ring-buffer: Have rb_time_cmpxchg() set the msb counter too
[platform/kernel/linux-starfive.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
358 {
359         return local_read(&bpage->page->commit);
360 }
361
362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364         free_page((unsigned long)bpage->page);
365         kfree(bpage);
366 }
367
368 /*
369  * We need to fit the time_stamp delta into 27 bits.
370  */
371 static inline bool test_time_stamp(u64 delta)
372 {
373         return !!(delta & TS_DELTA_TEST);
374 }
375
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380
381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383         struct buffer_data_page field;
384
385         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386                          "offset:0;\tsize:%u;\tsigned:%u;\n",
387                          (unsigned int)sizeof(field.time_stamp),
388                          (unsigned int)is_signed_type(u64));
389
390         trace_seq_printf(s, "\tfield: local_t commit;\t"
391                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
392                          (unsigned int)offsetof(typeof(field), commit),
393                          (unsigned int)sizeof(field.commit),
394                          (unsigned int)is_signed_type(long));
395
396         trace_seq_printf(s, "\tfield: int overwrite;\t"
397                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
398                          (unsigned int)offsetof(typeof(field), commit),
399                          1,
400                          (unsigned int)is_signed_type(long));
401
402         trace_seq_printf(s, "\tfield: char data;\t"
403                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
404                          (unsigned int)offsetof(typeof(field), data),
405                          (unsigned int)BUF_PAGE_SIZE,
406                          (unsigned int)is_signed_type(char));
407
408         return !trace_seq_has_overflowed(s);
409 }
410
411 struct rb_irq_work {
412         struct irq_work                 work;
413         wait_queue_head_t               waiters;
414         wait_queue_head_t               full_waiters;
415         long                            wait_index;
416         bool                            waiters_pending;
417         bool                            full_waiters_pending;
418         bool                            wakeup_full;
419 };
420
421 /*
422  * Structure to hold event state and handle nested events.
423  */
424 struct rb_event_info {
425         u64                     ts;
426         u64                     delta;
427         u64                     before;
428         u64                     after;
429         unsigned long           length;
430         struct buffer_page      *tail_page;
431         int                     add_timestamp;
432 };
433
434 /*
435  * Used for the add_timestamp
436  *  NONE
437  *  EXTEND - wants a time extend
438  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
439  *  FORCE - force a full time stamp.
440  */
441 enum {
442         RB_ADD_STAMP_NONE               = 0,
443         RB_ADD_STAMP_EXTEND             = BIT(1),
444         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
445         RB_ADD_STAMP_FORCE              = BIT(3)
446 };
447 /*
448  * Used for which event context the event is in.
449  *  TRANSITION = 0
450  *  NMI     = 1
451  *  IRQ     = 2
452  *  SOFTIRQ = 3
453  *  NORMAL  = 4
454  *
455  * See trace_recursive_lock() comment below for more details.
456  */
457 enum {
458         RB_CTX_TRANSITION,
459         RB_CTX_NMI,
460         RB_CTX_IRQ,
461         RB_CTX_SOFTIRQ,
462         RB_CTX_NORMAL,
463         RB_CTX_MAX
464 };
465
466 #if BITS_PER_LONG == 32
467 #define RB_TIME_32
468 #endif
469
470 /* To test on 64 bit machines */
471 //#define RB_TIME_32
472
473 #ifdef RB_TIME_32
474
475 struct rb_time_struct {
476         local_t         cnt;
477         local_t         top;
478         local_t         bottom;
479         local_t         msb;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484         local64_t       time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488
489 #define MAX_NEST        5
490
491 /*
492  * head_page == tail_page && head == tail then buffer is empty.
493  */
494 struct ring_buffer_per_cpu {
495         int                             cpu;
496         atomic_t                        record_disabled;
497         atomic_t                        resize_disabled;
498         struct trace_buffer     *buffer;
499         raw_spinlock_t                  reader_lock;    /* serialize readers */
500         arch_spinlock_t                 lock;
501         struct lock_class_key           lock_key;
502         struct buffer_data_page         *free_page;
503         unsigned long                   nr_pages;
504         unsigned int                    current_context;
505         struct list_head                *pages;
506         struct buffer_page              *head_page;     /* read from head */
507         struct buffer_page              *tail_page;     /* write to tail */
508         struct buffer_page              *commit_page;   /* committed pages */
509         struct buffer_page              *reader_page;
510         unsigned long                   lost_events;
511         unsigned long                   last_overrun;
512         unsigned long                   nest;
513         local_t                         entries_bytes;
514         local_t                         entries;
515         local_t                         overrun;
516         local_t                         commit_overrun;
517         local_t                         dropped_events;
518         local_t                         committing;
519         local_t                         commits;
520         local_t                         pages_touched;
521         local_t                         pages_lost;
522         local_t                         pages_read;
523         long                            last_pages_touch;
524         size_t                          shortest_full;
525         unsigned long                   read;
526         unsigned long                   read_bytes;
527         rb_time_t                       write_stamp;
528         rb_time_t                       before_stamp;
529         u64                             event_stamp[MAX_NEST];
530         u64                             read_stamp;
531         /* pages removed since last reset */
532         unsigned long                   pages_removed;
533         /* ring buffer pages to update, > 0 to add, < 0 to remove */
534         long                            nr_pages_to_update;
535         struct list_head                new_pages; /* new pages to add */
536         struct work_struct              update_pages_work;
537         struct completion               update_done;
538
539         struct rb_irq_work              irq_work;
540 };
541
542 struct trace_buffer {
543         unsigned                        flags;
544         int                             cpus;
545         atomic_t                        record_disabled;
546         atomic_t                        resizing;
547         cpumask_var_t                   cpumask;
548
549         struct lock_class_key           *reader_lock_key;
550
551         struct mutex                    mutex;
552
553         struct ring_buffer_per_cpu      **buffers;
554
555         struct hlist_node               node;
556         u64                             (*clock)(void);
557
558         struct rb_irq_work              irq_work;
559         bool                            time_stamp_abs;
560 };
561
562 struct ring_buffer_iter {
563         struct ring_buffer_per_cpu      *cpu_buffer;
564         unsigned long                   head;
565         unsigned long                   next_event;
566         struct buffer_page              *head_page;
567         struct buffer_page              *cache_reader_page;
568         unsigned long                   cache_read;
569         unsigned long                   cache_pages_removed;
570         u64                             read_stamp;
571         u64                             page_stamp;
572         struct ring_buffer_event        *event;
573         int                             missed_events;
574 };
575
576 #ifdef RB_TIME_32
577
578 /*
579  * On 32 bit machines, local64_t is very expensive. As the ring
580  * buffer doesn't need all the features of a true 64 bit atomic,
581  * on 32 bit, it uses these functions (64 still uses local64_t).
582  *
583  * For the ring buffer, 64 bit required operations for the time is
584  * the following:
585  *
586  *  - Reads may fail if it interrupted a modification of the time stamp.
587  *      It will succeed if it did not interrupt another write even if
588  *      the read itself is interrupted by a write.
589  *      It returns whether it was successful or not.
590  *
591  *  - Writes always succeed and will overwrite other writes and writes
592  *      that were done by events interrupting the current write.
593  *
594  *  - A write followed by a read of the same time stamp will always succeed,
595  *      but may not contain the same value.
596  *
597  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
598  *      Other than that, it acts like a normal cmpxchg.
599  *
600  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
602  *
603  * The two most significant bits of each half holds a 2 bit counter (0-3).
604  * Each update will increment this counter by one.
605  * When reading the top and bottom, if the two counter bits match then the
606  *  top and bottom together make a valid 60 bit number.
607  */
608 #define RB_TIME_SHIFT   30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610 #define RB_TIME_MSB_SHIFT        60
611
612 static inline int rb_time_cnt(unsigned long val)
613 {
614         return (val >> RB_TIME_SHIFT) & 3;
615 }
616
617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
618 {
619         u64 val;
620
621         val = top & RB_TIME_VAL_MASK;
622         val <<= RB_TIME_SHIFT;
623         val |= bottom & RB_TIME_VAL_MASK;
624
625         return val;
626 }
627
628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
629 {
630         unsigned long top, bottom, msb;
631         unsigned long c;
632
633         /*
634          * If the read is interrupted by a write, then the cnt will
635          * be different. Loop until both top and bottom have been read
636          * without interruption.
637          */
638         do {
639                 c = local_read(&t->cnt);
640                 top = local_read(&t->top);
641                 bottom = local_read(&t->bottom);
642                 msb = local_read(&t->msb);
643         } while (c != local_read(&t->cnt));
644
645         *cnt = rb_time_cnt(top);
646
647         /* If top and msb counts don't match, this interrupted a write */
648         if (*cnt != rb_time_cnt(msb))
649                 return false;
650
651         /* The shift to msb will lose its cnt bits */
652         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
653         return true;
654 }
655
656 static bool rb_time_read(rb_time_t *t, u64 *ret)
657 {
658         unsigned long cnt;
659
660         return __rb_time_read(t, ret, &cnt);
661 }
662
663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
664 {
665         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
666 }
667
668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
669                                  unsigned long *msb)
670 {
671         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
672         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
673         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
674 }
675
676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
677 {
678         val = rb_time_val_cnt(val, cnt);
679         local_set(t, val);
680 }
681
682 static void rb_time_set(rb_time_t *t, u64 val)
683 {
684         unsigned long cnt, top, bottom, msb;
685
686         rb_time_split(val, &top, &bottom, &msb);
687
688         /* Writes always succeed with a valid number even if it gets interrupted. */
689         do {
690                 cnt = local_inc_return(&t->cnt);
691                 rb_time_val_set(&t->top, top, cnt);
692                 rb_time_val_set(&t->bottom, bottom, cnt);
693                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
694         } while (cnt != local_read(&t->cnt));
695 }
696
697 static inline bool
698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
699 {
700         return local_try_cmpxchg(l, &expect, set);
701 }
702
703 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
704 {
705         unsigned long cnt, top, bottom, msb;
706         unsigned long cnt2, top2, bottom2, msb2;
707         u64 val;
708
709         /* Any interruptions in this function should cause a failure */
710         cnt = local_read(&t->cnt);
711
712         /* The cmpxchg always fails if it interrupted an update */
713          if (!__rb_time_read(t, &val, &cnt2))
714                  return false;
715
716          if (val != expect)
717                  return false;
718
719          if ((cnt & 3) != cnt2)
720                  return false;
721
722          cnt2 = cnt + 1;
723
724          rb_time_split(val, &top, &bottom, &msb);
725          msb = rb_time_val_cnt(msb, cnt);
726          top = rb_time_val_cnt(top, cnt);
727          bottom = rb_time_val_cnt(bottom, cnt);
728
729          rb_time_split(set, &top2, &bottom2, &msb2);
730          msb2 = rb_time_val_cnt(msb2, cnt);
731          top2 = rb_time_val_cnt(top2, cnt2);
732          bottom2 = rb_time_val_cnt(bottom2, cnt2);
733
734         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
735                 return false;
736         if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
737                 return false;
738         if (!rb_time_read_cmpxchg(&t->top, top, top2))
739                 return false;
740         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
741                 return false;
742         return true;
743 }
744
745 #else /* 64 bits */
746
747 /* local64_t always succeeds */
748
749 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
750 {
751         *ret = local64_read(&t->time);
752         return true;
753 }
754 static void rb_time_set(rb_time_t *t, u64 val)
755 {
756         local64_set(&t->time, val);
757 }
758
759 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
760 {
761         return local64_try_cmpxchg(&t->time, &expect, set);
762 }
763 #endif
764
765 /*
766  * Enable this to make sure that the event passed to
767  * ring_buffer_event_time_stamp() is not committed and also
768  * is on the buffer that it passed in.
769  */
770 //#define RB_VERIFY_EVENT
771 #ifdef RB_VERIFY_EVENT
772 static struct list_head *rb_list_head(struct list_head *list);
773 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
774                          void *event)
775 {
776         struct buffer_page *page = cpu_buffer->commit_page;
777         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
778         struct list_head *next;
779         long commit, write;
780         unsigned long addr = (unsigned long)event;
781         bool done = false;
782         int stop = 0;
783
784         /* Make sure the event exists and is not committed yet */
785         do {
786                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
787                         done = true;
788                 commit = local_read(&page->page->commit);
789                 write = local_read(&page->write);
790                 if (addr >= (unsigned long)&page->page->data[commit] &&
791                     addr < (unsigned long)&page->page->data[write])
792                         return;
793
794                 next = rb_list_head(page->list.next);
795                 page = list_entry(next, struct buffer_page, list);
796         } while (!done);
797         WARN_ON_ONCE(1);
798 }
799 #else
800 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
801                          void *event)
802 {
803 }
804 #endif
805
806 /*
807  * The absolute time stamp drops the 5 MSBs and some clocks may
808  * require them. The rb_fix_abs_ts() will take a previous full
809  * time stamp, and add the 5 MSB of that time stamp on to the
810  * saved absolute time stamp. Then they are compared in case of
811  * the unlikely event that the latest time stamp incremented
812  * the 5 MSB.
813  */
814 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
815 {
816         if (save_ts & TS_MSB) {
817                 abs |= save_ts & TS_MSB;
818                 /* Check for overflow */
819                 if (unlikely(abs < save_ts))
820                         abs += 1ULL << 59;
821         }
822         return abs;
823 }
824
825 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
826
827 /**
828  * ring_buffer_event_time_stamp - return the event's current time stamp
829  * @buffer: The buffer that the event is on
830  * @event: the event to get the time stamp of
831  *
832  * Note, this must be called after @event is reserved, and before it is
833  * committed to the ring buffer. And must be called from the same
834  * context where the event was reserved (normal, softirq, irq, etc).
835  *
836  * Returns the time stamp associated with the current event.
837  * If the event has an extended time stamp, then that is used as
838  * the time stamp to return.
839  * In the highly unlikely case that the event was nested more than
840  * the max nesting, then the write_stamp of the buffer is returned,
841  * otherwise  current time is returned, but that really neither of
842  * the last two cases should ever happen.
843  */
844 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
845                                  struct ring_buffer_event *event)
846 {
847         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
848         unsigned int nest;
849         u64 ts;
850
851         /* If the event includes an absolute time, then just use that */
852         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
853                 ts = rb_event_time_stamp(event);
854                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
855         }
856
857         nest = local_read(&cpu_buffer->committing);
858         verify_event(cpu_buffer, event);
859         if (WARN_ON_ONCE(!nest))
860                 goto fail;
861
862         /* Read the current saved nesting level time stamp */
863         if (likely(--nest < MAX_NEST))
864                 return cpu_buffer->event_stamp[nest];
865
866         /* Shouldn't happen, warn if it does */
867         WARN_ONCE(1, "nest (%d) greater than max", nest);
868
869  fail:
870         /* Can only fail on 32 bit */
871         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
872                 /* Screw it, just read the current time */
873                 ts = rb_time_stamp(cpu_buffer->buffer);
874
875         return ts;
876 }
877
878 /**
879  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
880  * @buffer: The ring_buffer to get the number of pages from
881  * @cpu: The cpu of the ring_buffer to get the number of pages from
882  *
883  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
884  */
885 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
886 {
887         return buffer->buffers[cpu]->nr_pages;
888 }
889
890 /**
891  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
892  * @buffer: The ring_buffer to get the number of pages from
893  * @cpu: The cpu of the ring_buffer to get the number of pages from
894  *
895  * Returns the number of pages that have content in the ring buffer.
896  */
897 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
898 {
899         size_t read;
900         size_t lost;
901         size_t cnt;
902
903         read = local_read(&buffer->buffers[cpu]->pages_read);
904         lost = local_read(&buffer->buffers[cpu]->pages_lost);
905         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
906
907         if (WARN_ON_ONCE(cnt < lost))
908                 return 0;
909
910         cnt -= lost;
911
912         /* The reader can read an empty page, but not more than that */
913         if (cnt < read) {
914                 WARN_ON_ONCE(read > cnt + 1);
915                 return 0;
916         }
917
918         return cnt - read;
919 }
920
921 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
922 {
923         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
924         size_t nr_pages;
925         size_t dirty;
926
927         nr_pages = cpu_buffer->nr_pages;
928         if (!nr_pages || !full)
929                 return true;
930
931         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
932
933         return (dirty * 100) > (full * nr_pages);
934 }
935
936 /*
937  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
938  *
939  * Schedules a delayed work to wake up any task that is blocked on the
940  * ring buffer waiters queue.
941  */
942 static void rb_wake_up_waiters(struct irq_work *work)
943 {
944         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
945
946         wake_up_all(&rbwork->waiters);
947         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
948                 rbwork->wakeup_full = false;
949                 rbwork->full_waiters_pending = false;
950                 wake_up_all(&rbwork->full_waiters);
951         }
952 }
953
954 /**
955  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
956  * @buffer: The ring buffer to wake waiters on
957  * @cpu: The CPU buffer to wake waiters on
958  *
959  * In the case of a file that represents a ring buffer is closing,
960  * it is prudent to wake up any waiters that are on this.
961  */
962 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
963 {
964         struct ring_buffer_per_cpu *cpu_buffer;
965         struct rb_irq_work *rbwork;
966
967         if (!buffer)
968                 return;
969
970         if (cpu == RING_BUFFER_ALL_CPUS) {
971
972                 /* Wake up individual ones too. One level recursion */
973                 for_each_buffer_cpu(buffer, cpu)
974                         ring_buffer_wake_waiters(buffer, cpu);
975
976                 rbwork = &buffer->irq_work;
977         } else {
978                 if (WARN_ON_ONCE(!buffer->buffers))
979                         return;
980                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
981                         return;
982
983                 cpu_buffer = buffer->buffers[cpu];
984                 /* The CPU buffer may not have been initialized yet */
985                 if (!cpu_buffer)
986                         return;
987                 rbwork = &cpu_buffer->irq_work;
988         }
989
990         rbwork->wait_index++;
991         /* make sure the waiters see the new index */
992         smp_wmb();
993
994         rb_wake_up_waiters(&rbwork->work);
995 }
996
997 /**
998  * ring_buffer_wait - wait for input to the ring buffer
999  * @buffer: buffer to wait on
1000  * @cpu: the cpu buffer to wait on
1001  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1002  *
1003  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1004  * as data is added to any of the @buffer's cpu buffers. Otherwise
1005  * it will wait for data to be added to a specific cpu buffer.
1006  */
1007 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1008 {
1009         struct ring_buffer_per_cpu *cpu_buffer;
1010         DEFINE_WAIT(wait);
1011         struct rb_irq_work *work;
1012         long wait_index;
1013         int ret = 0;
1014
1015         /*
1016          * Depending on what the caller is waiting for, either any
1017          * data in any cpu buffer, or a specific buffer, put the
1018          * caller on the appropriate wait queue.
1019          */
1020         if (cpu == RING_BUFFER_ALL_CPUS) {
1021                 work = &buffer->irq_work;
1022                 /* Full only makes sense on per cpu reads */
1023                 full = 0;
1024         } else {
1025                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1026                         return -ENODEV;
1027                 cpu_buffer = buffer->buffers[cpu];
1028                 work = &cpu_buffer->irq_work;
1029         }
1030
1031         wait_index = READ_ONCE(work->wait_index);
1032
1033         while (true) {
1034                 if (full)
1035                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1036                 else
1037                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1038
1039                 /*
1040                  * The events can happen in critical sections where
1041                  * checking a work queue can cause deadlocks.
1042                  * After adding a task to the queue, this flag is set
1043                  * only to notify events to try to wake up the queue
1044                  * using irq_work.
1045                  *
1046                  * We don't clear it even if the buffer is no longer
1047                  * empty. The flag only causes the next event to run
1048                  * irq_work to do the work queue wake up. The worse
1049                  * that can happen if we race with !trace_empty() is that
1050                  * an event will cause an irq_work to try to wake up
1051                  * an empty queue.
1052                  *
1053                  * There's no reason to protect this flag either, as
1054                  * the work queue and irq_work logic will do the necessary
1055                  * synchronization for the wake ups. The only thing
1056                  * that is necessary is that the wake up happens after
1057                  * a task has been queued. It's OK for spurious wake ups.
1058                  */
1059                 if (full)
1060                         work->full_waiters_pending = true;
1061                 else
1062                         work->waiters_pending = true;
1063
1064                 if (signal_pending(current)) {
1065                         ret = -EINTR;
1066                         break;
1067                 }
1068
1069                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1070                         break;
1071
1072                 if (cpu != RING_BUFFER_ALL_CPUS &&
1073                     !ring_buffer_empty_cpu(buffer, cpu)) {
1074                         unsigned long flags;
1075                         bool pagebusy;
1076                         bool done;
1077
1078                         if (!full)
1079                                 break;
1080
1081                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1082                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1083                         done = !pagebusy && full_hit(buffer, cpu, full);
1084
1085                         if (!cpu_buffer->shortest_full ||
1086                             cpu_buffer->shortest_full > full)
1087                                 cpu_buffer->shortest_full = full;
1088                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1089                         if (done)
1090                                 break;
1091                 }
1092
1093                 schedule();
1094
1095                 /* Make sure to see the new wait index */
1096                 smp_rmb();
1097                 if (wait_index != work->wait_index)
1098                         break;
1099         }
1100
1101         if (full)
1102                 finish_wait(&work->full_waiters, &wait);
1103         else
1104                 finish_wait(&work->waiters, &wait);
1105
1106         return ret;
1107 }
1108
1109 /**
1110  * ring_buffer_poll_wait - poll on buffer input
1111  * @buffer: buffer to wait on
1112  * @cpu: the cpu buffer to wait on
1113  * @filp: the file descriptor
1114  * @poll_table: The poll descriptor
1115  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1116  *
1117  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1118  * as data is added to any of the @buffer's cpu buffers. Otherwise
1119  * it will wait for data to be added to a specific cpu buffer.
1120  *
1121  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1122  * zero otherwise.
1123  */
1124 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1125                           struct file *filp, poll_table *poll_table, int full)
1126 {
1127         struct ring_buffer_per_cpu *cpu_buffer;
1128         struct rb_irq_work *work;
1129
1130         if (cpu == RING_BUFFER_ALL_CPUS) {
1131                 work = &buffer->irq_work;
1132                 full = 0;
1133         } else {
1134                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1135                         return -EINVAL;
1136
1137                 cpu_buffer = buffer->buffers[cpu];
1138                 work = &cpu_buffer->irq_work;
1139         }
1140
1141         if (full) {
1142                 poll_wait(filp, &work->full_waiters, poll_table);
1143                 work->full_waiters_pending = true;
1144                 if (!cpu_buffer->shortest_full ||
1145                     cpu_buffer->shortest_full > full)
1146                         cpu_buffer->shortest_full = full;
1147         } else {
1148                 poll_wait(filp, &work->waiters, poll_table);
1149                 work->waiters_pending = true;
1150         }
1151
1152         /*
1153          * There's a tight race between setting the waiters_pending and
1154          * checking if the ring buffer is empty.  Once the waiters_pending bit
1155          * is set, the next event will wake the task up, but we can get stuck
1156          * if there's only a single event in.
1157          *
1158          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1159          * but adding a memory barrier to all events will cause too much of a
1160          * performance hit in the fast path.  We only need a memory barrier when
1161          * the buffer goes from empty to having content.  But as this race is
1162          * extremely small, and it's not a problem if another event comes in, we
1163          * will fix it later.
1164          */
1165         smp_mb();
1166
1167         if (full)
1168                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1169
1170         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1171             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1172                 return EPOLLIN | EPOLLRDNORM;
1173         return 0;
1174 }
1175
1176 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1177 #define RB_WARN_ON(b, cond)                                             \
1178         ({                                                              \
1179                 int _____ret = unlikely(cond);                          \
1180                 if (_____ret) {                                         \
1181                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1182                                 struct ring_buffer_per_cpu *__b =       \
1183                                         (void *)b;                      \
1184                                 atomic_inc(&__b->buffer->record_disabled); \
1185                         } else                                          \
1186                                 atomic_inc(&b->record_disabled);        \
1187                         WARN_ON(1);                                     \
1188                 }                                                       \
1189                 _____ret;                                               \
1190         })
1191
1192 /* Up this if you want to test the TIME_EXTENTS and normalization */
1193 #define DEBUG_SHIFT 0
1194
1195 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1196 {
1197         u64 ts;
1198
1199         /* Skip retpolines :-( */
1200         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1201                 ts = trace_clock_local();
1202         else
1203                 ts = buffer->clock();
1204
1205         /* shift to debug/test normalization and TIME_EXTENTS */
1206         return ts << DEBUG_SHIFT;
1207 }
1208
1209 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1210 {
1211         u64 time;
1212
1213         preempt_disable_notrace();
1214         time = rb_time_stamp(buffer);
1215         preempt_enable_notrace();
1216
1217         return time;
1218 }
1219 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1220
1221 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1222                                       int cpu, u64 *ts)
1223 {
1224         /* Just stupid testing the normalize function and deltas */
1225         *ts >>= DEBUG_SHIFT;
1226 }
1227 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1228
1229 /*
1230  * Making the ring buffer lockless makes things tricky.
1231  * Although writes only happen on the CPU that they are on,
1232  * and they only need to worry about interrupts. Reads can
1233  * happen on any CPU.
1234  *
1235  * The reader page is always off the ring buffer, but when the
1236  * reader finishes with a page, it needs to swap its page with
1237  * a new one from the buffer. The reader needs to take from
1238  * the head (writes go to the tail). But if a writer is in overwrite
1239  * mode and wraps, it must push the head page forward.
1240  *
1241  * Here lies the problem.
1242  *
1243  * The reader must be careful to replace only the head page, and
1244  * not another one. As described at the top of the file in the
1245  * ASCII art, the reader sets its old page to point to the next
1246  * page after head. It then sets the page after head to point to
1247  * the old reader page. But if the writer moves the head page
1248  * during this operation, the reader could end up with the tail.
1249  *
1250  * We use cmpxchg to help prevent this race. We also do something
1251  * special with the page before head. We set the LSB to 1.
1252  *
1253  * When the writer must push the page forward, it will clear the
1254  * bit that points to the head page, move the head, and then set
1255  * the bit that points to the new head page.
1256  *
1257  * We also don't want an interrupt coming in and moving the head
1258  * page on another writer. Thus we use the second LSB to catch
1259  * that too. Thus:
1260  *
1261  * head->list->prev->next        bit 1          bit 0
1262  *                              -------        -------
1263  * Normal page                     0              0
1264  * Points to head page             0              1
1265  * New head page                   1              0
1266  *
1267  * Note we can not trust the prev pointer of the head page, because:
1268  *
1269  * +----+       +-----+        +-----+
1270  * |    |------>|  T  |---X--->|  N  |
1271  * |    |<------|     |        |     |
1272  * +----+       +-----+        +-----+
1273  *   ^                           ^ |
1274  *   |          +-----+          | |
1275  *   +----------|  R  |----------+ |
1276  *              |     |<-----------+
1277  *              +-----+
1278  *
1279  * Key:  ---X-->  HEAD flag set in pointer
1280  *         T      Tail page
1281  *         R      Reader page
1282  *         N      Next page
1283  *
1284  * (see __rb_reserve_next() to see where this happens)
1285  *
1286  *  What the above shows is that the reader just swapped out
1287  *  the reader page with a page in the buffer, but before it
1288  *  could make the new header point back to the new page added
1289  *  it was preempted by a writer. The writer moved forward onto
1290  *  the new page added by the reader and is about to move forward
1291  *  again.
1292  *
1293  *  You can see, it is legitimate for the previous pointer of
1294  *  the head (or any page) not to point back to itself. But only
1295  *  temporarily.
1296  */
1297
1298 #define RB_PAGE_NORMAL          0UL
1299 #define RB_PAGE_HEAD            1UL
1300 #define RB_PAGE_UPDATE          2UL
1301
1302
1303 #define RB_FLAG_MASK            3UL
1304
1305 /* PAGE_MOVED is not part of the mask */
1306 #define RB_PAGE_MOVED           4UL
1307
1308 /*
1309  * rb_list_head - remove any bit
1310  */
1311 static struct list_head *rb_list_head(struct list_head *list)
1312 {
1313         unsigned long val = (unsigned long)list;
1314
1315         return (struct list_head *)(val & ~RB_FLAG_MASK);
1316 }
1317
1318 /*
1319  * rb_is_head_page - test if the given page is the head page
1320  *
1321  * Because the reader may move the head_page pointer, we can
1322  * not trust what the head page is (it may be pointing to
1323  * the reader page). But if the next page is a header page,
1324  * its flags will be non zero.
1325  */
1326 static inline int
1327 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1328 {
1329         unsigned long val;
1330
1331         val = (unsigned long)list->next;
1332
1333         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1334                 return RB_PAGE_MOVED;
1335
1336         return val & RB_FLAG_MASK;
1337 }
1338
1339 /*
1340  * rb_is_reader_page
1341  *
1342  * The unique thing about the reader page, is that, if the
1343  * writer is ever on it, the previous pointer never points
1344  * back to the reader page.
1345  */
1346 static bool rb_is_reader_page(struct buffer_page *page)
1347 {
1348         struct list_head *list = page->list.prev;
1349
1350         return rb_list_head(list->next) != &page->list;
1351 }
1352
1353 /*
1354  * rb_set_list_to_head - set a list_head to be pointing to head.
1355  */
1356 static void rb_set_list_to_head(struct list_head *list)
1357 {
1358         unsigned long *ptr;
1359
1360         ptr = (unsigned long *)&list->next;
1361         *ptr |= RB_PAGE_HEAD;
1362         *ptr &= ~RB_PAGE_UPDATE;
1363 }
1364
1365 /*
1366  * rb_head_page_activate - sets up head page
1367  */
1368 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1369 {
1370         struct buffer_page *head;
1371
1372         head = cpu_buffer->head_page;
1373         if (!head)
1374                 return;
1375
1376         /*
1377          * Set the previous list pointer to have the HEAD flag.
1378          */
1379         rb_set_list_to_head(head->list.prev);
1380 }
1381
1382 static void rb_list_head_clear(struct list_head *list)
1383 {
1384         unsigned long *ptr = (unsigned long *)&list->next;
1385
1386         *ptr &= ~RB_FLAG_MASK;
1387 }
1388
1389 /*
1390  * rb_head_page_deactivate - clears head page ptr (for free list)
1391  */
1392 static void
1393 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1394 {
1395         struct list_head *hd;
1396
1397         /* Go through the whole list and clear any pointers found. */
1398         rb_list_head_clear(cpu_buffer->pages);
1399
1400         list_for_each(hd, cpu_buffer->pages)
1401                 rb_list_head_clear(hd);
1402 }
1403
1404 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1405                             struct buffer_page *head,
1406                             struct buffer_page *prev,
1407                             int old_flag, int new_flag)
1408 {
1409         struct list_head *list;
1410         unsigned long val = (unsigned long)&head->list;
1411         unsigned long ret;
1412
1413         list = &prev->list;
1414
1415         val &= ~RB_FLAG_MASK;
1416
1417         ret = cmpxchg((unsigned long *)&list->next,
1418                       val | old_flag, val | new_flag);
1419
1420         /* check if the reader took the page */
1421         if ((ret & ~RB_FLAG_MASK) != val)
1422                 return RB_PAGE_MOVED;
1423
1424         return ret & RB_FLAG_MASK;
1425 }
1426
1427 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1428                                    struct buffer_page *head,
1429                                    struct buffer_page *prev,
1430                                    int old_flag)
1431 {
1432         return rb_head_page_set(cpu_buffer, head, prev,
1433                                 old_flag, RB_PAGE_UPDATE);
1434 }
1435
1436 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1437                                  struct buffer_page *head,
1438                                  struct buffer_page *prev,
1439                                  int old_flag)
1440 {
1441         return rb_head_page_set(cpu_buffer, head, prev,
1442                                 old_flag, RB_PAGE_HEAD);
1443 }
1444
1445 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1446                                    struct buffer_page *head,
1447                                    struct buffer_page *prev,
1448                                    int old_flag)
1449 {
1450         return rb_head_page_set(cpu_buffer, head, prev,
1451                                 old_flag, RB_PAGE_NORMAL);
1452 }
1453
1454 static inline void rb_inc_page(struct buffer_page **bpage)
1455 {
1456         struct list_head *p = rb_list_head((*bpage)->list.next);
1457
1458         *bpage = list_entry(p, struct buffer_page, list);
1459 }
1460
1461 static struct buffer_page *
1462 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1463 {
1464         struct buffer_page *head;
1465         struct buffer_page *page;
1466         struct list_head *list;
1467         int i;
1468
1469         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1470                 return NULL;
1471
1472         /* sanity check */
1473         list = cpu_buffer->pages;
1474         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1475                 return NULL;
1476
1477         page = head = cpu_buffer->head_page;
1478         /*
1479          * It is possible that the writer moves the header behind
1480          * where we started, and we miss in one loop.
1481          * A second loop should grab the header, but we'll do
1482          * three loops just because I'm paranoid.
1483          */
1484         for (i = 0; i < 3; i++) {
1485                 do {
1486                         if (rb_is_head_page(page, page->list.prev)) {
1487                                 cpu_buffer->head_page = page;
1488                                 return page;
1489                         }
1490                         rb_inc_page(&page);
1491                 } while (page != head);
1492         }
1493
1494         RB_WARN_ON(cpu_buffer, 1);
1495
1496         return NULL;
1497 }
1498
1499 static bool rb_head_page_replace(struct buffer_page *old,
1500                                 struct buffer_page *new)
1501 {
1502         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1503         unsigned long val;
1504
1505         val = *ptr & ~RB_FLAG_MASK;
1506         val |= RB_PAGE_HEAD;
1507
1508         return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1509 }
1510
1511 /*
1512  * rb_tail_page_update - move the tail page forward
1513  */
1514 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1515                                struct buffer_page *tail_page,
1516                                struct buffer_page *next_page)
1517 {
1518         unsigned long old_entries;
1519         unsigned long old_write;
1520
1521         /*
1522          * The tail page now needs to be moved forward.
1523          *
1524          * We need to reset the tail page, but without messing
1525          * with possible erasing of data brought in by interrupts
1526          * that have moved the tail page and are currently on it.
1527          *
1528          * We add a counter to the write field to denote this.
1529          */
1530         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1531         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1532
1533         local_inc(&cpu_buffer->pages_touched);
1534         /*
1535          * Just make sure we have seen our old_write and synchronize
1536          * with any interrupts that come in.
1537          */
1538         barrier();
1539
1540         /*
1541          * If the tail page is still the same as what we think
1542          * it is, then it is up to us to update the tail
1543          * pointer.
1544          */
1545         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1546                 /* Zero the write counter */
1547                 unsigned long val = old_write & ~RB_WRITE_MASK;
1548                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1549
1550                 /*
1551                  * This will only succeed if an interrupt did
1552                  * not come in and change it. In which case, we
1553                  * do not want to modify it.
1554                  *
1555                  * We add (void) to let the compiler know that we do not care
1556                  * about the return value of these functions. We use the
1557                  * cmpxchg to only update if an interrupt did not already
1558                  * do it for us. If the cmpxchg fails, we don't care.
1559                  */
1560                 (void)local_cmpxchg(&next_page->write, old_write, val);
1561                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1562
1563                 /*
1564                  * No need to worry about races with clearing out the commit.
1565                  * it only can increment when a commit takes place. But that
1566                  * only happens in the outer most nested commit.
1567                  */
1568                 local_set(&next_page->page->commit, 0);
1569
1570                 /* Again, either we update tail_page or an interrupt does */
1571                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1572         }
1573 }
1574
1575 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1576                           struct buffer_page *bpage)
1577 {
1578         unsigned long val = (unsigned long)bpage;
1579
1580         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1581 }
1582
1583 /**
1584  * rb_check_pages - integrity check of buffer pages
1585  * @cpu_buffer: CPU buffer with pages to test
1586  *
1587  * As a safety measure we check to make sure the data pages have not
1588  * been corrupted.
1589  */
1590 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1591 {
1592         struct list_head *head = rb_list_head(cpu_buffer->pages);
1593         struct list_head *tmp;
1594
1595         if (RB_WARN_ON(cpu_buffer,
1596                         rb_list_head(rb_list_head(head->next)->prev) != head))
1597                 return;
1598
1599         if (RB_WARN_ON(cpu_buffer,
1600                         rb_list_head(rb_list_head(head->prev)->next) != head))
1601                 return;
1602
1603         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1604                 if (RB_WARN_ON(cpu_buffer,
1605                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1606                         return;
1607
1608                 if (RB_WARN_ON(cpu_buffer,
1609                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1610                         return;
1611         }
1612 }
1613
1614 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1615                 long nr_pages, struct list_head *pages)
1616 {
1617         struct buffer_page *bpage, *tmp;
1618         bool user_thread = current->mm != NULL;
1619         gfp_t mflags;
1620         long i;
1621
1622         /*
1623          * Check if the available memory is there first.
1624          * Note, si_mem_available() only gives us a rough estimate of available
1625          * memory. It may not be accurate. But we don't care, we just want
1626          * to prevent doing any allocation when it is obvious that it is
1627          * not going to succeed.
1628          */
1629         i = si_mem_available();
1630         if (i < nr_pages)
1631                 return -ENOMEM;
1632
1633         /*
1634          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1635          * gracefully without invoking oom-killer and the system is not
1636          * destabilized.
1637          */
1638         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1639
1640         /*
1641          * If a user thread allocates too much, and si_mem_available()
1642          * reports there's enough memory, even though there is not.
1643          * Make sure the OOM killer kills this thread. This can happen
1644          * even with RETRY_MAYFAIL because another task may be doing
1645          * an allocation after this task has taken all memory.
1646          * This is the task the OOM killer needs to take out during this
1647          * loop, even if it was triggered by an allocation somewhere else.
1648          */
1649         if (user_thread)
1650                 set_current_oom_origin();
1651         for (i = 0; i < nr_pages; i++) {
1652                 struct page *page;
1653
1654                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1655                                     mflags, cpu_to_node(cpu_buffer->cpu));
1656                 if (!bpage)
1657                         goto free_pages;
1658
1659                 rb_check_bpage(cpu_buffer, bpage);
1660
1661                 list_add(&bpage->list, pages);
1662
1663                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1664                 if (!page)
1665                         goto free_pages;
1666                 bpage->page = page_address(page);
1667                 rb_init_page(bpage->page);
1668
1669                 if (user_thread && fatal_signal_pending(current))
1670                         goto free_pages;
1671         }
1672         if (user_thread)
1673                 clear_current_oom_origin();
1674
1675         return 0;
1676
1677 free_pages:
1678         list_for_each_entry_safe(bpage, tmp, pages, list) {
1679                 list_del_init(&bpage->list);
1680                 free_buffer_page(bpage);
1681         }
1682         if (user_thread)
1683                 clear_current_oom_origin();
1684
1685         return -ENOMEM;
1686 }
1687
1688 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1689                              unsigned long nr_pages)
1690 {
1691         LIST_HEAD(pages);
1692
1693         WARN_ON(!nr_pages);
1694
1695         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1696                 return -ENOMEM;
1697
1698         /*
1699          * The ring buffer page list is a circular list that does not
1700          * start and end with a list head. All page list items point to
1701          * other pages.
1702          */
1703         cpu_buffer->pages = pages.next;
1704         list_del(&pages);
1705
1706         cpu_buffer->nr_pages = nr_pages;
1707
1708         rb_check_pages(cpu_buffer);
1709
1710         return 0;
1711 }
1712
1713 static struct ring_buffer_per_cpu *
1714 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1715 {
1716         struct ring_buffer_per_cpu *cpu_buffer;
1717         struct buffer_page *bpage;
1718         struct page *page;
1719         int ret;
1720
1721         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1722                                   GFP_KERNEL, cpu_to_node(cpu));
1723         if (!cpu_buffer)
1724                 return NULL;
1725
1726         cpu_buffer->cpu = cpu;
1727         cpu_buffer->buffer = buffer;
1728         raw_spin_lock_init(&cpu_buffer->reader_lock);
1729         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1730         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1731         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1732         init_completion(&cpu_buffer->update_done);
1733         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1734         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1735         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1736
1737         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1738                             GFP_KERNEL, cpu_to_node(cpu));
1739         if (!bpage)
1740                 goto fail_free_buffer;
1741
1742         rb_check_bpage(cpu_buffer, bpage);
1743
1744         cpu_buffer->reader_page = bpage;
1745         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1746         if (!page)
1747                 goto fail_free_reader;
1748         bpage->page = page_address(page);
1749         rb_init_page(bpage->page);
1750
1751         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1752         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1753
1754         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1755         if (ret < 0)
1756                 goto fail_free_reader;
1757
1758         cpu_buffer->head_page
1759                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1760         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1761
1762         rb_head_page_activate(cpu_buffer);
1763
1764         return cpu_buffer;
1765
1766  fail_free_reader:
1767         free_buffer_page(cpu_buffer->reader_page);
1768
1769  fail_free_buffer:
1770         kfree(cpu_buffer);
1771         return NULL;
1772 }
1773
1774 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1775 {
1776         struct list_head *head = cpu_buffer->pages;
1777         struct buffer_page *bpage, *tmp;
1778
1779         irq_work_sync(&cpu_buffer->irq_work.work);
1780
1781         free_buffer_page(cpu_buffer->reader_page);
1782
1783         if (head) {
1784                 rb_head_page_deactivate(cpu_buffer);
1785
1786                 list_for_each_entry_safe(bpage, tmp, head, list) {
1787                         list_del_init(&bpage->list);
1788                         free_buffer_page(bpage);
1789                 }
1790                 bpage = list_entry(head, struct buffer_page, list);
1791                 free_buffer_page(bpage);
1792         }
1793
1794         free_page((unsigned long)cpu_buffer->free_page);
1795
1796         kfree(cpu_buffer);
1797 }
1798
1799 /**
1800  * __ring_buffer_alloc - allocate a new ring_buffer
1801  * @size: the size in bytes per cpu that is needed.
1802  * @flags: attributes to set for the ring buffer.
1803  * @key: ring buffer reader_lock_key.
1804  *
1805  * Currently the only flag that is available is the RB_FL_OVERWRITE
1806  * flag. This flag means that the buffer will overwrite old data
1807  * when the buffer wraps. If this flag is not set, the buffer will
1808  * drop data when the tail hits the head.
1809  */
1810 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1811                                         struct lock_class_key *key)
1812 {
1813         struct trace_buffer *buffer;
1814         long nr_pages;
1815         int bsize;
1816         int cpu;
1817         int ret;
1818
1819         /* keep it in its own cache line */
1820         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1821                          GFP_KERNEL);
1822         if (!buffer)
1823                 return NULL;
1824
1825         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1826                 goto fail_free_buffer;
1827
1828         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1829         buffer->flags = flags;
1830         buffer->clock = trace_clock_local;
1831         buffer->reader_lock_key = key;
1832
1833         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1834         init_waitqueue_head(&buffer->irq_work.waiters);
1835
1836         /* need at least two pages */
1837         if (nr_pages < 2)
1838                 nr_pages = 2;
1839
1840         buffer->cpus = nr_cpu_ids;
1841
1842         bsize = sizeof(void *) * nr_cpu_ids;
1843         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1844                                   GFP_KERNEL);
1845         if (!buffer->buffers)
1846                 goto fail_free_cpumask;
1847
1848         cpu = raw_smp_processor_id();
1849         cpumask_set_cpu(cpu, buffer->cpumask);
1850         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1851         if (!buffer->buffers[cpu])
1852                 goto fail_free_buffers;
1853
1854         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1855         if (ret < 0)
1856                 goto fail_free_buffers;
1857
1858         mutex_init(&buffer->mutex);
1859
1860         return buffer;
1861
1862  fail_free_buffers:
1863         for_each_buffer_cpu(buffer, cpu) {
1864                 if (buffer->buffers[cpu])
1865                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1866         }
1867         kfree(buffer->buffers);
1868
1869  fail_free_cpumask:
1870         free_cpumask_var(buffer->cpumask);
1871
1872  fail_free_buffer:
1873         kfree(buffer);
1874         return NULL;
1875 }
1876 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1877
1878 /**
1879  * ring_buffer_free - free a ring buffer.
1880  * @buffer: the buffer to free.
1881  */
1882 void
1883 ring_buffer_free(struct trace_buffer *buffer)
1884 {
1885         int cpu;
1886
1887         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1888
1889         irq_work_sync(&buffer->irq_work.work);
1890
1891         for_each_buffer_cpu(buffer, cpu)
1892                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1893
1894         kfree(buffer->buffers);
1895         free_cpumask_var(buffer->cpumask);
1896
1897         kfree(buffer);
1898 }
1899 EXPORT_SYMBOL_GPL(ring_buffer_free);
1900
1901 void ring_buffer_set_clock(struct trace_buffer *buffer,
1902                            u64 (*clock)(void))
1903 {
1904         buffer->clock = clock;
1905 }
1906
1907 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1908 {
1909         buffer->time_stamp_abs = abs;
1910 }
1911
1912 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1913 {
1914         return buffer->time_stamp_abs;
1915 }
1916
1917 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1918
1919 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1920 {
1921         return local_read(&bpage->entries) & RB_WRITE_MASK;
1922 }
1923
1924 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1925 {
1926         return local_read(&bpage->write) & RB_WRITE_MASK;
1927 }
1928
1929 static bool
1930 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1931 {
1932         struct list_head *tail_page, *to_remove, *next_page;
1933         struct buffer_page *to_remove_page, *tmp_iter_page;
1934         struct buffer_page *last_page, *first_page;
1935         unsigned long nr_removed;
1936         unsigned long head_bit;
1937         int page_entries;
1938
1939         head_bit = 0;
1940
1941         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1942         atomic_inc(&cpu_buffer->record_disabled);
1943         /*
1944          * We don't race with the readers since we have acquired the reader
1945          * lock. We also don't race with writers after disabling recording.
1946          * This makes it easy to figure out the first and the last page to be
1947          * removed from the list. We unlink all the pages in between including
1948          * the first and last pages. This is done in a busy loop so that we
1949          * lose the least number of traces.
1950          * The pages are freed after we restart recording and unlock readers.
1951          */
1952         tail_page = &cpu_buffer->tail_page->list;
1953
1954         /*
1955          * tail page might be on reader page, we remove the next page
1956          * from the ring buffer
1957          */
1958         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1959                 tail_page = rb_list_head(tail_page->next);
1960         to_remove = tail_page;
1961
1962         /* start of pages to remove */
1963         first_page = list_entry(rb_list_head(to_remove->next),
1964                                 struct buffer_page, list);
1965
1966         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1967                 to_remove = rb_list_head(to_remove)->next;
1968                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1969         }
1970         /* Read iterators need to reset themselves when some pages removed */
1971         cpu_buffer->pages_removed += nr_removed;
1972
1973         next_page = rb_list_head(to_remove)->next;
1974
1975         /*
1976          * Now we remove all pages between tail_page and next_page.
1977          * Make sure that we have head_bit value preserved for the
1978          * next page
1979          */
1980         tail_page->next = (struct list_head *)((unsigned long)next_page |
1981                                                 head_bit);
1982         next_page = rb_list_head(next_page);
1983         next_page->prev = tail_page;
1984
1985         /* make sure pages points to a valid page in the ring buffer */
1986         cpu_buffer->pages = next_page;
1987
1988         /* update head page */
1989         if (head_bit)
1990                 cpu_buffer->head_page = list_entry(next_page,
1991                                                 struct buffer_page, list);
1992
1993         /* pages are removed, resume tracing and then free the pages */
1994         atomic_dec(&cpu_buffer->record_disabled);
1995         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1996
1997         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1998
1999         /* last buffer page to remove */
2000         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2001                                 list);
2002         tmp_iter_page = first_page;
2003
2004         do {
2005                 cond_resched();
2006
2007                 to_remove_page = tmp_iter_page;
2008                 rb_inc_page(&tmp_iter_page);
2009
2010                 /* update the counters */
2011                 page_entries = rb_page_entries(to_remove_page);
2012                 if (page_entries) {
2013                         /*
2014                          * If something was added to this page, it was full
2015                          * since it is not the tail page. So we deduct the
2016                          * bytes consumed in ring buffer from here.
2017                          * Increment overrun to account for the lost events.
2018                          */
2019                         local_add(page_entries, &cpu_buffer->overrun);
2020                         local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2021                         local_inc(&cpu_buffer->pages_lost);
2022                 }
2023
2024                 /*
2025                  * We have already removed references to this list item, just
2026                  * free up the buffer_page and its page
2027                  */
2028                 free_buffer_page(to_remove_page);
2029                 nr_removed--;
2030
2031         } while (to_remove_page != last_page);
2032
2033         RB_WARN_ON(cpu_buffer, nr_removed);
2034
2035         return nr_removed == 0;
2036 }
2037
2038 static bool
2039 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2040 {
2041         struct list_head *pages = &cpu_buffer->new_pages;
2042         unsigned long flags;
2043         bool success;
2044         int retries;
2045
2046         /* Can be called at early boot up, where interrupts must not been enabled */
2047         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2048         /*
2049          * We are holding the reader lock, so the reader page won't be swapped
2050          * in the ring buffer. Now we are racing with the writer trying to
2051          * move head page and the tail page.
2052          * We are going to adapt the reader page update process where:
2053          * 1. We first splice the start and end of list of new pages between
2054          *    the head page and its previous page.
2055          * 2. We cmpxchg the prev_page->next to point from head page to the
2056          *    start of new pages list.
2057          * 3. Finally, we update the head->prev to the end of new list.
2058          *
2059          * We will try this process 10 times, to make sure that we don't keep
2060          * spinning.
2061          */
2062         retries = 10;
2063         success = false;
2064         while (retries--) {
2065                 struct list_head *head_page, *prev_page, *r;
2066                 struct list_head *last_page, *first_page;
2067                 struct list_head *head_page_with_bit;
2068                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2069
2070                 if (!hpage)
2071                         break;
2072                 head_page = &hpage->list;
2073                 prev_page = head_page->prev;
2074
2075                 first_page = pages->next;
2076                 last_page  = pages->prev;
2077
2078                 head_page_with_bit = (struct list_head *)
2079                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2080
2081                 last_page->next = head_page_with_bit;
2082                 first_page->prev = prev_page;
2083
2084                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2085
2086                 if (r == head_page_with_bit) {
2087                         /*
2088                          * yay, we replaced the page pointer to our new list,
2089                          * now, we just have to update to head page's prev
2090                          * pointer to point to end of list
2091                          */
2092                         head_page->prev = last_page;
2093                         success = true;
2094                         break;
2095                 }
2096         }
2097
2098         if (success)
2099                 INIT_LIST_HEAD(pages);
2100         /*
2101          * If we weren't successful in adding in new pages, warn and stop
2102          * tracing
2103          */
2104         RB_WARN_ON(cpu_buffer, !success);
2105         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2106
2107         /* free pages if they weren't inserted */
2108         if (!success) {
2109                 struct buffer_page *bpage, *tmp;
2110                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2111                                          list) {
2112                         list_del_init(&bpage->list);
2113                         free_buffer_page(bpage);
2114                 }
2115         }
2116         return success;
2117 }
2118
2119 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2120 {
2121         bool success;
2122
2123         if (cpu_buffer->nr_pages_to_update > 0)
2124                 success = rb_insert_pages(cpu_buffer);
2125         else
2126                 success = rb_remove_pages(cpu_buffer,
2127                                         -cpu_buffer->nr_pages_to_update);
2128
2129         if (success)
2130                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2131 }
2132
2133 static void update_pages_handler(struct work_struct *work)
2134 {
2135         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2136                         struct ring_buffer_per_cpu, update_pages_work);
2137         rb_update_pages(cpu_buffer);
2138         complete(&cpu_buffer->update_done);
2139 }
2140
2141 /**
2142  * ring_buffer_resize - resize the ring buffer
2143  * @buffer: the buffer to resize.
2144  * @size: the new size.
2145  * @cpu_id: the cpu buffer to resize
2146  *
2147  * Minimum size is 2 * BUF_PAGE_SIZE.
2148  *
2149  * Returns 0 on success and < 0 on failure.
2150  */
2151 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2152                         int cpu_id)
2153 {
2154         struct ring_buffer_per_cpu *cpu_buffer;
2155         unsigned long nr_pages;
2156         int cpu, err;
2157
2158         /*
2159          * Always succeed at resizing a non-existent buffer:
2160          */
2161         if (!buffer)
2162                 return 0;
2163
2164         /* Make sure the requested buffer exists */
2165         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2166             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2167                 return 0;
2168
2169         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2170
2171         /* we need a minimum of two pages */
2172         if (nr_pages < 2)
2173                 nr_pages = 2;
2174
2175         /* prevent another thread from changing buffer sizes */
2176         mutex_lock(&buffer->mutex);
2177         atomic_inc(&buffer->resizing);
2178
2179         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2180                 /*
2181                  * Don't succeed if resizing is disabled, as a reader might be
2182                  * manipulating the ring buffer and is expecting a sane state while
2183                  * this is true.
2184                  */
2185                 for_each_buffer_cpu(buffer, cpu) {
2186                         cpu_buffer = buffer->buffers[cpu];
2187                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2188                                 err = -EBUSY;
2189                                 goto out_err_unlock;
2190                         }
2191                 }
2192
2193                 /* calculate the pages to update */
2194                 for_each_buffer_cpu(buffer, cpu) {
2195                         cpu_buffer = buffer->buffers[cpu];
2196
2197                         cpu_buffer->nr_pages_to_update = nr_pages -
2198                                                         cpu_buffer->nr_pages;
2199                         /*
2200                          * nothing more to do for removing pages or no update
2201                          */
2202                         if (cpu_buffer->nr_pages_to_update <= 0)
2203                                 continue;
2204                         /*
2205                          * to add pages, make sure all new pages can be
2206                          * allocated without receiving ENOMEM
2207                          */
2208                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2209                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2210                                                 &cpu_buffer->new_pages)) {
2211                                 /* not enough memory for new pages */
2212                                 err = -ENOMEM;
2213                                 goto out_err;
2214                         }
2215
2216                         cond_resched();
2217                 }
2218
2219                 cpus_read_lock();
2220                 /*
2221                  * Fire off all the required work handlers
2222                  * We can't schedule on offline CPUs, but it's not necessary
2223                  * since we can change their buffer sizes without any race.
2224                  */
2225                 for_each_buffer_cpu(buffer, cpu) {
2226                         cpu_buffer = buffer->buffers[cpu];
2227                         if (!cpu_buffer->nr_pages_to_update)
2228                                 continue;
2229
2230                         /* Can't run something on an offline CPU. */
2231                         if (!cpu_online(cpu)) {
2232                                 rb_update_pages(cpu_buffer);
2233                                 cpu_buffer->nr_pages_to_update = 0;
2234                         } else {
2235                                 /* Run directly if possible. */
2236                                 migrate_disable();
2237                                 if (cpu != smp_processor_id()) {
2238                                         migrate_enable();
2239                                         schedule_work_on(cpu,
2240                                                          &cpu_buffer->update_pages_work);
2241                                 } else {
2242                                         update_pages_handler(&cpu_buffer->update_pages_work);
2243                                         migrate_enable();
2244                                 }
2245                         }
2246                 }
2247
2248                 /* wait for all the updates to complete */
2249                 for_each_buffer_cpu(buffer, cpu) {
2250                         cpu_buffer = buffer->buffers[cpu];
2251                         if (!cpu_buffer->nr_pages_to_update)
2252                                 continue;
2253
2254                         if (cpu_online(cpu))
2255                                 wait_for_completion(&cpu_buffer->update_done);
2256                         cpu_buffer->nr_pages_to_update = 0;
2257                 }
2258
2259                 cpus_read_unlock();
2260         } else {
2261                 cpu_buffer = buffer->buffers[cpu_id];
2262
2263                 if (nr_pages == cpu_buffer->nr_pages)
2264                         goto out;
2265
2266                 /*
2267                  * Don't succeed if resizing is disabled, as a reader might be
2268                  * manipulating the ring buffer and is expecting a sane state while
2269                  * this is true.
2270                  */
2271                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2272                         err = -EBUSY;
2273                         goto out_err_unlock;
2274                 }
2275
2276                 cpu_buffer->nr_pages_to_update = nr_pages -
2277                                                 cpu_buffer->nr_pages;
2278
2279                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2280                 if (cpu_buffer->nr_pages_to_update > 0 &&
2281                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2282                                             &cpu_buffer->new_pages)) {
2283                         err = -ENOMEM;
2284                         goto out_err;
2285                 }
2286
2287                 cpus_read_lock();
2288
2289                 /* Can't run something on an offline CPU. */
2290                 if (!cpu_online(cpu_id))
2291                         rb_update_pages(cpu_buffer);
2292                 else {
2293                         /* Run directly if possible. */
2294                         migrate_disable();
2295                         if (cpu_id == smp_processor_id()) {
2296                                 rb_update_pages(cpu_buffer);
2297                                 migrate_enable();
2298                         } else {
2299                                 migrate_enable();
2300                                 schedule_work_on(cpu_id,
2301                                                  &cpu_buffer->update_pages_work);
2302                                 wait_for_completion(&cpu_buffer->update_done);
2303                         }
2304                 }
2305
2306                 cpu_buffer->nr_pages_to_update = 0;
2307                 cpus_read_unlock();
2308         }
2309
2310  out:
2311         /*
2312          * The ring buffer resize can happen with the ring buffer
2313          * enabled, so that the update disturbs the tracing as little
2314          * as possible. But if the buffer is disabled, we do not need
2315          * to worry about that, and we can take the time to verify
2316          * that the buffer is not corrupt.
2317          */
2318         if (atomic_read(&buffer->record_disabled)) {
2319                 atomic_inc(&buffer->record_disabled);
2320                 /*
2321                  * Even though the buffer was disabled, we must make sure
2322                  * that it is truly disabled before calling rb_check_pages.
2323                  * There could have been a race between checking
2324                  * record_disable and incrementing it.
2325                  */
2326                 synchronize_rcu();
2327                 for_each_buffer_cpu(buffer, cpu) {
2328                         cpu_buffer = buffer->buffers[cpu];
2329                         rb_check_pages(cpu_buffer);
2330                 }
2331                 atomic_dec(&buffer->record_disabled);
2332         }
2333
2334         atomic_dec(&buffer->resizing);
2335         mutex_unlock(&buffer->mutex);
2336         return 0;
2337
2338  out_err:
2339         for_each_buffer_cpu(buffer, cpu) {
2340                 struct buffer_page *bpage, *tmp;
2341
2342                 cpu_buffer = buffer->buffers[cpu];
2343                 cpu_buffer->nr_pages_to_update = 0;
2344
2345                 if (list_empty(&cpu_buffer->new_pages))
2346                         continue;
2347
2348                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2349                                         list) {
2350                         list_del_init(&bpage->list);
2351                         free_buffer_page(bpage);
2352                 }
2353         }
2354  out_err_unlock:
2355         atomic_dec(&buffer->resizing);
2356         mutex_unlock(&buffer->mutex);
2357         return err;
2358 }
2359 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2360
2361 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2362 {
2363         mutex_lock(&buffer->mutex);
2364         if (val)
2365                 buffer->flags |= RB_FL_OVERWRITE;
2366         else
2367                 buffer->flags &= ~RB_FL_OVERWRITE;
2368         mutex_unlock(&buffer->mutex);
2369 }
2370 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2371
2372 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2373 {
2374         return bpage->page->data + index;
2375 }
2376
2377 static __always_inline struct ring_buffer_event *
2378 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2379 {
2380         return __rb_page_index(cpu_buffer->reader_page,
2381                                cpu_buffer->reader_page->read);
2382 }
2383
2384 static struct ring_buffer_event *
2385 rb_iter_head_event(struct ring_buffer_iter *iter)
2386 {
2387         struct ring_buffer_event *event;
2388         struct buffer_page *iter_head_page = iter->head_page;
2389         unsigned long commit;
2390         unsigned length;
2391
2392         if (iter->head != iter->next_event)
2393                 return iter->event;
2394
2395         /*
2396          * When the writer goes across pages, it issues a cmpxchg which
2397          * is a mb(), which will synchronize with the rmb here.
2398          * (see rb_tail_page_update() and __rb_reserve_next())
2399          */
2400         commit = rb_page_commit(iter_head_page);
2401         smp_rmb();
2402
2403         /* An event needs to be at least 8 bytes in size */
2404         if (iter->head > commit - 8)
2405                 goto reset;
2406
2407         event = __rb_page_index(iter_head_page, iter->head);
2408         length = rb_event_length(event);
2409
2410         /*
2411          * READ_ONCE() doesn't work on functions and we don't want the
2412          * compiler doing any crazy optimizations with length.
2413          */
2414         barrier();
2415
2416         if ((iter->head + length) > commit || length > BUF_PAGE_SIZE)
2417                 /* Writer corrupted the read? */
2418                 goto reset;
2419
2420         memcpy(iter->event, event, length);
2421         /*
2422          * If the page stamp is still the same after this rmb() then the
2423          * event was safely copied without the writer entering the page.
2424          */
2425         smp_rmb();
2426
2427         /* Make sure the page didn't change since we read this */
2428         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2429             commit > rb_page_commit(iter_head_page))
2430                 goto reset;
2431
2432         iter->next_event = iter->head + length;
2433         return iter->event;
2434  reset:
2435         /* Reset to the beginning */
2436         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2437         iter->head = 0;
2438         iter->next_event = 0;
2439         iter->missed_events = 1;
2440         return NULL;
2441 }
2442
2443 /* Size is determined by what has been committed */
2444 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2445 {
2446         return rb_page_commit(bpage);
2447 }
2448
2449 static __always_inline unsigned
2450 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2451 {
2452         return rb_page_commit(cpu_buffer->commit_page);
2453 }
2454
2455 static __always_inline unsigned
2456 rb_event_index(struct ring_buffer_event *event)
2457 {
2458         unsigned long addr = (unsigned long)event;
2459
2460         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2461 }
2462
2463 static void rb_inc_iter(struct ring_buffer_iter *iter)
2464 {
2465         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2466
2467         /*
2468          * The iterator could be on the reader page (it starts there).
2469          * But the head could have moved, since the reader was
2470          * found. Check for this case and assign the iterator
2471          * to the head page instead of next.
2472          */
2473         if (iter->head_page == cpu_buffer->reader_page)
2474                 iter->head_page = rb_set_head_page(cpu_buffer);
2475         else
2476                 rb_inc_page(&iter->head_page);
2477
2478         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2479         iter->head = 0;
2480         iter->next_event = 0;
2481 }
2482
2483 /*
2484  * rb_handle_head_page - writer hit the head page
2485  *
2486  * Returns: +1 to retry page
2487  *           0 to continue
2488  *          -1 on error
2489  */
2490 static int
2491 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2492                     struct buffer_page *tail_page,
2493                     struct buffer_page *next_page)
2494 {
2495         struct buffer_page *new_head;
2496         int entries;
2497         int type;
2498         int ret;
2499
2500         entries = rb_page_entries(next_page);
2501
2502         /*
2503          * The hard part is here. We need to move the head
2504          * forward, and protect against both readers on
2505          * other CPUs and writers coming in via interrupts.
2506          */
2507         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2508                                        RB_PAGE_HEAD);
2509
2510         /*
2511          * type can be one of four:
2512          *  NORMAL - an interrupt already moved it for us
2513          *  HEAD   - we are the first to get here.
2514          *  UPDATE - we are the interrupt interrupting
2515          *           a current move.
2516          *  MOVED  - a reader on another CPU moved the next
2517          *           pointer to its reader page. Give up
2518          *           and try again.
2519          */
2520
2521         switch (type) {
2522         case RB_PAGE_HEAD:
2523                 /*
2524                  * We changed the head to UPDATE, thus
2525                  * it is our responsibility to update
2526                  * the counters.
2527                  */
2528                 local_add(entries, &cpu_buffer->overrun);
2529                 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2530                 local_inc(&cpu_buffer->pages_lost);
2531
2532                 /*
2533                  * The entries will be zeroed out when we move the
2534                  * tail page.
2535                  */
2536
2537                 /* still more to do */
2538                 break;
2539
2540         case RB_PAGE_UPDATE:
2541                 /*
2542                  * This is an interrupt that interrupt the
2543                  * previous update. Still more to do.
2544                  */
2545                 break;
2546         case RB_PAGE_NORMAL:
2547                 /*
2548                  * An interrupt came in before the update
2549                  * and processed this for us.
2550                  * Nothing left to do.
2551                  */
2552                 return 1;
2553         case RB_PAGE_MOVED:
2554                 /*
2555                  * The reader is on another CPU and just did
2556                  * a swap with our next_page.
2557                  * Try again.
2558                  */
2559                 return 1;
2560         default:
2561                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2562                 return -1;
2563         }
2564
2565         /*
2566          * Now that we are here, the old head pointer is
2567          * set to UPDATE. This will keep the reader from
2568          * swapping the head page with the reader page.
2569          * The reader (on another CPU) will spin till
2570          * we are finished.
2571          *
2572          * We just need to protect against interrupts
2573          * doing the job. We will set the next pointer
2574          * to HEAD. After that, we set the old pointer
2575          * to NORMAL, but only if it was HEAD before.
2576          * otherwise we are an interrupt, and only
2577          * want the outer most commit to reset it.
2578          */
2579         new_head = next_page;
2580         rb_inc_page(&new_head);
2581
2582         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2583                                     RB_PAGE_NORMAL);
2584
2585         /*
2586          * Valid returns are:
2587          *  HEAD   - an interrupt came in and already set it.
2588          *  NORMAL - One of two things:
2589          *            1) We really set it.
2590          *            2) A bunch of interrupts came in and moved
2591          *               the page forward again.
2592          */
2593         switch (ret) {
2594         case RB_PAGE_HEAD:
2595         case RB_PAGE_NORMAL:
2596                 /* OK */
2597                 break;
2598         default:
2599                 RB_WARN_ON(cpu_buffer, 1);
2600                 return -1;
2601         }
2602
2603         /*
2604          * It is possible that an interrupt came in,
2605          * set the head up, then more interrupts came in
2606          * and moved it again. When we get back here,
2607          * the page would have been set to NORMAL but we
2608          * just set it back to HEAD.
2609          *
2610          * How do you detect this? Well, if that happened
2611          * the tail page would have moved.
2612          */
2613         if (ret == RB_PAGE_NORMAL) {
2614                 struct buffer_page *buffer_tail_page;
2615
2616                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2617                 /*
2618                  * If the tail had moved passed next, then we need
2619                  * to reset the pointer.
2620                  */
2621                 if (buffer_tail_page != tail_page &&
2622                     buffer_tail_page != next_page)
2623                         rb_head_page_set_normal(cpu_buffer, new_head,
2624                                                 next_page,
2625                                                 RB_PAGE_HEAD);
2626         }
2627
2628         /*
2629          * If this was the outer most commit (the one that
2630          * changed the original pointer from HEAD to UPDATE),
2631          * then it is up to us to reset it to NORMAL.
2632          */
2633         if (type == RB_PAGE_HEAD) {
2634                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2635                                               tail_page,
2636                                               RB_PAGE_UPDATE);
2637                 if (RB_WARN_ON(cpu_buffer,
2638                                ret != RB_PAGE_UPDATE))
2639                         return -1;
2640         }
2641
2642         return 0;
2643 }
2644
2645 static inline void
2646 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2647               unsigned long tail, struct rb_event_info *info)
2648 {
2649         struct buffer_page *tail_page = info->tail_page;
2650         struct ring_buffer_event *event;
2651         unsigned long length = info->length;
2652
2653         /*
2654          * Only the event that crossed the page boundary
2655          * must fill the old tail_page with padding.
2656          */
2657         if (tail >= BUF_PAGE_SIZE) {
2658                 /*
2659                  * If the page was filled, then we still need
2660                  * to update the real_end. Reset it to zero
2661                  * and the reader will ignore it.
2662                  */
2663                 if (tail == BUF_PAGE_SIZE)
2664                         tail_page->real_end = 0;
2665
2666                 local_sub(length, &tail_page->write);
2667                 return;
2668         }
2669
2670         event = __rb_page_index(tail_page, tail);
2671
2672         /*
2673          * Save the original length to the meta data.
2674          * This will be used by the reader to add lost event
2675          * counter.
2676          */
2677         tail_page->real_end = tail;
2678
2679         /*
2680          * If this event is bigger than the minimum size, then
2681          * we need to be careful that we don't subtract the
2682          * write counter enough to allow another writer to slip
2683          * in on this page.
2684          * We put in a discarded commit instead, to make sure
2685          * that this space is not used again, and this space will
2686          * not be accounted into 'entries_bytes'.
2687          *
2688          * If we are less than the minimum size, we don't need to
2689          * worry about it.
2690          */
2691         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2692                 /* No room for any events */
2693
2694                 /* Mark the rest of the page with padding */
2695                 rb_event_set_padding(event);
2696
2697                 /* Make sure the padding is visible before the write update */
2698                 smp_wmb();
2699
2700                 /* Set the write back to the previous setting */
2701                 local_sub(length, &tail_page->write);
2702                 return;
2703         }
2704
2705         /* Put in a discarded event */
2706         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2707         event->type_len = RINGBUF_TYPE_PADDING;
2708         /* time delta must be non zero */
2709         event->time_delta = 1;
2710
2711         /* account for padding bytes */
2712         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2713
2714         /* Make sure the padding is visible before the tail_page->write update */
2715         smp_wmb();
2716
2717         /* Set write to end of buffer */
2718         length = (tail + length) - BUF_PAGE_SIZE;
2719         local_sub(length, &tail_page->write);
2720 }
2721
2722 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2723
2724 /*
2725  * This is the slow path, force gcc not to inline it.
2726  */
2727 static noinline struct ring_buffer_event *
2728 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2729              unsigned long tail, struct rb_event_info *info)
2730 {
2731         struct buffer_page *tail_page = info->tail_page;
2732         struct buffer_page *commit_page = cpu_buffer->commit_page;
2733         struct trace_buffer *buffer = cpu_buffer->buffer;
2734         struct buffer_page *next_page;
2735         int ret;
2736
2737         next_page = tail_page;
2738
2739         rb_inc_page(&next_page);
2740
2741         /*
2742          * If for some reason, we had an interrupt storm that made
2743          * it all the way around the buffer, bail, and warn
2744          * about it.
2745          */
2746         if (unlikely(next_page == commit_page)) {
2747                 local_inc(&cpu_buffer->commit_overrun);
2748                 goto out_reset;
2749         }
2750
2751         /*
2752          * This is where the fun begins!
2753          *
2754          * We are fighting against races between a reader that
2755          * could be on another CPU trying to swap its reader
2756          * page with the buffer head.
2757          *
2758          * We are also fighting against interrupts coming in and
2759          * moving the head or tail on us as well.
2760          *
2761          * If the next page is the head page then we have filled
2762          * the buffer, unless the commit page is still on the
2763          * reader page.
2764          */
2765         if (rb_is_head_page(next_page, &tail_page->list)) {
2766
2767                 /*
2768                  * If the commit is not on the reader page, then
2769                  * move the header page.
2770                  */
2771                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2772                         /*
2773                          * If we are not in overwrite mode,
2774                          * this is easy, just stop here.
2775                          */
2776                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2777                                 local_inc(&cpu_buffer->dropped_events);
2778                                 goto out_reset;
2779                         }
2780
2781                         ret = rb_handle_head_page(cpu_buffer,
2782                                                   tail_page,
2783                                                   next_page);
2784                         if (ret < 0)
2785                                 goto out_reset;
2786                         if (ret)
2787                                 goto out_again;
2788                 } else {
2789                         /*
2790                          * We need to be careful here too. The
2791                          * commit page could still be on the reader
2792                          * page. We could have a small buffer, and
2793                          * have filled up the buffer with events
2794                          * from interrupts and such, and wrapped.
2795                          *
2796                          * Note, if the tail page is also on the
2797                          * reader_page, we let it move out.
2798                          */
2799                         if (unlikely((cpu_buffer->commit_page !=
2800                                       cpu_buffer->tail_page) &&
2801                                      (cpu_buffer->commit_page ==
2802                                       cpu_buffer->reader_page))) {
2803                                 local_inc(&cpu_buffer->commit_overrun);
2804                                 goto out_reset;
2805                         }
2806                 }
2807         }
2808
2809         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2810
2811  out_again:
2812
2813         rb_reset_tail(cpu_buffer, tail, info);
2814
2815         /* Commit what we have for now. */
2816         rb_end_commit(cpu_buffer);
2817         /* rb_end_commit() decs committing */
2818         local_inc(&cpu_buffer->committing);
2819
2820         /* fail and let the caller try again */
2821         return ERR_PTR(-EAGAIN);
2822
2823  out_reset:
2824         /* reset write */
2825         rb_reset_tail(cpu_buffer, tail, info);
2826
2827         return NULL;
2828 }
2829
2830 /* Slow path */
2831 static struct ring_buffer_event *
2832 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2833 {
2834         if (abs)
2835                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2836         else
2837                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2838
2839         /* Not the first event on the page, or not delta? */
2840         if (abs || rb_event_index(event)) {
2841                 event->time_delta = delta & TS_MASK;
2842                 event->array[0] = delta >> TS_SHIFT;
2843         } else {
2844                 /* nope, just zero it */
2845                 event->time_delta = 0;
2846                 event->array[0] = 0;
2847         }
2848
2849         return skip_time_extend(event);
2850 }
2851
2852 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2853 static inline bool sched_clock_stable(void)
2854 {
2855         return true;
2856 }
2857 #endif
2858
2859 static void
2860 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2861                    struct rb_event_info *info)
2862 {
2863         u64 write_stamp;
2864
2865         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2866                   (unsigned long long)info->delta,
2867                   (unsigned long long)info->ts,
2868                   (unsigned long long)info->before,
2869                   (unsigned long long)info->after,
2870                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2871                   sched_clock_stable() ? "" :
2872                   "If you just came from a suspend/resume,\n"
2873                   "please switch to the trace global clock:\n"
2874                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2875                   "or add trace_clock=global to the kernel command line\n");
2876 }
2877
2878 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2879                                       struct ring_buffer_event **event,
2880                                       struct rb_event_info *info,
2881                                       u64 *delta,
2882                                       unsigned int *length)
2883 {
2884         bool abs = info->add_timestamp &
2885                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2886
2887         if (unlikely(info->delta > (1ULL << 59))) {
2888                 /*
2889                  * Some timers can use more than 59 bits, and when a timestamp
2890                  * is added to the buffer, it will lose those bits.
2891                  */
2892                 if (abs && (info->ts & TS_MSB)) {
2893                         info->delta &= ABS_TS_MASK;
2894
2895                 /* did the clock go backwards */
2896                 } else if (info->before == info->after && info->before > info->ts) {
2897                         /* not interrupted */
2898                         static int once;
2899
2900                         /*
2901                          * This is possible with a recalibrating of the TSC.
2902                          * Do not produce a call stack, but just report it.
2903                          */
2904                         if (!once) {
2905                                 once++;
2906                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2907                                         info->before, info->ts);
2908                         }
2909                 } else
2910                         rb_check_timestamp(cpu_buffer, info);
2911                 if (!abs)
2912                         info->delta = 0;
2913         }
2914         *event = rb_add_time_stamp(*event, info->delta, abs);
2915         *length -= RB_LEN_TIME_EXTEND;
2916         *delta = 0;
2917 }
2918
2919 /**
2920  * rb_update_event - update event type and data
2921  * @cpu_buffer: The per cpu buffer of the @event
2922  * @event: the event to update
2923  * @info: The info to update the @event with (contains length and delta)
2924  *
2925  * Update the type and data fields of the @event. The length
2926  * is the actual size that is written to the ring buffer,
2927  * and with this, we can determine what to place into the
2928  * data field.
2929  */
2930 static void
2931 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2932                 struct ring_buffer_event *event,
2933                 struct rb_event_info *info)
2934 {
2935         unsigned length = info->length;
2936         u64 delta = info->delta;
2937         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2938
2939         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2940                 cpu_buffer->event_stamp[nest] = info->ts;
2941
2942         /*
2943          * If we need to add a timestamp, then we
2944          * add it to the start of the reserved space.
2945          */
2946         if (unlikely(info->add_timestamp))
2947                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2948
2949         event->time_delta = delta;
2950         length -= RB_EVNT_HDR_SIZE;
2951         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2952                 event->type_len = 0;
2953                 event->array[0] = length;
2954         } else
2955                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2956 }
2957
2958 static unsigned rb_calculate_event_length(unsigned length)
2959 {
2960         struct ring_buffer_event event; /* Used only for sizeof array */
2961
2962         /* zero length can cause confusions */
2963         if (!length)
2964                 length++;
2965
2966         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2967                 length += sizeof(event.array[0]);
2968
2969         length += RB_EVNT_HDR_SIZE;
2970         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2971
2972         /*
2973          * In case the time delta is larger than the 27 bits for it
2974          * in the header, we need to add a timestamp. If another
2975          * event comes in when trying to discard this one to increase
2976          * the length, then the timestamp will be added in the allocated
2977          * space of this event. If length is bigger than the size needed
2978          * for the TIME_EXTEND, then padding has to be used. The events
2979          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2980          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2981          * As length is a multiple of 4, we only need to worry if it
2982          * is 12 (RB_LEN_TIME_EXTEND + 4).
2983          */
2984         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2985                 length += RB_ALIGNMENT;
2986
2987         return length;
2988 }
2989
2990 static u64 rb_time_delta(struct ring_buffer_event *event)
2991 {
2992         switch (event->type_len) {
2993         case RINGBUF_TYPE_PADDING:
2994                 return 0;
2995
2996         case RINGBUF_TYPE_TIME_EXTEND:
2997                 return rb_event_time_stamp(event);
2998
2999         case RINGBUF_TYPE_TIME_STAMP:
3000                 return 0;
3001
3002         case RINGBUF_TYPE_DATA:
3003                 return event->time_delta;
3004         default:
3005                 return 0;
3006         }
3007 }
3008
3009 static inline bool
3010 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3011                   struct ring_buffer_event *event)
3012 {
3013         unsigned long new_index, old_index;
3014         struct buffer_page *bpage;
3015         unsigned long addr;
3016         u64 write_stamp;
3017         u64 delta;
3018
3019         new_index = rb_event_index(event);
3020         old_index = new_index + rb_event_ts_length(event);
3021         addr = (unsigned long)event;
3022         addr &= PAGE_MASK;
3023
3024         bpage = READ_ONCE(cpu_buffer->tail_page);
3025
3026         delta = rb_time_delta(event);
3027
3028         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3029                 return false;
3030
3031         /* Make sure the write stamp is read before testing the location */
3032         barrier();
3033
3034         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3035                 unsigned long write_mask =
3036                         local_read(&bpage->write) & ~RB_WRITE_MASK;
3037                 unsigned long event_length = rb_event_length(event);
3038
3039                 /*
3040                  * For the before_stamp to be different than the write_stamp
3041                  * to make sure that the next event adds an absolute
3042                  * value and does not rely on the saved write stamp, which
3043                  * is now going to be bogus.
3044                  */
3045                 rb_time_set(&cpu_buffer->before_stamp, 0);
3046
3047                 /* Something came in, can't discard */
3048                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3049                                        write_stamp, write_stamp - delta))
3050                         return false;
3051
3052                 /*
3053                  * If an event were to come in now, it would see that the
3054                  * write_stamp and the before_stamp are different, and assume
3055                  * that this event just added itself before updating
3056                  * the write stamp. The interrupting event will fix the
3057                  * write stamp for us, and use the before stamp as its delta.
3058                  */
3059
3060                 /*
3061                  * This is on the tail page. It is possible that
3062                  * a write could come in and move the tail page
3063                  * and write to the next page. That is fine
3064                  * because we just shorten what is on this page.
3065                  */
3066                 old_index += write_mask;
3067                 new_index += write_mask;
3068
3069                 /* caution: old_index gets updated on cmpxchg failure */
3070                 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3071                         /* update counters */
3072                         local_sub(event_length, &cpu_buffer->entries_bytes);
3073                         return true;
3074                 }
3075         }
3076
3077         /* could not discard */
3078         return false;
3079 }
3080
3081 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3082 {
3083         local_inc(&cpu_buffer->committing);
3084         local_inc(&cpu_buffer->commits);
3085 }
3086
3087 static __always_inline void
3088 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3089 {
3090         unsigned long max_count;
3091
3092         /*
3093          * We only race with interrupts and NMIs on this CPU.
3094          * If we own the commit event, then we can commit
3095          * all others that interrupted us, since the interruptions
3096          * are in stack format (they finish before they come
3097          * back to us). This allows us to do a simple loop to
3098          * assign the commit to the tail.
3099          */
3100  again:
3101         max_count = cpu_buffer->nr_pages * 100;
3102
3103         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3104                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3105                         return;
3106                 if (RB_WARN_ON(cpu_buffer,
3107                                rb_is_reader_page(cpu_buffer->tail_page)))
3108                         return;
3109                 /*
3110                  * No need for a memory barrier here, as the update
3111                  * of the tail_page did it for this page.
3112                  */
3113                 local_set(&cpu_buffer->commit_page->page->commit,
3114                           rb_page_write(cpu_buffer->commit_page));
3115                 rb_inc_page(&cpu_buffer->commit_page);
3116                 /* add barrier to keep gcc from optimizing too much */
3117                 barrier();
3118         }
3119         while (rb_commit_index(cpu_buffer) !=
3120                rb_page_write(cpu_buffer->commit_page)) {
3121
3122                 /* Make sure the readers see the content of what is committed. */
3123                 smp_wmb();
3124                 local_set(&cpu_buffer->commit_page->page->commit,
3125                           rb_page_write(cpu_buffer->commit_page));
3126                 RB_WARN_ON(cpu_buffer,
3127                            local_read(&cpu_buffer->commit_page->page->commit) &
3128                            ~RB_WRITE_MASK);
3129                 barrier();
3130         }
3131
3132         /* again, keep gcc from optimizing */
3133         barrier();
3134
3135         /*
3136          * If an interrupt came in just after the first while loop
3137          * and pushed the tail page forward, we will be left with
3138          * a dangling commit that will never go forward.
3139          */
3140         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3141                 goto again;
3142 }
3143
3144 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3145 {
3146         unsigned long commits;
3147
3148         if (RB_WARN_ON(cpu_buffer,
3149                        !local_read(&cpu_buffer->committing)))
3150                 return;
3151
3152  again:
3153         commits = local_read(&cpu_buffer->commits);
3154         /* synchronize with interrupts */
3155         barrier();
3156         if (local_read(&cpu_buffer->committing) == 1)
3157                 rb_set_commit_to_write(cpu_buffer);
3158
3159         local_dec(&cpu_buffer->committing);
3160
3161         /* synchronize with interrupts */
3162         barrier();
3163
3164         /*
3165          * Need to account for interrupts coming in between the
3166          * updating of the commit page and the clearing of the
3167          * committing counter.
3168          */
3169         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3170             !local_read(&cpu_buffer->committing)) {
3171                 local_inc(&cpu_buffer->committing);
3172                 goto again;
3173         }
3174 }
3175
3176 static inline void rb_event_discard(struct ring_buffer_event *event)
3177 {
3178         if (extended_time(event))
3179                 event = skip_time_extend(event);
3180
3181         /* array[0] holds the actual length for the discarded event */
3182         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3183         event->type_len = RINGBUF_TYPE_PADDING;
3184         /* time delta must be non zero */
3185         if (!event->time_delta)
3186                 event->time_delta = 1;
3187 }
3188
3189 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3190 {
3191         local_inc(&cpu_buffer->entries);
3192         rb_end_commit(cpu_buffer);
3193 }
3194
3195 static __always_inline void
3196 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3197 {
3198         if (buffer->irq_work.waiters_pending) {
3199                 buffer->irq_work.waiters_pending = false;
3200                 /* irq_work_queue() supplies it's own memory barriers */
3201                 irq_work_queue(&buffer->irq_work.work);
3202         }
3203
3204         if (cpu_buffer->irq_work.waiters_pending) {
3205                 cpu_buffer->irq_work.waiters_pending = false;
3206                 /* irq_work_queue() supplies it's own memory barriers */
3207                 irq_work_queue(&cpu_buffer->irq_work.work);
3208         }
3209
3210         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3211                 return;
3212
3213         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3214                 return;
3215
3216         if (!cpu_buffer->irq_work.full_waiters_pending)
3217                 return;
3218
3219         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3220
3221         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3222                 return;
3223
3224         cpu_buffer->irq_work.wakeup_full = true;
3225         cpu_buffer->irq_work.full_waiters_pending = false;
3226         /* irq_work_queue() supplies it's own memory barriers */
3227         irq_work_queue(&cpu_buffer->irq_work.work);
3228 }
3229
3230 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3231 # define do_ring_buffer_record_recursion()      \
3232         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3233 #else
3234 # define do_ring_buffer_record_recursion() do { } while (0)
3235 #endif
3236
3237 /*
3238  * The lock and unlock are done within a preempt disable section.
3239  * The current_context per_cpu variable can only be modified
3240  * by the current task between lock and unlock. But it can
3241  * be modified more than once via an interrupt. To pass this
3242  * information from the lock to the unlock without having to
3243  * access the 'in_interrupt()' functions again (which do show
3244  * a bit of overhead in something as critical as function tracing,
3245  * we use a bitmask trick.
3246  *
3247  *  bit 1 =  NMI context
3248  *  bit 2 =  IRQ context
3249  *  bit 3 =  SoftIRQ context
3250  *  bit 4 =  normal context.
3251  *
3252  * This works because this is the order of contexts that can
3253  * preempt other contexts. A SoftIRQ never preempts an IRQ
3254  * context.
3255  *
3256  * When the context is determined, the corresponding bit is
3257  * checked and set (if it was set, then a recursion of that context
3258  * happened).
3259  *
3260  * On unlock, we need to clear this bit. To do so, just subtract
3261  * 1 from the current_context and AND it to itself.
3262  *
3263  * (binary)
3264  *  101 - 1 = 100
3265  *  101 & 100 = 100 (clearing bit zero)
3266  *
3267  *  1010 - 1 = 1001
3268  *  1010 & 1001 = 1000 (clearing bit 1)
3269  *
3270  * The least significant bit can be cleared this way, and it
3271  * just so happens that it is the same bit corresponding to
3272  * the current context.
3273  *
3274  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3275  * is set when a recursion is detected at the current context, and if
3276  * the TRANSITION bit is already set, it will fail the recursion.
3277  * This is needed because there's a lag between the changing of
3278  * interrupt context and updating the preempt count. In this case,
3279  * a false positive will be found. To handle this, one extra recursion
3280  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3281  * bit is already set, then it is considered a recursion and the function
3282  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3283  *
3284  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3285  * to be cleared. Even if it wasn't the context that set it. That is,
3286  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3287  * is called before preempt_count() is updated, since the check will
3288  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3289  * NMI then comes in, it will set the NMI bit, but when the NMI code
3290  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3291  * and leave the NMI bit set. But this is fine, because the interrupt
3292  * code that set the TRANSITION bit will then clear the NMI bit when it
3293  * calls trace_recursive_unlock(). If another NMI comes in, it will
3294  * set the TRANSITION bit and continue.
3295  *
3296  * Note: The TRANSITION bit only handles a single transition between context.
3297  */
3298
3299 static __always_inline bool
3300 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3301 {
3302         unsigned int val = cpu_buffer->current_context;
3303         int bit = interrupt_context_level();
3304
3305         bit = RB_CTX_NORMAL - bit;
3306
3307         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3308                 /*
3309                  * It is possible that this was called by transitioning
3310                  * between interrupt context, and preempt_count() has not
3311                  * been updated yet. In this case, use the TRANSITION bit.
3312                  */
3313                 bit = RB_CTX_TRANSITION;
3314                 if (val & (1 << (bit + cpu_buffer->nest))) {
3315                         do_ring_buffer_record_recursion();
3316                         return true;
3317                 }
3318         }
3319
3320         val |= (1 << (bit + cpu_buffer->nest));
3321         cpu_buffer->current_context = val;
3322
3323         return false;
3324 }
3325
3326 static __always_inline void
3327 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3328 {
3329         cpu_buffer->current_context &=
3330                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3331 }
3332
3333 /* The recursive locking above uses 5 bits */
3334 #define NESTED_BITS 5
3335
3336 /**
3337  * ring_buffer_nest_start - Allow to trace while nested
3338  * @buffer: The ring buffer to modify
3339  *
3340  * The ring buffer has a safety mechanism to prevent recursion.
3341  * But there may be a case where a trace needs to be done while
3342  * tracing something else. In this case, calling this function
3343  * will allow this function to nest within a currently active
3344  * ring_buffer_lock_reserve().
3345  *
3346  * Call this function before calling another ring_buffer_lock_reserve() and
3347  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3348  */
3349 void ring_buffer_nest_start(struct trace_buffer *buffer)
3350 {
3351         struct ring_buffer_per_cpu *cpu_buffer;
3352         int cpu;
3353
3354         /* Enabled by ring_buffer_nest_end() */
3355         preempt_disable_notrace();
3356         cpu = raw_smp_processor_id();
3357         cpu_buffer = buffer->buffers[cpu];
3358         /* This is the shift value for the above recursive locking */
3359         cpu_buffer->nest += NESTED_BITS;
3360 }
3361
3362 /**
3363  * ring_buffer_nest_end - Allow to trace while nested
3364  * @buffer: The ring buffer to modify
3365  *
3366  * Must be called after ring_buffer_nest_start() and after the
3367  * ring_buffer_unlock_commit().
3368  */
3369 void ring_buffer_nest_end(struct trace_buffer *buffer)
3370 {
3371         struct ring_buffer_per_cpu *cpu_buffer;
3372         int cpu;
3373
3374         /* disabled by ring_buffer_nest_start() */
3375         cpu = raw_smp_processor_id();
3376         cpu_buffer = buffer->buffers[cpu];
3377         /* This is the shift value for the above recursive locking */
3378         cpu_buffer->nest -= NESTED_BITS;
3379         preempt_enable_notrace();
3380 }
3381
3382 /**
3383  * ring_buffer_unlock_commit - commit a reserved
3384  * @buffer: The buffer to commit to
3385  *
3386  * This commits the data to the ring buffer, and releases any locks held.
3387  *
3388  * Must be paired with ring_buffer_lock_reserve.
3389  */
3390 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3391 {
3392         struct ring_buffer_per_cpu *cpu_buffer;
3393         int cpu = raw_smp_processor_id();
3394
3395         cpu_buffer = buffer->buffers[cpu];
3396
3397         rb_commit(cpu_buffer);
3398
3399         rb_wakeups(buffer, cpu_buffer);
3400
3401         trace_recursive_unlock(cpu_buffer);
3402
3403         preempt_enable_notrace();
3404
3405         return 0;
3406 }
3407 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3408
3409 /* Special value to validate all deltas on a page. */
3410 #define CHECK_FULL_PAGE         1L
3411
3412 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3413 static void dump_buffer_page(struct buffer_data_page *bpage,
3414                              struct rb_event_info *info,
3415                              unsigned long tail)
3416 {
3417         struct ring_buffer_event *event;
3418         u64 ts, delta;
3419         int e;
3420
3421         ts = bpage->time_stamp;
3422         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3423
3424         for (e = 0; e < tail; e += rb_event_length(event)) {
3425
3426                 event = (struct ring_buffer_event *)(bpage->data + e);
3427
3428                 switch (event->type_len) {
3429
3430                 case RINGBUF_TYPE_TIME_EXTEND:
3431                         delta = rb_event_time_stamp(event);
3432                         ts += delta;
3433                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3434                         break;
3435
3436                 case RINGBUF_TYPE_TIME_STAMP:
3437                         delta = rb_event_time_stamp(event);
3438                         ts = rb_fix_abs_ts(delta, ts);
3439                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3440                         break;
3441
3442                 case RINGBUF_TYPE_PADDING:
3443                         ts += event->time_delta;
3444                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3445                         break;
3446
3447                 case RINGBUF_TYPE_DATA:
3448                         ts += event->time_delta;
3449                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3450                         break;
3451
3452                 default:
3453                         break;
3454                 }
3455         }
3456 }
3457
3458 static DEFINE_PER_CPU(atomic_t, checking);
3459 static atomic_t ts_dump;
3460
3461 /*
3462  * Check if the current event time stamp matches the deltas on
3463  * the buffer page.
3464  */
3465 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3466                          struct rb_event_info *info,
3467                          unsigned long tail)
3468 {
3469         struct ring_buffer_event *event;
3470         struct buffer_data_page *bpage;
3471         u64 ts, delta;
3472         bool full = false;
3473         int e;
3474
3475         bpage = info->tail_page->page;
3476
3477         if (tail == CHECK_FULL_PAGE) {
3478                 full = true;
3479                 tail = local_read(&bpage->commit);
3480         } else if (info->add_timestamp &
3481                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3482                 /* Ignore events with absolute time stamps */
3483                 return;
3484         }
3485
3486         /*
3487          * Do not check the first event (skip possible extends too).
3488          * Also do not check if previous events have not been committed.
3489          */
3490         if (tail <= 8 || tail > local_read(&bpage->commit))
3491                 return;
3492
3493         /*
3494          * If this interrupted another event, 
3495          */
3496         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3497                 goto out;
3498
3499         ts = bpage->time_stamp;
3500
3501         for (e = 0; e < tail; e += rb_event_length(event)) {
3502
3503                 event = (struct ring_buffer_event *)(bpage->data + e);
3504
3505                 switch (event->type_len) {
3506
3507                 case RINGBUF_TYPE_TIME_EXTEND:
3508                         delta = rb_event_time_stamp(event);
3509                         ts += delta;
3510                         break;
3511
3512                 case RINGBUF_TYPE_TIME_STAMP:
3513                         delta = rb_event_time_stamp(event);
3514                         ts = rb_fix_abs_ts(delta, ts);
3515                         break;
3516
3517                 case RINGBUF_TYPE_PADDING:
3518                         if (event->time_delta == 1)
3519                                 break;
3520                         fallthrough;
3521                 case RINGBUF_TYPE_DATA:
3522                         ts += event->time_delta;
3523                         break;
3524
3525                 default:
3526                         RB_WARN_ON(cpu_buffer, 1);
3527                 }
3528         }
3529         if ((full && ts > info->ts) ||
3530             (!full && ts + info->delta != info->ts)) {
3531                 /* If another report is happening, ignore this one */
3532                 if (atomic_inc_return(&ts_dump) != 1) {
3533                         atomic_dec(&ts_dump);
3534                         goto out;
3535                 }
3536                 atomic_inc(&cpu_buffer->record_disabled);
3537                 /* There's some cases in boot up that this can happen */
3538                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3539                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3540                         cpu_buffer->cpu,
3541                         ts + info->delta, info->ts, info->delta,
3542                         info->before, info->after,
3543                         full ? " (full)" : "");
3544                 dump_buffer_page(bpage, info, tail);
3545                 atomic_dec(&ts_dump);
3546                 /* Do not re-enable checking */
3547                 return;
3548         }
3549 out:
3550         atomic_dec(this_cpu_ptr(&checking));
3551 }
3552 #else
3553 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3554                          struct rb_event_info *info,
3555                          unsigned long tail)
3556 {
3557 }
3558 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3559
3560 static struct ring_buffer_event *
3561 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3562                   struct rb_event_info *info)
3563 {
3564         struct ring_buffer_event *event;
3565         struct buffer_page *tail_page;
3566         unsigned long tail, write, w;
3567         bool a_ok;
3568         bool b_ok;
3569
3570         /* Don't let the compiler play games with cpu_buffer->tail_page */
3571         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3572
3573  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3574         barrier();
3575         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3576         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3577         barrier();
3578         info->ts = rb_time_stamp(cpu_buffer->buffer);
3579
3580         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3581                 info->delta = info->ts;
3582         } else {
3583                 /*
3584                  * If interrupting an event time update, we may need an
3585                  * absolute timestamp.
3586                  * Don't bother if this is the start of a new page (w == 0).
3587                  */
3588                 if (!w) {
3589                         /* Use the sub-buffer timestamp */
3590                         info->delta = 0;
3591                 } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) {
3592                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3593                         info->length += RB_LEN_TIME_EXTEND;
3594                 } else {
3595                         info->delta = info->ts - info->after;
3596                         if (unlikely(test_time_stamp(info->delta))) {
3597                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3598                                 info->length += RB_LEN_TIME_EXTEND;
3599                         }
3600                 }
3601         }
3602
3603  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3604
3605  /*C*/  write = local_add_return(info->length, &tail_page->write);
3606
3607         /* set write to only the index of the write */
3608         write &= RB_WRITE_MASK;
3609
3610         tail = write - info->length;
3611
3612         /* See if we shot pass the end of this buffer page */
3613         if (unlikely(write > BUF_PAGE_SIZE)) {
3614                 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3615                 return rb_move_tail(cpu_buffer, tail, info);
3616         }
3617
3618         if (likely(tail == w)) {
3619                 /* Nothing interrupted us between A and C */
3620  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3621                 /*
3622                  * If something came in between C and D, the write stamp
3623                  * may now not be in sync. But that's fine as the before_stamp
3624                  * will be different and then next event will just be forced
3625                  * to use an absolute timestamp.
3626                  */
3627                 if (likely(!(info->add_timestamp &
3628                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3629                         /* This did not interrupt any time update */
3630                         info->delta = info->ts - info->after;
3631                 else
3632                         /* Just use full timestamp for interrupting event */
3633                         info->delta = info->ts;
3634                 check_buffer(cpu_buffer, info, tail);
3635         } else {
3636                 u64 ts;
3637                 /* SLOW PATH - Interrupted between A and C */
3638                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3639                 /* Was interrupted before here, write_stamp must be valid */
3640                 RB_WARN_ON(cpu_buffer, !a_ok);
3641                 ts = rb_time_stamp(cpu_buffer->buffer);
3642                 barrier();
3643  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3644                     info->after < ts &&
3645                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3646                                     info->after, ts)) {
3647                         /* Nothing came after this event between C and E */
3648                         info->delta = ts - info->after;
3649                 } else {
3650                         /*
3651                          * Interrupted between C and E:
3652                          * Lost the previous events time stamp. Just set the
3653                          * delta to zero, and this will be the same time as
3654                          * the event this event interrupted. And the events that
3655                          * came after this will still be correct (as they would
3656                          * have built their delta on the previous event.
3657                          */
3658                         info->delta = 0;
3659                 }
3660                 info->ts = ts;
3661                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3662         }
3663
3664         /*
3665          * If this is the first commit on the page, then it has the same
3666          * timestamp as the page itself.
3667          */
3668         if (unlikely(!tail && !(info->add_timestamp &
3669                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3670                 info->delta = 0;
3671
3672         /* We reserved something on the buffer */
3673
3674         event = __rb_page_index(tail_page, tail);
3675         rb_update_event(cpu_buffer, event, info);
3676
3677         local_inc(&tail_page->entries);
3678
3679         /*
3680          * If this is the first commit on the page, then update
3681          * its timestamp.
3682          */
3683         if (unlikely(!tail))
3684                 tail_page->page->time_stamp = info->ts;
3685
3686         /* account for these added bytes */
3687         local_add(info->length, &cpu_buffer->entries_bytes);
3688
3689         return event;
3690 }
3691
3692 static __always_inline struct ring_buffer_event *
3693 rb_reserve_next_event(struct trace_buffer *buffer,
3694                       struct ring_buffer_per_cpu *cpu_buffer,
3695                       unsigned long length)
3696 {
3697         struct ring_buffer_event *event;
3698         struct rb_event_info info;
3699         int nr_loops = 0;
3700         int add_ts_default;
3701
3702         rb_start_commit(cpu_buffer);
3703         /* The commit page can not change after this */
3704
3705 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3706         /*
3707          * Due to the ability to swap a cpu buffer from a buffer
3708          * it is possible it was swapped before we committed.
3709          * (committing stops a swap). We check for it here and
3710          * if it happened, we have to fail the write.
3711          */
3712         barrier();
3713         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3714                 local_dec(&cpu_buffer->committing);
3715                 local_dec(&cpu_buffer->commits);
3716                 return NULL;
3717         }
3718 #endif
3719
3720         info.length = rb_calculate_event_length(length);
3721
3722         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3723                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3724                 info.length += RB_LEN_TIME_EXTEND;
3725                 if (info.length > BUF_MAX_DATA_SIZE)
3726                         goto out_fail;
3727         } else {
3728                 add_ts_default = RB_ADD_STAMP_NONE;
3729         }
3730
3731  again:
3732         info.add_timestamp = add_ts_default;
3733         info.delta = 0;
3734
3735         /*
3736          * We allow for interrupts to reenter here and do a trace.
3737          * If one does, it will cause this original code to loop
3738          * back here. Even with heavy interrupts happening, this
3739          * should only happen a few times in a row. If this happens
3740          * 1000 times in a row, there must be either an interrupt
3741          * storm or we have something buggy.
3742          * Bail!
3743          */
3744         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3745                 goto out_fail;
3746
3747         event = __rb_reserve_next(cpu_buffer, &info);
3748
3749         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3750                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3751                         info.length -= RB_LEN_TIME_EXTEND;
3752                 goto again;
3753         }
3754
3755         if (likely(event))
3756                 return event;
3757  out_fail:
3758         rb_end_commit(cpu_buffer);
3759         return NULL;
3760 }
3761
3762 /**
3763  * ring_buffer_lock_reserve - reserve a part of the buffer
3764  * @buffer: the ring buffer to reserve from
3765  * @length: the length of the data to reserve (excluding event header)
3766  *
3767  * Returns a reserved event on the ring buffer to copy directly to.
3768  * The user of this interface will need to get the body to write into
3769  * and can use the ring_buffer_event_data() interface.
3770  *
3771  * The length is the length of the data needed, not the event length
3772  * which also includes the event header.
3773  *
3774  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3775  * If NULL is returned, then nothing has been allocated or locked.
3776  */
3777 struct ring_buffer_event *
3778 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3779 {
3780         struct ring_buffer_per_cpu *cpu_buffer;
3781         struct ring_buffer_event *event;
3782         int cpu;
3783
3784         /* If we are tracing schedule, we don't want to recurse */
3785         preempt_disable_notrace();
3786
3787         if (unlikely(atomic_read(&buffer->record_disabled)))
3788                 goto out;
3789
3790         cpu = raw_smp_processor_id();
3791
3792         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3793                 goto out;
3794
3795         cpu_buffer = buffer->buffers[cpu];
3796
3797         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3798                 goto out;
3799
3800         if (unlikely(length > BUF_MAX_DATA_SIZE))
3801                 goto out;
3802
3803         if (unlikely(trace_recursive_lock(cpu_buffer)))
3804                 goto out;
3805
3806         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3807         if (!event)
3808                 goto out_unlock;
3809
3810         return event;
3811
3812  out_unlock:
3813         trace_recursive_unlock(cpu_buffer);
3814  out:
3815         preempt_enable_notrace();
3816         return NULL;
3817 }
3818 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3819
3820 /*
3821  * Decrement the entries to the page that an event is on.
3822  * The event does not even need to exist, only the pointer
3823  * to the page it is on. This may only be called before the commit
3824  * takes place.
3825  */
3826 static inline void
3827 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3828                    struct ring_buffer_event *event)
3829 {
3830         unsigned long addr = (unsigned long)event;
3831         struct buffer_page *bpage = cpu_buffer->commit_page;
3832         struct buffer_page *start;
3833
3834         addr &= PAGE_MASK;
3835
3836         /* Do the likely case first */
3837         if (likely(bpage->page == (void *)addr)) {
3838                 local_dec(&bpage->entries);
3839                 return;
3840         }
3841
3842         /*
3843          * Because the commit page may be on the reader page we
3844          * start with the next page and check the end loop there.
3845          */
3846         rb_inc_page(&bpage);
3847         start = bpage;
3848         do {
3849                 if (bpage->page == (void *)addr) {
3850                         local_dec(&bpage->entries);
3851                         return;
3852                 }
3853                 rb_inc_page(&bpage);
3854         } while (bpage != start);
3855
3856         /* commit not part of this buffer?? */
3857         RB_WARN_ON(cpu_buffer, 1);
3858 }
3859
3860 /**
3861  * ring_buffer_discard_commit - discard an event that has not been committed
3862  * @buffer: the ring buffer
3863  * @event: non committed event to discard
3864  *
3865  * Sometimes an event that is in the ring buffer needs to be ignored.
3866  * This function lets the user discard an event in the ring buffer
3867  * and then that event will not be read later.
3868  *
3869  * This function only works if it is called before the item has been
3870  * committed. It will try to free the event from the ring buffer
3871  * if another event has not been added behind it.
3872  *
3873  * If another event has been added behind it, it will set the event
3874  * up as discarded, and perform the commit.
3875  *
3876  * If this function is called, do not call ring_buffer_unlock_commit on
3877  * the event.
3878  */
3879 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3880                                 struct ring_buffer_event *event)
3881 {
3882         struct ring_buffer_per_cpu *cpu_buffer;
3883         int cpu;
3884
3885         /* The event is discarded regardless */
3886         rb_event_discard(event);
3887
3888         cpu = smp_processor_id();
3889         cpu_buffer = buffer->buffers[cpu];
3890
3891         /*
3892          * This must only be called if the event has not been
3893          * committed yet. Thus we can assume that preemption
3894          * is still disabled.
3895          */
3896         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3897
3898         rb_decrement_entry(cpu_buffer, event);
3899         if (rb_try_to_discard(cpu_buffer, event))
3900                 goto out;
3901
3902  out:
3903         rb_end_commit(cpu_buffer);
3904
3905         trace_recursive_unlock(cpu_buffer);
3906
3907         preempt_enable_notrace();
3908
3909 }
3910 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3911
3912 /**
3913  * ring_buffer_write - write data to the buffer without reserving
3914  * @buffer: The ring buffer to write to.
3915  * @length: The length of the data being written (excluding the event header)
3916  * @data: The data to write to the buffer.
3917  *
3918  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3919  * one function. If you already have the data to write to the buffer, it
3920  * may be easier to simply call this function.
3921  *
3922  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3923  * and not the length of the event which would hold the header.
3924  */
3925 int ring_buffer_write(struct trace_buffer *buffer,
3926                       unsigned long length,
3927                       void *data)
3928 {
3929         struct ring_buffer_per_cpu *cpu_buffer;
3930         struct ring_buffer_event *event;
3931         void *body;
3932         int ret = -EBUSY;
3933         int cpu;
3934
3935         preempt_disable_notrace();
3936
3937         if (atomic_read(&buffer->record_disabled))
3938                 goto out;
3939
3940         cpu = raw_smp_processor_id();
3941
3942         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3943                 goto out;
3944
3945         cpu_buffer = buffer->buffers[cpu];
3946
3947         if (atomic_read(&cpu_buffer->record_disabled))
3948                 goto out;
3949
3950         if (length > BUF_MAX_DATA_SIZE)
3951                 goto out;
3952
3953         if (unlikely(trace_recursive_lock(cpu_buffer)))
3954                 goto out;
3955
3956         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3957         if (!event)
3958                 goto out_unlock;
3959
3960         body = rb_event_data(event);
3961
3962         memcpy(body, data, length);
3963
3964         rb_commit(cpu_buffer);
3965
3966         rb_wakeups(buffer, cpu_buffer);
3967
3968         ret = 0;
3969
3970  out_unlock:
3971         trace_recursive_unlock(cpu_buffer);
3972
3973  out:
3974         preempt_enable_notrace();
3975
3976         return ret;
3977 }
3978 EXPORT_SYMBOL_GPL(ring_buffer_write);
3979
3980 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3981 {
3982         struct buffer_page *reader = cpu_buffer->reader_page;
3983         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3984         struct buffer_page *commit = cpu_buffer->commit_page;
3985
3986         /* In case of error, head will be NULL */
3987         if (unlikely(!head))
3988                 return true;
3989
3990         /* Reader should exhaust content in reader page */
3991         if (reader->read != rb_page_commit(reader))
3992                 return false;
3993
3994         /*
3995          * If writers are committing on the reader page, knowing all
3996          * committed content has been read, the ring buffer is empty.
3997          */
3998         if (commit == reader)
3999                 return true;
4000
4001         /*
4002          * If writers are committing on a page other than reader page
4003          * and head page, there should always be content to read.
4004          */
4005         if (commit != head)
4006                 return false;
4007
4008         /*
4009          * Writers are committing on the head page, we just need
4010          * to care about there're committed data, and the reader will
4011          * swap reader page with head page when it is to read data.
4012          */
4013         return rb_page_commit(commit) == 0;
4014 }
4015
4016 /**
4017  * ring_buffer_record_disable - stop all writes into the buffer
4018  * @buffer: The ring buffer to stop writes to.
4019  *
4020  * This prevents all writes to the buffer. Any attempt to write
4021  * to the buffer after this will fail and return NULL.
4022  *
4023  * The caller should call synchronize_rcu() after this.
4024  */
4025 void ring_buffer_record_disable(struct trace_buffer *buffer)
4026 {
4027         atomic_inc(&buffer->record_disabled);
4028 }
4029 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4030
4031 /**
4032  * ring_buffer_record_enable - enable writes to the buffer
4033  * @buffer: The ring buffer to enable writes
4034  *
4035  * Note, multiple disables will need the same number of enables
4036  * to truly enable the writing (much like preempt_disable).
4037  */
4038 void ring_buffer_record_enable(struct trace_buffer *buffer)
4039 {
4040         atomic_dec(&buffer->record_disabled);
4041 }
4042 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4043
4044 /**
4045  * ring_buffer_record_off - stop all writes into the buffer
4046  * @buffer: The ring buffer to stop writes to.
4047  *
4048  * This prevents all writes to the buffer. Any attempt to write
4049  * to the buffer after this will fail and return NULL.
4050  *
4051  * This is different than ring_buffer_record_disable() as
4052  * it works like an on/off switch, where as the disable() version
4053  * must be paired with a enable().
4054  */
4055 void ring_buffer_record_off(struct trace_buffer *buffer)
4056 {
4057         unsigned int rd;
4058         unsigned int new_rd;
4059
4060         rd = atomic_read(&buffer->record_disabled);
4061         do {
4062                 new_rd = rd | RB_BUFFER_OFF;
4063         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4064 }
4065 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4066
4067 /**
4068  * ring_buffer_record_on - restart writes into the buffer
4069  * @buffer: The ring buffer to start writes to.
4070  *
4071  * This enables all writes to the buffer that was disabled by
4072  * ring_buffer_record_off().
4073  *
4074  * This is different than ring_buffer_record_enable() as
4075  * it works like an on/off switch, where as the enable() version
4076  * must be paired with a disable().
4077  */
4078 void ring_buffer_record_on(struct trace_buffer *buffer)
4079 {
4080         unsigned int rd;
4081         unsigned int new_rd;
4082
4083         rd = atomic_read(&buffer->record_disabled);
4084         do {
4085                 new_rd = rd & ~RB_BUFFER_OFF;
4086         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4087 }
4088 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4089
4090 /**
4091  * ring_buffer_record_is_on - return true if the ring buffer can write
4092  * @buffer: The ring buffer to see if write is enabled
4093  *
4094  * Returns true if the ring buffer is in a state that it accepts writes.
4095  */
4096 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4097 {
4098         return !atomic_read(&buffer->record_disabled);
4099 }
4100
4101 /**
4102  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4103  * @buffer: The ring buffer to see if write is set enabled
4104  *
4105  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4106  * Note that this does NOT mean it is in a writable state.
4107  *
4108  * It may return true when the ring buffer has been disabled by
4109  * ring_buffer_record_disable(), as that is a temporary disabling of
4110  * the ring buffer.
4111  */
4112 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4113 {
4114         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4115 }
4116
4117 /**
4118  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4119  * @buffer: The ring buffer to stop writes to.
4120  * @cpu: The CPU buffer to stop
4121  *
4122  * This prevents all writes to the buffer. Any attempt to write
4123  * to the buffer after this will fail and return NULL.
4124  *
4125  * The caller should call synchronize_rcu() after this.
4126  */
4127 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4128 {
4129         struct ring_buffer_per_cpu *cpu_buffer;
4130
4131         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4132                 return;
4133
4134         cpu_buffer = buffer->buffers[cpu];
4135         atomic_inc(&cpu_buffer->record_disabled);
4136 }
4137 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4138
4139 /**
4140  * ring_buffer_record_enable_cpu - enable writes to the buffer
4141  * @buffer: The ring buffer to enable writes
4142  * @cpu: The CPU to enable.
4143  *
4144  * Note, multiple disables will need the same number of enables
4145  * to truly enable the writing (much like preempt_disable).
4146  */
4147 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4148 {
4149         struct ring_buffer_per_cpu *cpu_buffer;
4150
4151         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4152                 return;
4153
4154         cpu_buffer = buffer->buffers[cpu];
4155         atomic_dec(&cpu_buffer->record_disabled);
4156 }
4157 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4158
4159 /*
4160  * The total entries in the ring buffer is the running counter
4161  * of entries entered into the ring buffer, minus the sum of
4162  * the entries read from the ring buffer and the number of
4163  * entries that were overwritten.
4164  */
4165 static inline unsigned long
4166 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4167 {
4168         return local_read(&cpu_buffer->entries) -
4169                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4170 }
4171
4172 /**
4173  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4174  * @buffer: The ring buffer
4175  * @cpu: The per CPU buffer to read from.
4176  */
4177 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4178 {
4179         unsigned long flags;
4180         struct ring_buffer_per_cpu *cpu_buffer;
4181         struct buffer_page *bpage;
4182         u64 ret = 0;
4183
4184         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4185                 return 0;
4186
4187         cpu_buffer = buffer->buffers[cpu];
4188         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4189         /*
4190          * if the tail is on reader_page, oldest time stamp is on the reader
4191          * page
4192          */
4193         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4194                 bpage = cpu_buffer->reader_page;
4195         else
4196                 bpage = rb_set_head_page(cpu_buffer);
4197         if (bpage)
4198                 ret = bpage->page->time_stamp;
4199         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4200
4201         return ret;
4202 }
4203 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4204
4205 /**
4206  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4207  * @buffer: The ring buffer
4208  * @cpu: The per CPU buffer to read from.
4209  */
4210 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4211 {
4212         struct ring_buffer_per_cpu *cpu_buffer;
4213         unsigned long ret;
4214
4215         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4216                 return 0;
4217
4218         cpu_buffer = buffer->buffers[cpu];
4219         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4220
4221         return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4224
4225 /**
4226  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4227  * @buffer: The ring buffer
4228  * @cpu: The per CPU buffer to get the entries from.
4229  */
4230 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4231 {
4232         struct ring_buffer_per_cpu *cpu_buffer;
4233
4234         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4235                 return 0;
4236
4237         cpu_buffer = buffer->buffers[cpu];
4238
4239         return rb_num_of_entries(cpu_buffer);
4240 }
4241 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4242
4243 /**
4244  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4245  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4246  * @buffer: The ring buffer
4247  * @cpu: The per CPU buffer to get the number of overruns from
4248  */
4249 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4250 {
4251         struct ring_buffer_per_cpu *cpu_buffer;
4252         unsigned long ret;
4253
4254         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4255                 return 0;
4256
4257         cpu_buffer = buffer->buffers[cpu];
4258         ret = local_read(&cpu_buffer->overrun);
4259
4260         return ret;
4261 }
4262 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4263
4264 /**
4265  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4266  * commits failing due to the buffer wrapping around while there are uncommitted
4267  * events, such as during an interrupt storm.
4268  * @buffer: The ring buffer
4269  * @cpu: The per CPU buffer to get the number of overruns from
4270  */
4271 unsigned long
4272 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4273 {
4274         struct ring_buffer_per_cpu *cpu_buffer;
4275         unsigned long ret;
4276
4277         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4278                 return 0;
4279
4280         cpu_buffer = buffer->buffers[cpu];
4281         ret = local_read(&cpu_buffer->commit_overrun);
4282
4283         return ret;
4284 }
4285 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4286
4287 /**
4288  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4289  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4290  * @buffer: The ring buffer
4291  * @cpu: The per CPU buffer to get the number of overruns from
4292  */
4293 unsigned long
4294 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4295 {
4296         struct ring_buffer_per_cpu *cpu_buffer;
4297         unsigned long ret;
4298
4299         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4300                 return 0;
4301
4302         cpu_buffer = buffer->buffers[cpu];
4303         ret = local_read(&cpu_buffer->dropped_events);
4304
4305         return ret;
4306 }
4307 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4308
4309 /**
4310  * ring_buffer_read_events_cpu - get the number of events successfully read
4311  * @buffer: The ring buffer
4312  * @cpu: The per CPU buffer to get the number of events read
4313  */
4314 unsigned long
4315 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4316 {
4317         struct ring_buffer_per_cpu *cpu_buffer;
4318
4319         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4320                 return 0;
4321
4322         cpu_buffer = buffer->buffers[cpu];
4323         return cpu_buffer->read;
4324 }
4325 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4326
4327 /**
4328  * ring_buffer_entries - get the number of entries in a buffer
4329  * @buffer: The ring buffer
4330  *
4331  * Returns the total number of entries in the ring buffer
4332  * (all CPU entries)
4333  */
4334 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4335 {
4336         struct ring_buffer_per_cpu *cpu_buffer;
4337         unsigned long entries = 0;
4338         int cpu;
4339
4340         /* if you care about this being correct, lock the buffer */
4341         for_each_buffer_cpu(buffer, cpu) {
4342                 cpu_buffer = buffer->buffers[cpu];
4343                 entries += rb_num_of_entries(cpu_buffer);
4344         }
4345
4346         return entries;
4347 }
4348 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4349
4350 /**
4351  * ring_buffer_overruns - get the number of overruns in buffer
4352  * @buffer: The ring buffer
4353  *
4354  * Returns the total number of overruns in the ring buffer
4355  * (all CPU entries)
4356  */
4357 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4358 {
4359         struct ring_buffer_per_cpu *cpu_buffer;
4360         unsigned long overruns = 0;
4361         int cpu;
4362
4363         /* if you care about this being correct, lock the buffer */
4364         for_each_buffer_cpu(buffer, cpu) {
4365                 cpu_buffer = buffer->buffers[cpu];
4366                 overruns += local_read(&cpu_buffer->overrun);
4367         }
4368
4369         return overruns;
4370 }
4371 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4372
4373 static void rb_iter_reset(struct ring_buffer_iter *iter)
4374 {
4375         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4376
4377         /* Iterator usage is expected to have record disabled */
4378         iter->head_page = cpu_buffer->reader_page;
4379         iter->head = cpu_buffer->reader_page->read;
4380         iter->next_event = iter->head;
4381
4382         iter->cache_reader_page = iter->head_page;
4383         iter->cache_read = cpu_buffer->read;
4384         iter->cache_pages_removed = cpu_buffer->pages_removed;
4385
4386         if (iter->head) {
4387                 iter->read_stamp = cpu_buffer->read_stamp;
4388                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4389         } else {
4390                 iter->read_stamp = iter->head_page->page->time_stamp;
4391                 iter->page_stamp = iter->read_stamp;
4392         }
4393 }
4394
4395 /**
4396  * ring_buffer_iter_reset - reset an iterator
4397  * @iter: The iterator to reset
4398  *
4399  * Resets the iterator, so that it will start from the beginning
4400  * again.
4401  */
4402 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4403 {
4404         struct ring_buffer_per_cpu *cpu_buffer;
4405         unsigned long flags;
4406
4407         if (!iter)
4408                 return;
4409
4410         cpu_buffer = iter->cpu_buffer;
4411
4412         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4413         rb_iter_reset(iter);
4414         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4415 }
4416 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4417
4418 /**
4419  * ring_buffer_iter_empty - check if an iterator has no more to read
4420  * @iter: The iterator to check
4421  */
4422 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4423 {
4424         struct ring_buffer_per_cpu *cpu_buffer;
4425         struct buffer_page *reader;
4426         struct buffer_page *head_page;
4427         struct buffer_page *commit_page;
4428         struct buffer_page *curr_commit_page;
4429         unsigned commit;
4430         u64 curr_commit_ts;
4431         u64 commit_ts;
4432
4433         cpu_buffer = iter->cpu_buffer;
4434         reader = cpu_buffer->reader_page;
4435         head_page = cpu_buffer->head_page;
4436         commit_page = cpu_buffer->commit_page;
4437         commit_ts = commit_page->page->time_stamp;
4438
4439         /*
4440          * When the writer goes across pages, it issues a cmpxchg which
4441          * is a mb(), which will synchronize with the rmb here.
4442          * (see rb_tail_page_update())
4443          */
4444         smp_rmb();
4445         commit = rb_page_commit(commit_page);
4446         /* We want to make sure that the commit page doesn't change */
4447         smp_rmb();
4448
4449         /* Make sure commit page didn't change */
4450         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4451         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4452
4453         /* If the commit page changed, then there's more data */
4454         if (curr_commit_page != commit_page ||
4455             curr_commit_ts != commit_ts)
4456                 return 0;
4457
4458         /* Still racy, as it may return a false positive, but that's OK */
4459         return ((iter->head_page == commit_page && iter->head >= commit) ||
4460                 (iter->head_page == reader && commit_page == head_page &&
4461                  head_page->read == commit &&
4462                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4463 }
4464 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4465
4466 static void
4467 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4468                      struct ring_buffer_event *event)
4469 {
4470         u64 delta;
4471
4472         switch (event->type_len) {
4473         case RINGBUF_TYPE_PADDING:
4474                 return;
4475
4476         case RINGBUF_TYPE_TIME_EXTEND:
4477                 delta = rb_event_time_stamp(event);
4478                 cpu_buffer->read_stamp += delta;
4479                 return;
4480
4481         case RINGBUF_TYPE_TIME_STAMP:
4482                 delta = rb_event_time_stamp(event);
4483                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4484                 cpu_buffer->read_stamp = delta;
4485                 return;
4486
4487         case RINGBUF_TYPE_DATA:
4488                 cpu_buffer->read_stamp += event->time_delta;
4489                 return;
4490
4491         default:
4492                 RB_WARN_ON(cpu_buffer, 1);
4493         }
4494 }
4495
4496 static void
4497 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4498                           struct ring_buffer_event *event)
4499 {
4500         u64 delta;
4501
4502         switch (event->type_len) {
4503         case RINGBUF_TYPE_PADDING:
4504                 return;
4505
4506         case RINGBUF_TYPE_TIME_EXTEND:
4507                 delta = rb_event_time_stamp(event);
4508                 iter->read_stamp += delta;
4509                 return;
4510
4511         case RINGBUF_TYPE_TIME_STAMP:
4512                 delta = rb_event_time_stamp(event);
4513                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4514                 iter->read_stamp = delta;
4515                 return;
4516
4517         case RINGBUF_TYPE_DATA:
4518                 iter->read_stamp += event->time_delta;
4519                 return;
4520
4521         default:
4522                 RB_WARN_ON(iter->cpu_buffer, 1);
4523         }
4524 }
4525
4526 static struct buffer_page *
4527 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4528 {
4529         struct buffer_page *reader = NULL;
4530         unsigned long overwrite;
4531         unsigned long flags;
4532         int nr_loops = 0;
4533         bool ret;
4534
4535         local_irq_save(flags);
4536         arch_spin_lock(&cpu_buffer->lock);
4537
4538  again:
4539         /*
4540          * This should normally only loop twice. But because the
4541          * start of the reader inserts an empty page, it causes
4542          * a case where we will loop three times. There should be no
4543          * reason to loop four times (that I know of).
4544          */
4545         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4546                 reader = NULL;
4547                 goto out;
4548         }
4549
4550         reader = cpu_buffer->reader_page;
4551
4552         /* If there's more to read, return this page */
4553         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4554                 goto out;
4555
4556         /* Never should we have an index greater than the size */
4557         if (RB_WARN_ON(cpu_buffer,
4558                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4559                 goto out;
4560
4561         /* check if we caught up to the tail */
4562         reader = NULL;
4563         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4564                 goto out;
4565
4566         /* Don't bother swapping if the ring buffer is empty */
4567         if (rb_num_of_entries(cpu_buffer) == 0)
4568                 goto out;
4569
4570         /*
4571          * Reset the reader page to size zero.
4572          */
4573         local_set(&cpu_buffer->reader_page->write, 0);
4574         local_set(&cpu_buffer->reader_page->entries, 0);
4575         local_set(&cpu_buffer->reader_page->page->commit, 0);
4576         cpu_buffer->reader_page->real_end = 0;
4577
4578  spin:
4579         /*
4580          * Splice the empty reader page into the list around the head.
4581          */
4582         reader = rb_set_head_page(cpu_buffer);
4583         if (!reader)
4584                 goto out;
4585         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4586         cpu_buffer->reader_page->list.prev = reader->list.prev;
4587
4588         /*
4589          * cpu_buffer->pages just needs to point to the buffer, it
4590          *  has no specific buffer page to point to. Lets move it out
4591          *  of our way so we don't accidentally swap it.
4592          */
4593         cpu_buffer->pages = reader->list.prev;
4594
4595         /* The reader page will be pointing to the new head */
4596         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4597
4598         /*
4599          * We want to make sure we read the overruns after we set up our
4600          * pointers to the next object. The writer side does a
4601          * cmpxchg to cross pages which acts as the mb on the writer
4602          * side. Note, the reader will constantly fail the swap
4603          * while the writer is updating the pointers, so this
4604          * guarantees that the overwrite recorded here is the one we
4605          * want to compare with the last_overrun.
4606          */
4607         smp_mb();
4608         overwrite = local_read(&(cpu_buffer->overrun));
4609
4610         /*
4611          * Here's the tricky part.
4612          *
4613          * We need to move the pointer past the header page.
4614          * But we can only do that if a writer is not currently
4615          * moving it. The page before the header page has the
4616          * flag bit '1' set if it is pointing to the page we want.
4617          * but if the writer is in the process of moving it
4618          * than it will be '2' or already moved '0'.
4619          */
4620
4621         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4622
4623         /*
4624          * If we did not convert it, then we must try again.
4625          */
4626         if (!ret)
4627                 goto spin;
4628
4629         /*
4630          * Yay! We succeeded in replacing the page.
4631          *
4632          * Now make the new head point back to the reader page.
4633          */
4634         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4635         rb_inc_page(&cpu_buffer->head_page);
4636
4637         local_inc(&cpu_buffer->pages_read);
4638
4639         /* Finally update the reader page to the new head */
4640         cpu_buffer->reader_page = reader;
4641         cpu_buffer->reader_page->read = 0;
4642
4643         if (overwrite != cpu_buffer->last_overrun) {
4644                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4645                 cpu_buffer->last_overrun = overwrite;
4646         }
4647
4648         goto again;
4649
4650  out:
4651         /* Update the read_stamp on the first event */
4652         if (reader && reader->read == 0)
4653                 cpu_buffer->read_stamp = reader->page->time_stamp;
4654
4655         arch_spin_unlock(&cpu_buffer->lock);
4656         local_irq_restore(flags);
4657
4658         /*
4659          * The writer has preempt disable, wait for it. But not forever
4660          * Although, 1 second is pretty much "forever"
4661          */
4662 #define USECS_WAIT      1000000
4663         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4664                 /* If the write is past the end of page, a writer is still updating it */
4665                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4666                         break;
4667
4668                 udelay(1);
4669
4670                 /* Get the latest version of the reader write value */
4671                 smp_rmb();
4672         }
4673
4674         /* The writer is not moving forward? Something is wrong */
4675         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4676                 reader = NULL;
4677
4678         /*
4679          * Make sure we see any padding after the write update
4680          * (see rb_reset_tail()).
4681          *
4682          * In addition, a writer may be writing on the reader page
4683          * if the page has not been fully filled, so the read barrier
4684          * is also needed to make sure we see the content of what is
4685          * committed by the writer (see rb_set_commit_to_write()).
4686          */
4687         smp_rmb();
4688
4689
4690         return reader;
4691 }
4692
4693 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4694 {
4695         struct ring_buffer_event *event;
4696         struct buffer_page *reader;
4697         unsigned length;
4698
4699         reader = rb_get_reader_page(cpu_buffer);
4700
4701         /* This function should not be called when buffer is empty */
4702         if (RB_WARN_ON(cpu_buffer, !reader))
4703                 return;
4704
4705         event = rb_reader_event(cpu_buffer);
4706
4707         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4708                 cpu_buffer->read++;
4709
4710         rb_update_read_stamp(cpu_buffer, event);
4711
4712         length = rb_event_length(event);
4713         cpu_buffer->reader_page->read += length;
4714         cpu_buffer->read_bytes += length;
4715 }
4716
4717 static void rb_advance_iter(struct ring_buffer_iter *iter)
4718 {
4719         struct ring_buffer_per_cpu *cpu_buffer;
4720
4721         cpu_buffer = iter->cpu_buffer;
4722
4723         /* If head == next_event then we need to jump to the next event */
4724         if (iter->head == iter->next_event) {
4725                 /* If the event gets overwritten again, there's nothing to do */
4726                 if (rb_iter_head_event(iter) == NULL)
4727                         return;
4728         }
4729
4730         iter->head = iter->next_event;
4731
4732         /*
4733          * Check if we are at the end of the buffer.
4734          */
4735         if (iter->next_event >= rb_page_size(iter->head_page)) {
4736                 /* discarded commits can make the page empty */
4737                 if (iter->head_page == cpu_buffer->commit_page)
4738                         return;
4739                 rb_inc_iter(iter);
4740                 return;
4741         }
4742
4743         rb_update_iter_read_stamp(iter, iter->event);
4744 }
4745
4746 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4747 {
4748         return cpu_buffer->lost_events;
4749 }
4750
4751 static struct ring_buffer_event *
4752 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4753                unsigned long *lost_events)
4754 {
4755         struct ring_buffer_event *event;
4756         struct buffer_page *reader;
4757         int nr_loops = 0;
4758
4759         if (ts)
4760                 *ts = 0;
4761  again:
4762         /*
4763          * We repeat when a time extend is encountered.
4764          * Since the time extend is always attached to a data event,
4765          * we should never loop more than once.
4766          * (We never hit the following condition more than twice).
4767          */
4768         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4769                 return NULL;
4770
4771         reader = rb_get_reader_page(cpu_buffer);
4772         if (!reader)
4773                 return NULL;
4774
4775         event = rb_reader_event(cpu_buffer);
4776
4777         switch (event->type_len) {
4778         case RINGBUF_TYPE_PADDING:
4779                 if (rb_null_event(event))
4780                         RB_WARN_ON(cpu_buffer, 1);
4781                 /*
4782                  * Because the writer could be discarding every
4783                  * event it creates (which would probably be bad)
4784                  * if we were to go back to "again" then we may never
4785                  * catch up, and will trigger the warn on, or lock
4786                  * the box. Return the padding, and we will release
4787                  * the current locks, and try again.
4788                  */
4789                 return event;
4790
4791         case RINGBUF_TYPE_TIME_EXTEND:
4792                 /* Internal data, OK to advance */
4793                 rb_advance_reader(cpu_buffer);
4794                 goto again;
4795
4796         case RINGBUF_TYPE_TIME_STAMP:
4797                 if (ts) {
4798                         *ts = rb_event_time_stamp(event);
4799                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4800                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4801                                                          cpu_buffer->cpu, ts);
4802                 }
4803                 /* Internal data, OK to advance */
4804                 rb_advance_reader(cpu_buffer);
4805                 goto again;
4806
4807         case RINGBUF_TYPE_DATA:
4808                 if (ts && !(*ts)) {
4809                         *ts = cpu_buffer->read_stamp + event->time_delta;
4810                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4811                                                          cpu_buffer->cpu, ts);
4812                 }
4813                 if (lost_events)
4814                         *lost_events = rb_lost_events(cpu_buffer);
4815                 return event;
4816
4817         default:
4818                 RB_WARN_ON(cpu_buffer, 1);
4819         }
4820
4821         return NULL;
4822 }
4823 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4824
4825 static struct ring_buffer_event *
4826 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4827 {
4828         struct trace_buffer *buffer;
4829         struct ring_buffer_per_cpu *cpu_buffer;
4830         struct ring_buffer_event *event;
4831         int nr_loops = 0;
4832
4833         if (ts)
4834                 *ts = 0;
4835
4836         cpu_buffer = iter->cpu_buffer;
4837         buffer = cpu_buffer->buffer;
4838
4839         /*
4840          * Check if someone performed a consuming read to the buffer
4841          * or removed some pages from the buffer. In these cases,
4842          * iterator was invalidated and we need to reset it.
4843          */
4844         if (unlikely(iter->cache_read != cpu_buffer->read ||
4845                      iter->cache_reader_page != cpu_buffer->reader_page ||
4846                      iter->cache_pages_removed != cpu_buffer->pages_removed))
4847                 rb_iter_reset(iter);
4848
4849  again:
4850         if (ring_buffer_iter_empty(iter))
4851                 return NULL;
4852
4853         /*
4854          * As the writer can mess with what the iterator is trying
4855          * to read, just give up if we fail to get an event after
4856          * three tries. The iterator is not as reliable when reading
4857          * the ring buffer with an active write as the consumer is.
4858          * Do not warn if the three failures is reached.
4859          */
4860         if (++nr_loops > 3)
4861                 return NULL;
4862
4863         if (rb_per_cpu_empty(cpu_buffer))
4864                 return NULL;
4865
4866         if (iter->head >= rb_page_size(iter->head_page)) {
4867                 rb_inc_iter(iter);
4868                 goto again;
4869         }
4870
4871         event = rb_iter_head_event(iter);
4872         if (!event)
4873                 goto again;
4874
4875         switch (event->type_len) {
4876         case RINGBUF_TYPE_PADDING:
4877                 if (rb_null_event(event)) {
4878                         rb_inc_iter(iter);
4879                         goto again;
4880                 }
4881                 rb_advance_iter(iter);
4882                 return event;
4883
4884         case RINGBUF_TYPE_TIME_EXTEND:
4885                 /* Internal data, OK to advance */
4886                 rb_advance_iter(iter);
4887                 goto again;
4888
4889         case RINGBUF_TYPE_TIME_STAMP:
4890                 if (ts) {
4891                         *ts = rb_event_time_stamp(event);
4892                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4893                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4894                                                          cpu_buffer->cpu, ts);
4895                 }
4896                 /* Internal data, OK to advance */
4897                 rb_advance_iter(iter);
4898                 goto again;
4899
4900         case RINGBUF_TYPE_DATA:
4901                 if (ts && !(*ts)) {
4902                         *ts = iter->read_stamp + event->time_delta;
4903                         ring_buffer_normalize_time_stamp(buffer,
4904                                                          cpu_buffer->cpu, ts);
4905                 }
4906                 return event;
4907
4908         default:
4909                 RB_WARN_ON(cpu_buffer, 1);
4910         }
4911
4912         return NULL;
4913 }
4914 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4915
4916 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4917 {
4918         if (likely(!in_nmi())) {
4919                 raw_spin_lock(&cpu_buffer->reader_lock);
4920                 return true;
4921         }
4922
4923         /*
4924          * If an NMI die dumps out the content of the ring buffer
4925          * trylock must be used to prevent a deadlock if the NMI
4926          * preempted a task that holds the ring buffer locks. If
4927          * we get the lock then all is fine, if not, then continue
4928          * to do the read, but this can corrupt the ring buffer,
4929          * so it must be permanently disabled from future writes.
4930          * Reading from NMI is a oneshot deal.
4931          */
4932         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4933                 return true;
4934
4935         /* Continue without locking, but disable the ring buffer */
4936         atomic_inc(&cpu_buffer->record_disabled);
4937         return false;
4938 }
4939
4940 static inline void
4941 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4942 {
4943         if (likely(locked))
4944                 raw_spin_unlock(&cpu_buffer->reader_lock);
4945 }
4946
4947 /**
4948  * ring_buffer_peek - peek at the next event to be read
4949  * @buffer: The ring buffer to read
4950  * @cpu: The cpu to peak at
4951  * @ts: The timestamp counter of this event.
4952  * @lost_events: a variable to store if events were lost (may be NULL)
4953  *
4954  * This will return the event that will be read next, but does
4955  * not consume the data.
4956  */
4957 struct ring_buffer_event *
4958 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4959                  unsigned long *lost_events)
4960 {
4961         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4962         struct ring_buffer_event *event;
4963         unsigned long flags;
4964         bool dolock;
4965
4966         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4967                 return NULL;
4968
4969  again:
4970         local_irq_save(flags);
4971         dolock = rb_reader_lock(cpu_buffer);
4972         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4973         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4974                 rb_advance_reader(cpu_buffer);
4975         rb_reader_unlock(cpu_buffer, dolock);
4976         local_irq_restore(flags);
4977
4978         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4979                 goto again;
4980
4981         return event;
4982 }
4983
4984 /** ring_buffer_iter_dropped - report if there are dropped events
4985  * @iter: The ring buffer iterator
4986  *
4987  * Returns true if there was dropped events since the last peek.
4988  */
4989 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4990 {
4991         bool ret = iter->missed_events != 0;
4992
4993         iter->missed_events = 0;
4994         return ret;
4995 }
4996 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4997
4998 /**
4999  * ring_buffer_iter_peek - peek at the next event to be read
5000  * @iter: The ring buffer iterator
5001  * @ts: The timestamp counter of this event.
5002  *
5003  * This will return the event that will be read next, but does
5004  * not increment the iterator.
5005  */
5006 struct ring_buffer_event *
5007 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5008 {
5009         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5010         struct ring_buffer_event *event;
5011         unsigned long flags;
5012
5013  again:
5014         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5015         event = rb_iter_peek(iter, ts);
5016         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5017
5018         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5019                 goto again;
5020
5021         return event;
5022 }
5023
5024 /**
5025  * ring_buffer_consume - return an event and consume it
5026  * @buffer: The ring buffer to get the next event from
5027  * @cpu: the cpu to read the buffer from
5028  * @ts: a variable to store the timestamp (may be NULL)
5029  * @lost_events: a variable to store if events were lost (may be NULL)
5030  *
5031  * Returns the next event in the ring buffer, and that event is consumed.
5032  * Meaning, that sequential reads will keep returning a different event,
5033  * and eventually empty the ring buffer if the producer is slower.
5034  */
5035 struct ring_buffer_event *
5036 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5037                     unsigned long *lost_events)
5038 {
5039         struct ring_buffer_per_cpu *cpu_buffer;
5040         struct ring_buffer_event *event = NULL;
5041         unsigned long flags;
5042         bool dolock;
5043
5044  again:
5045         /* might be called in atomic */
5046         preempt_disable();
5047
5048         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5049                 goto out;
5050
5051         cpu_buffer = buffer->buffers[cpu];
5052         local_irq_save(flags);
5053         dolock = rb_reader_lock(cpu_buffer);
5054
5055         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5056         if (event) {
5057                 cpu_buffer->lost_events = 0;
5058                 rb_advance_reader(cpu_buffer);
5059         }
5060
5061         rb_reader_unlock(cpu_buffer, dolock);
5062         local_irq_restore(flags);
5063
5064  out:
5065         preempt_enable();
5066
5067         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5068                 goto again;
5069
5070         return event;
5071 }
5072 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5073
5074 /**
5075  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5076  * @buffer: The ring buffer to read from
5077  * @cpu: The cpu buffer to iterate over
5078  * @flags: gfp flags to use for memory allocation
5079  *
5080  * This performs the initial preparations necessary to iterate
5081  * through the buffer.  Memory is allocated, buffer recording
5082  * is disabled, and the iterator pointer is returned to the caller.
5083  *
5084  * Disabling buffer recording prevents the reading from being
5085  * corrupted. This is not a consuming read, so a producer is not
5086  * expected.
5087  *
5088  * After a sequence of ring_buffer_read_prepare calls, the user is
5089  * expected to make at least one call to ring_buffer_read_prepare_sync.
5090  * Afterwards, ring_buffer_read_start is invoked to get things going
5091  * for real.
5092  *
5093  * This overall must be paired with ring_buffer_read_finish.
5094  */
5095 struct ring_buffer_iter *
5096 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5097 {
5098         struct ring_buffer_per_cpu *cpu_buffer;
5099         struct ring_buffer_iter *iter;
5100
5101         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5102                 return NULL;
5103
5104         iter = kzalloc(sizeof(*iter), flags);
5105         if (!iter)
5106                 return NULL;
5107
5108         /* Holds the entire event: data and meta data */
5109         iter->event = kmalloc(BUF_PAGE_SIZE, flags);
5110         if (!iter->event) {
5111                 kfree(iter);
5112                 return NULL;
5113         }
5114
5115         cpu_buffer = buffer->buffers[cpu];
5116
5117         iter->cpu_buffer = cpu_buffer;
5118
5119         atomic_inc(&cpu_buffer->resize_disabled);
5120
5121         return iter;
5122 }
5123 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5124
5125 /**
5126  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5127  *
5128  * All previously invoked ring_buffer_read_prepare calls to prepare
5129  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5130  * calls on those iterators are allowed.
5131  */
5132 void
5133 ring_buffer_read_prepare_sync(void)
5134 {
5135         synchronize_rcu();
5136 }
5137 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5138
5139 /**
5140  * ring_buffer_read_start - start a non consuming read of the buffer
5141  * @iter: The iterator returned by ring_buffer_read_prepare
5142  *
5143  * This finalizes the startup of an iteration through the buffer.
5144  * The iterator comes from a call to ring_buffer_read_prepare and
5145  * an intervening ring_buffer_read_prepare_sync must have been
5146  * performed.
5147  *
5148  * Must be paired with ring_buffer_read_finish.
5149  */
5150 void
5151 ring_buffer_read_start(struct ring_buffer_iter *iter)
5152 {
5153         struct ring_buffer_per_cpu *cpu_buffer;
5154         unsigned long flags;
5155
5156         if (!iter)
5157                 return;
5158
5159         cpu_buffer = iter->cpu_buffer;
5160
5161         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5162         arch_spin_lock(&cpu_buffer->lock);
5163         rb_iter_reset(iter);
5164         arch_spin_unlock(&cpu_buffer->lock);
5165         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5166 }
5167 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5168
5169 /**
5170  * ring_buffer_read_finish - finish reading the iterator of the buffer
5171  * @iter: The iterator retrieved by ring_buffer_start
5172  *
5173  * This re-enables the recording to the buffer, and frees the
5174  * iterator.
5175  */
5176 void
5177 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5178 {
5179         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5180         unsigned long flags;
5181
5182         /*
5183          * Ring buffer is disabled from recording, here's a good place
5184          * to check the integrity of the ring buffer.
5185          * Must prevent readers from trying to read, as the check
5186          * clears the HEAD page and readers require it.
5187          */
5188         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5189         rb_check_pages(cpu_buffer);
5190         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5191
5192         atomic_dec(&cpu_buffer->resize_disabled);
5193         kfree(iter->event);
5194         kfree(iter);
5195 }
5196 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5197
5198 /**
5199  * ring_buffer_iter_advance - advance the iterator to the next location
5200  * @iter: The ring buffer iterator
5201  *
5202  * Move the location of the iterator such that the next read will
5203  * be the next location of the iterator.
5204  */
5205 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5206 {
5207         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5208         unsigned long flags;
5209
5210         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5211
5212         rb_advance_iter(iter);
5213
5214         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5215 }
5216 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5217
5218 /**
5219  * ring_buffer_size - return the size of the ring buffer (in bytes)
5220  * @buffer: The ring buffer.
5221  * @cpu: The CPU to get ring buffer size from.
5222  */
5223 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5224 {
5225         /*
5226          * Earlier, this method returned
5227          *      BUF_PAGE_SIZE * buffer->nr_pages
5228          * Since the nr_pages field is now removed, we have converted this to
5229          * return the per cpu buffer value.
5230          */
5231         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5232                 return 0;
5233
5234         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5235 }
5236 EXPORT_SYMBOL_GPL(ring_buffer_size);
5237
5238 static void rb_clear_buffer_page(struct buffer_page *page)
5239 {
5240         local_set(&page->write, 0);
5241         local_set(&page->entries, 0);
5242         rb_init_page(page->page);
5243         page->read = 0;
5244 }
5245
5246 static void
5247 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5248 {
5249         struct buffer_page *page;
5250
5251         rb_head_page_deactivate(cpu_buffer);
5252
5253         cpu_buffer->head_page
5254                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5255         rb_clear_buffer_page(cpu_buffer->head_page);
5256         list_for_each_entry(page, cpu_buffer->pages, list) {
5257                 rb_clear_buffer_page(page);
5258         }
5259
5260         cpu_buffer->tail_page = cpu_buffer->head_page;
5261         cpu_buffer->commit_page = cpu_buffer->head_page;
5262
5263         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5264         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5265         rb_clear_buffer_page(cpu_buffer->reader_page);
5266
5267         local_set(&cpu_buffer->entries_bytes, 0);
5268         local_set(&cpu_buffer->overrun, 0);
5269         local_set(&cpu_buffer->commit_overrun, 0);
5270         local_set(&cpu_buffer->dropped_events, 0);
5271         local_set(&cpu_buffer->entries, 0);
5272         local_set(&cpu_buffer->committing, 0);
5273         local_set(&cpu_buffer->commits, 0);
5274         local_set(&cpu_buffer->pages_touched, 0);
5275         local_set(&cpu_buffer->pages_lost, 0);
5276         local_set(&cpu_buffer->pages_read, 0);
5277         cpu_buffer->last_pages_touch = 0;
5278         cpu_buffer->shortest_full = 0;
5279         cpu_buffer->read = 0;
5280         cpu_buffer->read_bytes = 0;
5281
5282         rb_time_set(&cpu_buffer->write_stamp, 0);
5283         rb_time_set(&cpu_buffer->before_stamp, 0);
5284
5285         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5286
5287         cpu_buffer->lost_events = 0;
5288         cpu_buffer->last_overrun = 0;
5289
5290         rb_head_page_activate(cpu_buffer);
5291         cpu_buffer->pages_removed = 0;
5292 }
5293
5294 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5295 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5296 {
5297         unsigned long flags;
5298
5299         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5300
5301         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5302                 goto out;
5303
5304         arch_spin_lock(&cpu_buffer->lock);
5305
5306         rb_reset_cpu(cpu_buffer);
5307
5308         arch_spin_unlock(&cpu_buffer->lock);
5309
5310  out:
5311         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5312 }
5313
5314 /**
5315  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5316  * @buffer: The ring buffer to reset a per cpu buffer of
5317  * @cpu: The CPU buffer to be reset
5318  */
5319 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5320 {
5321         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5322
5323         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5324                 return;
5325
5326         /* prevent another thread from changing buffer sizes */
5327         mutex_lock(&buffer->mutex);
5328
5329         atomic_inc(&cpu_buffer->resize_disabled);
5330         atomic_inc(&cpu_buffer->record_disabled);
5331
5332         /* Make sure all commits have finished */
5333         synchronize_rcu();
5334
5335         reset_disabled_cpu_buffer(cpu_buffer);
5336
5337         atomic_dec(&cpu_buffer->record_disabled);
5338         atomic_dec(&cpu_buffer->resize_disabled);
5339
5340         mutex_unlock(&buffer->mutex);
5341 }
5342 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5343
5344 /* Flag to ensure proper resetting of atomic variables */
5345 #define RESET_BIT       (1 << 30)
5346
5347 /**
5348  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5349  * @buffer: The ring buffer to reset a per cpu buffer of
5350  */
5351 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5352 {
5353         struct ring_buffer_per_cpu *cpu_buffer;
5354         int cpu;
5355
5356         /* prevent another thread from changing buffer sizes */
5357         mutex_lock(&buffer->mutex);
5358
5359         for_each_online_buffer_cpu(buffer, cpu) {
5360                 cpu_buffer = buffer->buffers[cpu];
5361
5362                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5363                 atomic_inc(&cpu_buffer->record_disabled);
5364         }
5365
5366         /* Make sure all commits have finished */
5367         synchronize_rcu();
5368
5369         for_each_buffer_cpu(buffer, cpu) {
5370                 cpu_buffer = buffer->buffers[cpu];
5371
5372                 /*
5373                  * If a CPU came online during the synchronize_rcu(), then
5374                  * ignore it.
5375                  */
5376                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5377                         continue;
5378
5379                 reset_disabled_cpu_buffer(cpu_buffer);
5380
5381                 atomic_dec(&cpu_buffer->record_disabled);
5382                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5383         }
5384
5385         mutex_unlock(&buffer->mutex);
5386 }
5387
5388 /**
5389  * ring_buffer_reset - reset a ring buffer
5390  * @buffer: The ring buffer to reset all cpu buffers
5391  */
5392 void ring_buffer_reset(struct trace_buffer *buffer)
5393 {
5394         struct ring_buffer_per_cpu *cpu_buffer;
5395         int cpu;
5396
5397         /* prevent another thread from changing buffer sizes */
5398         mutex_lock(&buffer->mutex);
5399
5400         for_each_buffer_cpu(buffer, cpu) {
5401                 cpu_buffer = buffer->buffers[cpu];
5402
5403                 atomic_inc(&cpu_buffer->resize_disabled);
5404                 atomic_inc(&cpu_buffer->record_disabled);
5405         }
5406
5407         /* Make sure all commits have finished */
5408         synchronize_rcu();
5409
5410         for_each_buffer_cpu(buffer, cpu) {
5411                 cpu_buffer = buffer->buffers[cpu];
5412
5413                 reset_disabled_cpu_buffer(cpu_buffer);
5414
5415                 atomic_dec(&cpu_buffer->record_disabled);
5416                 atomic_dec(&cpu_buffer->resize_disabled);
5417         }
5418
5419         mutex_unlock(&buffer->mutex);
5420 }
5421 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5422
5423 /**
5424  * ring_buffer_empty - is the ring buffer empty?
5425  * @buffer: The ring buffer to test
5426  */
5427 bool ring_buffer_empty(struct trace_buffer *buffer)
5428 {
5429         struct ring_buffer_per_cpu *cpu_buffer;
5430         unsigned long flags;
5431         bool dolock;
5432         bool ret;
5433         int cpu;
5434
5435         /* yes this is racy, but if you don't like the race, lock the buffer */
5436         for_each_buffer_cpu(buffer, cpu) {
5437                 cpu_buffer = buffer->buffers[cpu];
5438                 local_irq_save(flags);
5439                 dolock = rb_reader_lock(cpu_buffer);
5440                 ret = rb_per_cpu_empty(cpu_buffer);
5441                 rb_reader_unlock(cpu_buffer, dolock);
5442                 local_irq_restore(flags);
5443
5444                 if (!ret)
5445                         return false;
5446         }
5447
5448         return true;
5449 }
5450 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5451
5452 /**
5453  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5454  * @buffer: The ring buffer
5455  * @cpu: The CPU buffer to test
5456  */
5457 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5458 {
5459         struct ring_buffer_per_cpu *cpu_buffer;
5460         unsigned long flags;
5461         bool dolock;
5462         bool ret;
5463
5464         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5465                 return true;
5466
5467         cpu_buffer = buffer->buffers[cpu];
5468         local_irq_save(flags);
5469         dolock = rb_reader_lock(cpu_buffer);
5470         ret = rb_per_cpu_empty(cpu_buffer);
5471         rb_reader_unlock(cpu_buffer, dolock);
5472         local_irq_restore(flags);
5473
5474         return ret;
5475 }
5476 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5477
5478 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5479 /**
5480  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5481  * @buffer_a: One buffer to swap with
5482  * @buffer_b: The other buffer to swap with
5483  * @cpu: the CPU of the buffers to swap
5484  *
5485  * This function is useful for tracers that want to take a "snapshot"
5486  * of a CPU buffer and has another back up buffer lying around.
5487  * it is expected that the tracer handles the cpu buffer not being
5488  * used at the moment.
5489  */
5490 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5491                          struct trace_buffer *buffer_b, int cpu)
5492 {
5493         struct ring_buffer_per_cpu *cpu_buffer_a;
5494         struct ring_buffer_per_cpu *cpu_buffer_b;
5495         int ret = -EINVAL;
5496
5497         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5498             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5499                 goto out;
5500
5501         cpu_buffer_a = buffer_a->buffers[cpu];
5502         cpu_buffer_b = buffer_b->buffers[cpu];
5503
5504         /* At least make sure the two buffers are somewhat the same */
5505         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5506                 goto out;
5507
5508         ret = -EAGAIN;
5509
5510         if (atomic_read(&buffer_a->record_disabled))
5511                 goto out;
5512
5513         if (atomic_read(&buffer_b->record_disabled))
5514                 goto out;
5515
5516         if (atomic_read(&cpu_buffer_a->record_disabled))
5517                 goto out;
5518
5519         if (atomic_read(&cpu_buffer_b->record_disabled))
5520                 goto out;
5521
5522         /*
5523          * We can't do a synchronize_rcu here because this
5524          * function can be called in atomic context.
5525          * Normally this will be called from the same CPU as cpu.
5526          * If not it's up to the caller to protect this.
5527          */
5528         atomic_inc(&cpu_buffer_a->record_disabled);
5529         atomic_inc(&cpu_buffer_b->record_disabled);
5530
5531         ret = -EBUSY;
5532         if (local_read(&cpu_buffer_a->committing))
5533                 goto out_dec;
5534         if (local_read(&cpu_buffer_b->committing))
5535                 goto out_dec;
5536
5537         /*
5538          * When resize is in progress, we cannot swap it because
5539          * it will mess the state of the cpu buffer.
5540          */
5541         if (atomic_read(&buffer_a->resizing))
5542                 goto out_dec;
5543         if (atomic_read(&buffer_b->resizing))
5544                 goto out_dec;
5545
5546         buffer_a->buffers[cpu] = cpu_buffer_b;
5547         buffer_b->buffers[cpu] = cpu_buffer_a;
5548
5549         cpu_buffer_b->buffer = buffer_a;
5550         cpu_buffer_a->buffer = buffer_b;
5551
5552         ret = 0;
5553
5554 out_dec:
5555         atomic_dec(&cpu_buffer_a->record_disabled);
5556         atomic_dec(&cpu_buffer_b->record_disabled);
5557 out:
5558         return ret;
5559 }
5560 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5561 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5562
5563 /**
5564  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5565  * @buffer: the buffer to allocate for.
5566  * @cpu: the cpu buffer to allocate.
5567  *
5568  * This function is used in conjunction with ring_buffer_read_page.
5569  * When reading a full page from the ring buffer, these functions
5570  * can be used to speed up the process. The calling function should
5571  * allocate a few pages first with this function. Then when it
5572  * needs to get pages from the ring buffer, it passes the result
5573  * of this function into ring_buffer_read_page, which will swap
5574  * the page that was allocated, with the read page of the buffer.
5575  *
5576  * Returns:
5577  *  The page allocated, or ERR_PTR
5578  */
5579 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5580 {
5581         struct ring_buffer_per_cpu *cpu_buffer;
5582         struct buffer_data_page *bpage = NULL;
5583         unsigned long flags;
5584         struct page *page;
5585
5586         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5587                 return ERR_PTR(-ENODEV);
5588
5589         cpu_buffer = buffer->buffers[cpu];
5590         local_irq_save(flags);
5591         arch_spin_lock(&cpu_buffer->lock);
5592
5593         if (cpu_buffer->free_page) {
5594                 bpage = cpu_buffer->free_page;
5595                 cpu_buffer->free_page = NULL;
5596         }
5597
5598         arch_spin_unlock(&cpu_buffer->lock);
5599         local_irq_restore(flags);
5600
5601         if (bpage)
5602                 goto out;
5603
5604         page = alloc_pages_node(cpu_to_node(cpu),
5605                                 GFP_KERNEL | __GFP_NORETRY, 0);
5606         if (!page)
5607                 return ERR_PTR(-ENOMEM);
5608
5609         bpage = page_address(page);
5610
5611  out:
5612         rb_init_page(bpage);
5613
5614         return bpage;
5615 }
5616 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5617
5618 /**
5619  * ring_buffer_free_read_page - free an allocated read page
5620  * @buffer: the buffer the page was allocate for
5621  * @cpu: the cpu buffer the page came from
5622  * @data: the page to free
5623  *
5624  * Free a page allocated from ring_buffer_alloc_read_page.
5625  */
5626 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5627 {
5628         struct ring_buffer_per_cpu *cpu_buffer;
5629         struct buffer_data_page *bpage = data;
5630         struct page *page = virt_to_page(bpage);
5631         unsigned long flags;
5632
5633         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5634                 return;
5635
5636         cpu_buffer = buffer->buffers[cpu];
5637
5638         /* If the page is still in use someplace else, we can't reuse it */
5639         if (page_ref_count(page) > 1)
5640                 goto out;
5641
5642         local_irq_save(flags);
5643         arch_spin_lock(&cpu_buffer->lock);
5644
5645         if (!cpu_buffer->free_page) {
5646                 cpu_buffer->free_page = bpage;
5647                 bpage = NULL;
5648         }
5649
5650         arch_spin_unlock(&cpu_buffer->lock);
5651         local_irq_restore(flags);
5652
5653  out:
5654         free_page((unsigned long)bpage);
5655 }
5656 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5657
5658 /**
5659  * ring_buffer_read_page - extract a page from the ring buffer
5660  * @buffer: buffer to extract from
5661  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5662  * @len: amount to extract
5663  * @cpu: the cpu of the buffer to extract
5664  * @full: should the extraction only happen when the page is full.
5665  *
5666  * This function will pull out a page from the ring buffer and consume it.
5667  * @data_page must be the address of the variable that was returned
5668  * from ring_buffer_alloc_read_page. This is because the page might be used
5669  * to swap with a page in the ring buffer.
5670  *
5671  * for example:
5672  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5673  *      if (IS_ERR(rpage))
5674  *              return PTR_ERR(rpage);
5675  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5676  *      if (ret >= 0)
5677  *              process_page(rpage, ret);
5678  *
5679  * When @full is set, the function will not return true unless
5680  * the writer is off the reader page.
5681  *
5682  * Note: it is up to the calling functions to handle sleeps and wakeups.
5683  *  The ring buffer can be used anywhere in the kernel and can not
5684  *  blindly call wake_up. The layer that uses the ring buffer must be
5685  *  responsible for that.
5686  *
5687  * Returns:
5688  *  >=0 if data has been transferred, returns the offset of consumed data.
5689  *  <0 if no data has been transferred.
5690  */
5691 int ring_buffer_read_page(struct trace_buffer *buffer,
5692                           void **data_page, size_t len, int cpu, int full)
5693 {
5694         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5695         struct ring_buffer_event *event;
5696         struct buffer_data_page *bpage;
5697         struct buffer_page *reader;
5698         unsigned long missed_events;
5699         unsigned long flags;
5700         unsigned int commit;
5701         unsigned int read;
5702         u64 save_timestamp;
5703         int ret = -1;
5704
5705         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5706                 goto out;
5707
5708         /*
5709          * If len is not big enough to hold the page header, then
5710          * we can not copy anything.
5711          */
5712         if (len <= BUF_PAGE_HDR_SIZE)
5713                 goto out;
5714
5715         len -= BUF_PAGE_HDR_SIZE;
5716
5717         if (!data_page)
5718                 goto out;
5719
5720         bpage = *data_page;
5721         if (!bpage)
5722                 goto out;
5723
5724         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5725
5726         reader = rb_get_reader_page(cpu_buffer);
5727         if (!reader)
5728                 goto out_unlock;
5729
5730         event = rb_reader_event(cpu_buffer);
5731
5732         read = reader->read;
5733         commit = rb_page_commit(reader);
5734
5735         /* Check if any events were dropped */
5736         missed_events = cpu_buffer->lost_events;
5737
5738         /*
5739          * If this page has been partially read or
5740          * if len is not big enough to read the rest of the page or
5741          * a writer is still on the page, then
5742          * we must copy the data from the page to the buffer.
5743          * Otherwise, we can simply swap the page with the one passed in.
5744          */
5745         if (read || (len < (commit - read)) ||
5746             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5747                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5748                 unsigned int rpos = read;
5749                 unsigned int pos = 0;
5750                 unsigned int size;
5751
5752                 /*
5753                  * If a full page is expected, this can still be returned
5754                  * if there's been a previous partial read and the
5755                  * rest of the page can be read and the commit page is off
5756                  * the reader page.
5757                  */
5758                 if (full &&
5759                     (!read || (len < (commit - read)) ||
5760                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5761                         goto out_unlock;
5762
5763                 if (len > (commit - read))
5764                         len = (commit - read);
5765
5766                 /* Always keep the time extend and data together */
5767                 size = rb_event_ts_length(event);
5768
5769                 if (len < size)
5770                         goto out_unlock;
5771
5772                 /* save the current timestamp, since the user will need it */
5773                 save_timestamp = cpu_buffer->read_stamp;
5774
5775                 /* Need to copy one event at a time */
5776                 do {
5777                         /* We need the size of one event, because
5778                          * rb_advance_reader only advances by one event,
5779                          * whereas rb_event_ts_length may include the size of
5780                          * one or two events.
5781                          * We have already ensured there's enough space if this
5782                          * is a time extend. */
5783                         size = rb_event_length(event);
5784                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5785
5786                         len -= size;
5787
5788                         rb_advance_reader(cpu_buffer);
5789                         rpos = reader->read;
5790                         pos += size;
5791
5792                         if (rpos >= commit)
5793                                 break;
5794
5795                         event = rb_reader_event(cpu_buffer);
5796                         /* Always keep the time extend and data together */
5797                         size = rb_event_ts_length(event);
5798                 } while (len >= size);
5799
5800                 /* update bpage */
5801                 local_set(&bpage->commit, pos);
5802                 bpage->time_stamp = save_timestamp;
5803
5804                 /* we copied everything to the beginning */
5805                 read = 0;
5806         } else {
5807                 /* update the entry counter */
5808                 cpu_buffer->read += rb_page_entries(reader);
5809                 cpu_buffer->read_bytes += rb_page_commit(reader);
5810
5811                 /* swap the pages */
5812                 rb_init_page(bpage);
5813                 bpage = reader->page;
5814                 reader->page = *data_page;
5815                 local_set(&reader->write, 0);
5816                 local_set(&reader->entries, 0);
5817                 reader->read = 0;
5818                 *data_page = bpage;
5819
5820                 /*
5821                  * Use the real_end for the data size,
5822                  * This gives us a chance to store the lost events
5823                  * on the page.
5824                  */
5825                 if (reader->real_end)
5826                         local_set(&bpage->commit, reader->real_end);
5827         }
5828         ret = read;
5829
5830         cpu_buffer->lost_events = 0;
5831
5832         commit = local_read(&bpage->commit);
5833         /*
5834          * Set a flag in the commit field if we lost events
5835          */
5836         if (missed_events) {
5837                 /* If there is room at the end of the page to save the
5838                  * missed events, then record it there.
5839                  */
5840                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5841                         memcpy(&bpage->data[commit], &missed_events,
5842                                sizeof(missed_events));
5843                         local_add(RB_MISSED_STORED, &bpage->commit);
5844                         commit += sizeof(missed_events);
5845                 }
5846                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5847         }
5848
5849         /*
5850          * This page may be off to user land. Zero it out here.
5851          */
5852         if (commit < BUF_PAGE_SIZE)
5853                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5854
5855  out_unlock:
5856         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5857
5858  out:
5859         return ret;
5860 }
5861 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5862
5863 /*
5864  * We only allocate new buffers, never free them if the CPU goes down.
5865  * If we were to free the buffer, then the user would lose any trace that was in
5866  * the buffer.
5867  */
5868 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5869 {
5870         struct trace_buffer *buffer;
5871         long nr_pages_same;
5872         int cpu_i;
5873         unsigned long nr_pages;
5874
5875         buffer = container_of(node, struct trace_buffer, node);
5876         if (cpumask_test_cpu(cpu, buffer->cpumask))
5877                 return 0;
5878
5879         nr_pages = 0;
5880         nr_pages_same = 1;
5881         /* check if all cpu sizes are same */
5882         for_each_buffer_cpu(buffer, cpu_i) {
5883                 /* fill in the size from first enabled cpu */
5884                 if (nr_pages == 0)
5885                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5886                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5887                         nr_pages_same = 0;
5888                         break;
5889                 }
5890         }
5891         /* allocate minimum pages, user can later expand it */
5892         if (!nr_pages_same)
5893                 nr_pages = 2;
5894         buffer->buffers[cpu] =
5895                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5896         if (!buffer->buffers[cpu]) {
5897                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5898                      cpu);
5899                 return -ENOMEM;
5900         }
5901         smp_wmb();
5902         cpumask_set_cpu(cpu, buffer->cpumask);
5903         return 0;
5904 }
5905
5906 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5907 /*
5908  * This is a basic integrity check of the ring buffer.
5909  * Late in the boot cycle this test will run when configured in.
5910  * It will kick off a thread per CPU that will go into a loop
5911  * writing to the per cpu ring buffer various sizes of data.
5912  * Some of the data will be large items, some small.
5913  *
5914  * Another thread is created that goes into a spin, sending out
5915  * IPIs to the other CPUs to also write into the ring buffer.
5916  * this is to test the nesting ability of the buffer.
5917  *
5918  * Basic stats are recorded and reported. If something in the
5919  * ring buffer should happen that's not expected, a big warning
5920  * is displayed and all ring buffers are disabled.
5921  */
5922 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5923
5924 struct rb_test_data {
5925         struct trace_buffer *buffer;
5926         unsigned long           events;
5927         unsigned long           bytes_written;
5928         unsigned long           bytes_alloc;
5929         unsigned long           bytes_dropped;
5930         unsigned long           events_nested;
5931         unsigned long           bytes_written_nested;
5932         unsigned long           bytes_alloc_nested;
5933         unsigned long           bytes_dropped_nested;
5934         int                     min_size_nested;
5935         int                     max_size_nested;
5936         int                     max_size;
5937         int                     min_size;
5938         int                     cpu;
5939         int                     cnt;
5940 };
5941
5942 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5943
5944 /* 1 meg per cpu */
5945 #define RB_TEST_BUFFER_SIZE     1048576
5946
5947 static char rb_string[] __initdata =
5948         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5949         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5950         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5951
5952 static bool rb_test_started __initdata;
5953
5954 struct rb_item {
5955         int size;
5956         char str[];
5957 };
5958
5959 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5960 {
5961         struct ring_buffer_event *event;
5962         struct rb_item *item;
5963         bool started;
5964         int event_len;
5965         int size;
5966         int len;
5967         int cnt;
5968
5969         /* Have nested writes different that what is written */
5970         cnt = data->cnt + (nested ? 27 : 0);
5971
5972         /* Multiply cnt by ~e, to make some unique increment */
5973         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5974
5975         len = size + sizeof(struct rb_item);
5976
5977         started = rb_test_started;
5978         /* read rb_test_started before checking buffer enabled */
5979         smp_rmb();
5980
5981         event = ring_buffer_lock_reserve(data->buffer, len);
5982         if (!event) {
5983                 /* Ignore dropped events before test starts. */
5984                 if (started) {
5985                         if (nested)
5986                                 data->bytes_dropped += len;
5987                         else
5988                                 data->bytes_dropped_nested += len;
5989                 }
5990                 return len;
5991         }
5992
5993         event_len = ring_buffer_event_length(event);
5994
5995         if (RB_WARN_ON(data->buffer, event_len < len))
5996                 goto out;
5997
5998         item = ring_buffer_event_data(event);
5999         item->size = size;
6000         memcpy(item->str, rb_string, size);
6001
6002         if (nested) {
6003                 data->bytes_alloc_nested += event_len;
6004                 data->bytes_written_nested += len;
6005                 data->events_nested++;
6006                 if (!data->min_size_nested || len < data->min_size_nested)
6007                         data->min_size_nested = len;
6008                 if (len > data->max_size_nested)
6009                         data->max_size_nested = len;
6010         } else {
6011                 data->bytes_alloc += event_len;
6012                 data->bytes_written += len;
6013                 data->events++;
6014                 if (!data->min_size || len < data->min_size)
6015                         data->max_size = len;
6016                 if (len > data->max_size)
6017                         data->max_size = len;
6018         }
6019
6020  out:
6021         ring_buffer_unlock_commit(data->buffer);
6022
6023         return 0;
6024 }
6025
6026 static __init int rb_test(void *arg)
6027 {
6028         struct rb_test_data *data = arg;
6029
6030         while (!kthread_should_stop()) {
6031                 rb_write_something(data, false);
6032                 data->cnt++;
6033
6034                 set_current_state(TASK_INTERRUPTIBLE);
6035                 /* Now sleep between a min of 100-300us and a max of 1ms */
6036                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6037         }
6038
6039         return 0;
6040 }
6041
6042 static __init void rb_ipi(void *ignore)
6043 {
6044         struct rb_test_data *data;
6045         int cpu = smp_processor_id();
6046
6047         data = &rb_data[cpu];
6048         rb_write_something(data, true);
6049 }
6050
6051 static __init int rb_hammer_test(void *arg)
6052 {
6053         while (!kthread_should_stop()) {
6054
6055                 /* Send an IPI to all cpus to write data! */
6056                 smp_call_function(rb_ipi, NULL, 1);
6057                 /* No sleep, but for non preempt, let others run */
6058                 schedule();
6059         }
6060
6061         return 0;
6062 }
6063
6064 static __init int test_ringbuffer(void)
6065 {
6066         struct task_struct *rb_hammer;
6067         struct trace_buffer *buffer;
6068         int cpu;
6069         int ret = 0;
6070
6071         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6072                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6073                 return 0;
6074         }
6075
6076         pr_info("Running ring buffer tests...\n");
6077
6078         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6079         if (WARN_ON(!buffer))
6080                 return 0;
6081
6082         /* Disable buffer so that threads can't write to it yet */
6083         ring_buffer_record_off(buffer);
6084
6085         for_each_online_cpu(cpu) {
6086                 rb_data[cpu].buffer = buffer;
6087                 rb_data[cpu].cpu = cpu;
6088                 rb_data[cpu].cnt = cpu;
6089                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6090                                                      cpu, "rbtester/%u");
6091                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6092                         pr_cont("FAILED\n");
6093                         ret = PTR_ERR(rb_threads[cpu]);
6094                         goto out_free;
6095                 }
6096         }
6097
6098         /* Now create the rb hammer! */
6099         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6100         if (WARN_ON(IS_ERR(rb_hammer))) {
6101                 pr_cont("FAILED\n");
6102                 ret = PTR_ERR(rb_hammer);
6103                 goto out_free;
6104         }
6105
6106         ring_buffer_record_on(buffer);
6107         /*
6108          * Show buffer is enabled before setting rb_test_started.
6109          * Yes there's a small race window where events could be
6110          * dropped and the thread wont catch it. But when a ring
6111          * buffer gets enabled, there will always be some kind of
6112          * delay before other CPUs see it. Thus, we don't care about
6113          * those dropped events. We care about events dropped after
6114          * the threads see that the buffer is active.
6115          */
6116         smp_wmb();
6117         rb_test_started = true;
6118
6119         set_current_state(TASK_INTERRUPTIBLE);
6120         /* Just run for 10 seconds */;
6121         schedule_timeout(10 * HZ);
6122
6123         kthread_stop(rb_hammer);
6124
6125  out_free:
6126         for_each_online_cpu(cpu) {
6127                 if (!rb_threads[cpu])
6128                         break;
6129                 kthread_stop(rb_threads[cpu]);
6130         }
6131         if (ret) {
6132                 ring_buffer_free(buffer);
6133                 return ret;
6134         }
6135
6136         /* Report! */
6137         pr_info("finished\n");
6138         for_each_online_cpu(cpu) {
6139                 struct ring_buffer_event *event;
6140                 struct rb_test_data *data = &rb_data[cpu];
6141                 struct rb_item *item;
6142                 unsigned long total_events;
6143                 unsigned long total_dropped;
6144                 unsigned long total_written;
6145                 unsigned long total_alloc;
6146                 unsigned long total_read = 0;
6147                 unsigned long total_size = 0;
6148                 unsigned long total_len = 0;
6149                 unsigned long total_lost = 0;
6150                 unsigned long lost;
6151                 int big_event_size;
6152                 int small_event_size;
6153
6154                 ret = -1;
6155
6156                 total_events = data->events + data->events_nested;
6157                 total_written = data->bytes_written + data->bytes_written_nested;
6158                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6159                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6160
6161                 big_event_size = data->max_size + data->max_size_nested;
6162                 small_event_size = data->min_size + data->min_size_nested;
6163
6164                 pr_info("CPU %d:\n", cpu);
6165                 pr_info("              events:    %ld\n", total_events);
6166                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6167                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6168                 pr_info("       written bytes:    %ld\n", total_written);
6169                 pr_info("       biggest event:    %d\n", big_event_size);
6170                 pr_info("      smallest event:    %d\n", small_event_size);
6171
6172                 if (RB_WARN_ON(buffer, total_dropped))
6173                         break;
6174
6175                 ret = 0;
6176
6177                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6178                         total_lost += lost;
6179                         item = ring_buffer_event_data(event);
6180                         total_len += ring_buffer_event_length(event);
6181                         total_size += item->size + sizeof(struct rb_item);
6182                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6183                                 pr_info("FAILED!\n");
6184                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6185                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6186                                 RB_WARN_ON(buffer, 1);
6187                                 ret = -1;
6188                                 break;
6189                         }
6190                         total_read++;
6191                 }
6192                 if (ret)
6193                         break;
6194
6195                 ret = -1;
6196
6197                 pr_info("         read events:   %ld\n", total_read);
6198                 pr_info("         lost events:   %ld\n", total_lost);
6199                 pr_info("        total events:   %ld\n", total_lost + total_read);
6200                 pr_info("  recorded len bytes:   %ld\n", total_len);
6201                 pr_info(" recorded size bytes:   %ld\n", total_size);
6202                 if (total_lost) {
6203                         pr_info(" With dropped events, record len and size may not match\n"
6204                                 " alloced and written from above\n");
6205                 } else {
6206                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6207                                        total_size != total_written))
6208                                 break;
6209                 }
6210                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6211                         break;
6212
6213                 ret = 0;
6214         }
6215         if (!ret)
6216                 pr_info("Ring buffer PASSED!\n");
6217
6218         ring_buffer_free(buffer);
6219         return 0;
6220 }
6221
6222 late_initcall(test_ringbuffer);
6223 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */