Merge tag 's390-6.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[platform/kernel/linux-starfive.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline int rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 /*
358  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
359  * this issue out.
360  */
361 static void free_buffer_page(struct buffer_page *bpage)
362 {
363         free_page((unsigned long)bpage->page);
364         kfree(bpage);
365 }
366
367 /*
368  * We need to fit the time_stamp delta into 27 bits.
369  */
370 static inline int test_time_stamp(u64 delta)
371 {
372         if (delta & TS_DELTA_TEST)
373                 return 1;
374         return 0;
375 }
376
377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
378
379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
381
382 int ring_buffer_print_page_header(struct trace_seq *s)
383 {
384         struct buffer_data_page field;
385
386         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
387                          "offset:0;\tsize:%u;\tsigned:%u;\n",
388                          (unsigned int)sizeof(field.time_stamp),
389                          (unsigned int)is_signed_type(u64));
390
391         trace_seq_printf(s, "\tfield: local_t commit;\t"
392                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
393                          (unsigned int)offsetof(typeof(field), commit),
394                          (unsigned int)sizeof(field.commit),
395                          (unsigned int)is_signed_type(long));
396
397         trace_seq_printf(s, "\tfield: int overwrite;\t"
398                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
399                          (unsigned int)offsetof(typeof(field), commit),
400                          1,
401                          (unsigned int)is_signed_type(long));
402
403         trace_seq_printf(s, "\tfield: char data;\t"
404                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
405                          (unsigned int)offsetof(typeof(field), data),
406                          (unsigned int)BUF_PAGE_SIZE,
407                          (unsigned int)is_signed_type(char));
408
409         return !trace_seq_has_overflowed(s);
410 }
411
412 struct rb_irq_work {
413         struct irq_work                 work;
414         wait_queue_head_t               waiters;
415         wait_queue_head_t               full_waiters;
416         long                            wait_index;
417         bool                            waiters_pending;
418         bool                            full_waiters_pending;
419         bool                            wakeup_full;
420 };
421
422 /*
423  * Structure to hold event state and handle nested events.
424  */
425 struct rb_event_info {
426         u64                     ts;
427         u64                     delta;
428         u64                     before;
429         u64                     after;
430         unsigned long           length;
431         struct buffer_page      *tail_page;
432         int                     add_timestamp;
433 };
434
435 /*
436  * Used for the add_timestamp
437  *  NONE
438  *  EXTEND - wants a time extend
439  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
440  *  FORCE - force a full time stamp.
441  */
442 enum {
443         RB_ADD_STAMP_NONE               = 0,
444         RB_ADD_STAMP_EXTEND             = BIT(1),
445         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
446         RB_ADD_STAMP_FORCE              = BIT(3)
447 };
448 /*
449  * Used for which event context the event is in.
450  *  TRANSITION = 0
451  *  NMI     = 1
452  *  IRQ     = 2
453  *  SOFTIRQ = 3
454  *  NORMAL  = 4
455  *
456  * See trace_recursive_lock() comment below for more details.
457  */
458 enum {
459         RB_CTX_TRANSITION,
460         RB_CTX_NMI,
461         RB_CTX_IRQ,
462         RB_CTX_SOFTIRQ,
463         RB_CTX_NORMAL,
464         RB_CTX_MAX
465 };
466
467 #if BITS_PER_LONG == 32
468 #define RB_TIME_32
469 #endif
470
471 /* To test on 64 bit machines */
472 //#define RB_TIME_32
473
474 #ifdef RB_TIME_32
475
476 struct rb_time_struct {
477         local_t         cnt;
478         local_t         top;
479         local_t         bottom;
480         local_t         msb;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485         local64_t       time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489
490 #define MAX_NEST        5
491
492 /*
493  * head_page == tail_page && head == tail then buffer is empty.
494  */
495 struct ring_buffer_per_cpu {
496         int                             cpu;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         struct trace_buffer     *buffer;
500         raw_spinlock_t                  reader_lock;    /* serialize readers */
501         arch_spinlock_t                 lock;
502         struct lock_class_key           lock_key;
503         struct buffer_data_page         *free_page;
504         unsigned long                   nr_pages;
505         unsigned int                    current_context;
506         struct list_head                *pages;
507         struct buffer_page              *head_page;     /* read from head */
508         struct buffer_page              *tail_page;     /* write to tail */
509         struct buffer_page              *commit_page;   /* committed pages */
510         struct buffer_page              *reader_page;
511         unsigned long                   lost_events;
512         unsigned long                   last_overrun;
513         unsigned long                   nest;
514         local_t                         entries_bytes;
515         local_t                         entries;
516         local_t                         overrun;
517         local_t                         commit_overrun;
518         local_t                         dropped_events;
519         local_t                         committing;
520         local_t                         commits;
521         local_t                         pages_touched;
522         local_t                         pages_read;
523         long                            last_pages_touch;
524         size_t                          shortest_full;
525         unsigned long                   read;
526         unsigned long                   read_bytes;
527         rb_time_t                       write_stamp;
528         rb_time_t                       before_stamp;
529         u64                             event_stamp[MAX_NEST];
530         u64                             read_stamp;
531         /* ring buffer pages to update, > 0 to add, < 0 to remove */
532         long                            nr_pages_to_update;
533         struct list_head                new_pages; /* new pages to add */
534         struct work_struct              update_pages_work;
535         struct completion               update_done;
536
537         struct rb_irq_work              irq_work;
538 };
539
540 struct trace_buffer {
541         unsigned                        flags;
542         int                             cpus;
543         atomic_t                        record_disabled;
544         cpumask_var_t                   cpumask;
545
546         struct lock_class_key           *reader_lock_key;
547
548         struct mutex                    mutex;
549
550         struct ring_buffer_per_cpu      **buffers;
551
552         struct hlist_node               node;
553         u64                             (*clock)(void);
554
555         struct rb_irq_work              irq_work;
556         bool                            time_stamp_abs;
557 };
558
559 struct ring_buffer_iter {
560         struct ring_buffer_per_cpu      *cpu_buffer;
561         unsigned long                   head;
562         unsigned long                   next_event;
563         struct buffer_page              *head_page;
564         struct buffer_page              *cache_reader_page;
565         unsigned long                   cache_read;
566         u64                             read_stamp;
567         u64                             page_stamp;
568         struct ring_buffer_event        *event;
569         int                             missed_events;
570 };
571
572 #ifdef RB_TIME_32
573
574 /*
575  * On 32 bit machines, local64_t is very expensive. As the ring
576  * buffer doesn't need all the features of a true 64 bit atomic,
577  * on 32 bit, it uses these functions (64 still uses local64_t).
578  *
579  * For the ring buffer, 64 bit required operations for the time is
580  * the following:
581  *
582  *  - Reads may fail if it interrupted a modification of the time stamp.
583  *      It will succeed if it did not interrupt another write even if
584  *      the read itself is interrupted by a write.
585  *      It returns whether it was successful or not.
586  *
587  *  - Writes always succeed and will overwrite other writes and writes
588  *      that were done by events interrupting the current write.
589  *
590  *  - A write followed by a read of the same time stamp will always succeed,
591  *      but may not contain the same value.
592  *
593  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
594  *      Other than that, it acts like a normal cmpxchg.
595  *
596  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
597  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
598  *
599  * The two most significant bits of each half holds a 2 bit counter (0-3).
600  * Each update will increment this counter by one.
601  * When reading the top and bottom, if the two counter bits match then the
602  *  top and bottom together make a valid 60 bit number.
603  */
604 #define RB_TIME_SHIFT   30
605 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
606 #define RB_TIME_MSB_SHIFT        60
607
608 static inline int rb_time_cnt(unsigned long val)
609 {
610         return (val >> RB_TIME_SHIFT) & 3;
611 }
612
613 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
614 {
615         u64 val;
616
617         val = top & RB_TIME_VAL_MASK;
618         val <<= RB_TIME_SHIFT;
619         val |= bottom & RB_TIME_VAL_MASK;
620
621         return val;
622 }
623
624 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
625 {
626         unsigned long top, bottom, msb;
627         unsigned long c;
628
629         /*
630          * If the read is interrupted by a write, then the cnt will
631          * be different. Loop until both top and bottom have been read
632          * without interruption.
633          */
634         do {
635                 c = local_read(&t->cnt);
636                 top = local_read(&t->top);
637                 bottom = local_read(&t->bottom);
638                 msb = local_read(&t->msb);
639         } while (c != local_read(&t->cnt));
640
641         *cnt = rb_time_cnt(top);
642
643         /* If top and bottom counts don't match, this interrupted a write */
644         if (*cnt != rb_time_cnt(bottom))
645                 return false;
646
647         /* The shift to msb will lose its cnt bits */
648         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
649         return true;
650 }
651
652 static bool rb_time_read(rb_time_t *t, u64 *ret)
653 {
654         unsigned long cnt;
655
656         return __rb_time_read(t, ret, &cnt);
657 }
658
659 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
660 {
661         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
662 }
663
664 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
665                                  unsigned long *msb)
666 {
667         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
668         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
669         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
670 }
671
672 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
673 {
674         val = rb_time_val_cnt(val, cnt);
675         local_set(t, val);
676 }
677
678 static void rb_time_set(rb_time_t *t, u64 val)
679 {
680         unsigned long cnt, top, bottom, msb;
681
682         rb_time_split(val, &top, &bottom, &msb);
683
684         /* Writes always succeed with a valid number even if it gets interrupted. */
685         do {
686                 cnt = local_inc_return(&t->cnt);
687                 rb_time_val_set(&t->top, top, cnt);
688                 rb_time_val_set(&t->bottom, bottom, cnt);
689                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
690         } while (cnt != local_read(&t->cnt));
691 }
692
693 static inline bool
694 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
695 {
696         unsigned long ret;
697
698         ret = local_cmpxchg(l, expect, set);
699         return ret == expect;
700 }
701
702 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
703 {
704         unsigned long cnt, top, bottom, msb;
705         unsigned long cnt2, top2, bottom2, msb2;
706         u64 val;
707
708         /* The cmpxchg always fails if it interrupted an update */
709          if (!__rb_time_read(t, &val, &cnt2))
710                  return false;
711
712          if (val != expect)
713                  return false;
714
715          cnt = local_read(&t->cnt);
716          if ((cnt & 3) != cnt2)
717                  return false;
718
719          cnt2 = cnt + 1;
720
721          rb_time_split(val, &top, &bottom, &msb);
722          top = rb_time_val_cnt(top, cnt);
723          bottom = rb_time_val_cnt(bottom, cnt);
724
725          rb_time_split(set, &top2, &bottom2, &msb2);
726          top2 = rb_time_val_cnt(top2, cnt2);
727          bottom2 = rb_time_val_cnt(bottom2, cnt2);
728
729         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
730                 return false;
731         if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
732                 return false;
733         if (!rb_time_read_cmpxchg(&t->top, top, top2))
734                 return false;
735         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
736                 return false;
737         return true;
738 }
739
740 #else /* 64 bits */
741
742 /* local64_t always succeeds */
743
744 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
745 {
746         *ret = local64_read(&t->time);
747         return true;
748 }
749 static void rb_time_set(rb_time_t *t, u64 val)
750 {
751         local64_set(&t->time, val);
752 }
753
754 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
755 {
756         u64 val;
757         val = local64_cmpxchg(&t->time, expect, set);
758         return val == expect;
759 }
760 #endif
761
762 /*
763  * Enable this to make sure that the event passed to
764  * ring_buffer_event_time_stamp() is not committed and also
765  * is on the buffer that it passed in.
766  */
767 //#define RB_VERIFY_EVENT
768 #ifdef RB_VERIFY_EVENT
769 static struct list_head *rb_list_head(struct list_head *list);
770 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
771                          void *event)
772 {
773         struct buffer_page *page = cpu_buffer->commit_page;
774         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
775         struct list_head *next;
776         long commit, write;
777         unsigned long addr = (unsigned long)event;
778         bool done = false;
779         int stop = 0;
780
781         /* Make sure the event exists and is not committed yet */
782         do {
783                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
784                         done = true;
785                 commit = local_read(&page->page->commit);
786                 write = local_read(&page->write);
787                 if (addr >= (unsigned long)&page->page->data[commit] &&
788                     addr < (unsigned long)&page->page->data[write])
789                         return;
790
791                 next = rb_list_head(page->list.next);
792                 page = list_entry(next, struct buffer_page, list);
793         } while (!done);
794         WARN_ON_ONCE(1);
795 }
796 #else
797 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
798                          void *event)
799 {
800 }
801 #endif
802
803 /*
804  * The absolute time stamp drops the 5 MSBs and some clocks may
805  * require them. The rb_fix_abs_ts() will take a previous full
806  * time stamp, and add the 5 MSB of that time stamp on to the
807  * saved absolute time stamp. Then they are compared in case of
808  * the unlikely event that the latest time stamp incremented
809  * the 5 MSB.
810  */
811 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
812 {
813         if (save_ts & TS_MSB) {
814                 abs |= save_ts & TS_MSB;
815                 /* Check for overflow */
816                 if (unlikely(abs < save_ts))
817                         abs += 1ULL << 59;
818         }
819         return abs;
820 }
821
822 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
823
824 /**
825  * ring_buffer_event_time_stamp - return the event's current time stamp
826  * @buffer: The buffer that the event is on
827  * @event: the event to get the time stamp of
828  *
829  * Note, this must be called after @event is reserved, and before it is
830  * committed to the ring buffer. And must be called from the same
831  * context where the event was reserved (normal, softirq, irq, etc).
832  *
833  * Returns the time stamp associated with the current event.
834  * If the event has an extended time stamp, then that is used as
835  * the time stamp to return.
836  * In the highly unlikely case that the event was nested more than
837  * the max nesting, then the write_stamp of the buffer is returned,
838  * otherwise  current time is returned, but that really neither of
839  * the last two cases should ever happen.
840  */
841 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
842                                  struct ring_buffer_event *event)
843 {
844         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
845         unsigned int nest;
846         u64 ts;
847
848         /* If the event includes an absolute time, then just use that */
849         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
850                 ts = rb_event_time_stamp(event);
851                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
852         }
853
854         nest = local_read(&cpu_buffer->committing);
855         verify_event(cpu_buffer, event);
856         if (WARN_ON_ONCE(!nest))
857                 goto fail;
858
859         /* Read the current saved nesting level time stamp */
860         if (likely(--nest < MAX_NEST))
861                 return cpu_buffer->event_stamp[nest];
862
863         /* Shouldn't happen, warn if it does */
864         WARN_ONCE(1, "nest (%d) greater than max", nest);
865
866  fail:
867         /* Can only fail on 32 bit */
868         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
869                 /* Screw it, just read the current time */
870                 ts = rb_time_stamp(cpu_buffer->buffer);
871
872         return ts;
873 }
874
875 /**
876  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
877  * @buffer: The ring_buffer to get the number of pages from
878  * @cpu: The cpu of the ring_buffer to get the number of pages from
879  *
880  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
881  */
882 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
883 {
884         return buffer->buffers[cpu]->nr_pages;
885 }
886
887 /**
888  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
889  * @buffer: The ring_buffer to get the number of pages from
890  * @cpu: The cpu of the ring_buffer to get the number of pages from
891  *
892  * Returns the number of pages that have content in the ring buffer.
893  */
894 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
895 {
896         size_t read;
897         size_t cnt;
898
899         read = local_read(&buffer->buffers[cpu]->pages_read);
900         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
901         /* The reader can read an empty page, but not more than that */
902         if (cnt < read) {
903                 WARN_ON_ONCE(read > cnt + 1);
904                 return 0;
905         }
906
907         return cnt - read;
908 }
909
910 /*
911  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
912  *
913  * Schedules a delayed work to wake up any task that is blocked on the
914  * ring buffer waiters queue.
915  */
916 static void rb_wake_up_waiters(struct irq_work *work)
917 {
918         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
919
920         wake_up_all(&rbwork->waiters);
921         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
922                 rbwork->wakeup_full = false;
923                 rbwork->full_waiters_pending = false;
924                 wake_up_all(&rbwork->full_waiters);
925         }
926 }
927
928 /**
929  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
930  * @buffer: The ring buffer to wake waiters on
931  *
932  * In the case of a file that represents a ring buffer is closing,
933  * it is prudent to wake up any waiters that are on this.
934  */
935 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
936 {
937         struct ring_buffer_per_cpu *cpu_buffer;
938         struct rb_irq_work *rbwork;
939
940         if (cpu == RING_BUFFER_ALL_CPUS) {
941
942                 /* Wake up individual ones too. One level recursion */
943                 for_each_buffer_cpu(buffer, cpu)
944                         ring_buffer_wake_waiters(buffer, cpu);
945
946                 rbwork = &buffer->irq_work;
947         } else {
948                 cpu_buffer = buffer->buffers[cpu];
949                 rbwork = &cpu_buffer->irq_work;
950         }
951
952         rbwork->wait_index++;
953         /* make sure the waiters see the new index */
954         smp_wmb();
955
956         rb_wake_up_waiters(&rbwork->work);
957 }
958
959 /**
960  * ring_buffer_wait - wait for input to the ring buffer
961  * @buffer: buffer to wait on
962  * @cpu: the cpu buffer to wait on
963  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
964  *
965  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
966  * as data is added to any of the @buffer's cpu buffers. Otherwise
967  * it will wait for data to be added to a specific cpu buffer.
968  */
969 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
970 {
971         struct ring_buffer_per_cpu *cpu_buffer;
972         DEFINE_WAIT(wait);
973         struct rb_irq_work *work;
974         long wait_index;
975         int ret = 0;
976
977         /*
978          * Depending on what the caller is waiting for, either any
979          * data in any cpu buffer, or a specific buffer, put the
980          * caller on the appropriate wait queue.
981          */
982         if (cpu == RING_BUFFER_ALL_CPUS) {
983                 work = &buffer->irq_work;
984                 /* Full only makes sense on per cpu reads */
985                 full = 0;
986         } else {
987                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
988                         return -ENODEV;
989                 cpu_buffer = buffer->buffers[cpu];
990                 work = &cpu_buffer->irq_work;
991         }
992
993         wait_index = READ_ONCE(work->wait_index);
994
995         while (true) {
996                 if (full)
997                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
998                 else
999                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1000
1001                 /*
1002                  * The events can happen in critical sections where
1003                  * checking a work queue can cause deadlocks.
1004                  * After adding a task to the queue, this flag is set
1005                  * only to notify events to try to wake up the queue
1006                  * using irq_work.
1007                  *
1008                  * We don't clear it even if the buffer is no longer
1009                  * empty. The flag only causes the next event to run
1010                  * irq_work to do the work queue wake up. The worse
1011                  * that can happen if we race with !trace_empty() is that
1012                  * an event will cause an irq_work to try to wake up
1013                  * an empty queue.
1014                  *
1015                  * There's no reason to protect this flag either, as
1016                  * the work queue and irq_work logic will do the necessary
1017                  * synchronization for the wake ups. The only thing
1018                  * that is necessary is that the wake up happens after
1019                  * a task has been queued. It's OK for spurious wake ups.
1020                  */
1021                 if (full)
1022                         work->full_waiters_pending = true;
1023                 else
1024                         work->waiters_pending = true;
1025
1026                 if (signal_pending(current)) {
1027                         ret = -EINTR;
1028                         break;
1029                 }
1030
1031                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1032                         break;
1033
1034                 if (cpu != RING_BUFFER_ALL_CPUS &&
1035                     !ring_buffer_empty_cpu(buffer, cpu)) {
1036                         unsigned long flags;
1037                         bool pagebusy;
1038                         size_t nr_pages;
1039                         size_t dirty;
1040
1041                         if (!full)
1042                                 break;
1043
1044                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1045                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1046                         nr_pages = cpu_buffer->nr_pages;
1047                         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
1048                         if (!cpu_buffer->shortest_full ||
1049                             cpu_buffer->shortest_full > full)
1050                                 cpu_buffer->shortest_full = full;
1051                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1052                         if (!pagebusy &&
1053                             (!nr_pages || (dirty * 100) > full * nr_pages))
1054                                 break;
1055                 }
1056
1057                 schedule();
1058
1059                 /* Make sure to see the new wait index */
1060                 smp_rmb();
1061                 if (wait_index != work->wait_index)
1062                         break;
1063         }
1064
1065         if (full)
1066                 finish_wait(&work->full_waiters, &wait);
1067         else
1068                 finish_wait(&work->waiters, &wait);
1069
1070         return ret;
1071 }
1072
1073 /**
1074  * ring_buffer_poll_wait - poll on buffer input
1075  * @buffer: buffer to wait on
1076  * @cpu: the cpu buffer to wait on
1077  * @filp: the file descriptor
1078  * @poll_table: The poll descriptor
1079  *
1080  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1081  * as data is added to any of the @buffer's cpu buffers. Otherwise
1082  * it will wait for data to be added to a specific cpu buffer.
1083  *
1084  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1085  * zero otherwise.
1086  */
1087 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1088                           struct file *filp, poll_table *poll_table)
1089 {
1090         struct ring_buffer_per_cpu *cpu_buffer;
1091         struct rb_irq_work *work;
1092
1093         if (cpu == RING_BUFFER_ALL_CPUS)
1094                 work = &buffer->irq_work;
1095         else {
1096                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1097                         return -EINVAL;
1098
1099                 cpu_buffer = buffer->buffers[cpu];
1100                 work = &cpu_buffer->irq_work;
1101         }
1102
1103         poll_wait(filp, &work->waiters, poll_table);
1104         work->waiters_pending = true;
1105         /*
1106          * There's a tight race between setting the waiters_pending and
1107          * checking if the ring buffer is empty.  Once the waiters_pending bit
1108          * is set, the next event will wake the task up, but we can get stuck
1109          * if there's only a single event in.
1110          *
1111          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1112          * but adding a memory barrier to all events will cause too much of a
1113          * performance hit in the fast path.  We only need a memory barrier when
1114          * the buffer goes from empty to having content.  But as this race is
1115          * extremely small, and it's not a problem if another event comes in, we
1116          * will fix it later.
1117          */
1118         smp_mb();
1119
1120         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1121             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1122                 return EPOLLIN | EPOLLRDNORM;
1123         return 0;
1124 }
1125
1126 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1127 #define RB_WARN_ON(b, cond)                                             \
1128         ({                                                              \
1129                 int _____ret = unlikely(cond);                          \
1130                 if (_____ret) {                                         \
1131                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1132                                 struct ring_buffer_per_cpu *__b =       \
1133                                         (void *)b;                      \
1134                                 atomic_inc(&__b->buffer->record_disabled); \
1135                         } else                                          \
1136                                 atomic_inc(&b->record_disabled);        \
1137                         WARN_ON(1);                                     \
1138                 }                                                       \
1139                 _____ret;                                               \
1140         })
1141
1142 /* Up this if you want to test the TIME_EXTENTS and normalization */
1143 #define DEBUG_SHIFT 0
1144
1145 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1146 {
1147         u64 ts;
1148
1149         /* Skip retpolines :-( */
1150         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1151                 ts = trace_clock_local();
1152         else
1153                 ts = buffer->clock();
1154
1155         /* shift to debug/test normalization and TIME_EXTENTS */
1156         return ts << DEBUG_SHIFT;
1157 }
1158
1159 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1160 {
1161         u64 time;
1162
1163         preempt_disable_notrace();
1164         time = rb_time_stamp(buffer);
1165         preempt_enable_notrace();
1166
1167         return time;
1168 }
1169 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1170
1171 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1172                                       int cpu, u64 *ts)
1173 {
1174         /* Just stupid testing the normalize function and deltas */
1175         *ts >>= DEBUG_SHIFT;
1176 }
1177 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1178
1179 /*
1180  * Making the ring buffer lockless makes things tricky.
1181  * Although writes only happen on the CPU that they are on,
1182  * and they only need to worry about interrupts. Reads can
1183  * happen on any CPU.
1184  *
1185  * The reader page is always off the ring buffer, but when the
1186  * reader finishes with a page, it needs to swap its page with
1187  * a new one from the buffer. The reader needs to take from
1188  * the head (writes go to the tail). But if a writer is in overwrite
1189  * mode and wraps, it must push the head page forward.
1190  *
1191  * Here lies the problem.
1192  *
1193  * The reader must be careful to replace only the head page, and
1194  * not another one. As described at the top of the file in the
1195  * ASCII art, the reader sets its old page to point to the next
1196  * page after head. It then sets the page after head to point to
1197  * the old reader page. But if the writer moves the head page
1198  * during this operation, the reader could end up with the tail.
1199  *
1200  * We use cmpxchg to help prevent this race. We also do something
1201  * special with the page before head. We set the LSB to 1.
1202  *
1203  * When the writer must push the page forward, it will clear the
1204  * bit that points to the head page, move the head, and then set
1205  * the bit that points to the new head page.
1206  *
1207  * We also don't want an interrupt coming in and moving the head
1208  * page on another writer. Thus we use the second LSB to catch
1209  * that too. Thus:
1210  *
1211  * head->list->prev->next        bit 1          bit 0
1212  *                              -------        -------
1213  * Normal page                     0              0
1214  * Points to head page             0              1
1215  * New head page                   1              0
1216  *
1217  * Note we can not trust the prev pointer of the head page, because:
1218  *
1219  * +----+       +-----+        +-----+
1220  * |    |------>|  T  |---X--->|  N  |
1221  * |    |<------|     |        |     |
1222  * +----+       +-----+        +-----+
1223  *   ^                           ^ |
1224  *   |          +-----+          | |
1225  *   +----------|  R  |----------+ |
1226  *              |     |<-----------+
1227  *              +-----+
1228  *
1229  * Key:  ---X-->  HEAD flag set in pointer
1230  *         T      Tail page
1231  *         R      Reader page
1232  *         N      Next page
1233  *
1234  * (see __rb_reserve_next() to see where this happens)
1235  *
1236  *  What the above shows is that the reader just swapped out
1237  *  the reader page with a page in the buffer, but before it
1238  *  could make the new header point back to the new page added
1239  *  it was preempted by a writer. The writer moved forward onto
1240  *  the new page added by the reader and is about to move forward
1241  *  again.
1242  *
1243  *  You can see, it is legitimate for the previous pointer of
1244  *  the head (or any page) not to point back to itself. But only
1245  *  temporarily.
1246  */
1247
1248 #define RB_PAGE_NORMAL          0UL
1249 #define RB_PAGE_HEAD            1UL
1250 #define RB_PAGE_UPDATE          2UL
1251
1252
1253 #define RB_FLAG_MASK            3UL
1254
1255 /* PAGE_MOVED is not part of the mask */
1256 #define RB_PAGE_MOVED           4UL
1257
1258 /*
1259  * rb_list_head - remove any bit
1260  */
1261 static struct list_head *rb_list_head(struct list_head *list)
1262 {
1263         unsigned long val = (unsigned long)list;
1264
1265         return (struct list_head *)(val & ~RB_FLAG_MASK);
1266 }
1267
1268 /*
1269  * rb_is_head_page - test if the given page is the head page
1270  *
1271  * Because the reader may move the head_page pointer, we can
1272  * not trust what the head page is (it may be pointing to
1273  * the reader page). But if the next page is a header page,
1274  * its flags will be non zero.
1275  */
1276 static inline int
1277 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1278 {
1279         unsigned long val;
1280
1281         val = (unsigned long)list->next;
1282
1283         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1284                 return RB_PAGE_MOVED;
1285
1286         return val & RB_FLAG_MASK;
1287 }
1288
1289 /*
1290  * rb_is_reader_page
1291  *
1292  * The unique thing about the reader page, is that, if the
1293  * writer is ever on it, the previous pointer never points
1294  * back to the reader page.
1295  */
1296 static bool rb_is_reader_page(struct buffer_page *page)
1297 {
1298         struct list_head *list = page->list.prev;
1299
1300         return rb_list_head(list->next) != &page->list;
1301 }
1302
1303 /*
1304  * rb_set_list_to_head - set a list_head to be pointing to head.
1305  */
1306 static void rb_set_list_to_head(struct list_head *list)
1307 {
1308         unsigned long *ptr;
1309
1310         ptr = (unsigned long *)&list->next;
1311         *ptr |= RB_PAGE_HEAD;
1312         *ptr &= ~RB_PAGE_UPDATE;
1313 }
1314
1315 /*
1316  * rb_head_page_activate - sets up head page
1317  */
1318 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1319 {
1320         struct buffer_page *head;
1321
1322         head = cpu_buffer->head_page;
1323         if (!head)
1324                 return;
1325
1326         /*
1327          * Set the previous list pointer to have the HEAD flag.
1328          */
1329         rb_set_list_to_head(head->list.prev);
1330 }
1331
1332 static void rb_list_head_clear(struct list_head *list)
1333 {
1334         unsigned long *ptr = (unsigned long *)&list->next;
1335
1336         *ptr &= ~RB_FLAG_MASK;
1337 }
1338
1339 /*
1340  * rb_head_page_deactivate - clears head page ptr (for free list)
1341  */
1342 static void
1343 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1344 {
1345         struct list_head *hd;
1346
1347         /* Go through the whole list and clear any pointers found. */
1348         rb_list_head_clear(cpu_buffer->pages);
1349
1350         list_for_each(hd, cpu_buffer->pages)
1351                 rb_list_head_clear(hd);
1352 }
1353
1354 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1355                             struct buffer_page *head,
1356                             struct buffer_page *prev,
1357                             int old_flag, int new_flag)
1358 {
1359         struct list_head *list;
1360         unsigned long val = (unsigned long)&head->list;
1361         unsigned long ret;
1362
1363         list = &prev->list;
1364
1365         val &= ~RB_FLAG_MASK;
1366
1367         ret = cmpxchg((unsigned long *)&list->next,
1368                       val | old_flag, val | new_flag);
1369
1370         /* check if the reader took the page */
1371         if ((ret & ~RB_FLAG_MASK) != val)
1372                 return RB_PAGE_MOVED;
1373
1374         return ret & RB_FLAG_MASK;
1375 }
1376
1377 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1378                                    struct buffer_page *head,
1379                                    struct buffer_page *prev,
1380                                    int old_flag)
1381 {
1382         return rb_head_page_set(cpu_buffer, head, prev,
1383                                 old_flag, RB_PAGE_UPDATE);
1384 }
1385
1386 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1387                                  struct buffer_page *head,
1388                                  struct buffer_page *prev,
1389                                  int old_flag)
1390 {
1391         return rb_head_page_set(cpu_buffer, head, prev,
1392                                 old_flag, RB_PAGE_HEAD);
1393 }
1394
1395 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1396                                    struct buffer_page *head,
1397                                    struct buffer_page *prev,
1398                                    int old_flag)
1399 {
1400         return rb_head_page_set(cpu_buffer, head, prev,
1401                                 old_flag, RB_PAGE_NORMAL);
1402 }
1403
1404 static inline void rb_inc_page(struct buffer_page **bpage)
1405 {
1406         struct list_head *p = rb_list_head((*bpage)->list.next);
1407
1408         *bpage = list_entry(p, struct buffer_page, list);
1409 }
1410
1411 static struct buffer_page *
1412 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1413 {
1414         struct buffer_page *head;
1415         struct buffer_page *page;
1416         struct list_head *list;
1417         int i;
1418
1419         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1420                 return NULL;
1421
1422         /* sanity check */
1423         list = cpu_buffer->pages;
1424         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1425                 return NULL;
1426
1427         page = head = cpu_buffer->head_page;
1428         /*
1429          * It is possible that the writer moves the header behind
1430          * where we started, and we miss in one loop.
1431          * A second loop should grab the header, but we'll do
1432          * three loops just because I'm paranoid.
1433          */
1434         for (i = 0; i < 3; i++) {
1435                 do {
1436                         if (rb_is_head_page(page, page->list.prev)) {
1437                                 cpu_buffer->head_page = page;
1438                                 return page;
1439                         }
1440                         rb_inc_page(&page);
1441                 } while (page != head);
1442         }
1443
1444         RB_WARN_ON(cpu_buffer, 1);
1445
1446         return NULL;
1447 }
1448
1449 static int rb_head_page_replace(struct buffer_page *old,
1450                                 struct buffer_page *new)
1451 {
1452         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1453         unsigned long val;
1454         unsigned long ret;
1455
1456         val = *ptr & ~RB_FLAG_MASK;
1457         val |= RB_PAGE_HEAD;
1458
1459         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1460
1461         return ret == val;
1462 }
1463
1464 /*
1465  * rb_tail_page_update - move the tail page forward
1466  */
1467 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1468                                struct buffer_page *tail_page,
1469                                struct buffer_page *next_page)
1470 {
1471         unsigned long old_entries;
1472         unsigned long old_write;
1473
1474         /*
1475          * The tail page now needs to be moved forward.
1476          *
1477          * We need to reset the tail page, but without messing
1478          * with possible erasing of data brought in by interrupts
1479          * that have moved the tail page and are currently on it.
1480          *
1481          * We add a counter to the write field to denote this.
1482          */
1483         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1484         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1485
1486         local_inc(&cpu_buffer->pages_touched);
1487         /*
1488          * Just make sure we have seen our old_write and synchronize
1489          * with any interrupts that come in.
1490          */
1491         barrier();
1492
1493         /*
1494          * If the tail page is still the same as what we think
1495          * it is, then it is up to us to update the tail
1496          * pointer.
1497          */
1498         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1499                 /* Zero the write counter */
1500                 unsigned long val = old_write & ~RB_WRITE_MASK;
1501                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1502
1503                 /*
1504                  * This will only succeed if an interrupt did
1505                  * not come in and change it. In which case, we
1506                  * do not want to modify it.
1507                  *
1508                  * We add (void) to let the compiler know that we do not care
1509                  * about the return value of these functions. We use the
1510                  * cmpxchg to only update if an interrupt did not already
1511                  * do it for us. If the cmpxchg fails, we don't care.
1512                  */
1513                 (void)local_cmpxchg(&next_page->write, old_write, val);
1514                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1515
1516                 /*
1517                  * No need to worry about races with clearing out the commit.
1518                  * it only can increment when a commit takes place. But that
1519                  * only happens in the outer most nested commit.
1520                  */
1521                 local_set(&next_page->page->commit, 0);
1522
1523                 /* Again, either we update tail_page or an interrupt does */
1524                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1525         }
1526 }
1527
1528 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1529                           struct buffer_page *bpage)
1530 {
1531         unsigned long val = (unsigned long)bpage;
1532
1533         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1534                 return 1;
1535
1536         return 0;
1537 }
1538
1539 /**
1540  * rb_check_list - make sure a pointer to a list has the last bits zero
1541  */
1542 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1543                          struct list_head *list)
1544 {
1545         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1546                 return 1;
1547         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1548                 return 1;
1549         return 0;
1550 }
1551
1552 /**
1553  * rb_check_pages - integrity check of buffer pages
1554  * @cpu_buffer: CPU buffer with pages to test
1555  *
1556  * As a safety measure we check to make sure the data pages have not
1557  * been corrupted.
1558  */
1559 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1560 {
1561         struct list_head *head = cpu_buffer->pages;
1562         struct buffer_page *bpage, *tmp;
1563
1564         /* Reset the head page if it exists */
1565         if (cpu_buffer->head_page)
1566                 rb_set_head_page(cpu_buffer);
1567
1568         rb_head_page_deactivate(cpu_buffer);
1569
1570         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1571                 return -1;
1572         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1573                 return -1;
1574
1575         if (rb_check_list(cpu_buffer, head))
1576                 return -1;
1577
1578         list_for_each_entry_safe(bpage, tmp, head, list) {
1579                 if (RB_WARN_ON(cpu_buffer,
1580                                bpage->list.next->prev != &bpage->list))
1581                         return -1;
1582                 if (RB_WARN_ON(cpu_buffer,
1583                                bpage->list.prev->next != &bpage->list))
1584                         return -1;
1585                 if (rb_check_list(cpu_buffer, &bpage->list))
1586                         return -1;
1587         }
1588
1589         rb_head_page_activate(cpu_buffer);
1590
1591         return 0;
1592 }
1593
1594 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1595                 long nr_pages, struct list_head *pages)
1596 {
1597         struct buffer_page *bpage, *tmp;
1598         bool user_thread = current->mm != NULL;
1599         gfp_t mflags;
1600         long i;
1601
1602         /*
1603          * Check if the available memory is there first.
1604          * Note, si_mem_available() only gives us a rough estimate of available
1605          * memory. It may not be accurate. But we don't care, we just want
1606          * to prevent doing any allocation when it is obvious that it is
1607          * not going to succeed.
1608          */
1609         i = si_mem_available();
1610         if (i < nr_pages)
1611                 return -ENOMEM;
1612
1613         /*
1614          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1615          * gracefully without invoking oom-killer and the system is not
1616          * destabilized.
1617          */
1618         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1619
1620         /*
1621          * If a user thread allocates too much, and si_mem_available()
1622          * reports there's enough memory, even though there is not.
1623          * Make sure the OOM killer kills this thread. This can happen
1624          * even with RETRY_MAYFAIL because another task may be doing
1625          * an allocation after this task has taken all memory.
1626          * This is the task the OOM killer needs to take out during this
1627          * loop, even if it was triggered by an allocation somewhere else.
1628          */
1629         if (user_thread)
1630                 set_current_oom_origin();
1631         for (i = 0; i < nr_pages; i++) {
1632                 struct page *page;
1633
1634                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1635                                     mflags, cpu_to_node(cpu_buffer->cpu));
1636                 if (!bpage)
1637                         goto free_pages;
1638
1639                 rb_check_bpage(cpu_buffer, bpage);
1640
1641                 list_add(&bpage->list, pages);
1642
1643                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1644                 if (!page)
1645                         goto free_pages;
1646                 bpage->page = page_address(page);
1647                 rb_init_page(bpage->page);
1648
1649                 if (user_thread && fatal_signal_pending(current))
1650                         goto free_pages;
1651         }
1652         if (user_thread)
1653                 clear_current_oom_origin();
1654
1655         return 0;
1656
1657 free_pages:
1658         list_for_each_entry_safe(bpage, tmp, pages, list) {
1659                 list_del_init(&bpage->list);
1660                 free_buffer_page(bpage);
1661         }
1662         if (user_thread)
1663                 clear_current_oom_origin();
1664
1665         return -ENOMEM;
1666 }
1667
1668 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1669                              unsigned long nr_pages)
1670 {
1671         LIST_HEAD(pages);
1672
1673         WARN_ON(!nr_pages);
1674
1675         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1676                 return -ENOMEM;
1677
1678         /*
1679          * The ring buffer page list is a circular list that does not
1680          * start and end with a list head. All page list items point to
1681          * other pages.
1682          */
1683         cpu_buffer->pages = pages.next;
1684         list_del(&pages);
1685
1686         cpu_buffer->nr_pages = nr_pages;
1687
1688         rb_check_pages(cpu_buffer);
1689
1690         return 0;
1691 }
1692
1693 static struct ring_buffer_per_cpu *
1694 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1695 {
1696         struct ring_buffer_per_cpu *cpu_buffer;
1697         struct buffer_page *bpage;
1698         struct page *page;
1699         int ret;
1700
1701         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1702                                   GFP_KERNEL, cpu_to_node(cpu));
1703         if (!cpu_buffer)
1704                 return NULL;
1705
1706         cpu_buffer->cpu = cpu;
1707         cpu_buffer->buffer = buffer;
1708         raw_spin_lock_init(&cpu_buffer->reader_lock);
1709         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1710         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1711         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1712         init_completion(&cpu_buffer->update_done);
1713         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1714         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1715         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1716
1717         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1718                             GFP_KERNEL, cpu_to_node(cpu));
1719         if (!bpage)
1720                 goto fail_free_buffer;
1721
1722         rb_check_bpage(cpu_buffer, bpage);
1723
1724         cpu_buffer->reader_page = bpage;
1725         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1726         if (!page)
1727                 goto fail_free_reader;
1728         bpage->page = page_address(page);
1729         rb_init_page(bpage->page);
1730
1731         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1732         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1733
1734         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1735         if (ret < 0)
1736                 goto fail_free_reader;
1737
1738         cpu_buffer->head_page
1739                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1740         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1741
1742         rb_head_page_activate(cpu_buffer);
1743
1744         return cpu_buffer;
1745
1746  fail_free_reader:
1747         free_buffer_page(cpu_buffer->reader_page);
1748
1749  fail_free_buffer:
1750         kfree(cpu_buffer);
1751         return NULL;
1752 }
1753
1754 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1755 {
1756         struct list_head *head = cpu_buffer->pages;
1757         struct buffer_page *bpage, *tmp;
1758
1759         free_buffer_page(cpu_buffer->reader_page);
1760
1761         rb_head_page_deactivate(cpu_buffer);
1762
1763         if (head) {
1764                 list_for_each_entry_safe(bpage, tmp, head, list) {
1765                         list_del_init(&bpage->list);
1766                         free_buffer_page(bpage);
1767                 }
1768                 bpage = list_entry(head, struct buffer_page, list);
1769                 free_buffer_page(bpage);
1770         }
1771
1772         kfree(cpu_buffer);
1773 }
1774
1775 /**
1776  * __ring_buffer_alloc - allocate a new ring_buffer
1777  * @size: the size in bytes per cpu that is needed.
1778  * @flags: attributes to set for the ring buffer.
1779  * @key: ring buffer reader_lock_key.
1780  *
1781  * Currently the only flag that is available is the RB_FL_OVERWRITE
1782  * flag. This flag means that the buffer will overwrite old data
1783  * when the buffer wraps. If this flag is not set, the buffer will
1784  * drop data when the tail hits the head.
1785  */
1786 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1787                                         struct lock_class_key *key)
1788 {
1789         struct trace_buffer *buffer;
1790         long nr_pages;
1791         int bsize;
1792         int cpu;
1793         int ret;
1794
1795         /* keep it in its own cache line */
1796         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1797                          GFP_KERNEL);
1798         if (!buffer)
1799                 return NULL;
1800
1801         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1802                 goto fail_free_buffer;
1803
1804         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1805         buffer->flags = flags;
1806         buffer->clock = trace_clock_local;
1807         buffer->reader_lock_key = key;
1808
1809         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1810         init_waitqueue_head(&buffer->irq_work.waiters);
1811
1812         /* need at least two pages */
1813         if (nr_pages < 2)
1814                 nr_pages = 2;
1815
1816         buffer->cpus = nr_cpu_ids;
1817
1818         bsize = sizeof(void *) * nr_cpu_ids;
1819         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1820                                   GFP_KERNEL);
1821         if (!buffer->buffers)
1822                 goto fail_free_cpumask;
1823
1824         cpu = raw_smp_processor_id();
1825         cpumask_set_cpu(cpu, buffer->cpumask);
1826         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1827         if (!buffer->buffers[cpu])
1828                 goto fail_free_buffers;
1829
1830         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1831         if (ret < 0)
1832                 goto fail_free_buffers;
1833
1834         mutex_init(&buffer->mutex);
1835
1836         return buffer;
1837
1838  fail_free_buffers:
1839         for_each_buffer_cpu(buffer, cpu) {
1840                 if (buffer->buffers[cpu])
1841                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1842         }
1843         kfree(buffer->buffers);
1844
1845  fail_free_cpumask:
1846         free_cpumask_var(buffer->cpumask);
1847
1848  fail_free_buffer:
1849         kfree(buffer);
1850         return NULL;
1851 }
1852 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1853
1854 /**
1855  * ring_buffer_free - free a ring buffer.
1856  * @buffer: the buffer to free.
1857  */
1858 void
1859 ring_buffer_free(struct trace_buffer *buffer)
1860 {
1861         int cpu;
1862
1863         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1864
1865         for_each_buffer_cpu(buffer, cpu)
1866                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1867
1868         kfree(buffer->buffers);
1869         free_cpumask_var(buffer->cpumask);
1870
1871         kfree(buffer);
1872 }
1873 EXPORT_SYMBOL_GPL(ring_buffer_free);
1874
1875 void ring_buffer_set_clock(struct trace_buffer *buffer,
1876                            u64 (*clock)(void))
1877 {
1878         buffer->clock = clock;
1879 }
1880
1881 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1882 {
1883         buffer->time_stamp_abs = abs;
1884 }
1885
1886 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1887 {
1888         return buffer->time_stamp_abs;
1889 }
1890
1891 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1892
1893 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1894 {
1895         return local_read(&bpage->entries) & RB_WRITE_MASK;
1896 }
1897
1898 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1899 {
1900         return local_read(&bpage->write) & RB_WRITE_MASK;
1901 }
1902
1903 static int
1904 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1905 {
1906         struct list_head *tail_page, *to_remove, *next_page;
1907         struct buffer_page *to_remove_page, *tmp_iter_page;
1908         struct buffer_page *last_page, *first_page;
1909         unsigned long nr_removed;
1910         unsigned long head_bit;
1911         int page_entries;
1912
1913         head_bit = 0;
1914
1915         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1916         atomic_inc(&cpu_buffer->record_disabled);
1917         /*
1918          * We don't race with the readers since we have acquired the reader
1919          * lock. We also don't race with writers after disabling recording.
1920          * This makes it easy to figure out the first and the last page to be
1921          * removed from the list. We unlink all the pages in between including
1922          * the first and last pages. This is done in a busy loop so that we
1923          * lose the least number of traces.
1924          * The pages are freed after we restart recording and unlock readers.
1925          */
1926         tail_page = &cpu_buffer->tail_page->list;
1927
1928         /*
1929          * tail page might be on reader page, we remove the next page
1930          * from the ring buffer
1931          */
1932         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1933                 tail_page = rb_list_head(tail_page->next);
1934         to_remove = tail_page;
1935
1936         /* start of pages to remove */
1937         first_page = list_entry(rb_list_head(to_remove->next),
1938                                 struct buffer_page, list);
1939
1940         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1941                 to_remove = rb_list_head(to_remove)->next;
1942                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1943         }
1944
1945         next_page = rb_list_head(to_remove)->next;
1946
1947         /*
1948          * Now we remove all pages between tail_page and next_page.
1949          * Make sure that we have head_bit value preserved for the
1950          * next page
1951          */
1952         tail_page->next = (struct list_head *)((unsigned long)next_page |
1953                                                 head_bit);
1954         next_page = rb_list_head(next_page);
1955         next_page->prev = tail_page;
1956
1957         /* make sure pages points to a valid page in the ring buffer */
1958         cpu_buffer->pages = next_page;
1959
1960         /* update head page */
1961         if (head_bit)
1962                 cpu_buffer->head_page = list_entry(next_page,
1963                                                 struct buffer_page, list);
1964
1965         /*
1966          * change read pointer to make sure any read iterators reset
1967          * themselves
1968          */
1969         cpu_buffer->read = 0;
1970
1971         /* pages are removed, resume tracing and then free the pages */
1972         atomic_dec(&cpu_buffer->record_disabled);
1973         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1974
1975         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1976
1977         /* last buffer page to remove */
1978         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1979                                 list);
1980         tmp_iter_page = first_page;
1981
1982         do {
1983                 cond_resched();
1984
1985                 to_remove_page = tmp_iter_page;
1986                 rb_inc_page(&tmp_iter_page);
1987
1988                 /* update the counters */
1989                 page_entries = rb_page_entries(to_remove_page);
1990                 if (page_entries) {
1991                         /*
1992                          * If something was added to this page, it was full
1993                          * since it is not the tail page. So we deduct the
1994                          * bytes consumed in ring buffer from here.
1995                          * Increment overrun to account for the lost events.
1996                          */
1997                         local_add(page_entries, &cpu_buffer->overrun);
1998                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1999                 }
2000
2001                 /*
2002                  * We have already removed references to this list item, just
2003                  * free up the buffer_page and its page
2004                  */
2005                 free_buffer_page(to_remove_page);
2006                 nr_removed--;
2007
2008         } while (to_remove_page != last_page);
2009
2010         RB_WARN_ON(cpu_buffer, nr_removed);
2011
2012         return nr_removed == 0;
2013 }
2014
2015 static int
2016 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2017 {
2018         struct list_head *pages = &cpu_buffer->new_pages;
2019         int retries, success;
2020
2021         raw_spin_lock_irq(&cpu_buffer->reader_lock);
2022         /*
2023          * We are holding the reader lock, so the reader page won't be swapped
2024          * in the ring buffer. Now we are racing with the writer trying to
2025          * move head page and the tail page.
2026          * We are going to adapt the reader page update process where:
2027          * 1. We first splice the start and end of list of new pages between
2028          *    the head page and its previous page.
2029          * 2. We cmpxchg the prev_page->next to point from head page to the
2030          *    start of new pages list.
2031          * 3. Finally, we update the head->prev to the end of new list.
2032          *
2033          * We will try this process 10 times, to make sure that we don't keep
2034          * spinning.
2035          */
2036         retries = 10;
2037         success = 0;
2038         while (retries--) {
2039                 struct list_head *head_page, *prev_page, *r;
2040                 struct list_head *last_page, *first_page;
2041                 struct list_head *head_page_with_bit;
2042
2043                 head_page = &rb_set_head_page(cpu_buffer)->list;
2044                 if (!head_page)
2045                         break;
2046                 prev_page = head_page->prev;
2047
2048                 first_page = pages->next;
2049                 last_page  = pages->prev;
2050
2051                 head_page_with_bit = (struct list_head *)
2052                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2053
2054                 last_page->next = head_page_with_bit;
2055                 first_page->prev = prev_page;
2056
2057                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2058
2059                 if (r == head_page_with_bit) {
2060                         /*
2061                          * yay, we replaced the page pointer to our new list,
2062                          * now, we just have to update to head page's prev
2063                          * pointer to point to end of list
2064                          */
2065                         head_page->prev = last_page;
2066                         success = 1;
2067                         break;
2068                 }
2069         }
2070
2071         if (success)
2072                 INIT_LIST_HEAD(pages);
2073         /*
2074          * If we weren't successful in adding in new pages, warn and stop
2075          * tracing
2076          */
2077         RB_WARN_ON(cpu_buffer, !success);
2078         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2079
2080         /* free pages if they weren't inserted */
2081         if (!success) {
2082                 struct buffer_page *bpage, *tmp;
2083                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2084                                          list) {
2085                         list_del_init(&bpage->list);
2086                         free_buffer_page(bpage);
2087                 }
2088         }
2089         return success;
2090 }
2091
2092 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2093 {
2094         int success;
2095
2096         if (cpu_buffer->nr_pages_to_update > 0)
2097                 success = rb_insert_pages(cpu_buffer);
2098         else
2099                 success = rb_remove_pages(cpu_buffer,
2100                                         -cpu_buffer->nr_pages_to_update);
2101
2102         if (success)
2103                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2104 }
2105
2106 static void update_pages_handler(struct work_struct *work)
2107 {
2108         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2109                         struct ring_buffer_per_cpu, update_pages_work);
2110         rb_update_pages(cpu_buffer);
2111         complete(&cpu_buffer->update_done);
2112 }
2113
2114 /**
2115  * ring_buffer_resize - resize the ring buffer
2116  * @buffer: the buffer to resize.
2117  * @size: the new size.
2118  * @cpu_id: the cpu buffer to resize
2119  *
2120  * Minimum size is 2 * BUF_PAGE_SIZE.
2121  *
2122  * Returns 0 on success and < 0 on failure.
2123  */
2124 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2125                         int cpu_id)
2126 {
2127         struct ring_buffer_per_cpu *cpu_buffer;
2128         unsigned long nr_pages;
2129         int cpu, err;
2130
2131         /*
2132          * Always succeed at resizing a non-existent buffer:
2133          */
2134         if (!buffer)
2135                 return 0;
2136
2137         /* Make sure the requested buffer exists */
2138         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2139             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2140                 return 0;
2141
2142         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2143
2144         /* we need a minimum of two pages */
2145         if (nr_pages < 2)
2146                 nr_pages = 2;
2147
2148         /* prevent another thread from changing buffer sizes */
2149         mutex_lock(&buffer->mutex);
2150
2151
2152         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2153                 /*
2154                  * Don't succeed if resizing is disabled, as a reader might be
2155                  * manipulating the ring buffer and is expecting a sane state while
2156                  * this is true.
2157                  */
2158                 for_each_buffer_cpu(buffer, cpu) {
2159                         cpu_buffer = buffer->buffers[cpu];
2160                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2161                                 err = -EBUSY;
2162                                 goto out_err_unlock;
2163                         }
2164                 }
2165
2166                 /* calculate the pages to update */
2167                 for_each_buffer_cpu(buffer, cpu) {
2168                         cpu_buffer = buffer->buffers[cpu];
2169
2170                         cpu_buffer->nr_pages_to_update = nr_pages -
2171                                                         cpu_buffer->nr_pages;
2172                         /*
2173                          * nothing more to do for removing pages or no update
2174                          */
2175                         if (cpu_buffer->nr_pages_to_update <= 0)
2176                                 continue;
2177                         /*
2178                          * to add pages, make sure all new pages can be
2179                          * allocated without receiving ENOMEM
2180                          */
2181                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2182                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2183                                                 &cpu_buffer->new_pages)) {
2184                                 /* not enough memory for new pages */
2185                                 err = -ENOMEM;
2186                                 goto out_err;
2187                         }
2188                 }
2189
2190                 cpus_read_lock();
2191                 /*
2192                  * Fire off all the required work handlers
2193                  * We can't schedule on offline CPUs, but it's not necessary
2194                  * since we can change their buffer sizes without any race.
2195                  */
2196                 for_each_buffer_cpu(buffer, cpu) {
2197                         cpu_buffer = buffer->buffers[cpu];
2198                         if (!cpu_buffer->nr_pages_to_update)
2199                                 continue;
2200
2201                         /* Can't run something on an offline CPU. */
2202                         if (!cpu_online(cpu)) {
2203                                 rb_update_pages(cpu_buffer);
2204                                 cpu_buffer->nr_pages_to_update = 0;
2205                         } else {
2206                                 schedule_work_on(cpu,
2207                                                 &cpu_buffer->update_pages_work);
2208                         }
2209                 }
2210
2211                 /* wait for all the updates to complete */
2212                 for_each_buffer_cpu(buffer, cpu) {
2213                         cpu_buffer = buffer->buffers[cpu];
2214                         if (!cpu_buffer->nr_pages_to_update)
2215                                 continue;
2216
2217                         if (cpu_online(cpu))
2218                                 wait_for_completion(&cpu_buffer->update_done);
2219                         cpu_buffer->nr_pages_to_update = 0;
2220                 }
2221
2222                 cpus_read_unlock();
2223         } else {
2224                 cpu_buffer = buffer->buffers[cpu_id];
2225
2226                 if (nr_pages == cpu_buffer->nr_pages)
2227                         goto out;
2228
2229                 /*
2230                  * Don't succeed if resizing is disabled, as a reader might be
2231                  * manipulating the ring buffer and is expecting a sane state while
2232                  * this is true.
2233                  */
2234                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2235                         err = -EBUSY;
2236                         goto out_err_unlock;
2237                 }
2238
2239                 cpu_buffer->nr_pages_to_update = nr_pages -
2240                                                 cpu_buffer->nr_pages;
2241
2242                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2243                 if (cpu_buffer->nr_pages_to_update > 0 &&
2244                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2245                                             &cpu_buffer->new_pages)) {
2246                         err = -ENOMEM;
2247                         goto out_err;
2248                 }
2249
2250                 cpus_read_lock();
2251
2252                 /* Can't run something on an offline CPU. */
2253                 if (!cpu_online(cpu_id))
2254                         rb_update_pages(cpu_buffer);
2255                 else {
2256                         schedule_work_on(cpu_id,
2257                                          &cpu_buffer->update_pages_work);
2258                         wait_for_completion(&cpu_buffer->update_done);
2259                 }
2260
2261                 cpu_buffer->nr_pages_to_update = 0;
2262                 cpus_read_unlock();
2263         }
2264
2265  out:
2266         /*
2267          * The ring buffer resize can happen with the ring buffer
2268          * enabled, so that the update disturbs the tracing as little
2269          * as possible. But if the buffer is disabled, we do not need
2270          * to worry about that, and we can take the time to verify
2271          * that the buffer is not corrupt.
2272          */
2273         if (atomic_read(&buffer->record_disabled)) {
2274                 atomic_inc(&buffer->record_disabled);
2275                 /*
2276                  * Even though the buffer was disabled, we must make sure
2277                  * that it is truly disabled before calling rb_check_pages.
2278                  * There could have been a race between checking
2279                  * record_disable and incrementing it.
2280                  */
2281                 synchronize_rcu();
2282                 for_each_buffer_cpu(buffer, cpu) {
2283                         cpu_buffer = buffer->buffers[cpu];
2284                         rb_check_pages(cpu_buffer);
2285                 }
2286                 atomic_dec(&buffer->record_disabled);
2287         }
2288
2289         mutex_unlock(&buffer->mutex);
2290         return 0;
2291
2292  out_err:
2293         for_each_buffer_cpu(buffer, cpu) {
2294                 struct buffer_page *bpage, *tmp;
2295
2296                 cpu_buffer = buffer->buffers[cpu];
2297                 cpu_buffer->nr_pages_to_update = 0;
2298
2299                 if (list_empty(&cpu_buffer->new_pages))
2300                         continue;
2301
2302                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2303                                         list) {
2304                         list_del_init(&bpage->list);
2305                         free_buffer_page(bpage);
2306                 }
2307         }
2308  out_err_unlock:
2309         mutex_unlock(&buffer->mutex);
2310         return err;
2311 }
2312 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2313
2314 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2315 {
2316         mutex_lock(&buffer->mutex);
2317         if (val)
2318                 buffer->flags |= RB_FL_OVERWRITE;
2319         else
2320                 buffer->flags &= ~RB_FL_OVERWRITE;
2321         mutex_unlock(&buffer->mutex);
2322 }
2323 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2324
2325 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2326 {
2327         return bpage->page->data + index;
2328 }
2329
2330 static __always_inline struct ring_buffer_event *
2331 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2332 {
2333         return __rb_page_index(cpu_buffer->reader_page,
2334                                cpu_buffer->reader_page->read);
2335 }
2336
2337 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2338 {
2339         return local_read(&bpage->page->commit);
2340 }
2341
2342 static struct ring_buffer_event *
2343 rb_iter_head_event(struct ring_buffer_iter *iter)
2344 {
2345         struct ring_buffer_event *event;
2346         struct buffer_page *iter_head_page = iter->head_page;
2347         unsigned long commit;
2348         unsigned length;
2349
2350         if (iter->head != iter->next_event)
2351                 return iter->event;
2352
2353         /*
2354          * When the writer goes across pages, it issues a cmpxchg which
2355          * is a mb(), which will synchronize with the rmb here.
2356          * (see rb_tail_page_update() and __rb_reserve_next())
2357          */
2358         commit = rb_page_commit(iter_head_page);
2359         smp_rmb();
2360         event = __rb_page_index(iter_head_page, iter->head);
2361         length = rb_event_length(event);
2362
2363         /*
2364          * READ_ONCE() doesn't work on functions and we don't want the
2365          * compiler doing any crazy optimizations with length.
2366          */
2367         barrier();
2368
2369         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2370                 /* Writer corrupted the read? */
2371                 goto reset;
2372
2373         memcpy(iter->event, event, length);
2374         /*
2375          * If the page stamp is still the same after this rmb() then the
2376          * event was safely copied without the writer entering the page.
2377          */
2378         smp_rmb();
2379
2380         /* Make sure the page didn't change since we read this */
2381         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2382             commit > rb_page_commit(iter_head_page))
2383                 goto reset;
2384
2385         iter->next_event = iter->head + length;
2386         return iter->event;
2387  reset:
2388         /* Reset to the beginning */
2389         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2390         iter->head = 0;
2391         iter->next_event = 0;
2392         iter->missed_events = 1;
2393         return NULL;
2394 }
2395
2396 /* Size is determined by what has been committed */
2397 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2398 {
2399         return rb_page_commit(bpage);
2400 }
2401
2402 static __always_inline unsigned
2403 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2404 {
2405         return rb_page_commit(cpu_buffer->commit_page);
2406 }
2407
2408 static __always_inline unsigned
2409 rb_event_index(struct ring_buffer_event *event)
2410 {
2411         unsigned long addr = (unsigned long)event;
2412
2413         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2414 }
2415
2416 static void rb_inc_iter(struct ring_buffer_iter *iter)
2417 {
2418         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2419
2420         /*
2421          * The iterator could be on the reader page (it starts there).
2422          * But the head could have moved, since the reader was
2423          * found. Check for this case and assign the iterator
2424          * to the head page instead of next.
2425          */
2426         if (iter->head_page == cpu_buffer->reader_page)
2427                 iter->head_page = rb_set_head_page(cpu_buffer);
2428         else
2429                 rb_inc_page(&iter->head_page);
2430
2431         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2432         iter->head = 0;
2433         iter->next_event = 0;
2434 }
2435
2436 /*
2437  * rb_handle_head_page - writer hit the head page
2438  *
2439  * Returns: +1 to retry page
2440  *           0 to continue
2441  *          -1 on error
2442  */
2443 static int
2444 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2445                     struct buffer_page *tail_page,
2446                     struct buffer_page *next_page)
2447 {
2448         struct buffer_page *new_head;
2449         int entries;
2450         int type;
2451         int ret;
2452
2453         entries = rb_page_entries(next_page);
2454
2455         /*
2456          * The hard part is here. We need to move the head
2457          * forward, and protect against both readers on
2458          * other CPUs and writers coming in via interrupts.
2459          */
2460         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2461                                        RB_PAGE_HEAD);
2462
2463         /*
2464          * type can be one of four:
2465          *  NORMAL - an interrupt already moved it for us
2466          *  HEAD   - we are the first to get here.
2467          *  UPDATE - we are the interrupt interrupting
2468          *           a current move.
2469          *  MOVED  - a reader on another CPU moved the next
2470          *           pointer to its reader page. Give up
2471          *           and try again.
2472          */
2473
2474         switch (type) {
2475         case RB_PAGE_HEAD:
2476                 /*
2477                  * We changed the head to UPDATE, thus
2478                  * it is our responsibility to update
2479                  * the counters.
2480                  */
2481                 local_add(entries, &cpu_buffer->overrun);
2482                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2483
2484                 /*
2485                  * The entries will be zeroed out when we move the
2486                  * tail page.
2487                  */
2488
2489                 /* still more to do */
2490                 break;
2491
2492         case RB_PAGE_UPDATE:
2493                 /*
2494                  * This is an interrupt that interrupt the
2495                  * previous update. Still more to do.
2496                  */
2497                 break;
2498         case RB_PAGE_NORMAL:
2499                 /*
2500                  * An interrupt came in before the update
2501                  * and processed this for us.
2502                  * Nothing left to do.
2503                  */
2504                 return 1;
2505         case RB_PAGE_MOVED:
2506                 /*
2507                  * The reader is on another CPU and just did
2508                  * a swap with our next_page.
2509                  * Try again.
2510                  */
2511                 return 1;
2512         default:
2513                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2514                 return -1;
2515         }
2516
2517         /*
2518          * Now that we are here, the old head pointer is
2519          * set to UPDATE. This will keep the reader from
2520          * swapping the head page with the reader page.
2521          * The reader (on another CPU) will spin till
2522          * we are finished.
2523          *
2524          * We just need to protect against interrupts
2525          * doing the job. We will set the next pointer
2526          * to HEAD. After that, we set the old pointer
2527          * to NORMAL, but only if it was HEAD before.
2528          * otherwise we are an interrupt, and only
2529          * want the outer most commit to reset it.
2530          */
2531         new_head = next_page;
2532         rb_inc_page(&new_head);
2533
2534         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2535                                     RB_PAGE_NORMAL);
2536
2537         /*
2538          * Valid returns are:
2539          *  HEAD   - an interrupt came in and already set it.
2540          *  NORMAL - One of two things:
2541          *            1) We really set it.
2542          *            2) A bunch of interrupts came in and moved
2543          *               the page forward again.
2544          */
2545         switch (ret) {
2546         case RB_PAGE_HEAD:
2547         case RB_PAGE_NORMAL:
2548                 /* OK */
2549                 break;
2550         default:
2551                 RB_WARN_ON(cpu_buffer, 1);
2552                 return -1;
2553         }
2554
2555         /*
2556          * It is possible that an interrupt came in,
2557          * set the head up, then more interrupts came in
2558          * and moved it again. When we get back here,
2559          * the page would have been set to NORMAL but we
2560          * just set it back to HEAD.
2561          *
2562          * How do you detect this? Well, if that happened
2563          * the tail page would have moved.
2564          */
2565         if (ret == RB_PAGE_NORMAL) {
2566                 struct buffer_page *buffer_tail_page;
2567
2568                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2569                 /*
2570                  * If the tail had moved passed next, then we need
2571                  * to reset the pointer.
2572                  */
2573                 if (buffer_tail_page != tail_page &&
2574                     buffer_tail_page != next_page)
2575                         rb_head_page_set_normal(cpu_buffer, new_head,
2576                                                 next_page,
2577                                                 RB_PAGE_HEAD);
2578         }
2579
2580         /*
2581          * If this was the outer most commit (the one that
2582          * changed the original pointer from HEAD to UPDATE),
2583          * then it is up to us to reset it to NORMAL.
2584          */
2585         if (type == RB_PAGE_HEAD) {
2586                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2587                                               tail_page,
2588                                               RB_PAGE_UPDATE);
2589                 if (RB_WARN_ON(cpu_buffer,
2590                                ret != RB_PAGE_UPDATE))
2591                         return -1;
2592         }
2593
2594         return 0;
2595 }
2596
2597 static inline void
2598 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2599               unsigned long tail, struct rb_event_info *info)
2600 {
2601         struct buffer_page *tail_page = info->tail_page;
2602         struct ring_buffer_event *event;
2603         unsigned long length = info->length;
2604
2605         /*
2606          * Only the event that crossed the page boundary
2607          * must fill the old tail_page with padding.
2608          */
2609         if (tail >= BUF_PAGE_SIZE) {
2610                 /*
2611                  * If the page was filled, then we still need
2612                  * to update the real_end. Reset it to zero
2613                  * and the reader will ignore it.
2614                  */
2615                 if (tail == BUF_PAGE_SIZE)
2616                         tail_page->real_end = 0;
2617
2618                 local_sub(length, &tail_page->write);
2619                 return;
2620         }
2621
2622         event = __rb_page_index(tail_page, tail);
2623
2624         /* account for padding bytes */
2625         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2626
2627         /*
2628          * Save the original length to the meta data.
2629          * This will be used by the reader to add lost event
2630          * counter.
2631          */
2632         tail_page->real_end = tail;
2633
2634         /*
2635          * If this event is bigger than the minimum size, then
2636          * we need to be careful that we don't subtract the
2637          * write counter enough to allow another writer to slip
2638          * in on this page.
2639          * We put in a discarded commit instead, to make sure
2640          * that this space is not used again.
2641          *
2642          * If we are less than the minimum size, we don't need to
2643          * worry about it.
2644          */
2645         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2646                 /* No room for any events */
2647
2648                 /* Mark the rest of the page with padding */
2649                 rb_event_set_padding(event);
2650
2651                 /* Make sure the padding is visible before the write update */
2652                 smp_wmb();
2653
2654                 /* Set the write back to the previous setting */
2655                 local_sub(length, &tail_page->write);
2656                 return;
2657         }
2658
2659         /* Put in a discarded event */
2660         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2661         event->type_len = RINGBUF_TYPE_PADDING;
2662         /* time delta must be non zero */
2663         event->time_delta = 1;
2664
2665         /* Make sure the padding is visible before the tail_page->write update */
2666         smp_wmb();
2667
2668         /* Set write to end of buffer */
2669         length = (tail + length) - BUF_PAGE_SIZE;
2670         local_sub(length, &tail_page->write);
2671 }
2672
2673 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2674
2675 /*
2676  * This is the slow path, force gcc not to inline it.
2677  */
2678 static noinline struct ring_buffer_event *
2679 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2680              unsigned long tail, struct rb_event_info *info)
2681 {
2682         struct buffer_page *tail_page = info->tail_page;
2683         struct buffer_page *commit_page = cpu_buffer->commit_page;
2684         struct trace_buffer *buffer = cpu_buffer->buffer;
2685         struct buffer_page *next_page;
2686         int ret;
2687
2688         next_page = tail_page;
2689
2690         rb_inc_page(&next_page);
2691
2692         /*
2693          * If for some reason, we had an interrupt storm that made
2694          * it all the way around the buffer, bail, and warn
2695          * about it.
2696          */
2697         if (unlikely(next_page == commit_page)) {
2698                 local_inc(&cpu_buffer->commit_overrun);
2699                 goto out_reset;
2700         }
2701
2702         /*
2703          * This is where the fun begins!
2704          *
2705          * We are fighting against races between a reader that
2706          * could be on another CPU trying to swap its reader
2707          * page with the buffer head.
2708          *
2709          * We are also fighting against interrupts coming in and
2710          * moving the head or tail on us as well.
2711          *
2712          * If the next page is the head page then we have filled
2713          * the buffer, unless the commit page is still on the
2714          * reader page.
2715          */
2716         if (rb_is_head_page(next_page, &tail_page->list)) {
2717
2718                 /*
2719                  * If the commit is not on the reader page, then
2720                  * move the header page.
2721                  */
2722                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2723                         /*
2724                          * If we are not in overwrite mode,
2725                          * this is easy, just stop here.
2726                          */
2727                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2728                                 local_inc(&cpu_buffer->dropped_events);
2729                                 goto out_reset;
2730                         }
2731
2732                         ret = rb_handle_head_page(cpu_buffer,
2733                                                   tail_page,
2734                                                   next_page);
2735                         if (ret < 0)
2736                                 goto out_reset;
2737                         if (ret)
2738                                 goto out_again;
2739                 } else {
2740                         /*
2741                          * We need to be careful here too. The
2742                          * commit page could still be on the reader
2743                          * page. We could have a small buffer, and
2744                          * have filled up the buffer with events
2745                          * from interrupts and such, and wrapped.
2746                          *
2747                          * Note, if the tail page is also on the
2748                          * reader_page, we let it move out.
2749                          */
2750                         if (unlikely((cpu_buffer->commit_page !=
2751                                       cpu_buffer->tail_page) &&
2752                                      (cpu_buffer->commit_page ==
2753                                       cpu_buffer->reader_page))) {
2754                                 local_inc(&cpu_buffer->commit_overrun);
2755                                 goto out_reset;
2756                         }
2757                 }
2758         }
2759
2760         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2761
2762  out_again:
2763
2764         rb_reset_tail(cpu_buffer, tail, info);
2765
2766         /* Commit what we have for now. */
2767         rb_end_commit(cpu_buffer);
2768         /* rb_end_commit() decs committing */
2769         local_inc(&cpu_buffer->committing);
2770
2771         /* fail and let the caller try again */
2772         return ERR_PTR(-EAGAIN);
2773
2774  out_reset:
2775         /* reset write */
2776         rb_reset_tail(cpu_buffer, tail, info);
2777
2778         return NULL;
2779 }
2780
2781 /* Slow path */
2782 static struct ring_buffer_event *
2783 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2784 {
2785         if (abs)
2786                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2787         else
2788                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2789
2790         /* Not the first event on the page, or not delta? */
2791         if (abs || rb_event_index(event)) {
2792                 event->time_delta = delta & TS_MASK;
2793                 event->array[0] = delta >> TS_SHIFT;
2794         } else {
2795                 /* nope, just zero it */
2796                 event->time_delta = 0;
2797                 event->array[0] = 0;
2798         }
2799
2800         return skip_time_extend(event);
2801 }
2802
2803 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2804 static inline bool sched_clock_stable(void)
2805 {
2806         return true;
2807 }
2808 #endif
2809
2810 static void
2811 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2812                    struct rb_event_info *info)
2813 {
2814         u64 write_stamp;
2815
2816         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2817                   (unsigned long long)info->delta,
2818                   (unsigned long long)info->ts,
2819                   (unsigned long long)info->before,
2820                   (unsigned long long)info->after,
2821                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2822                   sched_clock_stable() ? "" :
2823                   "If you just came from a suspend/resume,\n"
2824                   "please switch to the trace global clock:\n"
2825                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2826                   "or add trace_clock=global to the kernel command line\n");
2827 }
2828
2829 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2830                                       struct ring_buffer_event **event,
2831                                       struct rb_event_info *info,
2832                                       u64 *delta,
2833                                       unsigned int *length)
2834 {
2835         bool abs = info->add_timestamp &
2836                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2837
2838         if (unlikely(info->delta > (1ULL << 59))) {
2839                 /*
2840                  * Some timers can use more than 59 bits, and when a timestamp
2841                  * is added to the buffer, it will lose those bits.
2842                  */
2843                 if (abs && (info->ts & TS_MSB)) {
2844                         info->delta &= ABS_TS_MASK;
2845
2846                 /* did the clock go backwards */
2847                 } else if (info->before == info->after && info->before > info->ts) {
2848                         /* not interrupted */
2849                         static int once;
2850
2851                         /*
2852                          * This is possible with a recalibrating of the TSC.
2853                          * Do not produce a call stack, but just report it.
2854                          */
2855                         if (!once) {
2856                                 once++;
2857                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2858                                         info->before, info->ts);
2859                         }
2860                 } else
2861                         rb_check_timestamp(cpu_buffer, info);
2862                 if (!abs)
2863                         info->delta = 0;
2864         }
2865         *event = rb_add_time_stamp(*event, info->delta, abs);
2866         *length -= RB_LEN_TIME_EXTEND;
2867         *delta = 0;
2868 }
2869
2870 /**
2871  * rb_update_event - update event type and data
2872  * @cpu_buffer: The per cpu buffer of the @event
2873  * @event: the event to update
2874  * @info: The info to update the @event with (contains length and delta)
2875  *
2876  * Update the type and data fields of the @event. The length
2877  * is the actual size that is written to the ring buffer,
2878  * and with this, we can determine what to place into the
2879  * data field.
2880  */
2881 static void
2882 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2883                 struct ring_buffer_event *event,
2884                 struct rb_event_info *info)
2885 {
2886         unsigned length = info->length;
2887         u64 delta = info->delta;
2888         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2889
2890         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2891                 cpu_buffer->event_stamp[nest] = info->ts;
2892
2893         /*
2894          * If we need to add a timestamp, then we
2895          * add it to the start of the reserved space.
2896          */
2897         if (unlikely(info->add_timestamp))
2898                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2899
2900         event->time_delta = delta;
2901         length -= RB_EVNT_HDR_SIZE;
2902         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2903                 event->type_len = 0;
2904                 event->array[0] = length;
2905         } else
2906                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2907 }
2908
2909 static unsigned rb_calculate_event_length(unsigned length)
2910 {
2911         struct ring_buffer_event event; /* Used only for sizeof array */
2912
2913         /* zero length can cause confusions */
2914         if (!length)
2915                 length++;
2916
2917         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2918                 length += sizeof(event.array[0]);
2919
2920         length += RB_EVNT_HDR_SIZE;
2921         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2922
2923         /*
2924          * In case the time delta is larger than the 27 bits for it
2925          * in the header, we need to add a timestamp. If another
2926          * event comes in when trying to discard this one to increase
2927          * the length, then the timestamp will be added in the allocated
2928          * space of this event. If length is bigger than the size needed
2929          * for the TIME_EXTEND, then padding has to be used. The events
2930          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2931          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2932          * As length is a multiple of 4, we only need to worry if it
2933          * is 12 (RB_LEN_TIME_EXTEND + 4).
2934          */
2935         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2936                 length += RB_ALIGNMENT;
2937
2938         return length;
2939 }
2940
2941 static u64 rb_time_delta(struct ring_buffer_event *event)
2942 {
2943         switch (event->type_len) {
2944         case RINGBUF_TYPE_PADDING:
2945                 return 0;
2946
2947         case RINGBUF_TYPE_TIME_EXTEND:
2948                 return rb_event_time_stamp(event);
2949
2950         case RINGBUF_TYPE_TIME_STAMP:
2951                 return 0;
2952
2953         case RINGBUF_TYPE_DATA:
2954                 return event->time_delta;
2955         default:
2956                 return 0;
2957         }
2958 }
2959
2960 static inline int
2961 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2962                   struct ring_buffer_event *event)
2963 {
2964         unsigned long new_index, old_index;
2965         struct buffer_page *bpage;
2966         unsigned long index;
2967         unsigned long addr;
2968         u64 write_stamp;
2969         u64 delta;
2970
2971         new_index = rb_event_index(event);
2972         old_index = new_index + rb_event_ts_length(event);
2973         addr = (unsigned long)event;
2974         addr &= PAGE_MASK;
2975
2976         bpage = READ_ONCE(cpu_buffer->tail_page);
2977
2978         delta = rb_time_delta(event);
2979
2980         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2981                 return 0;
2982
2983         /* Make sure the write stamp is read before testing the location */
2984         barrier();
2985
2986         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2987                 unsigned long write_mask =
2988                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2989                 unsigned long event_length = rb_event_length(event);
2990
2991                 /* Something came in, can't discard */
2992                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2993                                        write_stamp, write_stamp - delta))
2994                         return 0;
2995
2996                 /*
2997                  * It's possible that the event time delta is zero
2998                  * (has the same time stamp as the previous event)
2999                  * in which case write_stamp and before_stamp could
3000                  * be the same. In such a case, force before_stamp
3001                  * to be different than write_stamp. It doesn't
3002                  * matter what it is, as long as its different.
3003                  */
3004                 if (!delta)
3005                         rb_time_set(&cpu_buffer->before_stamp, 0);
3006
3007                 /*
3008                  * If an event were to come in now, it would see that the
3009                  * write_stamp and the before_stamp are different, and assume
3010                  * that this event just added itself before updating
3011                  * the write stamp. The interrupting event will fix the
3012                  * write stamp for us, and use the before stamp as its delta.
3013                  */
3014
3015                 /*
3016                  * This is on the tail page. It is possible that
3017                  * a write could come in and move the tail page
3018                  * and write to the next page. That is fine
3019                  * because we just shorten what is on this page.
3020                  */
3021                 old_index += write_mask;
3022                 new_index += write_mask;
3023                 index = local_cmpxchg(&bpage->write, old_index, new_index);
3024                 if (index == old_index) {
3025                         /* update counters */
3026                         local_sub(event_length, &cpu_buffer->entries_bytes);
3027                         return 1;
3028                 }
3029         }
3030
3031         /* could not discard */
3032         return 0;
3033 }
3034
3035 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3036 {
3037         local_inc(&cpu_buffer->committing);
3038         local_inc(&cpu_buffer->commits);
3039 }
3040
3041 static __always_inline void
3042 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3043 {
3044         unsigned long max_count;
3045
3046         /*
3047          * We only race with interrupts and NMIs on this CPU.
3048          * If we own the commit event, then we can commit
3049          * all others that interrupted us, since the interruptions
3050          * are in stack format (they finish before they come
3051          * back to us). This allows us to do a simple loop to
3052          * assign the commit to the tail.
3053          */
3054  again:
3055         max_count = cpu_buffer->nr_pages * 100;
3056
3057         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3058                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3059                         return;
3060                 if (RB_WARN_ON(cpu_buffer,
3061                                rb_is_reader_page(cpu_buffer->tail_page)))
3062                         return;
3063                 local_set(&cpu_buffer->commit_page->page->commit,
3064                           rb_page_write(cpu_buffer->commit_page));
3065                 rb_inc_page(&cpu_buffer->commit_page);
3066                 /* add barrier to keep gcc from optimizing too much */
3067                 barrier();
3068         }
3069         while (rb_commit_index(cpu_buffer) !=
3070                rb_page_write(cpu_buffer->commit_page)) {
3071
3072                 local_set(&cpu_buffer->commit_page->page->commit,
3073                           rb_page_write(cpu_buffer->commit_page));
3074                 RB_WARN_ON(cpu_buffer,
3075                            local_read(&cpu_buffer->commit_page->page->commit) &
3076                            ~RB_WRITE_MASK);
3077                 barrier();
3078         }
3079
3080         /* again, keep gcc from optimizing */
3081         barrier();
3082
3083         /*
3084          * If an interrupt came in just after the first while loop
3085          * and pushed the tail page forward, we will be left with
3086          * a dangling commit that will never go forward.
3087          */
3088         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3089                 goto again;
3090 }
3091
3092 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3093 {
3094         unsigned long commits;
3095
3096         if (RB_WARN_ON(cpu_buffer,
3097                        !local_read(&cpu_buffer->committing)))
3098                 return;
3099
3100  again:
3101         commits = local_read(&cpu_buffer->commits);
3102         /* synchronize with interrupts */
3103         barrier();
3104         if (local_read(&cpu_buffer->committing) == 1)
3105                 rb_set_commit_to_write(cpu_buffer);
3106
3107         local_dec(&cpu_buffer->committing);
3108
3109         /* synchronize with interrupts */
3110         barrier();
3111
3112         /*
3113          * Need to account for interrupts coming in between the
3114          * updating of the commit page and the clearing of the
3115          * committing counter.
3116          */
3117         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3118             !local_read(&cpu_buffer->committing)) {
3119                 local_inc(&cpu_buffer->committing);
3120                 goto again;
3121         }
3122 }
3123
3124 static inline void rb_event_discard(struct ring_buffer_event *event)
3125 {
3126         if (extended_time(event))
3127                 event = skip_time_extend(event);
3128
3129         /* array[0] holds the actual length for the discarded event */
3130         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3131         event->type_len = RINGBUF_TYPE_PADDING;
3132         /* time delta must be non zero */
3133         if (!event->time_delta)
3134                 event->time_delta = 1;
3135 }
3136
3137 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3138                       struct ring_buffer_event *event)
3139 {
3140         local_inc(&cpu_buffer->entries);
3141         rb_end_commit(cpu_buffer);
3142 }
3143
3144 static __always_inline void
3145 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3146 {
3147         size_t nr_pages;
3148         size_t dirty;
3149         size_t full;
3150
3151         if (buffer->irq_work.waiters_pending) {
3152                 buffer->irq_work.waiters_pending = false;
3153                 /* irq_work_queue() supplies it's own memory barriers */
3154                 irq_work_queue(&buffer->irq_work.work);
3155         }
3156
3157         if (cpu_buffer->irq_work.waiters_pending) {
3158                 cpu_buffer->irq_work.waiters_pending = false;
3159                 /* irq_work_queue() supplies it's own memory barriers */
3160                 irq_work_queue(&cpu_buffer->irq_work.work);
3161         }
3162
3163         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3164                 return;
3165
3166         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3167                 return;
3168
3169         if (!cpu_buffer->irq_work.full_waiters_pending)
3170                 return;
3171
3172         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3173
3174         full = cpu_buffer->shortest_full;
3175         nr_pages = cpu_buffer->nr_pages;
3176         dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3177         if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3178                 return;
3179
3180         cpu_buffer->irq_work.wakeup_full = true;
3181         cpu_buffer->irq_work.full_waiters_pending = false;
3182         /* irq_work_queue() supplies it's own memory barriers */
3183         irq_work_queue(&cpu_buffer->irq_work.work);
3184 }
3185
3186 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3187 # define do_ring_buffer_record_recursion()      \
3188         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3189 #else
3190 # define do_ring_buffer_record_recursion() do { } while (0)
3191 #endif
3192
3193 /*
3194  * The lock and unlock are done within a preempt disable section.
3195  * The current_context per_cpu variable can only be modified
3196  * by the current task between lock and unlock. But it can
3197  * be modified more than once via an interrupt. To pass this
3198  * information from the lock to the unlock without having to
3199  * access the 'in_interrupt()' functions again (which do show
3200  * a bit of overhead in something as critical as function tracing,
3201  * we use a bitmask trick.
3202  *
3203  *  bit 1 =  NMI context
3204  *  bit 2 =  IRQ context
3205  *  bit 3 =  SoftIRQ context
3206  *  bit 4 =  normal context.
3207  *
3208  * This works because this is the order of contexts that can
3209  * preempt other contexts. A SoftIRQ never preempts an IRQ
3210  * context.
3211  *
3212  * When the context is determined, the corresponding bit is
3213  * checked and set (if it was set, then a recursion of that context
3214  * happened).
3215  *
3216  * On unlock, we need to clear this bit. To do so, just subtract
3217  * 1 from the current_context and AND it to itself.
3218  *
3219  * (binary)
3220  *  101 - 1 = 100
3221  *  101 & 100 = 100 (clearing bit zero)
3222  *
3223  *  1010 - 1 = 1001
3224  *  1010 & 1001 = 1000 (clearing bit 1)
3225  *
3226  * The least significant bit can be cleared this way, and it
3227  * just so happens that it is the same bit corresponding to
3228  * the current context.
3229  *
3230  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3231  * is set when a recursion is detected at the current context, and if
3232  * the TRANSITION bit is already set, it will fail the recursion.
3233  * This is needed because there's a lag between the changing of
3234  * interrupt context and updating the preempt count. In this case,
3235  * a false positive will be found. To handle this, one extra recursion
3236  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3237  * bit is already set, then it is considered a recursion and the function
3238  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3239  *
3240  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3241  * to be cleared. Even if it wasn't the context that set it. That is,
3242  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3243  * is called before preempt_count() is updated, since the check will
3244  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3245  * NMI then comes in, it will set the NMI bit, but when the NMI code
3246  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3247  * and leave the NMI bit set. But this is fine, because the interrupt
3248  * code that set the TRANSITION bit will then clear the NMI bit when it
3249  * calls trace_recursive_unlock(). If another NMI comes in, it will
3250  * set the TRANSITION bit and continue.
3251  *
3252  * Note: The TRANSITION bit only handles a single transition between context.
3253  */
3254
3255 static __always_inline int
3256 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3257 {
3258         unsigned int val = cpu_buffer->current_context;
3259         int bit = interrupt_context_level();
3260
3261         bit = RB_CTX_NORMAL - bit;
3262
3263         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3264                 /*
3265                  * It is possible that this was called by transitioning
3266                  * between interrupt context, and preempt_count() has not
3267                  * been updated yet. In this case, use the TRANSITION bit.
3268                  */
3269                 bit = RB_CTX_TRANSITION;
3270                 if (val & (1 << (bit + cpu_buffer->nest))) {
3271                         do_ring_buffer_record_recursion();
3272                         return 1;
3273                 }
3274         }
3275
3276         val |= (1 << (bit + cpu_buffer->nest));
3277         cpu_buffer->current_context = val;
3278
3279         return 0;
3280 }
3281
3282 static __always_inline void
3283 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3284 {
3285         cpu_buffer->current_context &=
3286                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3287 }
3288
3289 /* The recursive locking above uses 5 bits */
3290 #define NESTED_BITS 5
3291
3292 /**
3293  * ring_buffer_nest_start - Allow to trace while nested
3294  * @buffer: The ring buffer to modify
3295  *
3296  * The ring buffer has a safety mechanism to prevent recursion.
3297  * But there may be a case where a trace needs to be done while
3298  * tracing something else. In this case, calling this function
3299  * will allow this function to nest within a currently active
3300  * ring_buffer_lock_reserve().
3301  *
3302  * Call this function before calling another ring_buffer_lock_reserve() and
3303  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3304  */
3305 void ring_buffer_nest_start(struct trace_buffer *buffer)
3306 {
3307         struct ring_buffer_per_cpu *cpu_buffer;
3308         int cpu;
3309
3310         /* Enabled by ring_buffer_nest_end() */
3311         preempt_disable_notrace();
3312         cpu = raw_smp_processor_id();
3313         cpu_buffer = buffer->buffers[cpu];
3314         /* This is the shift value for the above recursive locking */
3315         cpu_buffer->nest += NESTED_BITS;
3316 }
3317
3318 /**
3319  * ring_buffer_nest_end - Allow to trace while nested
3320  * @buffer: The ring buffer to modify
3321  *
3322  * Must be called after ring_buffer_nest_start() and after the
3323  * ring_buffer_unlock_commit().
3324  */
3325 void ring_buffer_nest_end(struct trace_buffer *buffer)
3326 {
3327         struct ring_buffer_per_cpu *cpu_buffer;
3328         int cpu;
3329
3330         /* disabled by ring_buffer_nest_start() */
3331         cpu = raw_smp_processor_id();
3332         cpu_buffer = buffer->buffers[cpu];
3333         /* This is the shift value for the above recursive locking */
3334         cpu_buffer->nest -= NESTED_BITS;
3335         preempt_enable_notrace();
3336 }
3337
3338 /**
3339  * ring_buffer_unlock_commit - commit a reserved
3340  * @buffer: The buffer to commit to
3341  * @event: The event pointer to commit.
3342  *
3343  * This commits the data to the ring buffer, and releases any locks held.
3344  *
3345  * Must be paired with ring_buffer_lock_reserve.
3346  */
3347 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3348                               struct ring_buffer_event *event)
3349 {
3350         struct ring_buffer_per_cpu *cpu_buffer;
3351         int cpu = raw_smp_processor_id();
3352
3353         cpu_buffer = buffer->buffers[cpu];
3354
3355         rb_commit(cpu_buffer, event);
3356
3357         rb_wakeups(buffer, cpu_buffer);
3358
3359         trace_recursive_unlock(cpu_buffer);
3360
3361         preempt_enable_notrace();
3362
3363         return 0;
3364 }
3365 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3366
3367 /* Special value to validate all deltas on a page. */
3368 #define CHECK_FULL_PAGE         1L
3369
3370 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3371 static void dump_buffer_page(struct buffer_data_page *bpage,
3372                              struct rb_event_info *info,
3373                              unsigned long tail)
3374 {
3375         struct ring_buffer_event *event;
3376         u64 ts, delta;
3377         int e;
3378
3379         ts = bpage->time_stamp;
3380         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3381
3382         for (e = 0; e < tail; e += rb_event_length(event)) {
3383
3384                 event = (struct ring_buffer_event *)(bpage->data + e);
3385
3386                 switch (event->type_len) {
3387
3388                 case RINGBUF_TYPE_TIME_EXTEND:
3389                         delta = rb_event_time_stamp(event);
3390                         ts += delta;
3391                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3392                         break;
3393
3394                 case RINGBUF_TYPE_TIME_STAMP:
3395                         delta = rb_event_time_stamp(event);
3396                         ts = rb_fix_abs_ts(delta, ts);
3397                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3398                         break;
3399
3400                 case RINGBUF_TYPE_PADDING:
3401                         ts += event->time_delta;
3402                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3403                         break;
3404
3405                 case RINGBUF_TYPE_DATA:
3406                         ts += event->time_delta;
3407                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3408                         break;
3409
3410                 default:
3411                         break;
3412                 }
3413         }
3414 }
3415
3416 static DEFINE_PER_CPU(atomic_t, checking);
3417 static atomic_t ts_dump;
3418
3419 /*
3420  * Check if the current event time stamp matches the deltas on
3421  * the buffer page.
3422  */
3423 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3424                          struct rb_event_info *info,
3425                          unsigned long tail)
3426 {
3427         struct ring_buffer_event *event;
3428         struct buffer_data_page *bpage;
3429         u64 ts, delta;
3430         bool full = false;
3431         int e;
3432
3433         bpage = info->tail_page->page;
3434
3435         if (tail == CHECK_FULL_PAGE) {
3436                 full = true;
3437                 tail = local_read(&bpage->commit);
3438         } else if (info->add_timestamp &
3439                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3440                 /* Ignore events with absolute time stamps */
3441                 return;
3442         }
3443
3444         /*
3445          * Do not check the first event (skip possible extends too).
3446          * Also do not check if previous events have not been committed.
3447          */
3448         if (tail <= 8 || tail > local_read(&bpage->commit))
3449                 return;
3450
3451         /*
3452          * If this interrupted another event, 
3453          */
3454         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3455                 goto out;
3456
3457         ts = bpage->time_stamp;
3458
3459         for (e = 0; e < tail; e += rb_event_length(event)) {
3460
3461                 event = (struct ring_buffer_event *)(bpage->data + e);
3462
3463                 switch (event->type_len) {
3464
3465                 case RINGBUF_TYPE_TIME_EXTEND:
3466                         delta = rb_event_time_stamp(event);
3467                         ts += delta;
3468                         break;
3469
3470                 case RINGBUF_TYPE_TIME_STAMP:
3471                         delta = rb_event_time_stamp(event);
3472                         ts = rb_fix_abs_ts(delta, ts);
3473                         break;
3474
3475                 case RINGBUF_TYPE_PADDING:
3476                         if (event->time_delta == 1)
3477                                 break;
3478                         fallthrough;
3479                 case RINGBUF_TYPE_DATA:
3480                         ts += event->time_delta;
3481                         break;
3482
3483                 default:
3484                         RB_WARN_ON(cpu_buffer, 1);
3485                 }
3486         }
3487         if ((full && ts > info->ts) ||
3488             (!full && ts + info->delta != info->ts)) {
3489                 /* If another report is happening, ignore this one */
3490                 if (atomic_inc_return(&ts_dump) != 1) {
3491                         atomic_dec(&ts_dump);
3492                         goto out;
3493                 }
3494                 atomic_inc(&cpu_buffer->record_disabled);
3495                 /* There's some cases in boot up that this can happen */
3496                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3497                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3498                         cpu_buffer->cpu,
3499                         ts + info->delta, info->ts, info->delta,
3500                         info->before, info->after,
3501                         full ? " (full)" : "");
3502                 dump_buffer_page(bpage, info, tail);
3503                 atomic_dec(&ts_dump);
3504                 /* Do not re-enable checking */
3505                 return;
3506         }
3507 out:
3508         atomic_dec(this_cpu_ptr(&checking));
3509 }
3510 #else
3511 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3512                          struct rb_event_info *info,
3513                          unsigned long tail)
3514 {
3515 }
3516 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3517
3518 static struct ring_buffer_event *
3519 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3520                   struct rb_event_info *info)
3521 {
3522         struct ring_buffer_event *event;
3523         struct buffer_page *tail_page;
3524         unsigned long tail, write, w;
3525         bool a_ok;
3526         bool b_ok;
3527
3528         /* Don't let the compiler play games with cpu_buffer->tail_page */
3529         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3530
3531  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3532         barrier();
3533         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3534         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3535         barrier();
3536         info->ts = rb_time_stamp(cpu_buffer->buffer);
3537
3538         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3539                 info->delta = info->ts;
3540         } else {
3541                 /*
3542                  * If interrupting an event time update, we may need an
3543                  * absolute timestamp.
3544                  * Don't bother if this is the start of a new page (w == 0).
3545                  */
3546                 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3547                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3548                         info->length += RB_LEN_TIME_EXTEND;
3549                 } else {
3550                         info->delta = info->ts - info->after;
3551                         if (unlikely(test_time_stamp(info->delta))) {
3552                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3553                                 info->length += RB_LEN_TIME_EXTEND;
3554                         }
3555                 }
3556         }
3557
3558  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3559
3560  /*C*/  write = local_add_return(info->length, &tail_page->write);
3561
3562         /* set write to only the index of the write */
3563         write &= RB_WRITE_MASK;
3564
3565         tail = write - info->length;
3566
3567         /* See if we shot pass the end of this buffer page */
3568         if (unlikely(write > BUF_PAGE_SIZE)) {
3569                 /* before and after may now different, fix it up*/
3570                 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3571                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3572                 if (a_ok && b_ok && info->before != info->after)
3573                         (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3574                                               info->before, info->after);
3575                 if (a_ok && b_ok)
3576                         check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3577                 return rb_move_tail(cpu_buffer, tail, info);
3578         }
3579
3580         if (likely(tail == w)) {
3581                 u64 save_before;
3582                 bool s_ok;
3583
3584                 /* Nothing interrupted us between A and C */
3585  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3586                 barrier();
3587  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3588                 RB_WARN_ON(cpu_buffer, !s_ok);
3589                 if (likely(!(info->add_timestamp &
3590                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3591                         /* This did not interrupt any time update */
3592                         info->delta = info->ts - info->after;
3593                 else
3594                         /* Just use full timestamp for interrupting event */
3595                         info->delta = info->ts;
3596                 barrier();
3597                 check_buffer(cpu_buffer, info, tail);
3598                 if (unlikely(info->ts != save_before)) {
3599                         /* SLOW PATH - Interrupted between C and E */
3600
3601                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3602                         RB_WARN_ON(cpu_buffer, !a_ok);
3603
3604                         /* Write stamp must only go forward */
3605                         if (save_before > info->after) {
3606                                 /*
3607                                  * We do not care about the result, only that
3608                                  * it gets updated atomically.
3609                                  */
3610                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3611                                                       info->after, save_before);
3612                         }
3613                 }
3614         } else {
3615                 u64 ts;
3616                 /* SLOW PATH - Interrupted between A and C */
3617                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3618                 /* Was interrupted before here, write_stamp must be valid */
3619                 RB_WARN_ON(cpu_buffer, !a_ok);
3620                 ts = rb_time_stamp(cpu_buffer->buffer);
3621                 barrier();
3622  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3623                     info->after < ts &&
3624                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3625                                     info->after, ts)) {
3626                         /* Nothing came after this event between C and E */
3627                         info->delta = ts - info->after;
3628                 } else {
3629                         /*
3630                          * Interrupted between C and E:
3631                          * Lost the previous events time stamp. Just set the
3632                          * delta to zero, and this will be the same time as
3633                          * the event this event interrupted. And the events that
3634                          * came after this will still be correct (as they would
3635                          * have built their delta on the previous event.
3636                          */
3637                         info->delta = 0;
3638                 }
3639                 info->ts = ts;
3640                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3641         }
3642
3643         /*
3644          * If this is the first commit on the page, then it has the same
3645          * timestamp as the page itself.
3646          */
3647         if (unlikely(!tail && !(info->add_timestamp &
3648                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3649                 info->delta = 0;
3650
3651         /* We reserved something on the buffer */
3652
3653         event = __rb_page_index(tail_page, tail);
3654         rb_update_event(cpu_buffer, event, info);
3655
3656         local_inc(&tail_page->entries);
3657
3658         /*
3659          * If this is the first commit on the page, then update
3660          * its timestamp.
3661          */
3662         if (unlikely(!tail))
3663                 tail_page->page->time_stamp = info->ts;
3664
3665         /* account for these added bytes */
3666         local_add(info->length, &cpu_buffer->entries_bytes);
3667
3668         return event;
3669 }
3670
3671 static __always_inline struct ring_buffer_event *
3672 rb_reserve_next_event(struct trace_buffer *buffer,
3673                       struct ring_buffer_per_cpu *cpu_buffer,
3674                       unsigned long length)
3675 {
3676         struct ring_buffer_event *event;
3677         struct rb_event_info info;
3678         int nr_loops = 0;
3679         int add_ts_default;
3680
3681         rb_start_commit(cpu_buffer);
3682         /* The commit page can not change after this */
3683
3684 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3685         /*
3686          * Due to the ability to swap a cpu buffer from a buffer
3687          * it is possible it was swapped before we committed.
3688          * (committing stops a swap). We check for it here and
3689          * if it happened, we have to fail the write.
3690          */
3691         barrier();
3692         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3693                 local_dec(&cpu_buffer->committing);
3694                 local_dec(&cpu_buffer->commits);
3695                 return NULL;
3696         }
3697 #endif
3698
3699         info.length = rb_calculate_event_length(length);
3700
3701         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3702                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3703                 info.length += RB_LEN_TIME_EXTEND;
3704         } else {
3705                 add_ts_default = RB_ADD_STAMP_NONE;
3706         }
3707
3708  again:
3709         info.add_timestamp = add_ts_default;
3710         info.delta = 0;
3711
3712         /*
3713          * We allow for interrupts to reenter here and do a trace.
3714          * If one does, it will cause this original code to loop
3715          * back here. Even with heavy interrupts happening, this
3716          * should only happen a few times in a row. If this happens
3717          * 1000 times in a row, there must be either an interrupt
3718          * storm or we have something buggy.
3719          * Bail!
3720          */
3721         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3722                 goto out_fail;
3723
3724         event = __rb_reserve_next(cpu_buffer, &info);
3725
3726         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3727                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3728                         info.length -= RB_LEN_TIME_EXTEND;
3729                 goto again;
3730         }
3731
3732         if (likely(event))
3733                 return event;
3734  out_fail:
3735         rb_end_commit(cpu_buffer);
3736         return NULL;
3737 }
3738
3739 /**
3740  * ring_buffer_lock_reserve - reserve a part of the buffer
3741  * @buffer: the ring buffer to reserve from
3742  * @length: the length of the data to reserve (excluding event header)
3743  *
3744  * Returns a reserved event on the ring buffer to copy directly to.
3745  * The user of this interface will need to get the body to write into
3746  * and can use the ring_buffer_event_data() interface.
3747  *
3748  * The length is the length of the data needed, not the event length
3749  * which also includes the event header.
3750  *
3751  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3752  * If NULL is returned, then nothing has been allocated or locked.
3753  */
3754 struct ring_buffer_event *
3755 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3756 {
3757         struct ring_buffer_per_cpu *cpu_buffer;
3758         struct ring_buffer_event *event;
3759         int cpu;
3760
3761         /* If we are tracing schedule, we don't want to recurse */
3762         preempt_disable_notrace();
3763
3764         if (unlikely(atomic_read(&buffer->record_disabled)))
3765                 goto out;
3766
3767         cpu = raw_smp_processor_id();
3768
3769         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3770                 goto out;
3771
3772         cpu_buffer = buffer->buffers[cpu];
3773
3774         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3775                 goto out;
3776
3777         if (unlikely(length > BUF_MAX_DATA_SIZE))
3778                 goto out;
3779
3780         if (unlikely(trace_recursive_lock(cpu_buffer)))
3781                 goto out;
3782
3783         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3784         if (!event)
3785                 goto out_unlock;
3786
3787         return event;
3788
3789  out_unlock:
3790         trace_recursive_unlock(cpu_buffer);
3791  out:
3792         preempt_enable_notrace();
3793         return NULL;
3794 }
3795 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3796
3797 /*
3798  * Decrement the entries to the page that an event is on.
3799  * The event does not even need to exist, only the pointer
3800  * to the page it is on. This may only be called before the commit
3801  * takes place.
3802  */
3803 static inline void
3804 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3805                    struct ring_buffer_event *event)
3806 {
3807         unsigned long addr = (unsigned long)event;
3808         struct buffer_page *bpage = cpu_buffer->commit_page;
3809         struct buffer_page *start;
3810
3811         addr &= PAGE_MASK;
3812
3813         /* Do the likely case first */
3814         if (likely(bpage->page == (void *)addr)) {
3815                 local_dec(&bpage->entries);
3816                 return;
3817         }
3818
3819         /*
3820          * Because the commit page may be on the reader page we
3821          * start with the next page and check the end loop there.
3822          */
3823         rb_inc_page(&bpage);
3824         start = bpage;
3825         do {
3826                 if (bpage->page == (void *)addr) {
3827                         local_dec(&bpage->entries);
3828                         return;
3829                 }
3830                 rb_inc_page(&bpage);
3831         } while (bpage != start);
3832
3833         /* commit not part of this buffer?? */
3834         RB_WARN_ON(cpu_buffer, 1);
3835 }
3836
3837 /**
3838  * ring_buffer_discard_commit - discard an event that has not been committed
3839  * @buffer: the ring buffer
3840  * @event: non committed event to discard
3841  *
3842  * Sometimes an event that is in the ring buffer needs to be ignored.
3843  * This function lets the user discard an event in the ring buffer
3844  * and then that event will not be read later.
3845  *
3846  * This function only works if it is called before the item has been
3847  * committed. It will try to free the event from the ring buffer
3848  * if another event has not been added behind it.
3849  *
3850  * If another event has been added behind it, it will set the event
3851  * up as discarded, and perform the commit.
3852  *
3853  * If this function is called, do not call ring_buffer_unlock_commit on
3854  * the event.
3855  */
3856 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3857                                 struct ring_buffer_event *event)
3858 {
3859         struct ring_buffer_per_cpu *cpu_buffer;
3860         int cpu;
3861
3862         /* The event is discarded regardless */
3863         rb_event_discard(event);
3864
3865         cpu = smp_processor_id();
3866         cpu_buffer = buffer->buffers[cpu];
3867
3868         /*
3869          * This must only be called if the event has not been
3870          * committed yet. Thus we can assume that preemption
3871          * is still disabled.
3872          */
3873         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3874
3875         rb_decrement_entry(cpu_buffer, event);
3876         if (rb_try_to_discard(cpu_buffer, event))
3877                 goto out;
3878
3879  out:
3880         rb_end_commit(cpu_buffer);
3881
3882         trace_recursive_unlock(cpu_buffer);
3883
3884         preempt_enable_notrace();
3885
3886 }
3887 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3888
3889 /**
3890  * ring_buffer_write - write data to the buffer without reserving
3891  * @buffer: The ring buffer to write to.
3892  * @length: The length of the data being written (excluding the event header)
3893  * @data: The data to write to the buffer.
3894  *
3895  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3896  * one function. If you already have the data to write to the buffer, it
3897  * may be easier to simply call this function.
3898  *
3899  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3900  * and not the length of the event which would hold the header.
3901  */
3902 int ring_buffer_write(struct trace_buffer *buffer,
3903                       unsigned long length,
3904                       void *data)
3905 {
3906         struct ring_buffer_per_cpu *cpu_buffer;
3907         struct ring_buffer_event *event;
3908         void *body;
3909         int ret = -EBUSY;
3910         int cpu;
3911
3912         preempt_disable_notrace();
3913
3914         if (atomic_read(&buffer->record_disabled))
3915                 goto out;
3916
3917         cpu = raw_smp_processor_id();
3918
3919         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3920                 goto out;
3921
3922         cpu_buffer = buffer->buffers[cpu];
3923
3924         if (atomic_read(&cpu_buffer->record_disabled))
3925                 goto out;
3926
3927         if (length > BUF_MAX_DATA_SIZE)
3928                 goto out;
3929
3930         if (unlikely(trace_recursive_lock(cpu_buffer)))
3931                 goto out;
3932
3933         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3934         if (!event)
3935                 goto out_unlock;
3936
3937         body = rb_event_data(event);
3938
3939         memcpy(body, data, length);
3940
3941         rb_commit(cpu_buffer, event);
3942
3943         rb_wakeups(buffer, cpu_buffer);
3944
3945         ret = 0;
3946
3947  out_unlock:
3948         trace_recursive_unlock(cpu_buffer);
3949
3950  out:
3951         preempt_enable_notrace();
3952
3953         return ret;
3954 }
3955 EXPORT_SYMBOL_GPL(ring_buffer_write);
3956
3957 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3958 {
3959         struct buffer_page *reader = cpu_buffer->reader_page;
3960         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3961         struct buffer_page *commit = cpu_buffer->commit_page;
3962
3963         /* In case of error, head will be NULL */
3964         if (unlikely(!head))
3965                 return true;
3966
3967         /* Reader should exhaust content in reader page */
3968         if (reader->read != rb_page_commit(reader))
3969                 return false;
3970
3971         /*
3972          * If writers are committing on the reader page, knowing all
3973          * committed content has been read, the ring buffer is empty.
3974          */
3975         if (commit == reader)
3976                 return true;
3977
3978         /*
3979          * If writers are committing on a page other than reader page
3980          * and head page, there should always be content to read.
3981          */
3982         if (commit != head)
3983                 return false;
3984
3985         /*
3986          * Writers are committing on the head page, we just need
3987          * to care about there're committed data, and the reader will
3988          * swap reader page with head page when it is to read data.
3989          */
3990         return rb_page_commit(commit) == 0;
3991 }
3992
3993 /**
3994  * ring_buffer_record_disable - stop all writes into the buffer
3995  * @buffer: The ring buffer to stop writes to.
3996  *
3997  * This prevents all writes to the buffer. Any attempt to write
3998  * to the buffer after this will fail and return NULL.
3999  *
4000  * The caller should call synchronize_rcu() after this.
4001  */
4002 void ring_buffer_record_disable(struct trace_buffer *buffer)
4003 {
4004         atomic_inc(&buffer->record_disabled);
4005 }
4006 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4007
4008 /**
4009  * ring_buffer_record_enable - enable writes to the buffer
4010  * @buffer: The ring buffer to enable writes
4011  *
4012  * Note, multiple disables will need the same number of enables
4013  * to truly enable the writing (much like preempt_disable).
4014  */
4015 void ring_buffer_record_enable(struct trace_buffer *buffer)
4016 {
4017         atomic_dec(&buffer->record_disabled);
4018 }
4019 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4020
4021 /**
4022  * ring_buffer_record_off - stop all writes into the buffer
4023  * @buffer: The ring buffer to stop writes to.
4024  *
4025  * This prevents all writes to the buffer. Any attempt to write
4026  * to the buffer after this will fail and return NULL.
4027  *
4028  * This is different than ring_buffer_record_disable() as
4029  * it works like an on/off switch, where as the disable() version
4030  * must be paired with a enable().
4031  */
4032 void ring_buffer_record_off(struct trace_buffer *buffer)
4033 {
4034         unsigned int rd;
4035         unsigned int new_rd;
4036
4037         do {
4038                 rd = atomic_read(&buffer->record_disabled);
4039                 new_rd = rd | RB_BUFFER_OFF;
4040         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4041 }
4042 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4043
4044 /**
4045  * ring_buffer_record_on - restart writes into the buffer
4046  * @buffer: The ring buffer to start writes to.
4047  *
4048  * This enables all writes to the buffer that was disabled by
4049  * ring_buffer_record_off().
4050  *
4051  * This is different than ring_buffer_record_enable() as
4052  * it works like an on/off switch, where as the enable() version
4053  * must be paired with a disable().
4054  */
4055 void ring_buffer_record_on(struct trace_buffer *buffer)
4056 {
4057         unsigned int rd;
4058         unsigned int new_rd;
4059
4060         do {
4061                 rd = atomic_read(&buffer->record_disabled);
4062                 new_rd = rd & ~RB_BUFFER_OFF;
4063         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4064 }
4065 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4066
4067 /**
4068  * ring_buffer_record_is_on - return true if the ring buffer can write
4069  * @buffer: The ring buffer to see if write is enabled
4070  *
4071  * Returns true if the ring buffer is in a state that it accepts writes.
4072  */
4073 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4074 {
4075         return !atomic_read(&buffer->record_disabled);
4076 }
4077
4078 /**
4079  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4080  * @buffer: The ring buffer to see if write is set enabled
4081  *
4082  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4083  * Note that this does NOT mean it is in a writable state.
4084  *
4085  * It may return true when the ring buffer has been disabled by
4086  * ring_buffer_record_disable(), as that is a temporary disabling of
4087  * the ring buffer.
4088  */
4089 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4090 {
4091         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4092 }
4093
4094 /**
4095  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4096  * @buffer: The ring buffer to stop writes to.
4097  * @cpu: The CPU buffer to stop
4098  *
4099  * This prevents all writes to the buffer. Any attempt to write
4100  * to the buffer after this will fail and return NULL.
4101  *
4102  * The caller should call synchronize_rcu() after this.
4103  */
4104 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4105 {
4106         struct ring_buffer_per_cpu *cpu_buffer;
4107
4108         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4109                 return;
4110
4111         cpu_buffer = buffer->buffers[cpu];
4112         atomic_inc(&cpu_buffer->record_disabled);
4113 }
4114 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4115
4116 /**
4117  * ring_buffer_record_enable_cpu - enable writes to the buffer
4118  * @buffer: The ring buffer to enable writes
4119  * @cpu: The CPU to enable.
4120  *
4121  * Note, multiple disables will need the same number of enables
4122  * to truly enable the writing (much like preempt_disable).
4123  */
4124 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4125 {
4126         struct ring_buffer_per_cpu *cpu_buffer;
4127
4128         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4129                 return;
4130
4131         cpu_buffer = buffer->buffers[cpu];
4132         atomic_dec(&cpu_buffer->record_disabled);
4133 }
4134 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4135
4136 /*
4137  * The total entries in the ring buffer is the running counter
4138  * of entries entered into the ring buffer, minus the sum of
4139  * the entries read from the ring buffer and the number of
4140  * entries that were overwritten.
4141  */
4142 static inline unsigned long
4143 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4144 {
4145         return local_read(&cpu_buffer->entries) -
4146                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4147 }
4148
4149 /**
4150  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4151  * @buffer: The ring buffer
4152  * @cpu: The per CPU buffer to read from.
4153  */
4154 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4155 {
4156         unsigned long flags;
4157         struct ring_buffer_per_cpu *cpu_buffer;
4158         struct buffer_page *bpage;
4159         u64 ret = 0;
4160
4161         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4162                 return 0;
4163
4164         cpu_buffer = buffer->buffers[cpu];
4165         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4166         /*
4167          * if the tail is on reader_page, oldest time stamp is on the reader
4168          * page
4169          */
4170         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4171                 bpage = cpu_buffer->reader_page;
4172         else
4173                 bpage = rb_set_head_page(cpu_buffer);
4174         if (bpage)
4175                 ret = bpage->page->time_stamp;
4176         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4177
4178         return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4181
4182 /**
4183  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4184  * @buffer: The ring buffer
4185  * @cpu: The per CPU buffer to read from.
4186  */
4187 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4188 {
4189         struct ring_buffer_per_cpu *cpu_buffer;
4190         unsigned long ret;
4191
4192         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4193                 return 0;
4194
4195         cpu_buffer = buffer->buffers[cpu];
4196         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4197
4198         return ret;
4199 }
4200 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4201
4202 /**
4203  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4204  * @buffer: The ring buffer
4205  * @cpu: The per CPU buffer to get the entries from.
4206  */
4207 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4208 {
4209         struct ring_buffer_per_cpu *cpu_buffer;
4210
4211         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4212                 return 0;
4213
4214         cpu_buffer = buffer->buffers[cpu];
4215
4216         return rb_num_of_entries(cpu_buffer);
4217 }
4218 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4219
4220 /**
4221  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4222  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4223  * @buffer: The ring buffer
4224  * @cpu: The per CPU buffer to get the number of overruns from
4225  */
4226 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4227 {
4228         struct ring_buffer_per_cpu *cpu_buffer;
4229         unsigned long ret;
4230
4231         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4232                 return 0;
4233
4234         cpu_buffer = buffer->buffers[cpu];
4235         ret = local_read(&cpu_buffer->overrun);
4236
4237         return ret;
4238 }
4239 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4240
4241 /**
4242  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4243  * commits failing due to the buffer wrapping around while there are uncommitted
4244  * events, such as during an interrupt storm.
4245  * @buffer: The ring buffer
4246  * @cpu: The per CPU buffer to get the number of overruns from
4247  */
4248 unsigned long
4249 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4250 {
4251         struct ring_buffer_per_cpu *cpu_buffer;
4252         unsigned long ret;
4253
4254         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4255                 return 0;
4256
4257         cpu_buffer = buffer->buffers[cpu];
4258         ret = local_read(&cpu_buffer->commit_overrun);
4259
4260         return ret;
4261 }
4262 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4263
4264 /**
4265  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4266  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4267  * @buffer: The ring buffer
4268  * @cpu: The per CPU buffer to get the number of overruns from
4269  */
4270 unsigned long
4271 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4272 {
4273         struct ring_buffer_per_cpu *cpu_buffer;
4274         unsigned long ret;
4275
4276         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4277                 return 0;
4278
4279         cpu_buffer = buffer->buffers[cpu];
4280         ret = local_read(&cpu_buffer->dropped_events);
4281
4282         return ret;
4283 }
4284 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4285
4286 /**
4287  * ring_buffer_read_events_cpu - get the number of events successfully read
4288  * @buffer: The ring buffer
4289  * @cpu: The per CPU buffer to get the number of events read
4290  */
4291 unsigned long
4292 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4293 {
4294         struct ring_buffer_per_cpu *cpu_buffer;
4295
4296         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4297                 return 0;
4298
4299         cpu_buffer = buffer->buffers[cpu];
4300         return cpu_buffer->read;
4301 }
4302 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4303
4304 /**
4305  * ring_buffer_entries - get the number of entries in a buffer
4306  * @buffer: The ring buffer
4307  *
4308  * Returns the total number of entries in the ring buffer
4309  * (all CPU entries)
4310  */
4311 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4312 {
4313         struct ring_buffer_per_cpu *cpu_buffer;
4314         unsigned long entries = 0;
4315         int cpu;
4316
4317         /* if you care about this being correct, lock the buffer */
4318         for_each_buffer_cpu(buffer, cpu) {
4319                 cpu_buffer = buffer->buffers[cpu];
4320                 entries += rb_num_of_entries(cpu_buffer);
4321         }
4322
4323         return entries;
4324 }
4325 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4326
4327 /**
4328  * ring_buffer_overruns - get the number of overruns in buffer
4329  * @buffer: The ring buffer
4330  *
4331  * Returns the total number of overruns in the ring buffer
4332  * (all CPU entries)
4333  */
4334 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4335 {
4336         struct ring_buffer_per_cpu *cpu_buffer;
4337         unsigned long overruns = 0;
4338         int cpu;
4339
4340         /* if you care about this being correct, lock the buffer */
4341         for_each_buffer_cpu(buffer, cpu) {
4342                 cpu_buffer = buffer->buffers[cpu];
4343                 overruns += local_read(&cpu_buffer->overrun);
4344         }
4345
4346         return overruns;
4347 }
4348 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4349
4350 static void rb_iter_reset(struct ring_buffer_iter *iter)
4351 {
4352         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4353
4354         /* Iterator usage is expected to have record disabled */
4355         iter->head_page = cpu_buffer->reader_page;
4356         iter->head = cpu_buffer->reader_page->read;
4357         iter->next_event = iter->head;
4358
4359         iter->cache_reader_page = iter->head_page;
4360         iter->cache_read = cpu_buffer->read;
4361
4362         if (iter->head) {
4363                 iter->read_stamp = cpu_buffer->read_stamp;
4364                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4365         } else {
4366                 iter->read_stamp = iter->head_page->page->time_stamp;
4367                 iter->page_stamp = iter->read_stamp;
4368         }
4369 }
4370
4371 /**
4372  * ring_buffer_iter_reset - reset an iterator
4373  * @iter: The iterator to reset
4374  *
4375  * Resets the iterator, so that it will start from the beginning
4376  * again.
4377  */
4378 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4379 {
4380         struct ring_buffer_per_cpu *cpu_buffer;
4381         unsigned long flags;
4382
4383         if (!iter)
4384                 return;
4385
4386         cpu_buffer = iter->cpu_buffer;
4387
4388         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4389         rb_iter_reset(iter);
4390         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4391 }
4392 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4393
4394 /**
4395  * ring_buffer_iter_empty - check if an iterator has no more to read
4396  * @iter: The iterator to check
4397  */
4398 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4399 {
4400         struct ring_buffer_per_cpu *cpu_buffer;
4401         struct buffer_page *reader;
4402         struct buffer_page *head_page;
4403         struct buffer_page *commit_page;
4404         struct buffer_page *curr_commit_page;
4405         unsigned commit;
4406         u64 curr_commit_ts;
4407         u64 commit_ts;
4408
4409         cpu_buffer = iter->cpu_buffer;
4410         reader = cpu_buffer->reader_page;
4411         head_page = cpu_buffer->head_page;
4412         commit_page = cpu_buffer->commit_page;
4413         commit_ts = commit_page->page->time_stamp;
4414
4415         /*
4416          * When the writer goes across pages, it issues a cmpxchg which
4417          * is a mb(), which will synchronize with the rmb here.
4418          * (see rb_tail_page_update())
4419          */
4420         smp_rmb();
4421         commit = rb_page_commit(commit_page);
4422         /* We want to make sure that the commit page doesn't change */
4423         smp_rmb();
4424
4425         /* Make sure commit page didn't change */
4426         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4427         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4428
4429         /* If the commit page changed, then there's more data */
4430         if (curr_commit_page != commit_page ||
4431             curr_commit_ts != commit_ts)
4432                 return 0;
4433
4434         /* Still racy, as it may return a false positive, but that's OK */
4435         return ((iter->head_page == commit_page && iter->head >= commit) ||
4436                 (iter->head_page == reader && commit_page == head_page &&
4437                  head_page->read == commit &&
4438                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4439 }
4440 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4441
4442 static void
4443 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4444                      struct ring_buffer_event *event)
4445 {
4446         u64 delta;
4447
4448         switch (event->type_len) {
4449         case RINGBUF_TYPE_PADDING:
4450                 return;
4451
4452         case RINGBUF_TYPE_TIME_EXTEND:
4453                 delta = rb_event_time_stamp(event);
4454                 cpu_buffer->read_stamp += delta;
4455                 return;
4456
4457         case RINGBUF_TYPE_TIME_STAMP:
4458                 delta = rb_event_time_stamp(event);
4459                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4460                 cpu_buffer->read_stamp = delta;
4461                 return;
4462
4463         case RINGBUF_TYPE_DATA:
4464                 cpu_buffer->read_stamp += event->time_delta;
4465                 return;
4466
4467         default:
4468                 RB_WARN_ON(cpu_buffer, 1);
4469         }
4470         return;
4471 }
4472
4473 static void
4474 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4475                           struct ring_buffer_event *event)
4476 {
4477         u64 delta;
4478
4479         switch (event->type_len) {
4480         case RINGBUF_TYPE_PADDING:
4481                 return;
4482
4483         case RINGBUF_TYPE_TIME_EXTEND:
4484                 delta = rb_event_time_stamp(event);
4485                 iter->read_stamp += delta;
4486                 return;
4487
4488         case RINGBUF_TYPE_TIME_STAMP:
4489                 delta = rb_event_time_stamp(event);
4490                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4491                 iter->read_stamp = delta;
4492                 return;
4493
4494         case RINGBUF_TYPE_DATA:
4495                 iter->read_stamp += event->time_delta;
4496                 return;
4497
4498         default:
4499                 RB_WARN_ON(iter->cpu_buffer, 1);
4500         }
4501         return;
4502 }
4503
4504 static struct buffer_page *
4505 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4506 {
4507         struct buffer_page *reader = NULL;
4508         unsigned long overwrite;
4509         unsigned long flags;
4510         int nr_loops = 0;
4511         int ret;
4512
4513         local_irq_save(flags);
4514         arch_spin_lock(&cpu_buffer->lock);
4515
4516  again:
4517         /*
4518          * This should normally only loop twice. But because the
4519          * start of the reader inserts an empty page, it causes
4520          * a case where we will loop three times. There should be no
4521          * reason to loop four times (that I know of).
4522          */
4523         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4524                 reader = NULL;
4525                 goto out;
4526         }
4527
4528         reader = cpu_buffer->reader_page;
4529
4530         /* If there's more to read, return this page */
4531         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4532                 goto out;
4533
4534         /* Never should we have an index greater than the size */
4535         if (RB_WARN_ON(cpu_buffer,
4536                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4537                 goto out;
4538
4539         /* check if we caught up to the tail */
4540         reader = NULL;
4541         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4542                 goto out;
4543
4544         /* Don't bother swapping if the ring buffer is empty */
4545         if (rb_num_of_entries(cpu_buffer) == 0)
4546                 goto out;
4547
4548         /*
4549          * Reset the reader page to size zero.
4550          */
4551         local_set(&cpu_buffer->reader_page->write, 0);
4552         local_set(&cpu_buffer->reader_page->entries, 0);
4553         local_set(&cpu_buffer->reader_page->page->commit, 0);
4554         cpu_buffer->reader_page->real_end = 0;
4555
4556  spin:
4557         /*
4558          * Splice the empty reader page into the list around the head.
4559          */
4560         reader = rb_set_head_page(cpu_buffer);
4561         if (!reader)
4562                 goto out;
4563         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4564         cpu_buffer->reader_page->list.prev = reader->list.prev;
4565
4566         /*
4567          * cpu_buffer->pages just needs to point to the buffer, it
4568          *  has no specific buffer page to point to. Lets move it out
4569          *  of our way so we don't accidentally swap it.
4570          */
4571         cpu_buffer->pages = reader->list.prev;
4572
4573         /* The reader page will be pointing to the new head */
4574         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4575
4576         /*
4577          * We want to make sure we read the overruns after we set up our
4578          * pointers to the next object. The writer side does a
4579          * cmpxchg to cross pages which acts as the mb on the writer
4580          * side. Note, the reader will constantly fail the swap
4581          * while the writer is updating the pointers, so this
4582          * guarantees that the overwrite recorded here is the one we
4583          * want to compare with the last_overrun.
4584          */
4585         smp_mb();
4586         overwrite = local_read(&(cpu_buffer->overrun));
4587
4588         /*
4589          * Here's the tricky part.
4590          *
4591          * We need to move the pointer past the header page.
4592          * But we can only do that if a writer is not currently
4593          * moving it. The page before the header page has the
4594          * flag bit '1' set if it is pointing to the page we want.
4595          * but if the writer is in the process of moving it
4596          * than it will be '2' or already moved '0'.
4597          */
4598
4599         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4600
4601         /*
4602          * If we did not convert it, then we must try again.
4603          */
4604         if (!ret)
4605                 goto spin;
4606
4607         /*
4608          * Yay! We succeeded in replacing the page.
4609          *
4610          * Now make the new head point back to the reader page.
4611          */
4612         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4613         rb_inc_page(&cpu_buffer->head_page);
4614
4615         local_inc(&cpu_buffer->pages_read);
4616
4617         /* Finally update the reader page to the new head */
4618         cpu_buffer->reader_page = reader;
4619         cpu_buffer->reader_page->read = 0;
4620
4621         if (overwrite != cpu_buffer->last_overrun) {
4622                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4623                 cpu_buffer->last_overrun = overwrite;
4624         }
4625
4626         goto again;
4627
4628  out:
4629         /* Update the read_stamp on the first event */
4630         if (reader && reader->read == 0)
4631                 cpu_buffer->read_stamp = reader->page->time_stamp;
4632
4633         arch_spin_unlock(&cpu_buffer->lock);
4634         local_irq_restore(flags);
4635
4636         /*
4637          * The writer has preempt disable, wait for it. But not forever
4638          * Although, 1 second is pretty much "forever"
4639          */
4640 #define USECS_WAIT      1000000
4641         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4642                 /* If the write is past the end of page, a writer is still updating it */
4643                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4644                         break;
4645
4646                 udelay(1);
4647
4648                 /* Get the latest version of the reader write value */
4649                 smp_rmb();
4650         }
4651
4652         /* The writer is not moving forward? Something is wrong */
4653         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4654                 reader = NULL;
4655
4656         /*
4657          * Make sure we see any padding after the write update
4658          * (see rb_reset_tail())
4659          */
4660         smp_rmb();
4661
4662
4663         return reader;
4664 }
4665
4666 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4667 {
4668         struct ring_buffer_event *event;
4669         struct buffer_page *reader;
4670         unsigned length;
4671
4672         reader = rb_get_reader_page(cpu_buffer);
4673
4674         /* This function should not be called when buffer is empty */
4675         if (RB_WARN_ON(cpu_buffer, !reader))
4676                 return;
4677
4678         event = rb_reader_event(cpu_buffer);
4679
4680         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4681                 cpu_buffer->read++;
4682
4683         rb_update_read_stamp(cpu_buffer, event);
4684
4685         length = rb_event_length(event);
4686         cpu_buffer->reader_page->read += length;
4687 }
4688
4689 static void rb_advance_iter(struct ring_buffer_iter *iter)
4690 {
4691         struct ring_buffer_per_cpu *cpu_buffer;
4692
4693         cpu_buffer = iter->cpu_buffer;
4694
4695         /* If head == next_event then we need to jump to the next event */
4696         if (iter->head == iter->next_event) {
4697                 /* If the event gets overwritten again, there's nothing to do */
4698                 if (rb_iter_head_event(iter) == NULL)
4699                         return;
4700         }
4701
4702         iter->head = iter->next_event;
4703
4704         /*
4705          * Check if we are at the end of the buffer.
4706          */
4707         if (iter->next_event >= rb_page_size(iter->head_page)) {
4708                 /* discarded commits can make the page empty */
4709                 if (iter->head_page == cpu_buffer->commit_page)
4710                         return;
4711                 rb_inc_iter(iter);
4712                 return;
4713         }
4714
4715         rb_update_iter_read_stamp(iter, iter->event);
4716 }
4717
4718 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4719 {
4720         return cpu_buffer->lost_events;
4721 }
4722
4723 static struct ring_buffer_event *
4724 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4725                unsigned long *lost_events)
4726 {
4727         struct ring_buffer_event *event;
4728         struct buffer_page *reader;
4729         int nr_loops = 0;
4730
4731         if (ts)
4732                 *ts = 0;
4733  again:
4734         /*
4735          * We repeat when a time extend is encountered.
4736          * Since the time extend is always attached to a data event,
4737          * we should never loop more than once.
4738          * (We never hit the following condition more than twice).
4739          */
4740         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4741                 return NULL;
4742
4743         reader = rb_get_reader_page(cpu_buffer);
4744         if (!reader)
4745                 return NULL;
4746
4747         event = rb_reader_event(cpu_buffer);
4748
4749         switch (event->type_len) {
4750         case RINGBUF_TYPE_PADDING:
4751                 if (rb_null_event(event))
4752                         RB_WARN_ON(cpu_buffer, 1);
4753                 /*
4754                  * Because the writer could be discarding every
4755                  * event it creates (which would probably be bad)
4756                  * if we were to go back to "again" then we may never
4757                  * catch up, and will trigger the warn on, or lock
4758                  * the box. Return the padding, and we will release
4759                  * the current locks, and try again.
4760                  */
4761                 return event;
4762
4763         case RINGBUF_TYPE_TIME_EXTEND:
4764                 /* Internal data, OK to advance */
4765                 rb_advance_reader(cpu_buffer);
4766                 goto again;
4767
4768         case RINGBUF_TYPE_TIME_STAMP:
4769                 if (ts) {
4770                         *ts = rb_event_time_stamp(event);
4771                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4772                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4773                                                          cpu_buffer->cpu, ts);
4774                 }
4775                 /* Internal data, OK to advance */
4776                 rb_advance_reader(cpu_buffer);
4777                 goto again;
4778
4779         case RINGBUF_TYPE_DATA:
4780                 if (ts && !(*ts)) {
4781                         *ts = cpu_buffer->read_stamp + event->time_delta;
4782                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4783                                                          cpu_buffer->cpu, ts);
4784                 }
4785                 if (lost_events)
4786                         *lost_events = rb_lost_events(cpu_buffer);
4787                 return event;
4788
4789         default:
4790                 RB_WARN_ON(cpu_buffer, 1);
4791         }
4792
4793         return NULL;
4794 }
4795 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4796
4797 static struct ring_buffer_event *
4798 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4799 {
4800         struct trace_buffer *buffer;
4801         struct ring_buffer_per_cpu *cpu_buffer;
4802         struct ring_buffer_event *event;
4803         int nr_loops = 0;
4804
4805         if (ts)
4806                 *ts = 0;
4807
4808         cpu_buffer = iter->cpu_buffer;
4809         buffer = cpu_buffer->buffer;
4810
4811         /*
4812          * Check if someone performed a consuming read to
4813          * the buffer. A consuming read invalidates the iterator
4814          * and we need to reset the iterator in this case.
4815          */
4816         if (unlikely(iter->cache_read != cpu_buffer->read ||
4817                      iter->cache_reader_page != cpu_buffer->reader_page))
4818                 rb_iter_reset(iter);
4819
4820  again:
4821         if (ring_buffer_iter_empty(iter))
4822                 return NULL;
4823
4824         /*
4825          * As the writer can mess with what the iterator is trying
4826          * to read, just give up if we fail to get an event after
4827          * three tries. The iterator is not as reliable when reading
4828          * the ring buffer with an active write as the consumer is.
4829          * Do not warn if the three failures is reached.
4830          */
4831         if (++nr_loops > 3)
4832                 return NULL;
4833
4834         if (rb_per_cpu_empty(cpu_buffer))
4835                 return NULL;
4836
4837         if (iter->head >= rb_page_size(iter->head_page)) {
4838                 rb_inc_iter(iter);
4839                 goto again;
4840         }
4841
4842         event = rb_iter_head_event(iter);
4843         if (!event)
4844                 goto again;
4845
4846         switch (event->type_len) {
4847         case RINGBUF_TYPE_PADDING:
4848                 if (rb_null_event(event)) {
4849                         rb_inc_iter(iter);
4850                         goto again;
4851                 }
4852                 rb_advance_iter(iter);
4853                 return event;
4854
4855         case RINGBUF_TYPE_TIME_EXTEND:
4856                 /* Internal data, OK to advance */
4857                 rb_advance_iter(iter);
4858                 goto again;
4859
4860         case RINGBUF_TYPE_TIME_STAMP:
4861                 if (ts) {
4862                         *ts = rb_event_time_stamp(event);
4863                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4864                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4865                                                          cpu_buffer->cpu, ts);
4866                 }
4867                 /* Internal data, OK to advance */
4868                 rb_advance_iter(iter);
4869                 goto again;
4870
4871         case RINGBUF_TYPE_DATA:
4872                 if (ts && !(*ts)) {
4873                         *ts = iter->read_stamp + event->time_delta;
4874                         ring_buffer_normalize_time_stamp(buffer,
4875                                                          cpu_buffer->cpu, ts);
4876                 }
4877                 return event;
4878
4879         default:
4880                 RB_WARN_ON(cpu_buffer, 1);
4881         }
4882
4883         return NULL;
4884 }
4885 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4886
4887 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4888 {
4889         if (likely(!in_nmi())) {
4890                 raw_spin_lock(&cpu_buffer->reader_lock);
4891                 return true;
4892         }
4893
4894         /*
4895          * If an NMI die dumps out the content of the ring buffer
4896          * trylock must be used to prevent a deadlock if the NMI
4897          * preempted a task that holds the ring buffer locks. If
4898          * we get the lock then all is fine, if not, then continue
4899          * to do the read, but this can corrupt the ring buffer,
4900          * so it must be permanently disabled from future writes.
4901          * Reading from NMI is a oneshot deal.
4902          */
4903         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4904                 return true;
4905
4906         /* Continue without locking, but disable the ring buffer */
4907         atomic_inc(&cpu_buffer->record_disabled);
4908         return false;
4909 }
4910
4911 static inline void
4912 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4913 {
4914         if (likely(locked))
4915                 raw_spin_unlock(&cpu_buffer->reader_lock);
4916         return;
4917 }
4918
4919 /**
4920  * ring_buffer_peek - peek at the next event to be read
4921  * @buffer: The ring buffer to read
4922  * @cpu: The cpu to peak at
4923  * @ts: The timestamp counter of this event.
4924  * @lost_events: a variable to store if events were lost (may be NULL)
4925  *
4926  * This will return the event that will be read next, but does
4927  * not consume the data.
4928  */
4929 struct ring_buffer_event *
4930 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4931                  unsigned long *lost_events)
4932 {
4933         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4934         struct ring_buffer_event *event;
4935         unsigned long flags;
4936         bool dolock;
4937
4938         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4939                 return NULL;
4940
4941  again:
4942         local_irq_save(flags);
4943         dolock = rb_reader_lock(cpu_buffer);
4944         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4945         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4946                 rb_advance_reader(cpu_buffer);
4947         rb_reader_unlock(cpu_buffer, dolock);
4948         local_irq_restore(flags);
4949
4950         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4951                 goto again;
4952
4953         return event;
4954 }
4955
4956 /** ring_buffer_iter_dropped - report if there are dropped events
4957  * @iter: The ring buffer iterator
4958  *
4959  * Returns true if there was dropped events since the last peek.
4960  */
4961 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4962 {
4963         bool ret = iter->missed_events != 0;
4964
4965         iter->missed_events = 0;
4966         return ret;
4967 }
4968 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4969
4970 /**
4971  * ring_buffer_iter_peek - peek at the next event to be read
4972  * @iter: The ring buffer iterator
4973  * @ts: The timestamp counter of this event.
4974  *
4975  * This will return the event that will be read next, but does
4976  * not increment the iterator.
4977  */
4978 struct ring_buffer_event *
4979 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4980 {
4981         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4982         struct ring_buffer_event *event;
4983         unsigned long flags;
4984
4985  again:
4986         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4987         event = rb_iter_peek(iter, ts);
4988         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4989
4990         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4991                 goto again;
4992
4993         return event;
4994 }
4995
4996 /**
4997  * ring_buffer_consume - return an event and consume it
4998  * @buffer: The ring buffer to get the next event from
4999  * @cpu: the cpu to read the buffer from
5000  * @ts: a variable to store the timestamp (may be NULL)
5001  * @lost_events: a variable to store if events were lost (may be NULL)
5002  *
5003  * Returns the next event in the ring buffer, and that event is consumed.
5004  * Meaning, that sequential reads will keep returning a different event,
5005  * and eventually empty the ring buffer if the producer is slower.
5006  */
5007 struct ring_buffer_event *
5008 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5009                     unsigned long *lost_events)
5010 {
5011         struct ring_buffer_per_cpu *cpu_buffer;
5012         struct ring_buffer_event *event = NULL;
5013         unsigned long flags;
5014         bool dolock;
5015
5016  again:
5017         /* might be called in atomic */
5018         preempt_disable();
5019
5020         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5021                 goto out;
5022
5023         cpu_buffer = buffer->buffers[cpu];
5024         local_irq_save(flags);
5025         dolock = rb_reader_lock(cpu_buffer);
5026
5027         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5028         if (event) {
5029                 cpu_buffer->lost_events = 0;
5030                 rb_advance_reader(cpu_buffer);
5031         }
5032
5033         rb_reader_unlock(cpu_buffer, dolock);
5034         local_irq_restore(flags);
5035
5036  out:
5037         preempt_enable();
5038
5039         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5040                 goto again;
5041
5042         return event;
5043 }
5044 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5045
5046 /**
5047  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5048  * @buffer: The ring buffer to read from
5049  * @cpu: The cpu buffer to iterate over
5050  * @flags: gfp flags to use for memory allocation
5051  *
5052  * This performs the initial preparations necessary to iterate
5053  * through the buffer.  Memory is allocated, buffer recording
5054  * is disabled, and the iterator pointer is returned to the caller.
5055  *
5056  * Disabling buffer recording prevents the reading from being
5057  * corrupted. This is not a consuming read, so a producer is not
5058  * expected.
5059  *
5060  * After a sequence of ring_buffer_read_prepare calls, the user is
5061  * expected to make at least one call to ring_buffer_read_prepare_sync.
5062  * Afterwards, ring_buffer_read_start is invoked to get things going
5063  * for real.
5064  *
5065  * This overall must be paired with ring_buffer_read_finish.
5066  */
5067 struct ring_buffer_iter *
5068 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5069 {
5070         struct ring_buffer_per_cpu *cpu_buffer;
5071         struct ring_buffer_iter *iter;
5072
5073         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5074                 return NULL;
5075
5076         iter = kzalloc(sizeof(*iter), flags);
5077         if (!iter)
5078                 return NULL;
5079
5080         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5081         if (!iter->event) {
5082                 kfree(iter);
5083                 return NULL;
5084         }
5085
5086         cpu_buffer = buffer->buffers[cpu];
5087
5088         iter->cpu_buffer = cpu_buffer;
5089
5090         atomic_inc(&cpu_buffer->resize_disabled);
5091
5092         return iter;
5093 }
5094 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5095
5096 /**
5097  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5098  *
5099  * All previously invoked ring_buffer_read_prepare calls to prepare
5100  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5101  * calls on those iterators are allowed.
5102  */
5103 void
5104 ring_buffer_read_prepare_sync(void)
5105 {
5106         synchronize_rcu();
5107 }
5108 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5109
5110 /**
5111  * ring_buffer_read_start - start a non consuming read of the buffer
5112  * @iter: The iterator returned by ring_buffer_read_prepare
5113  *
5114  * This finalizes the startup of an iteration through the buffer.
5115  * The iterator comes from a call to ring_buffer_read_prepare and
5116  * an intervening ring_buffer_read_prepare_sync must have been
5117  * performed.
5118  *
5119  * Must be paired with ring_buffer_read_finish.
5120  */
5121 void
5122 ring_buffer_read_start(struct ring_buffer_iter *iter)
5123 {
5124         struct ring_buffer_per_cpu *cpu_buffer;
5125         unsigned long flags;
5126
5127         if (!iter)
5128                 return;
5129
5130         cpu_buffer = iter->cpu_buffer;
5131
5132         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5133         arch_spin_lock(&cpu_buffer->lock);
5134         rb_iter_reset(iter);
5135         arch_spin_unlock(&cpu_buffer->lock);
5136         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5137 }
5138 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5139
5140 /**
5141  * ring_buffer_read_finish - finish reading the iterator of the buffer
5142  * @iter: The iterator retrieved by ring_buffer_start
5143  *
5144  * This re-enables the recording to the buffer, and frees the
5145  * iterator.
5146  */
5147 void
5148 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5149 {
5150         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5151         unsigned long flags;
5152
5153         /*
5154          * Ring buffer is disabled from recording, here's a good place
5155          * to check the integrity of the ring buffer.
5156          * Must prevent readers from trying to read, as the check
5157          * clears the HEAD page and readers require it.
5158          */
5159         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5160         rb_check_pages(cpu_buffer);
5161         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5162
5163         atomic_dec(&cpu_buffer->resize_disabled);
5164         kfree(iter->event);
5165         kfree(iter);
5166 }
5167 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5168
5169 /**
5170  * ring_buffer_iter_advance - advance the iterator to the next location
5171  * @iter: The ring buffer iterator
5172  *
5173  * Move the location of the iterator such that the next read will
5174  * be the next location of the iterator.
5175  */
5176 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5177 {
5178         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5179         unsigned long flags;
5180
5181         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5182
5183         rb_advance_iter(iter);
5184
5185         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5186 }
5187 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5188
5189 /**
5190  * ring_buffer_size - return the size of the ring buffer (in bytes)
5191  * @buffer: The ring buffer.
5192  * @cpu: The CPU to get ring buffer size from.
5193  */
5194 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5195 {
5196         /*
5197          * Earlier, this method returned
5198          *      BUF_PAGE_SIZE * buffer->nr_pages
5199          * Since the nr_pages field is now removed, we have converted this to
5200          * return the per cpu buffer value.
5201          */
5202         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5203                 return 0;
5204
5205         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5206 }
5207 EXPORT_SYMBOL_GPL(ring_buffer_size);
5208
5209 static void
5210 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5211 {
5212         rb_head_page_deactivate(cpu_buffer);
5213
5214         cpu_buffer->head_page
5215                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5216         local_set(&cpu_buffer->head_page->write, 0);
5217         local_set(&cpu_buffer->head_page->entries, 0);
5218         local_set(&cpu_buffer->head_page->page->commit, 0);
5219
5220         cpu_buffer->head_page->read = 0;
5221
5222         cpu_buffer->tail_page = cpu_buffer->head_page;
5223         cpu_buffer->commit_page = cpu_buffer->head_page;
5224
5225         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5226         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5227         local_set(&cpu_buffer->reader_page->write, 0);
5228         local_set(&cpu_buffer->reader_page->entries, 0);
5229         local_set(&cpu_buffer->reader_page->page->commit, 0);
5230         cpu_buffer->reader_page->read = 0;
5231
5232         local_set(&cpu_buffer->entries_bytes, 0);
5233         local_set(&cpu_buffer->overrun, 0);
5234         local_set(&cpu_buffer->commit_overrun, 0);
5235         local_set(&cpu_buffer->dropped_events, 0);
5236         local_set(&cpu_buffer->entries, 0);
5237         local_set(&cpu_buffer->committing, 0);
5238         local_set(&cpu_buffer->commits, 0);
5239         local_set(&cpu_buffer->pages_touched, 0);
5240         local_set(&cpu_buffer->pages_read, 0);
5241         cpu_buffer->last_pages_touch = 0;
5242         cpu_buffer->shortest_full = 0;
5243         cpu_buffer->read = 0;
5244         cpu_buffer->read_bytes = 0;
5245
5246         rb_time_set(&cpu_buffer->write_stamp, 0);
5247         rb_time_set(&cpu_buffer->before_stamp, 0);
5248
5249         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5250
5251         cpu_buffer->lost_events = 0;
5252         cpu_buffer->last_overrun = 0;
5253
5254         rb_head_page_activate(cpu_buffer);
5255 }
5256
5257 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5258 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5259 {
5260         unsigned long flags;
5261
5262         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5263
5264         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5265                 goto out;
5266
5267         arch_spin_lock(&cpu_buffer->lock);
5268
5269         rb_reset_cpu(cpu_buffer);
5270
5271         arch_spin_unlock(&cpu_buffer->lock);
5272
5273  out:
5274         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5275 }
5276
5277 /**
5278  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5279  * @buffer: The ring buffer to reset a per cpu buffer of
5280  * @cpu: The CPU buffer to be reset
5281  */
5282 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5283 {
5284         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5285
5286         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5287                 return;
5288
5289         /* prevent another thread from changing buffer sizes */
5290         mutex_lock(&buffer->mutex);
5291
5292         atomic_inc(&cpu_buffer->resize_disabled);
5293         atomic_inc(&cpu_buffer->record_disabled);
5294
5295         /* Make sure all commits have finished */
5296         synchronize_rcu();
5297
5298         reset_disabled_cpu_buffer(cpu_buffer);
5299
5300         atomic_dec(&cpu_buffer->record_disabled);
5301         atomic_dec(&cpu_buffer->resize_disabled);
5302
5303         mutex_unlock(&buffer->mutex);
5304 }
5305 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5306
5307 /**
5308  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5309  * @buffer: The ring buffer to reset a per cpu buffer of
5310  * @cpu: The CPU buffer to be reset
5311  */
5312 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5313 {
5314         struct ring_buffer_per_cpu *cpu_buffer;
5315         int cpu;
5316
5317         /* prevent another thread from changing buffer sizes */
5318         mutex_lock(&buffer->mutex);
5319
5320         for_each_online_buffer_cpu(buffer, cpu) {
5321                 cpu_buffer = buffer->buffers[cpu];
5322
5323                 atomic_inc(&cpu_buffer->resize_disabled);
5324                 atomic_inc(&cpu_buffer->record_disabled);
5325         }
5326
5327         /* Make sure all commits have finished */
5328         synchronize_rcu();
5329
5330         for_each_online_buffer_cpu(buffer, cpu) {
5331                 cpu_buffer = buffer->buffers[cpu];
5332
5333                 reset_disabled_cpu_buffer(cpu_buffer);
5334
5335                 atomic_dec(&cpu_buffer->record_disabled);
5336                 atomic_dec(&cpu_buffer->resize_disabled);
5337         }
5338
5339         mutex_unlock(&buffer->mutex);
5340 }
5341
5342 /**
5343  * ring_buffer_reset - reset a ring buffer
5344  * @buffer: The ring buffer to reset all cpu buffers
5345  */
5346 void ring_buffer_reset(struct trace_buffer *buffer)
5347 {
5348         struct ring_buffer_per_cpu *cpu_buffer;
5349         int cpu;
5350
5351         /* prevent another thread from changing buffer sizes */
5352         mutex_lock(&buffer->mutex);
5353
5354         for_each_buffer_cpu(buffer, cpu) {
5355                 cpu_buffer = buffer->buffers[cpu];
5356
5357                 atomic_inc(&cpu_buffer->resize_disabled);
5358                 atomic_inc(&cpu_buffer->record_disabled);
5359         }
5360
5361         /* Make sure all commits have finished */
5362         synchronize_rcu();
5363
5364         for_each_buffer_cpu(buffer, cpu) {
5365                 cpu_buffer = buffer->buffers[cpu];
5366
5367                 reset_disabled_cpu_buffer(cpu_buffer);
5368
5369                 atomic_dec(&cpu_buffer->record_disabled);
5370                 atomic_dec(&cpu_buffer->resize_disabled);
5371         }
5372
5373         mutex_unlock(&buffer->mutex);
5374 }
5375 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5376
5377 /**
5378  * ring_buffer_empty - is the ring buffer empty?
5379  * @buffer: The ring buffer to test
5380  */
5381 bool ring_buffer_empty(struct trace_buffer *buffer)
5382 {
5383         struct ring_buffer_per_cpu *cpu_buffer;
5384         unsigned long flags;
5385         bool dolock;
5386         int cpu;
5387         int ret;
5388
5389         /* yes this is racy, but if you don't like the race, lock the buffer */
5390         for_each_buffer_cpu(buffer, cpu) {
5391                 cpu_buffer = buffer->buffers[cpu];
5392                 local_irq_save(flags);
5393                 dolock = rb_reader_lock(cpu_buffer);
5394                 ret = rb_per_cpu_empty(cpu_buffer);
5395                 rb_reader_unlock(cpu_buffer, dolock);
5396                 local_irq_restore(flags);
5397
5398                 if (!ret)
5399                         return false;
5400         }
5401
5402         return true;
5403 }
5404 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5405
5406 /**
5407  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5408  * @buffer: The ring buffer
5409  * @cpu: The CPU buffer to test
5410  */
5411 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5412 {
5413         struct ring_buffer_per_cpu *cpu_buffer;
5414         unsigned long flags;
5415         bool dolock;
5416         int ret;
5417
5418         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5419                 return true;
5420
5421         cpu_buffer = buffer->buffers[cpu];
5422         local_irq_save(flags);
5423         dolock = rb_reader_lock(cpu_buffer);
5424         ret = rb_per_cpu_empty(cpu_buffer);
5425         rb_reader_unlock(cpu_buffer, dolock);
5426         local_irq_restore(flags);
5427
5428         return ret;
5429 }
5430 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5431
5432 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5433 /**
5434  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5435  * @buffer_a: One buffer to swap with
5436  * @buffer_b: The other buffer to swap with
5437  * @cpu: the CPU of the buffers to swap
5438  *
5439  * This function is useful for tracers that want to take a "snapshot"
5440  * of a CPU buffer and has another back up buffer lying around.
5441  * it is expected that the tracer handles the cpu buffer not being
5442  * used at the moment.
5443  */
5444 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5445                          struct trace_buffer *buffer_b, int cpu)
5446 {
5447         struct ring_buffer_per_cpu *cpu_buffer_a;
5448         struct ring_buffer_per_cpu *cpu_buffer_b;
5449         int ret = -EINVAL;
5450
5451         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5452             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5453                 goto out;
5454
5455         cpu_buffer_a = buffer_a->buffers[cpu];
5456         cpu_buffer_b = buffer_b->buffers[cpu];
5457
5458         /* At least make sure the two buffers are somewhat the same */
5459         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5460                 goto out;
5461
5462         ret = -EAGAIN;
5463
5464         if (atomic_read(&buffer_a->record_disabled))
5465                 goto out;
5466
5467         if (atomic_read(&buffer_b->record_disabled))
5468                 goto out;
5469
5470         if (atomic_read(&cpu_buffer_a->record_disabled))
5471                 goto out;
5472
5473         if (atomic_read(&cpu_buffer_b->record_disabled))
5474                 goto out;
5475
5476         /*
5477          * We can't do a synchronize_rcu here because this
5478          * function can be called in atomic context.
5479          * Normally this will be called from the same CPU as cpu.
5480          * If not it's up to the caller to protect this.
5481          */
5482         atomic_inc(&cpu_buffer_a->record_disabled);
5483         atomic_inc(&cpu_buffer_b->record_disabled);
5484
5485         ret = -EBUSY;
5486         if (local_read(&cpu_buffer_a->committing))
5487                 goto out_dec;
5488         if (local_read(&cpu_buffer_b->committing))
5489                 goto out_dec;
5490
5491         buffer_a->buffers[cpu] = cpu_buffer_b;
5492         buffer_b->buffers[cpu] = cpu_buffer_a;
5493
5494         cpu_buffer_b->buffer = buffer_a;
5495         cpu_buffer_a->buffer = buffer_b;
5496
5497         ret = 0;
5498
5499 out_dec:
5500         atomic_dec(&cpu_buffer_a->record_disabled);
5501         atomic_dec(&cpu_buffer_b->record_disabled);
5502 out:
5503         return ret;
5504 }
5505 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5506 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5507
5508 /**
5509  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5510  * @buffer: the buffer to allocate for.
5511  * @cpu: the cpu buffer to allocate.
5512  *
5513  * This function is used in conjunction with ring_buffer_read_page.
5514  * When reading a full page from the ring buffer, these functions
5515  * can be used to speed up the process. The calling function should
5516  * allocate a few pages first with this function. Then when it
5517  * needs to get pages from the ring buffer, it passes the result
5518  * of this function into ring_buffer_read_page, which will swap
5519  * the page that was allocated, with the read page of the buffer.
5520  *
5521  * Returns:
5522  *  The page allocated, or ERR_PTR
5523  */
5524 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5525 {
5526         struct ring_buffer_per_cpu *cpu_buffer;
5527         struct buffer_data_page *bpage = NULL;
5528         unsigned long flags;
5529         struct page *page;
5530
5531         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5532                 return ERR_PTR(-ENODEV);
5533
5534         cpu_buffer = buffer->buffers[cpu];
5535         local_irq_save(flags);
5536         arch_spin_lock(&cpu_buffer->lock);
5537
5538         if (cpu_buffer->free_page) {
5539                 bpage = cpu_buffer->free_page;
5540                 cpu_buffer->free_page = NULL;
5541         }
5542
5543         arch_spin_unlock(&cpu_buffer->lock);
5544         local_irq_restore(flags);
5545
5546         if (bpage)
5547                 goto out;
5548
5549         page = alloc_pages_node(cpu_to_node(cpu),
5550                                 GFP_KERNEL | __GFP_NORETRY, 0);
5551         if (!page)
5552                 return ERR_PTR(-ENOMEM);
5553
5554         bpage = page_address(page);
5555
5556  out:
5557         rb_init_page(bpage);
5558
5559         return bpage;
5560 }
5561 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5562
5563 /**
5564  * ring_buffer_free_read_page - free an allocated read page
5565  * @buffer: the buffer the page was allocate for
5566  * @cpu: the cpu buffer the page came from
5567  * @data: the page to free
5568  *
5569  * Free a page allocated from ring_buffer_alloc_read_page.
5570  */
5571 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5572 {
5573         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5574         struct buffer_data_page *bpage = data;
5575         struct page *page = virt_to_page(bpage);
5576         unsigned long flags;
5577
5578         /* If the page is still in use someplace else, we can't reuse it */
5579         if (page_ref_count(page) > 1)
5580                 goto out;
5581
5582         local_irq_save(flags);
5583         arch_spin_lock(&cpu_buffer->lock);
5584
5585         if (!cpu_buffer->free_page) {
5586                 cpu_buffer->free_page = bpage;
5587                 bpage = NULL;
5588         }
5589
5590         arch_spin_unlock(&cpu_buffer->lock);
5591         local_irq_restore(flags);
5592
5593  out:
5594         free_page((unsigned long)bpage);
5595 }
5596 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5597
5598 /**
5599  * ring_buffer_read_page - extract a page from the ring buffer
5600  * @buffer: buffer to extract from
5601  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5602  * @len: amount to extract
5603  * @cpu: the cpu of the buffer to extract
5604  * @full: should the extraction only happen when the page is full.
5605  *
5606  * This function will pull out a page from the ring buffer and consume it.
5607  * @data_page must be the address of the variable that was returned
5608  * from ring_buffer_alloc_read_page. This is because the page might be used
5609  * to swap with a page in the ring buffer.
5610  *
5611  * for example:
5612  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5613  *      if (IS_ERR(rpage))
5614  *              return PTR_ERR(rpage);
5615  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5616  *      if (ret >= 0)
5617  *              process_page(rpage, ret);
5618  *
5619  * When @full is set, the function will not return true unless
5620  * the writer is off the reader page.
5621  *
5622  * Note: it is up to the calling functions to handle sleeps and wakeups.
5623  *  The ring buffer can be used anywhere in the kernel and can not
5624  *  blindly call wake_up. The layer that uses the ring buffer must be
5625  *  responsible for that.
5626  *
5627  * Returns:
5628  *  >=0 if data has been transferred, returns the offset of consumed data.
5629  *  <0 if no data has been transferred.
5630  */
5631 int ring_buffer_read_page(struct trace_buffer *buffer,
5632                           void **data_page, size_t len, int cpu, int full)
5633 {
5634         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5635         struct ring_buffer_event *event;
5636         struct buffer_data_page *bpage;
5637         struct buffer_page *reader;
5638         unsigned long missed_events;
5639         unsigned long flags;
5640         unsigned int commit;
5641         unsigned int read;
5642         u64 save_timestamp;
5643         int ret = -1;
5644
5645         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5646                 goto out;
5647
5648         /*
5649          * If len is not big enough to hold the page header, then
5650          * we can not copy anything.
5651          */
5652         if (len <= BUF_PAGE_HDR_SIZE)
5653                 goto out;
5654
5655         len -= BUF_PAGE_HDR_SIZE;
5656
5657         if (!data_page)
5658                 goto out;
5659
5660         bpage = *data_page;
5661         if (!bpage)
5662                 goto out;
5663
5664         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5665
5666         reader = rb_get_reader_page(cpu_buffer);
5667         if (!reader)
5668                 goto out_unlock;
5669
5670         event = rb_reader_event(cpu_buffer);
5671
5672         read = reader->read;
5673         commit = rb_page_commit(reader);
5674
5675         /* Check if any events were dropped */
5676         missed_events = cpu_buffer->lost_events;
5677
5678         /*
5679          * If this page has been partially read or
5680          * if len is not big enough to read the rest of the page or
5681          * a writer is still on the page, then
5682          * we must copy the data from the page to the buffer.
5683          * Otherwise, we can simply swap the page with the one passed in.
5684          */
5685         if (read || (len < (commit - read)) ||
5686             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5687                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5688                 unsigned int rpos = read;
5689                 unsigned int pos = 0;
5690                 unsigned int size;
5691
5692                 /*
5693                  * If a full page is expected, this can still be returned
5694                  * if there's been a previous partial read and the
5695                  * rest of the page can be read and the commit page is off
5696                  * the reader page.
5697                  */
5698                 if (full &&
5699                     (!read || (len < (commit - read)) ||
5700                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5701                         goto out_unlock;
5702
5703                 if (len > (commit - read))
5704                         len = (commit - read);
5705
5706                 /* Always keep the time extend and data together */
5707                 size = rb_event_ts_length(event);
5708
5709                 if (len < size)
5710                         goto out_unlock;
5711
5712                 /* save the current timestamp, since the user will need it */
5713                 save_timestamp = cpu_buffer->read_stamp;
5714
5715                 /* Need to copy one event at a time */
5716                 do {
5717                         /* We need the size of one event, because
5718                          * rb_advance_reader only advances by one event,
5719                          * whereas rb_event_ts_length may include the size of
5720                          * one or two events.
5721                          * We have already ensured there's enough space if this
5722                          * is a time extend. */
5723                         size = rb_event_length(event);
5724                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5725
5726                         len -= size;
5727
5728                         rb_advance_reader(cpu_buffer);
5729                         rpos = reader->read;
5730                         pos += size;
5731
5732                         if (rpos >= commit)
5733                                 break;
5734
5735                         event = rb_reader_event(cpu_buffer);
5736                         /* Always keep the time extend and data together */
5737                         size = rb_event_ts_length(event);
5738                 } while (len >= size);
5739
5740                 /* update bpage */
5741                 local_set(&bpage->commit, pos);
5742                 bpage->time_stamp = save_timestamp;
5743
5744                 /* we copied everything to the beginning */
5745                 read = 0;
5746         } else {
5747                 /* update the entry counter */
5748                 cpu_buffer->read += rb_page_entries(reader);
5749                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5750
5751                 /* swap the pages */
5752                 rb_init_page(bpage);
5753                 bpage = reader->page;
5754                 reader->page = *data_page;
5755                 local_set(&reader->write, 0);
5756                 local_set(&reader->entries, 0);
5757                 reader->read = 0;
5758                 *data_page = bpage;
5759
5760                 /*
5761                  * Use the real_end for the data size,
5762                  * This gives us a chance to store the lost events
5763                  * on the page.
5764                  */
5765                 if (reader->real_end)
5766                         local_set(&bpage->commit, reader->real_end);
5767         }
5768         ret = read;
5769
5770         cpu_buffer->lost_events = 0;
5771
5772         commit = local_read(&bpage->commit);
5773         /*
5774          * Set a flag in the commit field if we lost events
5775          */
5776         if (missed_events) {
5777                 /* If there is room at the end of the page to save the
5778                  * missed events, then record it there.
5779                  */
5780                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5781                         memcpy(&bpage->data[commit], &missed_events,
5782                                sizeof(missed_events));
5783                         local_add(RB_MISSED_STORED, &bpage->commit);
5784                         commit += sizeof(missed_events);
5785                 }
5786                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5787         }
5788
5789         /*
5790          * This page may be off to user land. Zero it out here.
5791          */
5792         if (commit < BUF_PAGE_SIZE)
5793                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5794
5795  out_unlock:
5796         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5797
5798  out:
5799         return ret;
5800 }
5801 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5802
5803 /*
5804  * We only allocate new buffers, never free them if the CPU goes down.
5805  * If we were to free the buffer, then the user would lose any trace that was in
5806  * the buffer.
5807  */
5808 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5809 {
5810         struct trace_buffer *buffer;
5811         long nr_pages_same;
5812         int cpu_i;
5813         unsigned long nr_pages;
5814
5815         buffer = container_of(node, struct trace_buffer, node);
5816         if (cpumask_test_cpu(cpu, buffer->cpumask))
5817                 return 0;
5818
5819         nr_pages = 0;
5820         nr_pages_same = 1;
5821         /* check if all cpu sizes are same */
5822         for_each_buffer_cpu(buffer, cpu_i) {
5823                 /* fill in the size from first enabled cpu */
5824                 if (nr_pages == 0)
5825                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5826                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5827                         nr_pages_same = 0;
5828                         break;
5829                 }
5830         }
5831         /* allocate minimum pages, user can later expand it */
5832         if (!nr_pages_same)
5833                 nr_pages = 2;
5834         buffer->buffers[cpu] =
5835                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5836         if (!buffer->buffers[cpu]) {
5837                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5838                      cpu);
5839                 return -ENOMEM;
5840         }
5841         smp_wmb();
5842         cpumask_set_cpu(cpu, buffer->cpumask);
5843         return 0;
5844 }
5845
5846 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5847 /*
5848  * This is a basic integrity check of the ring buffer.
5849  * Late in the boot cycle this test will run when configured in.
5850  * It will kick off a thread per CPU that will go into a loop
5851  * writing to the per cpu ring buffer various sizes of data.
5852  * Some of the data will be large items, some small.
5853  *
5854  * Another thread is created that goes into a spin, sending out
5855  * IPIs to the other CPUs to also write into the ring buffer.
5856  * this is to test the nesting ability of the buffer.
5857  *
5858  * Basic stats are recorded and reported. If something in the
5859  * ring buffer should happen that's not expected, a big warning
5860  * is displayed and all ring buffers are disabled.
5861  */
5862 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5863
5864 struct rb_test_data {
5865         struct trace_buffer *buffer;
5866         unsigned long           events;
5867         unsigned long           bytes_written;
5868         unsigned long           bytes_alloc;
5869         unsigned long           bytes_dropped;
5870         unsigned long           events_nested;
5871         unsigned long           bytes_written_nested;
5872         unsigned long           bytes_alloc_nested;
5873         unsigned long           bytes_dropped_nested;
5874         int                     min_size_nested;
5875         int                     max_size_nested;
5876         int                     max_size;
5877         int                     min_size;
5878         int                     cpu;
5879         int                     cnt;
5880 };
5881
5882 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5883
5884 /* 1 meg per cpu */
5885 #define RB_TEST_BUFFER_SIZE     1048576
5886
5887 static char rb_string[] __initdata =
5888         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5889         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5890         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5891
5892 static bool rb_test_started __initdata;
5893
5894 struct rb_item {
5895         int size;
5896         char str[];
5897 };
5898
5899 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5900 {
5901         struct ring_buffer_event *event;
5902         struct rb_item *item;
5903         bool started;
5904         int event_len;
5905         int size;
5906         int len;
5907         int cnt;
5908
5909         /* Have nested writes different that what is written */
5910         cnt = data->cnt + (nested ? 27 : 0);
5911
5912         /* Multiply cnt by ~e, to make some unique increment */
5913         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5914
5915         len = size + sizeof(struct rb_item);
5916
5917         started = rb_test_started;
5918         /* read rb_test_started before checking buffer enabled */
5919         smp_rmb();
5920
5921         event = ring_buffer_lock_reserve(data->buffer, len);
5922         if (!event) {
5923                 /* Ignore dropped events before test starts. */
5924                 if (started) {
5925                         if (nested)
5926                                 data->bytes_dropped += len;
5927                         else
5928                                 data->bytes_dropped_nested += len;
5929                 }
5930                 return len;
5931         }
5932
5933         event_len = ring_buffer_event_length(event);
5934
5935         if (RB_WARN_ON(data->buffer, event_len < len))
5936                 goto out;
5937
5938         item = ring_buffer_event_data(event);
5939         item->size = size;
5940         memcpy(item->str, rb_string, size);
5941
5942         if (nested) {
5943                 data->bytes_alloc_nested += event_len;
5944                 data->bytes_written_nested += len;
5945                 data->events_nested++;
5946                 if (!data->min_size_nested || len < data->min_size_nested)
5947                         data->min_size_nested = len;
5948                 if (len > data->max_size_nested)
5949                         data->max_size_nested = len;
5950         } else {
5951                 data->bytes_alloc += event_len;
5952                 data->bytes_written += len;
5953                 data->events++;
5954                 if (!data->min_size || len < data->min_size)
5955                         data->max_size = len;
5956                 if (len > data->max_size)
5957                         data->max_size = len;
5958         }
5959
5960  out:
5961         ring_buffer_unlock_commit(data->buffer, event);
5962
5963         return 0;
5964 }
5965
5966 static __init int rb_test(void *arg)
5967 {
5968         struct rb_test_data *data = arg;
5969
5970         while (!kthread_should_stop()) {
5971                 rb_write_something(data, false);
5972                 data->cnt++;
5973
5974                 set_current_state(TASK_INTERRUPTIBLE);
5975                 /* Now sleep between a min of 100-300us and a max of 1ms */
5976                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5977         }
5978
5979         return 0;
5980 }
5981
5982 static __init void rb_ipi(void *ignore)
5983 {
5984         struct rb_test_data *data;
5985         int cpu = smp_processor_id();
5986
5987         data = &rb_data[cpu];
5988         rb_write_something(data, true);
5989 }
5990
5991 static __init int rb_hammer_test(void *arg)
5992 {
5993         while (!kthread_should_stop()) {
5994
5995                 /* Send an IPI to all cpus to write data! */
5996                 smp_call_function(rb_ipi, NULL, 1);
5997                 /* No sleep, but for non preempt, let others run */
5998                 schedule();
5999         }
6000
6001         return 0;
6002 }
6003
6004 static __init int test_ringbuffer(void)
6005 {
6006         struct task_struct *rb_hammer;
6007         struct trace_buffer *buffer;
6008         int cpu;
6009         int ret = 0;
6010
6011         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6012                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6013                 return 0;
6014         }
6015
6016         pr_info("Running ring buffer tests...\n");
6017
6018         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6019         if (WARN_ON(!buffer))
6020                 return 0;
6021
6022         /* Disable buffer so that threads can't write to it yet */
6023         ring_buffer_record_off(buffer);
6024
6025         for_each_online_cpu(cpu) {
6026                 rb_data[cpu].buffer = buffer;
6027                 rb_data[cpu].cpu = cpu;
6028                 rb_data[cpu].cnt = cpu;
6029                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6030                                                      cpu, "rbtester/%u");
6031                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6032                         pr_cont("FAILED\n");
6033                         ret = PTR_ERR(rb_threads[cpu]);
6034                         goto out_free;
6035                 }
6036         }
6037
6038         /* Now create the rb hammer! */
6039         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6040         if (WARN_ON(IS_ERR(rb_hammer))) {
6041                 pr_cont("FAILED\n");
6042                 ret = PTR_ERR(rb_hammer);
6043                 goto out_free;
6044         }
6045
6046         ring_buffer_record_on(buffer);
6047         /*
6048          * Show buffer is enabled before setting rb_test_started.
6049          * Yes there's a small race window where events could be
6050          * dropped and the thread wont catch it. But when a ring
6051          * buffer gets enabled, there will always be some kind of
6052          * delay before other CPUs see it. Thus, we don't care about
6053          * those dropped events. We care about events dropped after
6054          * the threads see that the buffer is active.
6055          */
6056         smp_wmb();
6057         rb_test_started = true;
6058
6059         set_current_state(TASK_INTERRUPTIBLE);
6060         /* Just run for 10 seconds */;
6061         schedule_timeout(10 * HZ);
6062
6063         kthread_stop(rb_hammer);
6064
6065  out_free:
6066         for_each_online_cpu(cpu) {
6067                 if (!rb_threads[cpu])
6068                         break;
6069                 kthread_stop(rb_threads[cpu]);
6070         }
6071         if (ret) {
6072                 ring_buffer_free(buffer);
6073                 return ret;
6074         }
6075
6076         /* Report! */
6077         pr_info("finished\n");
6078         for_each_online_cpu(cpu) {
6079                 struct ring_buffer_event *event;
6080                 struct rb_test_data *data = &rb_data[cpu];
6081                 struct rb_item *item;
6082                 unsigned long total_events;
6083                 unsigned long total_dropped;
6084                 unsigned long total_written;
6085                 unsigned long total_alloc;
6086                 unsigned long total_read = 0;
6087                 unsigned long total_size = 0;
6088                 unsigned long total_len = 0;
6089                 unsigned long total_lost = 0;
6090                 unsigned long lost;
6091                 int big_event_size;
6092                 int small_event_size;
6093
6094                 ret = -1;
6095
6096                 total_events = data->events + data->events_nested;
6097                 total_written = data->bytes_written + data->bytes_written_nested;
6098                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6099                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6100
6101                 big_event_size = data->max_size + data->max_size_nested;
6102                 small_event_size = data->min_size + data->min_size_nested;
6103
6104                 pr_info("CPU %d:\n", cpu);
6105                 pr_info("              events:    %ld\n", total_events);
6106                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6107                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6108                 pr_info("       written bytes:    %ld\n", total_written);
6109                 pr_info("       biggest event:    %d\n", big_event_size);
6110                 pr_info("      smallest event:    %d\n", small_event_size);
6111
6112                 if (RB_WARN_ON(buffer, total_dropped))
6113                         break;
6114
6115                 ret = 0;
6116
6117                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6118                         total_lost += lost;
6119                         item = ring_buffer_event_data(event);
6120                         total_len += ring_buffer_event_length(event);
6121                         total_size += item->size + sizeof(struct rb_item);
6122                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6123                                 pr_info("FAILED!\n");
6124                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6125                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6126                                 RB_WARN_ON(buffer, 1);
6127                                 ret = -1;
6128                                 break;
6129                         }
6130                         total_read++;
6131                 }
6132                 if (ret)
6133                         break;
6134
6135                 ret = -1;
6136
6137                 pr_info("         read events:   %ld\n", total_read);
6138                 pr_info("         lost events:   %ld\n", total_lost);
6139                 pr_info("        total events:   %ld\n", total_lost + total_read);
6140                 pr_info("  recorded len bytes:   %ld\n", total_len);
6141                 pr_info(" recorded size bytes:   %ld\n", total_size);
6142                 if (total_lost) {
6143                         pr_info(" With dropped events, record len and size may not match\n"
6144                                 " alloced and written from above\n");
6145                 } else {
6146                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6147                                        total_size != total_written))
6148                                 break;
6149                 }
6150                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6151                         break;
6152
6153                 ret = 0;
6154         }
6155         if (!ret)
6156                 pr_info("Ring buffer PASSED!\n");
6157
6158         ring_buffer_free(buffer);
6159         return 0;
6160 }
6161
6162 late_initcall(test_ringbuffer);
6163 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */