Must be paired with ring_buffer_read_finish.
5164  */
5165 void
5166 ring_buffer_read_start(struct ring_buffer_iter *iter)
5167 {
5168         struct ring_buffer_per_cpu *cpu_buffer;
5169         unsigned long flags;
5170
5171         if (!iter)
5172                 return;
5173
5174         cpu_buffer = iter->cpu_buffer;
5175
5176         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5177         arch_spin_lock(&cpu_buffer->lock);
5178         rb_iter_reset(iter);
5179         arch_spin_unlock(&cpu_buffer->lock);
5180         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5181 }
5182 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5183
5184 /**
5185  * ring_buffer_read_finish - finish reading the iterator of the buffer
5186  * @iter: The iterator retrieved by ring_buffer_start
5187  *
5188  * This re-enables the recording to the buffer, and frees the
5189  * iterator.
5190  */
5191 void
5192 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5193 {
5194         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5195         unsigned long flags;
5196
5197         /*
5198          * Ring buffer is disabled from recording, here's a good place
5199          * to check the integrity of the ring buffer.
5200          * Must prevent readers from trying to read, as the check
5201          * clears the HEAD page and readers require it.
5202          */
5203         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5204         rb_check_pages(cpu_buffer);
5205         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5206
5207         atomic_dec(&cpu_buffer->resize_disabled);
5208         kfree(iter->event);
5209         kfree(iter);
5210 }
5211 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5212
5213 /**
5214  * ring_buffer_iter_advance - advance the iterator to the next location
5215  * @iter: The ring buffer iterator
5216  *
5217  * Move the location of the iterator such that the next read will
5218  * be the next location of the iterator.
5219  */
5220 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5221 {
5222         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5223         unsigned long flags;
5224
5225         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5226
5227         rb_advance_iter(iter);
5228
5229         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5230 }
5231 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5232
5233 /**
5234  * ring_buffer_size - return the size of the ring buffer (in bytes)
5235  * @buffer: The ring buffer.
5236  * @cpu: The CPU to get ring buffer size from.
5237  */
5238 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5239 {
5240         /*
5241          * Earlier, this method returned
5242          *      BUF_PAGE_SIZE * buffer->nr_pages
5243          * Since the nr_pages field is now removed, we have converted this to
5244          * return the per cpu buffer value.
5245          */
5246         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5247                 return 0;
5248
5249         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5250 }
5251 EXPORT_SYMBOL_GPL(ring_buffer_size);
5252
5253 static void rb_clear_buffer_page(struct buffer_page *page)
5254 {
5255         local_set(&page->write, 0);
5256         local_set(&page->entries, 0);
5257         rb_init_page(page->page);
5258         page->read = 0;
5259 }
5260
5261 static void
5262 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5263 {
5264         struct buffer_page *page;
5265
5266         rb_head_page_deactivate(cpu_buffer);
5267
5268         cpu_buffer->head_page
5269                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5270         rb_clear_buffer_page(cpu_buffer->head_page);
5271         list_for_each_entry(page, cpu_buffer->pages, list) {
5272                 rb_clear_buffer_page(page);
5273         }
5274
5275         cpu_buffer->tail_page = cpu_buffer->head_page;
5276         cpu_buffer->commit_page = cpu_buffer->head_page;
5277
5278         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5279         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5280         rb_clear_buffer_page(cpu_buffer->reader_page);
5281
5282         local_set(&cpu_buffer->entries_bytes, 0);
5283         local_set(&cpu_buffer->overrun, 0);
5284         local_set(&cpu_buffer->commit_overrun, 0);
5285         local_set(&cpu_buffer->dropped_events, 0);
5286         local_set(&cpu_buffer->entries, 0);
5287         local_set(&cpu_buffer->committing, 0);
5288         local_set(&cpu_buffer->commits, 0);
5289         local_set(&cpu_buffer->pages_touched, 0);
5290         local_set(&cpu_buffer->pages_lost, 0);
5291         local_set(&cpu_buffer->pages_read, 0);
5292         cpu_buffer->last_pages_touch = 0;
5293         cpu_buffer->shortest_full = 0;
5294         cpu_buffer->read = 0;
5295         cpu_buffer->read_bytes = 0;
5296
5297         rb_time_set(&cpu_buffer->write_stamp, 0);
5298         rb_time_set(&cpu_buffer->before_stamp, 0);
5299
5300         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5301
5302         cpu_buffer->lost_events = 0;
5303         cpu_buffer->last_overrun = 0;
5304
5305         rb_head_page_activate(cpu_buffer);
5306         cpu_buffer->pages_removed = 0;
5307 }
5308
5309 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5310 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5311 {
5312         unsigned long flags;
5313
5314         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5315
5316         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5317                 goto out;
5318
5319         arch_spin_lock(&cpu_buffer->lock);
5320
5321         rb_reset_cpu(cpu_buffer);
5322
5323         arch_spin_unlock(&cpu_buffer->lock);
5324
5325  out:
5326         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5327 }
5328
5329 /**
5330  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5331  * @buffer: The ring buffer to reset a per cpu buffer of
5332  * @cpu: The CPU buffer to be reset
5333  */
5334 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5335 {
5336         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5337
5338         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5339                 return;
5340
5341         /* prevent another thread from changing buffer sizes */
5342         mutex_lock(&buffer->mutex);
5343
5344         atomic_inc(&cpu_buffer->resize_disabled);
5345         atomic_inc(&cpu_buffer->record_disabled);
5346
5347         /* Make sure all commits have finished */
5348         synchronize_rcu();
5349
5350         reset_disabled_cpu_buffer(cpu_buffer);
5351
5352         atomic_dec(&cpu_buffer->record_disabled);
5353         atomic_dec(&cpu_buffer->resize_disabled);
5354
5355         mutex_unlock(&buffer->mutex);
5356 }
5357 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5358
5359 /* Flag to ensure proper resetting of atomic variables */
5360 #define RESET_BIT       (1 << 30)
5361
5362 /**
5363  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5364  * @buffer: The ring buffer to reset a per cpu buffer of
5365  */
5366 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5367 {
5368         struct ring_buffer_per_cpu *cpu_buffer;
5369         int cpu;
5370
5371         /* prevent another thread from changing buffer sizes */
5372         mutex_lock(&buffer->mutex);
5373
5374         for_each_online_buffer_cpu(buffer, cpu) {
5375                 cpu_buffer = buffer->buffers[cpu];
5376
5377                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5378                 atomic_inc(&cpu_buffer->record_disabled);
5379         }
5380
5381         /* Make sure all commits have finished */
5382         synchronize_rcu();
5383
5384         for_each_buffer_cpu(buffer, cpu) {
5385                 cpu_buffer = buffer->buffers[cpu];
5386
5387                 /*
5388                  * If a CPU came online during the synchronize_rcu(), then
5389                  * ignore it.
5390                  */
5391                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5392                         continue;
5393
5394                 reset_disabled_cpu_buffer(cpu_buffer);
5395
5396                 atomic_dec(&cpu_buffer->record_disabled);
5397                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5398         }
5399
5400         mutex_unlock(&buffer->mutex);
5401 }
5402
5403 /**
5404  * ring_buffer_reset - reset a ring buffer
5405  * @buffer: The ring buffer to reset all cpu buffers
5406  */
5407 void ring_buffer_reset(struct trace_buffer *buffer)
5408 {
5409         struct ring_buffer_per_cpu *cpu_buffer;
5410         int cpu;
5411
5412         /* prevent another thread from changing buffer sizes */
5413         mutex_lock(&buffer->mutex);
5414
5415         for_each_buffer_cpu(buffer, cpu) {
5416                 cpu_buffer = buffer->buffers[cpu];
5417
5418                 atomic_inc(&cpu_buffer->resize_disabled);
5419                 atomic_inc(&cpu_buffer->record_disabled);
5420         }
5421
5422         /* Make sure all commits have finished */
5423         synchronize_rcu();
5424
5425         for_each_buffer_cpu(buffer, cpu) {
5426                 cpu_buffer = buffer->buffers[cpu];
5427
5428                 reset_disabled_cpu_buffer(cpu_buffer);
5429
5430                 atomic_dec(&cpu_buffer->record_disabled);
5431                 atomic_dec(&cpu_buffer->resize_disabled);
5432         }
5433
5434         mutex_unlock(&buffer->mutex);
5435 }
5436 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5437
5438 /**
5439  * ring_buffer_empty - is the ring buffer empty?
5440  * @buffer: The ring buffer to test
5441  */
5442 bool ring_buffer_empty(struct trace_buffer *buffer)
5443 {
5444         struct ring_buffer_per_cpu *cpu_buffer;
5445         unsigned long flags;
5446         bool dolock;
5447         bool ret;
5448         int cpu;
5449
5450         /* yes this is racy, but if you don't like the race, lock the buffer */
5451         for_each_buffer_cpu(buffer, cpu) {
5452                 cpu_buffer = buffer->buffers[cpu];
5453                 local_irq_save(flags);
5454                 dolock = rb_reader_lock(cpu_buffer);
5455                 ret = rb_per_cpu_empty(cpu_buffer);
5456                 rb_reader_unlock(cpu_buffer, dolock);
5457                 local_irq_restore(flags);
5458
5459                 if (!ret)
5460                         return false;
5461         }
5462
5463         return true;
5464 }
5465 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5466
5467 /**
5468  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5469  * @buffer: The ring buffer
5470  * @cpu: The CPU buffer to test
5471  */
5472 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5473 {
5474         struct ring_buffer_per_cpu *cpu_buffer;
5475         unsigned long flags;
5476         bool dolock;
5477         bool ret;
5478
5479         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5480                 return true;
5481
5482         cpu_buffer = buffer->buffers[cpu];
5483         local_irq_save(flags);
5484         dolock = rb_reader_lock(cpu_buffer);
5485         ret = rb_per_cpu_empty(cpu_buffer);
5486         rb_reader_unlock(cpu_buffer, dolock);
5487         local_irq_restore(flags);
5488
5489         return ret;
5490 }
5491 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5492
5493 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5494 /**
5495  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5496  * @buffer_a: One buffer to swap with
5497  * @buffer_b: The other buffer to swap with
5498  * @cpu: the CPU of the buffers to swap
5499  *
5500  * This function is useful for tracers that want to take a "snapshot"
5501  * of a CPU buffer and has another back up buffer lying around.
5502  * it is expected that the tracer handles the cpu buffer not being
5503  * used at the moment.
5504  */
5505 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5506                          struct trace_buffer *buffer_b, int cpu)
5507 {
5508         struct ring_buffer_per_cpu *cpu_buffer_a;
5509         struct ring_buffer_per_cpu *cpu_buffer_b;
5510         int ret = -EINVAL;
5511
5512         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5513             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5514                 goto out;
5515
5516         cpu_buffer_a = buffer_a->buffers[cpu];
5517         cpu_buffer_b = buffer_b->buffers[cpu];
5518
5519         /* At least make sure the two buffers are somewhat the same */
5520         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5521                 goto out;
5522
5523         ret = -EAGAIN;
5524
5525         if (atomic_read(&buffer_a->record_disabled))
5526                 goto out;
5527
5528         if (atomic_read(&buffer_b->record_disabled))
5529                 goto out;
5530
5531         if (atomic_read(&cpu_buffer_a->record_disabled))
5532                 goto out;
5533
5534         if (atomic_read(&cpu_buffer_b->record_disabled))
5535                 goto out;
5536
5537         /*
5538          * We can't do a synchronize_rcu here because this
5539          * function can be called in atomic context.
5540          * Normally this will be called from the same CPU as cpu.
5541          * If not it's up to the caller to protect this.
5542          */
5543         atomic_inc(&cpu_buffer_a->record_disabled);
5544         atomic_inc(&cpu_buffer_b->record_disabled);
5545
5546         ret = -EBUSY;
5547         if (local_read(&cpu_buffer_a->committing))
5548                 goto out_dec;
5549         if (local_read(&cpu_buffer_b->committing))
5550                 goto out_dec;
5551
5552         /*
5553          * When resize is in progress, we cannot swap it because
5554          * it will mess the state of the cpu buffer.
5555          */
5556         if (atomic_read(&buffer_a->resizing))
5557                 goto out_dec;
5558         if (atomic_read(&buffer_b->resizing))
5559                 goto out_dec;
5560
5561         buffer_a->buffers[cpu] = cpu_buffer_b;
5562         buffer_b->buffers[cpu] = cpu_buffer_a;
5563
5564         cpu_buffer_b->buffer = buffer_a;
5565         cpu_buffer_a->buffer = buffer_b;
5566
5567         ret = 0;
5568
5569 out_dec:
5570         atomic_dec(&cpu_buffer_a->record_disabled);
5571         atomic_dec(&cpu_buffer_b->record_disabled);
5572 out:
5573         return ret;
5574 }
5575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5577
5578 /**
5579  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5580  * @buffer: the buffer to allocate for.
5581  * @cpu: the cpu buffer to allocate.
5582  *
5583  * This function is used in conjunction with ring_buffer_read_page.
5584  * When reading a full page from the ring buffer, these functions
5585  * can be used to speed up the process. The calling function should
5586  * allocate a few pages first with this function. Then when it
5587  * needs to get pages from the ring buffer, it passes the result
5588  * of this function into ring_buffer_read_page, which will swap
5589  * the page that was allocated, with the read page of the buffer.
5590  *
5591  * Returns:
5592  *  The page allocated, or ERR_PTR
5593  */
5594 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5595 {
5596         struct ring_buffer_per_cpu *cpu_buffer;
5597         struct buffer_data_page *bpage = NULL;
5598         unsigned long flags;
5599         struct page *page;
5600
5601         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5602                 return ERR_PTR(-ENODEV);
5603
5604         cpu_buffer = buffer->buffers[cpu];
5605         local_irq_save(flags);
5606         arch_spin_lock(&cpu_buffer->lock);
5607
5608         if (cpu_buffer->free_page) {
5609                 bpage = cpu_buffer->free_page;
5610                 cpu_buffer->free_page = NULL;
5611         }
5612
5613         arch_spin_unlock(&cpu_buffer->lock);
5614         local_irq_restore(flags);
5615
5616         if (bpage)
5617                 goto out;
5618
5619         page = alloc_pages_node(cpu_to_node(cpu),
5620                                 GFP_KERNEL | __GFP_NORETRY, 0);
5621         if (!page)
5622                 return ERR_PTR(-ENOMEM);
5623
5624         bpage = page_address(page);
5625
5626  out:
5627         rb_init_page(bpage);
5628
5629         return bpage;
5630 }
5631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5632
5633 /**
5634  * ring_buffer_free_read_page - free an allocated read page
5635  * @buffer: the buffer the page was allocate for
5636  * @cpu: the cpu buffer the page came from
5637  * @data: the page to free
5638  *
5639  * Free a page allocated from ring_buffer_alloc_read_page.
5640  */
5641 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5642 {
5643         struct ring_buffer_per_cpu *cpu_buffer;
5644         struct buffer_data_page *bpage = data;
5645         struct page *page = virt_to_page(bpage);
5646         unsigned long flags;
5647
5648         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5649                 return;
5650
5651         cpu_buffer = buffer->buffers[cpu];
5652
5653         /* If the page is still in use someplace else, we can't reuse it */
5654         if (page_ref_count(page) > 1)
5655                 goto out;
5656
5657         local_irq_save(flags);
5658         arch_spin_lock(&cpu_buffer->lock);
5659
5660         if (!cpu_buffer->free_page) {
5661                 cpu_buffer->free_page = bpage;
5662                 bpage = NULL;
5663         }
5664
5665         arch_spin_unlock(&cpu_buffer->lock);
5666         local_irq_restore(flags);
5667
5668  out:
5669         free_page((unsigned long)bpage);
5670 }
5671 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5672
5673 /**
5674  * ring_buffer_read_page - extract a page from the ring buffer
5675  * @buffer: buffer to extract from
5676  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5677  * @len: amount to extract
5678  * @cpu: the cpu of the buffer to extract
5679  * @full: should the extraction only happen when the page is full.
5680  *
5681  * This function will pull out a page from the ring buffer and consume it.
5682  * @data_page must be the address of the variable that was returned
5683  * from ring_buffer_alloc_read_page. This is because the page might be used
5684  * to swap with a page in the ring buffer.
5685  *
5686  * for example:
5687  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5688  *      if (IS_ERR(rpage))
5689  *              return PTR_ERR(rpage);
5690  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5691  *      if (ret >= 0)
5692  *              process_page(rpage, ret);
5693  *
5694  * When @full is set, the function will not return true unless
5695  * the writer is off the reader page.
5696  *
5697  * Note: it is up to the calling functions to handle sleeps and wakeups.
5698  *  The ring buffer can be used anywhere in the kernel and can not
5699  *  blindly call wake_up. The layer that uses the ring buffer must be
5700  *  responsible for that.
5701  *
5702  * Returns:
5703  *  >=0 if data has been transferred, returns the offset of consumed data.
5704  *  <0 if no data has been transferred.
5705  */
5706 int ring_buffer_read_page(struct trace_buffer *buffer,
5707                           void **data_page, size_t len, int cpu, int full)
5708 {
5709         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5710         struct ring_buffer_event *event;
5711         struct buffer_data_page *bpage;
5712         struct buffer_page *reader;
5713         unsigned long missed_events;
5714         unsigned long flags;
5715         unsigned int commit;
5716         unsigned int read;
5717         u64 save_timestamp;
5718         int ret = -1;
5719
5720         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5721                 goto out;
5722
5723         /*
5724          * If len is not big enough to hold the page header, then
5725          * we can not copy anything.
5726          */
5727         if (len <= BUF_PAGE_HDR_SIZE)
5728                 goto out;
5729
5730         len -= BUF_PAGE_HDR_SIZE;
5731
5732         if (!data_page)
5733                 goto out;
5734
5735         bpage = *data_page;
5736         if (!bpage)
5737                 goto out;
5738
5739         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5740
5741         reader = rb_get_reader_page(cpu_buffer);
5742         if (!reader)
5743                 goto out_unlock;
5744
5745         event = rb_reader_event(cpu_buffer);
5746
5747         read = reader->read;
5748         commit = rb_page_commit(reader);
5749
5750         /* Check if any events were dropped */
5751         missed_events = cpu_buffer->lost_events;
5752
5753         /*
5754          * If this page has been partially read or
5755          * if len is not big enough to read the rest of the page or
5756          * a writer is still on the page, then
5757          * we must copy the data from the page to the buffer.
5758          * Otherwise, we can simply swap the page with the one passed in.
5759          */
5760         if (read || (len < (commit - read)) ||
5761             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5762                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5763                 unsigned int rpos = read;
5764                 unsigned int pos = 0;
5765                 unsigned int size;
5766
5767                 /*
5768                  * If a full page is expected, this can still be returned
5769                  * if there's been a previous partial read and the
5770                  * rest of the page can be read and the commit page is off
5771                  * the reader page.
5772                  */
5773                 if (full &&
5774                     (!read || (len < (commit - read)) ||
5775                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5776                         goto out_unlock;
5777
5778                 if (len > (commit - read))
5779                         len = (commit - read);
5780
5781                 /* Always keep the time extend and data together */
5782                 size = rb_event_ts_length(event);
5783
5784                 if (len < size)
5785                         goto out_unlock;
5786
5787                 /* save the current timestamp, since the user will need it */
5788                 save_timestamp = cpu_buffer->read_stamp;
5789
5790                 /* Need to copy one event at a time */
5791                 do {
5792                         /* We need the size of one event, because
5793                          * rb_advance_reader only advances by one event,
5794                          * whereas rb_event_ts_length may include the size of
5795                          * one or two events.
5796                          * We have already ensured there's enough space if this
5797                          * is a time extend. */
5798                         size = rb_event_length(event);
5799                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5800
5801                         len -= size;
5802
5803                         rb_advance_reader(cpu_buffer);
5804                         rpos = reader->read;
5805                         pos += size;
5806
5807                         if (rpos >= commit)
5808                                 break;
5809
5810                         event = rb_reader_event(cpu_buffer);
5811                         /* Always keep the time extend and data together */
5812                         size = rb_event_ts_length(event);
5813                 } while (len >= size);
5814
5815                 /* update bpage */
5816                 local_set(&bpage->commit, pos);
5817                 bpage->time_stamp = save_timestamp;
5818
5819                 /* we copied everything to the beginning */
5820                 read = 0;
5821         } else {
5822                 /* update the entry counter */
5823                 cpu_buffer->read += rb_page_entries(reader);
5824                 cpu_buffer->read_bytes += rb_page_commit(reader);
5825
5826                 /* swap the pages */
5827                 rb_init_page(bpage);
5828                 bpage = reader->page;
5829                 reader->page = *data_page;
5830                 local_set(&reader->write, 0);
5831                 local_set(&reader->entries, 0);
5832                 reader->read = 0;
5833                 *data_page = bpage;
5834
5835                 /*
5836                  * Use the real_end for the data size,
5837                  * This gives us a chance to store the lost events
5838                  * on the page.
5839                  */
5840                 if (reader->real_end)
5841                         local_set(&bpage->commit, reader->real_end);
5842         }
5843         ret = read;
5844
5845         cpu_buffer->lost_events = 0;
5846
5847         commit = local_read(&bpage->commit);
5848         /*
5849          * Set a flag in the commit field if we lost events
5850          */
5851         if (missed_events) {
5852                 /* If there is room at the end of the page to save the
5853                  * missed events, then record it there.
5854                  */
5855                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5856                         memcpy(&bpage->data[commit], &missed_events,
5857                                sizeof(missed_events));
5858                         local_add(RB_MISSED_STORED, &bpage->commit);
5859                         commit += sizeof(missed_events);
5860                 }
5861                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5862         }
5863
5864         /*
5865          * This page may be off to user land. Zero it out here.
5866          */
5867         if (commit < BUF_PAGE_SIZE)
5868                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5869
5870  out_unlock:
5871         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5872
5873  out:
5874         return ret;
5875 }
5876 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5877
5878 /*
5879  * We only allocate new buffers, never free them if the CPU goes down.
5880  * If we were to free the buffer, then the user would lose any trace that was in
5881  * the buffer.
5882  */
5883 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5884 {
5885         struct trace_buffer *buffer;
5886         long nr_pages_same;
5887         int cpu_i;
5888         unsigned long nr_pages;
5889
5890         buffer = container_of(node, struct trace_buffer, node);
5891         if (cpumask_test_cpu(cpu, buffer->cpumask))
5892                 return 0;
5893
5894         nr_pages = 0;
5895         nr_pages_same = 1;
5896         /* check if all cpu sizes are same */
5897         for_each_buffer_cpu(buffer, cpu_i) {
5898                 /* fill in the size from first enabled cpu */
5899                 if (nr_pages == 0)
5900                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5901                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5902                         nr_pages_same = 0;
5903                         break;
5904                 }
5905         }
5906         /* allocate minimum pages, user can later expand it */
5907         if (!nr_pages_same)
5908                 nr_pages = 2;
5909         buffer->buffers[cpu] =
5910                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5911         if (!buffer->buffers[cpu]) {
5912                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5913                      cpu);
5914                 return -ENOMEM;
5915         }
5916         smp_wmb();
5917         cpumask_set_cpu(cpu, buffer->cpumask);
5918         return 0;
5919 }
5920
5921 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5922 /*
5923  * This is a basic integrity check of the ring buffer.
5924  * Late in the boot cycle this test will run when configured in.
5925  * It will kick off a thread per CPU that will go into a loop
5926  * writing to the per cpu ring buffer various sizes of data.
5927  * Some of the data will be large items, some small.
5928  *
5929  * Another thread is created that goes into a spin, sending out
5930  * IPIs to the other CPUs to also write into the ring buffer.
5931  * this is to test the nesting ability of the buffer.
5932  *
5933  * Basic stats are recorded and reported. If something in the
5934  * ring buffer should happen that's not expected, a big warning
5935  * is displayed and all ring buffers are disabled.
5936  */
5937 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5938
5939 struct rb_test_data {
5940         struct trace_buffer *buffer;
5941         unsigned long           events;
5942         unsigned long           bytes_written;
5943         unsigned long           bytes_alloc;
5944         unsigned long           bytes_dropped;
5945         unsigned long           events_nested;
5946         unsigned long           bytes_written_nested;
5947         unsigned long           bytes_alloc_nested;
5948         unsigned long           bytes_dropped_nested;
5949         int                     min_size_nested;
5950         int                     max_size_nested;
5951         int                     max_size;
5952         int                     min_size;
5953         int                     cpu;
5954         int                     cnt;
5955 };
5956
5957 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5958
5959 /* 1 meg per cpu */
5960 #define RB_TEST_BUFFER_SIZE     1048576
5961
5962 static char rb_string[] __initdata =
5963         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5964         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5965         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5966
5967 static bool rb_test_started __initdata;
5968
5969 struct rb_item {
5970         int size;
5971         char str[];
5972 };
5973
5974 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5975 {
5976         struct ring_buffer_event *event;
5977         struct rb_item *item;
5978         bool started;
5979         int event_len;
5980         int size;
5981         int len;
5982         int cnt;
5983
5984         /* Have nested writes different that what is written */
5985         cnt = data->cnt + (nested ? 27 : 0);
5986
5987         /* Multiply cnt by ~e, to make some unique increment */
5988         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5989
5990         len = size + sizeof(struct rb_item);
5991
5992         started = rb_test_started;
5993         /* read rb_test_started before checking buffer enabled */
5994         smp_rmb();
5995
5996         event = ring_buffer_lock_reserve(data->buffer, len);
5997         if (!event) {
5998                 /* Ignore dropped events before test starts. */
5999                 if (started) {
6000                         if (nested)
6001                                 data->bytes_dropped += len;
6002                         else
6003                                 data->bytes_dropped_nested += len;
6004                 }
6005                 return len;
6006         }
6007
6008         event_len = ring_buffer_event_length(event);
6009
6010         if (RB_WARN_ON(data->buffer, event_len < len))
6011                 goto out;
6012
6013         item = ring_buffer_event_data(event);
6014         item->size = size;
6015         memcpy(item->str, rb_string, size);
6016
6017         if (nested) {
6018                 data->bytes_alloc_nested += event_len;
6019                 data->bytes_written_nested += len;
6020                 data->events_nested++;
6021                 if (!data->min_size_nested || len < data->min_size_nested)
6022                         data->min_size_nested = len;
6023                 if (len > data->max_size_nested)
6024                         data->max_size_nested = len;
6025         } else {
6026                 data->bytes_alloc += event_len;
6027                 data->bytes_written += len;
6028                 data->events++;
6029                 if (!data->min_size || len < data->min_size)
6030                         data->max_size = len;
6031                 if (len > data->max_size)
6032                         data->max_size = len;
6033         }
6034
6035  out:
6036         ring_buffer_unlock_commit(data->buffer);
6037
6038         return 0;
6039 }
6040
6041 static __init int rb_test(void *arg)
6042 {
6043         struct rb_test_data *data = arg;
6044
6045         while (!kthread_should_stop()) {
6046                 rb_write_something(data, false);
6047                 data->cnt++;
6048
6049                 set_current_state(TASK_INTERRUPTIBLE);
6050                 /* Now sleep between a min of 100-300us and a max of 1ms */
6051                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6052         }
6053
6054         return 0;
6055 }
6056
6057 static __init void rb_ipi(void *ignore)
6058 {
6059         struct rb_test_data *data;
6060         int cpu = smp_processor_id();
6061
6062         data = &rb_data[cpu];
6063         rb_write_something(data, true);
6064 }
6065
6066 static __init int rb_hammer_test(void *arg)
6067 {
6068         while (!kthread_should_stop()) {
6069
6070                 /* Send an IPI to all cpus to write data! */
6071                 smp_call_function(rb_ipi, NULL, 1);
6072                 /* No sleep, but for non preempt, let others run */
6073                 schedule();
6074         }
6075
6076         return 0;
6077 }
6078
6079 static __init int test_ringbuffer(void)
6080 {
6081         struct task_struct *rb_hammer;
6082         struct trace_buffer *buffer;
6083         int cpu;
6084         int ret = 0;
6085
6086         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6087                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6088                 return 0;
6089         }
6090
6091         pr_info("Running ring buffer tests...\n");
6092
6093         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6094         if (WARN_ON(!buffer))
6095                 return 0;
6096
6097         /* Disable buffer so that threads can't write to it yet */
6098         ring_buffer_record_off(buffer);
6099
6100         for_each_online_cpu(cpu) {
6101                 rb_data[cpu].buffer = buffer;
6102                 rb_data[cpu].cpu = cpu;
6103                 rb_data[cpu].cnt = cpu;
6104                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6105                                                      cpu, "rbtester/%u");
6106                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6107                         pr_cont("FAILED\n");
6108                         ret = PTR_ERR(rb_threads[cpu]);
6109                         goto out_free;
6110                 }
6111         }
6112
6113         /* Now create the rb hammer! */
6114         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6115         if (WARN_ON(IS_ERR(rb_hammer))) {
6116                 pr_cont("FAILED\n");
6117                 ret = PTR_ERR(rb_hammer);
6118                 goto out_free;
6119         }
6120
6121         ring_buffer_record_on(buffer);
6122         /*
6123          * Show buffer is enabled before setting rb_test_started.
6124          * Yes there's a small race window where events could be
6125          * dropped and the thread wont catch it. But when a ring
6126          * buffer gets enabled, there will always be some kind of
6127          * delay before other CPUs see it. Thus, we don't care about
6128          * those dropped events. We care about events dropped after
6129          * the threads see that the buffer is active.
6130          */
6131         smp_wmb();
6132         rb_test_started = true;
6133
6134         set_current_state(TASK_INTERRUPTIBLE);
6135         /* Just run for 10 seconds */;
6136         schedule_timeout(10 * HZ);
6137
6138         kthread_stop(rb_hammer);
6139
6140  out_free:
6141         for_each_online_cpu(cpu) {
6142                 if (!rb_threads[cpu])
6143                         break;
6144                 kthread_stop(rb_threads[cpu]);
6145         }
6146         if (ret) {
6147                 ring_buffer_free(buffer);
6148                 return ret;
6149         }
6150
6151         /* Report! */
6152         pr_info("finished\n");
6153         for_each_online_cpu(cpu) {
6154                 struct ring_buffer_event *event;
6155                 struct rb_test_data *data = &rb_data[cpu];
6156                 struct rb_item *item;
6157                 unsigned long total_events;
6158                 unsigned long total_dropped;
6159                 unsigned long total_written;
6160                 unsigned long total_alloc;
6161                 unsigned long total_read = 0;
6162                 unsigned long total_size = 0;
6163                 unsigned long total_len = 0;
6164                 unsigned long total_lost = 0;
6165                 unsigned long lost;
6166                 int big_event_size;
6167                 int small_event_size;
6168
6169                 ret = -1;
6170
6171                 total_events = data->events + data->events_nested;
6172                 total_written = data->bytes_written + data->bytes_written_nested;
6173                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6174                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6175
6176                 big_event_size = data->max_size + data->max_size_nested;
6177                 small_event_size = data->min_size + data->min_size_nested;
6178
6179                 pr_info("CPU %d:\n", cpu);
6180                 pr_info("              events:    %ld\n", total_events);
6181                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6182                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6183                 pr_info("       written bytes:    %ld\n", total_written);
6184                 pr_info("       biggest event:    %d\n", big_event_size);
6185                 pr_info("      smallest event:    %d\n", small_event_size);
6186
6187                 if (RB_WARN_ON(buffer, total_dropped))
6188                         break;
6189
6190                 ret = 0;
6191
6192                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6193                         total_lost += lost;
6194                         item = ring_buffer_event_data(event);
6195                         total_len += ring_buffer_event_length(event);
6196                         total_size += item->size + sizeof(struct rb_item);
6197                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6198                                 pr_info("FAILED!\n");
6199                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6200                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6201                                 RB_WARN_ON(buffer, 1);
6202                                 ret = -1;
6203                                 break;
6204                         }
6205                         total_read++;
6206                 }
6207                 if (ret)
6208                         break;
6209
6210                 ret = -1;
6211
6212                 pr_info("         read events:   %ld\n", total_read);
6213                 pr_info("         lost events:   %ld\n", total_lost);
6214                 pr_info("        total events:   %ld\n", total_lost + total_read);
6215                 pr_info("  recorded len bytes:   %ld\n", total_len);
6216                 pr_info(" recorded size bytes:   %ld\n", total_size);
6217                 if (total_lost) {
6218                         pr_info(" With dropped events, record len and size may not match\n"
6219                                 " alloced and written from above\n");
6220                 } else {
6221                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6222                                        total_size != total_written))
6223                                 break;
6224                 }
6225                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6226                         break;
6227
6228                 ret = 0;
6229         }
6230         if (!ret)
6231                 pr_info("Ring buffer PASSED!\n");
6232
6233         ring_buffer_free(buffer);
6234         return 0;
6235 }
6236
6237 late_initcall(test_ringbuffer);
6238 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */