USB: serial: option: add Fibocom FM101-GL variant
[platform/kernel/linux-rpi.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
358 {
359         return local_read(&bpage->page->commit);
360 }
361
362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364         free_page((unsigned long)bpage->page);
365         kfree(bpage);
366 }
367
368 /*
369  * We need to fit the time_stamp delta into 27 bits.
370  */
371 static inline bool test_time_stamp(u64 delta)
372 {
373         return !!(delta & TS_DELTA_TEST);
374 }
375
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380
381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383         struct buffer_data_page field;
384
385         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386                          "offset:0;\tsize:%u;\tsigned:%u;\n",
387                          (unsigned int)sizeof(field.time_stamp),
388                          (unsigned int)is_signed_type(u64));
389
390         trace_seq_printf(s, "\tfield: local_t commit;\t"
391                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
392                          (unsigned int)offsetof(typeof(field), commit),
393                          (unsigned int)sizeof(field.commit),
394                          (unsigned int)is_signed_type(long));
395
396         trace_seq_printf(s, "\tfield: int overwrite;\t"
397                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
398                          (unsigned int)offsetof(typeof(field), commit),
399                          1,
400                          (unsigned int)is_signed_type(long));
401
402         trace_seq_printf(s, "\tfield: char data;\t"
403                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
404                          (unsigned int)offsetof(typeof(field), data),
405                          (unsigned int)BUF_PAGE_SIZE,
406                          (unsigned int)is_signed_type(char));
407
408         return !trace_seq_has_overflowed(s);
409 }
410
411 struct rb_irq_work {
412         struct irq_work                 work;
413         wait_queue_head_t               waiters;
414         wait_queue_head_t               full_waiters;
415         long                            wait_index;
416         bool                            waiters_pending;
417         bool                            full_waiters_pending;
418         bool                            wakeup_full;
419 };
420
421 /*
422  * Structure to hold event state and handle nested events.
423  */
424 struct rb_event_info {
425         u64                     ts;
426         u64                     delta;
427         u64                     before;
428         u64                     after;
429         unsigned long           length;
430         struct buffer_page      *tail_page;
431         int                     add_timestamp;
432 };
433
434 /*
435  * Used for the add_timestamp
436  *  NONE
437  *  EXTEND - wants a time extend
438  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
439  *  FORCE - force a full time stamp.
440  */
441 enum {
442         RB_ADD_STAMP_NONE               = 0,
443         RB_ADD_STAMP_EXTEND             = BIT(1),
444         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
445         RB_ADD_STAMP_FORCE              = BIT(3)
446 };
447 /*
448  * Used for which event context the event is in.
449  *  TRANSITION = 0
450  *  NMI     = 1
451  *  IRQ     = 2
452  *  SOFTIRQ = 3
453  *  NORMAL  = 4
454  *
455  * See trace_recursive_lock() comment below for more details.
456  */
457 enum {
458         RB_CTX_TRANSITION,
459         RB_CTX_NMI,
460         RB_CTX_IRQ,
461         RB_CTX_SOFTIRQ,
462         RB_CTX_NORMAL,
463         RB_CTX_MAX
464 };
465
466 #if BITS_PER_LONG == 32
467 #define RB_TIME_32
468 #endif
469
470 /* To test on 64 bit machines */
471 //#define RB_TIME_32
472
473 #ifdef RB_TIME_32
474
475 struct rb_time_struct {
476         local_t         cnt;
477         local_t         top;
478         local_t         bottom;
479         local_t         msb;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484         local64_t       time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488
489 #define MAX_NEST        5
490
491 /*
492  * head_page == tail_page && head == tail then buffer is empty.
493  */
494 struct ring_buffer_per_cpu {
495         int                             cpu;
496         atomic_t                        record_disabled;
497         atomic_t                        resize_disabled;
498         struct trace_buffer     *buffer;
499         raw_spinlock_t                  reader_lock;    /* serialize readers */
500         arch_spinlock_t                 lock;
501         struct lock_class_key           lock_key;
502         struct buffer_data_page         *free_page;
503         unsigned long                   nr_pages;
504         unsigned int                    current_context;
505         struct list_head                *pages;
506         struct buffer_page              *head_page;     /* read from head */
507         struct buffer_page              *tail_page;     /* write to tail */
508         struct buffer_page              *commit_page;   /* committed pages */
509         struct buffer_page              *reader_page;
510         unsigned long                   lost_events;
511         unsigned long                   last_overrun;
512         unsigned long                   nest;
513         local_t                         entries_bytes;
514         local_t                         entries;
515         local_t                         overrun;
516         local_t                         commit_overrun;
517         local_t                         dropped_events;
518         local_t                         committing;
519         local_t                         commits;
520         local_t                         pages_touched;
521         local_t                         pages_lost;
522         local_t                         pages_read;
523         long                            last_pages_touch;
524         size_t                          shortest_full;
525         unsigned long                   read;
526         unsigned long                   read_bytes;
527         rb_time_t                       write_stamp;
528         rb_time_t                       before_stamp;
529         u64                             event_stamp[MAX_NEST];
530         u64                             read_stamp;
531         /* pages removed since last reset */
532         unsigned long                   pages_removed;
533         /* ring buffer pages to update, > 0 to add, < 0 to remove */
534         long                            nr_pages_to_update;
535         struct list_head                new_pages; /* new pages to add */
536         struct work_struct              update_pages_work;
537         struct completion               update_done;
538
539         struct rb_irq_work              irq_work;
540 };
541
542 struct trace_buffer {
543         unsigned                        flags;
544         int                             cpus;
545         atomic_t                        record_disabled;
546         atomic_t                        resizing;
547         cpumask_var_t                   cpumask;
548
549         struct lock_class_key           *reader_lock_key;
550
551         struct mutex                    mutex;
552
553         struct ring_buffer_per_cpu      **buffers;
554
555         struct hlist_node               node;
556         u64                             (*clock)(void);
557
558         struct rb_irq_work              irq_work;
559         bool                            time_stamp_abs;
560 };
561
562 struct ring_buffer_iter {
563         struct ring_buffer_per_cpu      *cpu_buffer;
564         unsigned long                   head;
565         unsigned long                   next_event;
566         struct buffer_page              *head_page;
567         struct buffer_page              *cache_reader_page;
568         unsigned long                   cache_read;
569         unsigned long                   cache_pages_removed;
570         u64                             read_stamp;
571         u64                             page_stamp;
572         struct ring_buffer_event        *event;
573         int                             missed_events;
574 };
575
576 #ifdef RB_TIME_32
577
578 /*
579  * On 32 bit machines, local64_t is very expensive. As the ring
580  * buffer doesn't need all the features of a true 64 bit atomic,
581  * on 32 bit, it uses these functions (64 still uses local64_t).
582  *
583  * For the ring buffer, 64 bit required operations for the time is
584  * the following:
585  *
586  *  - Reads may fail if it interrupted a modification of the time stamp.
587  *      It will succeed if it did not interrupt another write even if
588  *      the read itself is interrupted by a write.
589  *      It returns whether it was successful or not.
590  *
591  *  - Writes always succeed and will overwrite other writes and writes
592  *      that were done by events interrupting the current write.
593  *
594  *  - A write followed by a read of the same time stamp will always succeed,
595  *      but may not contain the same value.
596  *
597  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
598  *      Other than that, it acts like a normal cmpxchg.
599  *
600  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
602  *
603  * The two most significant bits of each half holds a 2 bit counter (0-3).
604  * Each update will increment this counter by one.
605  * When reading the top and bottom, if the two counter bits match then the
606  *  top and bottom together make a valid 60 bit number.
607  */
608 #define RB_TIME_SHIFT   30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610 #define RB_TIME_MSB_SHIFT        60
611
612 static inline int rb_time_cnt(unsigned long val)
613 {
614         return (val >> RB_TIME_SHIFT) & 3;
615 }
616
617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
618 {
619         u64 val;
620
621         val = top & RB_TIME_VAL_MASK;
622         val <<= RB_TIME_SHIFT;
623         val |= bottom & RB_TIME_VAL_MASK;
624
625         return val;
626 }
627
628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
629 {
630         unsigned long top, bottom, msb;
631         unsigned long c;
632
633         /*
634          * If the read is interrupted by a write, then the cnt will
635          * be different. Loop until both top and bottom have been read
636          * without interruption.
637          */
638         do {
639                 c = local_read(&t->cnt);
640                 top = local_read(&t->top);
641                 bottom = local_read(&t->bottom);
642                 msb = local_read(&t->msb);
643         } while (c != local_read(&t->cnt));
644
645         *cnt = rb_time_cnt(top);
646
647         /* If top, msb or bottom counts don't match, this interrupted a write */
648         if (*cnt != rb_time_cnt(msb) || *cnt != rb_time_cnt(bottom))
649                 return false;
650
651         /* The shift to msb will lose its cnt bits */
652         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
653         return true;
654 }
655
656 static bool rb_time_read(rb_time_t *t, u64 *ret)
657 {
658         unsigned long cnt;
659
660         return __rb_time_read(t, ret, &cnt);
661 }
662
663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
664 {
665         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
666 }
667
668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
669                                  unsigned long *msb)
670 {
671         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
672         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
673         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
674 }
675
676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
677 {
678         val = rb_time_val_cnt(val, cnt);
679         local_set(t, val);
680 }
681
682 static void rb_time_set(rb_time_t *t, u64 val)
683 {
684         unsigned long cnt, top, bottom, msb;
685
686         rb_time_split(val, &top, &bottom, &msb);
687
688         /* Writes always succeed with a valid number even if it gets interrupted. */
689         do {
690                 cnt = local_inc_return(&t->cnt);
691                 rb_time_val_set(&t->top, top, cnt);
692                 rb_time_val_set(&t->bottom, bottom, cnt);
693                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
694         } while (cnt != local_read(&t->cnt));
695 }
696
697 static inline bool
698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
699 {
700         return local_try_cmpxchg(l, &expect, set);
701 }
702
703 #else /* 64 bits */
704
705 /* local64_t always succeeds */
706
707 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
708 {
709         *ret = local64_read(&t->time);
710         return true;
711 }
712 static void rb_time_set(rb_time_t *t, u64 val)
713 {
714         local64_set(&t->time, val);
715 }
716 #endif
717
718 /*
719  * Enable this to make sure that the event passed to
720  * ring_buffer_event_time_stamp() is not committed and also
721  * is on the buffer that it passed in.
722  */
723 //#define RB_VERIFY_EVENT
724 #ifdef RB_VERIFY_EVENT
725 static struct list_head *rb_list_head(struct list_head *list);
726 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
727                          void *event)
728 {
729         struct buffer_page *page = cpu_buffer->commit_page;
730         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
731         struct list_head *next;
732         long commit, write;
733         unsigned long addr = (unsigned long)event;
734         bool done = false;
735         int stop = 0;
736
737         /* Make sure the event exists and is not committed yet */
738         do {
739                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
740                         done = true;
741                 commit = local_read(&page->page->commit);
742                 write = local_read(&page->write);
743                 if (addr >= (unsigned long)&page->page->data[commit] &&
744                     addr < (unsigned long)&page->page->data[write])
745                         return;
746
747                 next = rb_list_head(page->list.next);
748                 page = list_entry(next, struct buffer_page, list);
749         } while (!done);
750         WARN_ON_ONCE(1);
751 }
752 #else
753 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
754                          void *event)
755 {
756 }
757 #endif
758
759 /*
760  * The absolute time stamp drops the 5 MSBs and some clocks may
761  * require them. The rb_fix_abs_ts() will take a previous full
762  * time stamp, and add the 5 MSB of that time stamp on to the
763  * saved absolute time stamp. Then they are compared in case of
764  * the unlikely event that the latest time stamp incremented
765  * the 5 MSB.
766  */
767 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
768 {
769         if (save_ts & TS_MSB) {
770                 abs |= save_ts & TS_MSB;
771                 /* Check for overflow */
772                 if (unlikely(abs < save_ts))
773                         abs += 1ULL << 59;
774         }
775         return abs;
776 }
777
778 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
779
780 /**
781  * ring_buffer_event_time_stamp - return the event's current time stamp
782  * @buffer: The buffer that the event is on
783  * @event: the event to get the time stamp of
784  *
785  * Note, this must be called after @event is reserved, and before it is
786  * committed to the ring buffer. And must be called from the same
787  * context where the event was reserved (normal, softirq, irq, etc).
788  *
789  * Returns the time stamp associated with the current event.
790  * If the event has an extended time stamp, then that is used as
791  * the time stamp to return.
792  * In the highly unlikely case that the event was nested more than
793  * the max nesting, then the write_stamp of the buffer is returned,
794  * otherwise  current time is returned, but that really neither of
795  * the last two cases should ever happen.
796  */
797 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
798                                  struct ring_buffer_event *event)
799 {
800         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
801         unsigned int nest;
802         u64 ts;
803
804         /* If the event includes an absolute time, then just use that */
805         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
806                 ts = rb_event_time_stamp(event);
807                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
808         }
809
810         nest = local_read(&cpu_buffer->committing);
811         verify_event(cpu_buffer, event);
812         if (WARN_ON_ONCE(!nest))
813                 goto fail;
814
815         /* Read the current saved nesting level time stamp */
816         if (likely(--nest < MAX_NEST))
817                 return cpu_buffer->event_stamp[nest];
818
819         /* Shouldn't happen, warn if it does */
820         WARN_ONCE(1, "nest (%d) greater than max", nest);
821
822  fail:
823         /* Can only fail on 32 bit */
824         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
825                 /* Screw it, just read the current time */
826                 ts = rb_time_stamp(cpu_buffer->buffer);
827
828         return ts;
829 }
830
831 /**
832  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
833  * @buffer: The ring_buffer to get the number of pages from
834  * @cpu: The cpu of the ring_buffer to get the number of pages from
835  *
836  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
837  */
838 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
839 {
840         return buffer->buffers[cpu]->nr_pages;
841 }
842
843 /**
844  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
845  * @buffer: The ring_buffer to get the number of pages from
846  * @cpu: The cpu of the ring_buffer to get the number of pages from
847  *
848  * Returns the number of pages that have content in the ring buffer.
849  */
850 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
851 {
852         size_t read;
853         size_t lost;
854         size_t cnt;
855
856         read = local_read(&buffer->buffers[cpu]->pages_read);
857         lost = local_read(&buffer->buffers[cpu]->pages_lost);
858         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
859
860         if (WARN_ON_ONCE(cnt < lost))
861                 return 0;
862
863         cnt -= lost;
864
865         /* The reader can read an empty page, but not more than that */
866         if (cnt < read) {
867                 WARN_ON_ONCE(read > cnt + 1);
868                 return 0;
869         }
870
871         return cnt - read;
872 }
873
874 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
875 {
876         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
877         size_t nr_pages;
878         size_t dirty;
879
880         nr_pages = cpu_buffer->nr_pages;
881         if (!nr_pages || !full)
882                 return true;
883
884         /*
885          * Add one as dirty will never equal nr_pages, as the sub-buffer
886          * that the writer is on is not counted as dirty.
887          * This is needed if "buffer_percent" is set to 100.
888          */
889         dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
890
891         return (dirty * 100) >= (full * nr_pages);
892 }
893
894 /*
895  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
896  *
897  * Schedules a delayed work to wake up any task that is blocked on the
898  * ring buffer waiters queue.
899  */
900 static void rb_wake_up_waiters(struct irq_work *work)
901 {
902         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
903
904         wake_up_all(&rbwork->waiters);
905         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
906                 rbwork->wakeup_full = false;
907                 rbwork->full_waiters_pending = false;
908                 wake_up_all(&rbwork->full_waiters);
909         }
910 }
911
912 /**
913  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
914  * @buffer: The ring buffer to wake waiters on
915  * @cpu: The CPU buffer to wake waiters on
916  *
917  * In the case of a file that represents a ring buffer is closing,
918  * it is prudent to wake up any waiters that are on this.
919  */
920 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
921 {
922         struct ring_buffer_per_cpu *cpu_buffer;
923         struct rb_irq_work *rbwork;
924
925         if (!buffer)
926                 return;
927
928         if (cpu == RING_BUFFER_ALL_CPUS) {
929
930                 /* Wake up individual ones too. One level recursion */
931                 for_each_buffer_cpu(buffer, cpu)
932                         ring_buffer_wake_waiters(buffer, cpu);
933
934                 rbwork = &buffer->irq_work;
935         } else {
936                 if (WARN_ON_ONCE(!buffer->buffers))
937                         return;
938                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
939                         return;
940
941                 cpu_buffer = buffer->buffers[cpu];
942                 /* The CPU buffer may not have been initialized yet */
943                 if (!cpu_buffer)
944                         return;
945                 rbwork = &cpu_buffer->irq_work;
946         }
947
948         rbwork->wait_index++;
949         /* make sure the waiters see the new index */
950         smp_wmb();
951
952         /* This can be called in any context */
953         irq_work_queue(&rbwork->work);
954 }
955
956 /**
957  * ring_buffer_wait - wait for input to the ring buffer
958  * @buffer: buffer to wait on
959  * @cpu: the cpu buffer to wait on
960  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
961  *
962  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
963  * as data is added to any of the @buffer's cpu buffers. Otherwise
964  * it will wait for data to be added to a specific cpu buffer.
965  */
966 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
967 {
968         struct ring_buffer_per_cpu *cpu_buffer;
969         DEFINE_WAIT(wait);
970         struct rb_irq_work *work;
971         long wait_index;
972         int ret = 0;
973
974         /*
975          * Depending on what the caller is waiting for, either any
976          * data in any cpu buffer, or a specific buffer, put the
977          * caller on the appropriate wait queue.
978          */
979         if (cpu == RING_BUFFER_ALL_CPUS) {
980                 work = &buffer->irq_work;
981                 /* Full only makes sense on per cpu reads */
982                 full = 0;
983         } else {
984                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
985                         return -ENODEV;
986                 cpu_buffer = buffer->buffers[cpu];
987                 work = &cpu_buffer->irq_work;
988         }
989
990         wait_index = READ_ONCE(work->wait_index);
991
992         while (true) {
993                 if (full)
994                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
995                 else
996                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
997
998                 /*
999                  * The events can happen in critical sections where
1000                  * checking a work queue can cause deadlocks.
1001                  * After adding a task to the queue, this flag is set
1002                  * only to notify events to try to wake up the queue
1003                  * using irq_work.
1004                  *
1005                  * We don't clear it even if the buffer is no longer
1006                  * empty. The flag only causes the next event to run
1007                  * irq_work to do the work queue wake up. The worse
1008                  * that can happen if we race with !trace_empty() is that
1009                  * an event will cause an irq_work to try to wake up
1010                  * an empty queue.
1011                  *
1012                  * There's no reason to protect this flag either, as
1013                  * the work queue and irq_work logic will do the necessary
1014                  * synchronization for the wake ups. The only thing
1015                  * that is necessary is that the wake up happens after
1016                  * a task has been queued. It's OK for spurious wake ups.
1017                  */
1018                 if (full)
1019                         work->full_waiters_pending = true;
1020                 else
1021                         work->waiters_pending = true;
1022
1023                 if (signal_pending(current)) {
1024                         ret = -EINTR;
1025                         break;
1026                 }
1027
1028                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1029                         break;
1030
1031                 if (cpu != RING_BUFFER_ALL_CPUS &&
1032                     !ring_buffer_empty_cpu(buffer, cpu)) {
1033                         unsigned long flags;
1034                         bool pagebusy;
1035                         bool done;
1036
1037                         if (!full)
1038                                 break;
1039
1040                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1041                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1042                         done = !pagebusy && full_hit(buffer, cpu, full);
1043
1044                         if (!cpu_buffer->shortest_full ||
1045                             cpu_buffer->shortest_full > full)
1046                                 cpu_buffer->shortest_full = full;
1047                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1048                         if (done)
1049                                 break;
1050                 }
1051
1052                 schedule();
1053
1054                 /* Make sure to see the new wait index */
1055                 smp_rmb();
1056                 if (wait_index != work->wait_index)
1057                         break;
1058         }
1059
1060         if (full)
1061                 finish_wait(&work->full_waiters, &wait);
1062         else
1063                 finish_wait(&work->waiters, &wait);
1064
1065         return ret;
1066 }
1067
1068 /**
1069  * ring_buffer_poll_wait - poll on buffer input
1070  * @buffer: buffer to wait on
1071  * @cpu: the cpu buffer to wait on
1072  * @filp: the file descriptor
1073  * @poll_table: The poll descriptor
1074  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1075  *
1076  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1077  * as data is added to any of the @buffer's cpu buffers. Otherwise
1078  * it will wait for data to be added to a specific cpu buffer.
1079  *
1080  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1081  * zero otherwise.
1082  */
1083 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1084                           struct file *filp, poll_table *poll_table, int full)
1085 {
1086         struct ring_buffer_per_cpu *cpu_buffer;
1087         struct rb_irq_work *work;
1088
1089         if (cpu == RING_BUFFER_ALL_CPUS) {
1090                 work = &buffer->irq_work;
1091                 full = 0;
1092         } else {
1093                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1094                         return -EINVAL;
1095
1096                 cpu_buffer = buffer->buffers[cpu];
1097                 work = &cpu_buffer->irq_work;
1098         }
1099
1100         if (full) {
1101                 poll_wait(filp, &work->full_waiters, poll_table);
1102                 work->full_waiters_pending = true;
1103                 if (!cpu_buffer->shortest_full ||
1104                     cpu_buffer->shortest_full > full)
1105                         cpu_buffer->shortest_full = full;
1106         } else {
1107                 poll_wait(filp, &work->waiters, poll_table);
1108                 work->waiters_pending = true;
1109         }
1110
1111         /*
1112          * There's a tight race between setting the waiters_pending and
1113          * checking if the ring buffer is empty.  Once the waiters_pending bit
1114          * is set, the next event will wake the task up, but we can get stuck
1115          * if there's only a single event in.
1116          *
1117          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1118          * but adding a memory barrier to all events will cause too much of a
1119          * performance hit in the fast path.  We only need a memory barrier when
1120          * the buffer goes from empty to having content.  But as this race is
1121          * extremely small, and it's not a problem if another event comes in, we
1122          * will fix it later.
1123          */
1124         smp_mb();
1125
1126         if (full)
1127                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1128
1129         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1130             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1131                 return EPOLLIN | EPOLLRDNORM;
1132         return 0;
1133 }
1134
1135 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1136 #define RB_WARN_ON(b, cond)                                             \
1137         ({                                                              \
1138                 int _____ret = unlikely(cond);                          \
1139                 if (_____ret) {                                         \
1140                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1141                                 struct ring_buffer_per_cpu *__b =       \
1142                                         (void *)b;                      \
1143                                 atomic_inc(&__b->buffer->record_disabled); \
1144                         } else                                          \
1145                                 atomic_inc(&b->record_disabled);        \
1146                         WARN_ON(1);                                     \
1147                 }                                                       \
1148                 _____ret;                                               \
1149         })
1150
1151 /* Up this if you want to test the TIME_EXTENTS and normalization */
1152 #define DEBUG_SHIFT 0
1153
1154 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1155 {
1156         u64 ts;
1157
1158         /* Skip retpolines :-( */
1159         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1160                 ts = trace_clock_local();
1161         else
1162                 ts = buffer->clock();
1163
1164         /* shift to debug/test normalization and TIME_EXTENTS */
1165         return ts << DEBUG_SHIFT;
1166 }
1167
1168 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1169 {
1170         u64 time;
1171
1172         preempt_disable_notrace();
1173         time = rb_time_stamp(buffer);
1174         preempt_enable_notrace();
1175
1176         return time;
1177 }
1178 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1179
1180 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1181                                       int cpu, u64 *ts)
1182 {
1183         /* Just stupid testing the normalize function and deltas */
1184         *ts >>= DEBUG_SHIFT;
1185 }
1186 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1187
1188 /*
1189  * Making the ring buffer lockless makes things tricky.
1190  * Although writes only happen on the CPU that they are on,
1191  * and they only need to worry about interrupts. Reads can
1192  * happen on any CPU.
1193  *
1194  * The reader page is always off the ring buffer, but when the
1195  * reader finishes with a page, it needs to swap its page with
1196  * a new one from the buffer. The reader needs to take from
1197  * the head (writes go to the tail). But if a writer is in overwrite
1198  * mode and wraps, it must push the head page forward.
1199  *
1200  * Here lies the problem.
1201  *
1202  * The reader must be careful to replace only the head page, and
1203  * not another one. As described at the top of the file in the
1204  * ASCII art, the reader sets its old page to point to the next
1205  * page after head. It then sets the page after head to point to
1206  * the old reader page. But if the writer moves the head page
1207  * during this operation, the reader could end up with the tail.
1208  *
1209  * We use cmpxchg to help prevent this race. We also do something
1210  * special with the page before head. We set the LSB to 1.
1211  *
1212  * When the writer must push the page forward, it will clear the
1213  * bit that points to the head page, move the head, and then set
1214  * the bit that points to the new head page.
1215  *
1216  * We also don't want an interrupt coming in and moving the head
1217  * page on another writer. Thus we use the second LSB to catch
1218  * that too. Thus:
1219  *
1220  * head->list->prev->next        bit 1          bit 0
1221  *                              -------        -------
1222  * Normal page                     0              0
1223  * Points to head page             0              1
1224  * New head page                   1              0
1225  *
1226  * Note we can not trust the prev pointer of the head page, because:
1227  *
1228  * +----+       +-----+        +-----+
1229  * |    |------>|  T  |---X--->|  N  |
1230  * |    |<------|     |        |     |
1231  * +----+       +-----+        +-----+
1232  *   ^                           ^ |
1233  *   |          +-----+          | |
1234  *   +----------|  R  |----------+ |
1235  *              |     |<-----------+
1236  *              +-----+
1237  *
1238  * Key:  ---X-->  HEAD flag set in pointer
1239  *         T      Tail page
1240  *         R      Reader page
1241  *         N      Next page
1242  *
1243  * (see __rb_reserve_next() to see where this happens)
1244  *
1245  *  What the above shows is that the reader just swapped out
1246  *  the reader page with a page in the buffer, but before it
1247  *  could make the new header point back to the new page added
1248  *  it was preempted by a writer. The writer moved forward onto
1249  *  the new page added by the reader and is about to move forward
1250  *  again.
1251  *
1252  *  You can see, it is legitimate for the previous pointer of
1253  *  the head (or any page) not to point back to itself. But only
1254  *  temporarily.
1255  */
1256
1257 #define RB_PAGE_NORMAL          0UL
1258 #define RB_PAGE_HEAD            1UL
1259 #define RB_PAGE_UPDATE          2UL
1260
1261
1262 #define RB_FLAG_MASK            3UL
1263
1264 /* PAGE_MOVED is not part of the mask */
1265 #define RB_PAGE_MOVED           4UL
1266
1267 /*
1268  * rb_list_head - remove any bit
1269  */
1270 static struct list_head *rb_list_head(struct list_head *list)
1271 {
1272         unsigned long val = (unsigned long)list;
1273
1274         return (struct list_head *)(val & ~RB_FLAG_MASK);
1275 }
1276
1277 /*
1278  * rb_is_head_page - test if the given page is the head page
1279  *
1280  * Because the reader may move the head_page pointer, we can
1281  * not trust what the head page is (it may be pointing to
1282  * the reader page). But if the next page is a header page,
1283  * its flags will be non zero.
1284  */
1285 static inline int
1286 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1287 {
1288         unsigned long val;
1289
1290         val = (unsigned long)list->next;
1291
1292         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1293                 return RB_PAGE_MOVED;
1294
1295         return val & RB_FLAG_MASK;
1296 }
1297
1298 /*
1299  * rb_is_reader_page
1300  *
1301  * The unique thing about the reader page, is that, if the
1302  * writer is ever on it, the previous pointer never points
1303  * back to the reader page.
1304  */
1305 static bool rb_is_reader_page(struct buffer_page *page)
1306 {
1307         struct list_head *list = page->list.prev;
1308
1309         return rb_list_head(list->next) != &page->list;
1310 }
1311
1312 /*
1313  * rb_set_list_to_head - set a list_head to be pointing to head.
1314  */
1315 static void rb_set_list_to_head(struct list_head *list)
1316 {
1317         unsigned long *ptr;
1318
1319         ptr = (unsigned long *)&list->next;
1320         *ptr |= RB_PAGE_HEAD;
1321         *ptr &= ~RB_PAGE_UPDATE;
1322 }
1323
1324 /*
1325  * rb_head_page_activate - sets up head page
1326  */
1327 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1328 {
1329         struct buffer_page *head;
1330
1331         head = cpu_buffer->head_page;
1332         if (!head)
1333                 return;
1334
1335         /*
1336          * Set the previous list pointer to have the HEAD flag.
1337          */
1338         rb_set_list_to_head(head->list.prev);
1339 }
1340
1341 static void rb_list_head_clear(struct list_head *list)
1342 {
1343         unsigned long *ptr = (unsigned long *)&list->next;
1344
1345         *ptr &= ~RB_FLAG_MASK;
1346 }
1347
1348 /*
1349  * rb_head_page_deactivate - clears head page ptr (for free list)
1350  */
1351 static void
1352 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1353 {
1354         struct list_head *hd;
1355
1356         /* Go through the whole list and clear any pointers found. */
1357         rb_list_head_clear(cpu_buffer->pages);
1358
1359         list_for_each(hd, cpu_buffer->pages)
1360                 rb_list_head_clear(hd);
1361 }
1362
1363 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1364                             struct buffer_page *head,
1365                             struct buffer_page *prev,
1366                             int old_flag, int new_flag)
1367 {
1368         struct list_head *list;
1369         unsigned long val = (unsigned long)&head->list;
1370         unsigned long ret;
1371
1372         list = &prev->list;
1373
1374         val &= ~RB_FLAG_MASK;
1375
1376         ret = cmpxchg((unsigned long *)&list->next,
1377                       val | old_flag, val | new_flag);
1378
1379         /* check if the reader took the page */
1380         if ((ret & ~RB_FLAG_MASK) != val)
1381                 return RB_PAGE_MOVED;
1382
1383         return ret & RB_FLAG_MASK;
1384 }
1385
1386 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1387                                    struct buffer_page *head,
1388                                    struct buffer_page *prev,
1389                                    int old_flag)
1390 {
1391         return rb_head_page_set(cpu_buffer, head, prev,
1392                                 old_flag, RB_PAGE_UPDATE);
1393 }
1394
1395 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1396                                  struct buffer_page *head,
1397                                  struct buffer_page *prev,
1398                                  int old_flag)
1399 {
1400         return rb_head_page_set(cpu_buffer, head, prev,
1401                                 old_flag, RB_PAGE_HEAD);
1402 }
1403
1404 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1405                                    struct buffer_page *head,
1406                                    struct buffer_page *prev,
1407                                    int old_flag)
1408 {
1409         return rb_head_page_set(cpu_buffer, head, prev,
1410                                 old_flag, RB_PAGE_NORMAL);
1411 }
1412
1413 static inline void rb_inc_page(struct buffer_page **bpage)
1414 {
1415         struct list_head *p = rb_list_head((*bpage)->list.next);
1416
1417         *bpage = list_entry(p, struct buffer_page, list);
1418 }
1419
1420 static struct buffer_page *
1421 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1422 {
1423         struct buffer_page *head;
1424         struct buffer_page *page;
1425         struct list_head *list;
1426         int i;
1427
1428         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1429                 return NULL;
1430
1431         /* sanity check */
1432         list = cpu_buffer->pages;
1433         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1434                 return NULL;
1435
1436         page = head = cpu_buffer->head_page;
1437         /*
1438          * It is possible that the writer moves the header behind
1439          * where we started, and we miss in one loop.
1440          * A second loop should grab the header, but we'll do
1441          * three loops just because I'm paranoid.
1442          */
1443         for (i = 0; i < 3; i++) {
1444                 do {
1445                         if (rb_is_head_page(page, page->list.prev)) {
1446                                 cpu_buffer->head_page = page;
1447                                 return page;
1448                         }
1449                         rb_inc_page(&page);
1450                 } while (page != head);
1451         }
1452
1453         RB_WARN_ON(cpu_buffer, 1);
1454
1455         return NULL;
1456 }
1457
1458 static bool rb_head_page_replace(struct buffer_page *old,
1459                                 struct buffer_page *new)
1460 {
1461         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1462         unsigned long val;
1463
1464         val = *ptr & ~RB_FLAG_MASK;
1465         val |= RB_PAGE_HEAD;
1466
1467         return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1468 }
1469
1470 /*
1471  * rb_tail_page_update - move the tail page forward
1472  */
1473 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1474                                struct buffer_page *tail_page,
1475                                struct buffer_page *next_page)
1476 {
1477         unsigned long old_entries;
1478         unsigned long old_write;
1479
1480         /*
1481          * The tail page now needs to be moved forward.
1482          *
1483          * We need to reset the tail page, but without messing
1484          * with possible erasing of data brought in by interrupts
1485          * that have moved the tail page and are currently on it.
1486          *
1487          * We add a counter to the write field to denote this.
1488          */
1489         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1490         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1491
1492         local_inc(&cpu_buffer->pages_touched);
1493         /*
1494          * Just make sure we have seen our old_write and synchronize
1495          * with any interrupts that come in.
1496          */
1497         barrier();
1498
1499         /*
1500          * If the tail page is still the same as what we think
1501          * it is, then it is up to us to update the tail
1502          * pointer.
1503          */
1504         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1505                 /* Zero the write counter */
1506                 unsigned long val = old_write & ~RB_WRITE_MASK;
1507                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1508
1509                 /*
1510                  * This will only succeed if an interrupt did
1511                  * not come in and change it. In which case, we
1512                  * do not want to modify it.
1513                  *
1514                  * We add (void) to let the compiler know that we do not care
1515                  * about the return value of these functions. We use the
1516                  * cmpxchg to only update if an interrupt did not already
1517                  * do it for us. If the cmpxchg fails, we don't care.
1518                  */
1519                 (void)local_cmpxchg(&next_page->write, old_write, val);
1520                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1521
1522                 /*
1523                  * No need to worry about races with clearing out the commit.
1524                  * it only can increment when a commit takes place. But that
1525                  * only happens in the outer most nested commit.
1526                  */
1527                 local_set(&next_page->page->commit, 0);
1528
1529                 /* Again, either we update tail_page or an interrupt does */
1530                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1531         }
1532 }
1533
1534 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1535                           struct buffer_page *bpage)
1536 {
1537         unsigned long val = (unsigned long)bpage;
1538
1539         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1540 }
1541
1542 /**
1543  * rb_check_pages - integrity check of buffer pages
1544  * @cpu_buffer: CPU buffer with pages to test
1545  *
1546  * As a safety measure we check to make sure the data pages have not
1547  * been corrupted.
1548  */
1549 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1550 {
1551         struct list_head *head = rb_list_head(cpu_buffer->pages);
1552         struct list_head *tmp;
1553
1554         if (RB_WARN_ON(cpu_buffer,
1555                         rb_list_head(rb_list_head(head->next)->prev) != head))
1556                 return;
1557
1558         if (RB_WARN_ON(cpu_buffer,
1559                         rb_list_head(rb_list_head(head->prev)->next) != head))
1560                 return;
1561
1562         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1563                 if (RB_WARN_ON(cpu_buffer,
1564                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1565                         return;
1566
1567                 if (RB_WARN_ON(cpu_buffer,
1568                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1569                         return;
1570         }
1571 }
1572
1573 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1574                 long nr_pages, struct list_head *pages)
1575 {
1576         struct buffer_page *bpage, *tmp;
1577         bool user_thread = current->mm != NULL;
1578         gfp_t mflags;
1579         long i;
1580
1581         /*
1582          * Check if the available memory is there first.
1583          * Note, si_mem_available() only gives us a rough estimate of available
1584          * memory. It may not be accurate. But we don't care, we just want
1585          * to prevent doing any allocation when it is obvious that it is
1586          * not going to succeed.
1587          */
1588         i = si_mem_available();
1589         if (i < nr_pages)
1590                 return -ENOMEM;
1591
1592         /*
1593          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1594          * gracefully without invoking oom-killer and the system is not
1595          * destabilized.
1596          */
1597         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1598
1599         /*
1600          * If a user thread allocates too much, and si_mem_available()
1601          * reports there's enough memory, even though there is not.
1602          * Make sure the OOM killer kills this thread. This can happen
1603          * even with RETRY_MAYFAIL because another task may be doing
1604          * an allocation after this task has taken all memory.
1605          * This is the task the OOM killer needs to take out during this
1606          * loop, even if it was triggered by an allocation somewhere else.
1607          */
1608         if (user_thread)
1609                 set_current_oom_origin();
1610         for (i = 0; i < nr_pages; i++) {
1611                 struct page *page;
1612
1613                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1614                                     mflags, cpu_to_node(cpu_buffer->cpu));
1615                 if (!bpage)
1616                         goto free_pages;
1617
1618                 rb_check_bpage(cpu_buffer, bpage);
1619
1620                 list_add(&bpage->list, pages);
1621
1622                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1623                 if (!page)
1624                         goto free_pages;
1625                 bpage->page = page_address(page);
1626                 rb_init_page(bpage->page);
1627
1628                 if (user_thread && fatal_signal_pending(current))
1629                         goto free_pages;
1630         }
1631         if (user_thread)
1632                 clear_current_oom_origin();
1633
1634         return 0;
1635
1636 free_pages:
1637         list_for_each_entry_safe(bpage, tmp, pages, list) {
1638                 list_del_init(&bpage->list);
1639                 free_buffer_page(bpage);
1640         }
1641         if (user_thread)
1642                 clear_current_oom_origin();
1643
1644         return -ENOMEM;
1645 }
1646
1647 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1648                              unsigned long nr_pages)
1649 {
1650         LIST_HEAD(pages);
1651
1652         WARN_ON(!nr_pages);
1653
1654         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1655                 return -ENOMEM;
1656
1657         /*
1658          * The ring buffer page list is a circular list that does not
1659          * start and end with a list head. All page list items point to
1660          * other pages.
1661          */
1662         cpu_buffer->pages = pages.next;
1663         list_del(&pages);
1664
1665         cpu_buffer->nr_pages = nr_pages;
1666
1667         rb_check_pages(cpu_buffer);
1668
1669         return 0;
1670 }
1671
1672 static struct ring_buffer_per_cpu *
1673 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1674 {
1675         struct ring_buffer_per_cpu *cpu_buffer;
1676         struct buffer_page *bpage;
1677         struct page *page;
1678         int ret;
1679
1680         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1681                                   GFP_KERNEL, cpu_to_node(cpu));
1682         if (!cpu_buffer)
1683                 return NULL;
1684
1685         cpu_buffer->cpu = cpu;
1686         cpu_buffer->buffer = buffer;
1687         raw_spin_lock_init(&cpu_buffer->reader_lock);
1688         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1689         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1690         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1691         init_completion(&cpu_buffer->update_done);
1692         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1693         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1694         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1695
1696         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1697                             GFP_KERNEL, cpu_to_node(cpu));
1698         if (!bpage)
1699                 goto fail_free_buffer;
1700
1701         rb_check_bpage(cpu_buffer, bpage);
1702
1703         cpu_buffer->reader_page = bpage;
1704         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1705         if (!page)
1706                 goto fail_free_reader;
1707         bpage->page = page_address(page);
1708         rb_init_page(bpage->page);
1709
1710         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1711         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1712
1713         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1714         if (ret < 0)
1715                 goto fail_free_reader;
1716
1717         cpu_buffer->head_page
1718                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1719         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1720
1721         rb_head_page_activate(cpu_buffer);
1722
1723         return cpu_buffer;
1724
1725  fail_free_reader:
1726         free_buffer_page(cpu_buffer->reader_page);
1727
1728  fail_free_buffer:
1729         kfree(cpu_buffer);
1730         return NULL;
1731 }
1732
1733 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1734 {
1735         struct list_head *head = cpu_buffer->pages;
1736         struct buffer_page *bpage, *tmp;
1737
1738         irq_work_sync(&cpu_buffer->irq_work.work);
1739
1740         free_buffer_page(cpu_buffer->reader_page);
1741
1742         if (head) {
1743                 rb_head_page_deactivate(cpu_buffer);
1744
1745                 list_for_each_entry_safe(bpage, tmp, head, list) {
1746                         list_del_init(&bpage->list);
1747                         free_buffer_page(bpage);
1748                 }
1749                 bpage = list_entry(head, struct buffer_page, list);
1750                 free_buffer_page(bpage);
1751         }
1752
1753         free_page((unsigned long)cpu_buffer->free_page);
1754
1755         kfree(cpu_buffer);
1756 }
1757
1758 /**
1759  * __ring_buffer_alloc - allocate a new ring_buffer
1760  * @size: the size in bytes per cpu that is needed.
1761  * @flags: attributes to set for the ring buffer.
1762  * @key: ring buffer reader_lock_key.
1763  *
1764  * Currently the only flag that is available is the RB_FL_OVERWRITE
1765  * flag. This flag means that the buffer will overwrite old data
1766  * when the buffer wraps. If this flag is not set, the buffer will
1767  * drop data when the tail hits the head.
1768  */
1769 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1770                                         struct lock_class_key *key)
1771 {
1772         struct trace_buffer *buffer;
1773         long nr_pages;
1774         int bsize;
1775         int cpu;
1776         int ret;
1777
1778         /* keep it in its own cache line */
1779         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1780                          GFP_KERNEL);
1781         if (!buffer)
1782                 return NULL;
1783
1784         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1785                 goto fail_free_buffer;
1786
1787         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1788         buffer->flags = flags;
1789         buffer->clock = trace_clock_local;
1790         buffer->reader_lock_key = key;
1791
1792         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1793         init_waitqueue_head(&buffer->irq_work.waiters);
1794
1795         /* need at least two pages */
1796         if (nr_pages < 2)
1797                 nr_pages = 2;
1798
1799         buffer->cpus = nr_cpu_ids;
1800
1801         bsize = sizeof(void *) * nr_cpu_ids;
1802         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1803                                   GFP_KERNEL);
1804         if (!buffer->buffers)
1805                 goto fail_free_cpumask;
1806
1807         cpu = raw_smp_processor_id();
1808         cpumask_set_cpu(cpu, buffer->cpumask);
1809         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1810         if (!buffer->buffers[cpu])
1811                 goto fail_free_buffers;
1812
1813         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1814         if (ret < 0)
1815                 goto fail_free_buffers;
1816
1817         mutex_init(&buffer->mutex);
1818
1819         return buffer;
1820
1821  fail_free_buffers:
1822         for_each_buffer_cpu(buffer, cpu) {
1823                 if (buffer->buffers[cpu])
1824                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1825         }
1826         kfree(buffer->buffers);
1827
1828  fail_free_cpumask:
1829         free_cpumask_var(buffer->cpumask);
1830
1831  fail_free_buffer:
1832         kfree(buffer);
1833         return NULL;
1834 }
1835 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1836
1837 /**
1838  * ring_buffer_free - free a ring buffer.
1839  * @buffer: the buffer to free.
1840  */
1841 void
1842 ring_buffer_free(struct trace_buffer *buffer)
1843 {
1844         int cpu;
1845
1846         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1847
1848         irq_work_sync(&buffer->irq_work.work);
1849
1850         for_each_buffer_cpu(buffer, cpu)
1851                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1852
1853         kfree(buffer->buffers);
1854         free_cpumask_var(buffer->cpumask);
1855
1856         kfree(buffer);
1857 }
1858 EXPORT_SYMBOL_GPL(ring_buffer_free);
1859
1860 void ring_buffer_set_clock(struct trace_buffer *buffer,
1861                            u64 (*clock)(void))
1862 {
1863         buffer->clock = clock;
1864 }
1865
1866 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1867 {
1868         buffer->time_stamp_abs = abs;
1869 }
1870
1871 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1872 {
1873         return buffer->time_stamp_abs;
1874 }
1875
1876 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1877
1878 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1879 {
1880         return local_read(&bpage->entries) & RB_WRITE_MASK;
1881 }
1882
1883 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1884 {
1885         return local_read(&bpage->write) & RB_WRITE_MASK;
1886 }
1887
1888 static bool
1889 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1890 {
1891         struct list_head *tail_page, *to_remove, *next_page;
1892         struct buffer_page *to_remove_page, *tmp_iter_page;
1893         struct buffer_page *last_page, *first_page;
1894         unsigned long nr_removed;
1895         unsigned long head_bit;
1896         int page_entries;
1897
1898         head_bit = 0;
1899
1900         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1901         atomic_inc(&cpu_buffer->record_disabled);
1902         /*
1903          * We don't race with the readers since we have acquired the reader
1904          * lock. We also don't race with writers after disabling recording.
1905          * This makes it easy to figure out the first and the last page to be
1906          * removed from the list. We unlink all the pages in between including
1907          * the first and last pages. This is done in a busy loop so that we
1908          * lose the least number of traces.
1909          * The pages are freed after we restart recording and unlock readers.
1910          */
1911         tail_page = &cpu_buffer->tail_page->list;
1912
1913         /*
1914          * tail page might be on reader page, we remove the next page
1915          * from the ring buffer
1916          */
1917         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1918                 tail_page = rb_list_head(tail_page->next);
1919         to_remove = tail_page;
1920
1921         /* start of pages to remove */
1922         first_page = list_entry(rb_list_head(to_remove->next),
1923                                 struct buffer_page, list);
1924
1925         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1926                 to_remove = rb_list_head(to_remove)->next;
1927                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1928         }
1929         /* Read iterators need to reset themselves when some pages removed */
1930         cpu_buffer->pages_removed += nr_removed;
1931
1932         next_page = rb_list_head(to_remove)->next;
1933
1934         /*
1935          * Now we remove all pages between tail_page and next_page.
1936          * Make sure that we have head_bit value preserved for the
1937          * next page
1938          */
1939         tail_page->next = (struct list_head *)((unsigned long)next_page |
1940                                                 head_bit);
1941         next_page = rb_list_head(next_page);
1942         next_page->prev = tail_page;
1943
1944         /* make sure pages points to a valid page in the ring buffer */
1945         cpu_buffer->pages = next_page;
1946
1947         /* update head page */
1948         if (head_bit)
1949                 cpu_buffer->head_page = list_entry(next_page,
1950                                                 struct buffer_page, list);
1951
1952         /* pages are removed, resume tracing and then free the pages */
1953         atomic_dec(&cpu_buffer->record_disabled);
1954         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1955
1956         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1957
1958         /* last buffer page to remove */
1959         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1960                                 list);
1961         tmp_iter_page = first_page;
1962
1963         do {
1964                 cond_resched();
1965
1966                 to_remove_page = tmp_iter_page;
1967                 rb_inc_page(&tmp_iter_page);
1968
1969                 /* update the counters */
1970                 page_entries = rb_page_entries(to_remove_page);
1971                 if (page_entries) {
1972                         /*
1973                          * If something was added to this page, it was full
1974                          * since it is not the tail page. So we deduct the
1975                          * bytes consumed in ring buffer from here.
1976                          * Increment overrun to account for the lost events.
1977                          */
1978                         local_add(page_entries, &cpu_buffer->overrun);
1979                         local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1980                         local_inc(&cpu_buffer->pages_lost);
1981                 }
1982
1983                 /*
1984                  * We have already removed references to this list item, just
1985                  * free up the buffer_page and its page
1986                  */
1987                 free_buffer_page(to_remove_page);
1988                 nr_removed--;
1989
1990         } while (to_remove_page != last_page);
1991
1992         RB_WARN_ON(cpu_buffer, nr_removed);
1993
1994         return nr_removed == 0;
1995 }
1996
1997 static bool
1998 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1999 {
2000         struct list_head *pages = &cpu_buffer->new_pages;
2001         unsigned long flags;
2002         bool success;
2003         int retries;
2004
2005         /* Can be called at early boot up, where interrupts must not been enabled */
2006         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2007         /*
2008          * We are holding the reader lock, so the reader page won't be swapped
2009          * in the ring buffer. Now we are racing with the writer trying to
2010          * move head page and the tail page.
2011          * We are going to adapt the reader page update process where:
2012          * 1. We first splice the start and end of list of new pages between
2013          *    the head page and its previous page.
2014          * 2. We cmpxchg the prev_page->next to point from head page to the
2015          *    start of new pages list.
2016          * 3. Finally, we update the head->prev to the end of new list.
2017          *
2018          * We will try this process 10 times, to make sure that we don't keep
2019          * spinning.
2020          */
2021         retries = 10;
2022         success = false;
2023         while (retries--) {
2024                 struct list_head *head_page, *prev_page, *r;
2025                 struct list_head *last_page, *first_page;
2026                 struct list_head *head_page_with_bit;
2027                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2028
2029                 if (!hpage)
2030                         break;
2031                 head_page = &hpage->list;
2032                 prev_page = head_page->prev;
2033
2034                 first_page = pages->next;
2035                 last_page  = pages->prev;
2036
2037                 head_page_with_bit = (struct list_head *)
2038                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2039
2040                 last_page->next = head_page_with_bit;
2041                 first_page->prev = prev_page;
2042
2043                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2044
2045                 if (r == head_page_with_bit) {
2046                         /*
2047                          * yay, we replaced the page pointer to our new list,
2048                          * now, we just have to update to head page's prev
2049                          * pointer to point to end of list
2050                          */
2051                         head_page->prev = last_page;
2052                         success = true;
2053                         break;
2054                 }
2055         }
2056
2057         if (success)
2058                 INIT_LIST_HEAD(pages);
2059         /*
2060          * If we weren't successful in adding in new pages, warn and stop
2061          * tracing
2062          */
2063         RB_WARN_ON(cpu_buffer, !success);
2064         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2065
2066         /* free pages if they weren't inserted */
2067         if (!success) {
2068                 struct buffer_page *bpage, *tmp;
2069                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2070                                          list) {
2071                         list_del_init(&bpage->list);
2072                         free_buffer_page(bpage);
2073                 }
2074         }
2075         return success;
2076 }
2077
2078 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2079 {
2080         bool success;
2081
2082         if (cpu_buffer->nr_pages_to_update > 0)
2083                 success = rb_insert_pages(cpu_buffer);
2084         else
2085                 success = rb_remove_pages(cpu_buffer,
2086                                         -cpu_buffer->nr_pages_to_update);
2087
2088         if (success)
2089                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2090 }
2091
2092 static void update_pages_handler(struct work_struct *work)
2093 {
2094         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2095                         struct ring_buffer_per_cpu, update_pages_work);
2096         rb_update_pages(cpu_buffer);
2097         complete(&cpu_buffer->update_done);
2098 }
2099
2100 /**
2101  * ring_buffer_resize - resize the ring buffer
2102  * @buffer: the buffer to resize.
2103  * @size: the new size.
2104  * @cpu_id: the cpu buffer to resize
2105  *
2106  * Minimum size is 2 * BUF_PAGE_SIZE.
2107  *
2108  * Returns 0 on success and < 0 on failure.
2109  */
2110 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2111                         int cpu_id)
2112 {
2113         struct ring_buffer_per_cpu *cpu_buffer;
2114         unsigned long nr_pages;
2115         int cpu, err;
2116
2117         /*
2118          * Always succeed at resizing a non-existent buffer:
2119          */
2120         if (!buffer)
2121                 return 0;
2122
2123         /* Make sure the requested buffer exists */
2124         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2125             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2126                 return 0;
2127
2128         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2129
2130         /* we need a minimum of two pages */
2131         if (nr_pages < 2)
2132                 nr_pages = 2;
2133
2134         /* prevent another thread from changing buffer sizes */
2135         mutex_lock(&buffer->mutex);
2136         atomic_inc(&buffer->resizing);
2137
2138         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2139                 /*
2140                  * Don't succeed if resizing is disabled, as a reader might be
2141                  * manipulating the ring buffer and is expecting a sane state while
2142                  * this is true.
2143                  */
2144                 for_each_buffer_cpu(buffer, cpu) {
2145                         cpu_buffer = buffer->buffers[cpu];
2146                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2147                                 err = -EBUSY;
2148                                 goto out_err_unlock;
2149                         }
2150                 }
2151
2152                 /* calculate the pages to update */
2153                 for_each_buffer_cpu(buffer, cpu) {
2154                         cpu_buffer = buffer->buffers[cpu];
2155
2156                         cpu_buffer->nr_pages_to_update = nr_pages -
2157                                                         cpu_buffer->nr_pages;
2158                         /*
2159                          * nothing more to do for removing pages or no update
2160                          */
2161                         if (cpu_buffer->nr_pages_to_update <= 0)
2162                                 continue;
2163                         /*
2164                          * to add pages, make sure all new pages can be
2165                          * allocated without receiving ENOMEM
2166                          */
2167                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2168                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2169                                                 &cpu_buffer->new_pages)) {
2170                                 /* not enough memory for new pages */
2171                                 err = -ENOMEM;
2172                                 goto out_err;
2173                         }
2174
2175                         cond_resched();
2176                 }
2177
2178                 cpus_read_lock();
2179                 /*
2180                  * Fire off all the required work handlers
2181                  * We can't schedule on offline CPUs, but it's not necessary
2182                  * since we can change their buffer sizes without any race.
2183                  */
2184                 for_each_buffer_cpu(buffer, cpu) {
2185                         cpu_buffer = buffer->buffers[cpu];
2186                         if (!cpu_buffer->nr_pages_to_update)
2187                                 continue;
2188
2189                         /* Can't run something on an offline CPU. */
2190                         if (!cpu_online(cpu)) {
2191                                 rb_update_pages(cpu_buffer);
2192                                 cpu_buffer->nr_pages_to_update = 0;
2193                         } else {
2194                                 /* Run directly if possible. */
2195                                 migrate_disable();
2196                                 if (cpu != smp_processor_id()) {
2197                                         migrate_enable();
2198                                         schedule_work_on(cpu,
2199                                                          &cpu_buffer->update_pages_work);
2200                                 } else {
2201                                         update_pages_handler(&cpu_buffer->update_pages_work);
2202                                         migrate_enable();
2203                                 }
2204                         }
2205                 }
2206
2207                 /* wait for all the updates to complete */
2208                 for_each_buffer_cpu(buffer, cpu) {
2209                         cpu_buffer = buffer->buffers[cpu];
2210                         if (!cpu_buffer->nr_pages_to_update)
2211                                 continue;
2212
2213                         if (cpu_online(cpu))
2214                                 wait_for_completion(&cpu_buffer->update_done);
2215                         cpu_buffer->nr_pages_to_update = 0;
2216                 }
2217
2218                 cpus_read_unlock();
2219         } else {
2220                 cpu_buffer = buffer->buffers[cpu_id];
2221
2222                 if (nr_pages == cpu_buffer->nr_pages)
2223                         goto out;
2224
2225                 /*
2226                  * Don't succeed if resizing is disabled, as a reader might be
2227                  * manipulating the ring buffer and is expecting a sane state while
2228                  * this is true.
2229                  */
2230                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2231                         err = -EBUSY;
2232                         goto out_err_unlock;
2233                 }
2234
2235                 cpu_buffer->nr_pages_to_update = nr_pages -
2236                                                 cpu_buffer->nr_pages;
2237
2238                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2239                 if (cpu_buffer->nr_pages_to_update > 0 &&
2240                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2241                                             &cpu_buffer->new_pages)) {
2242                         err = -ENOMEM;
2243                         goto out_err;
2244                 }
2245
2246                 cpus_read_lock();
2247
2248                 /* Can't run something on an offline CPU. */
2249                 if (!cpu_online(cpu_id))
2250                         rb_update_pages(cpu_buffer);
2251                 else {
2252                         /* Run directly if possible. */
2253                         migrate_disable();
2254                         if (cpu_id == smp_processor_id()) {
2255                                 rb_update_pages(cpu_buffer);
2256                                 migrate_enable();
2257                         } else {
2258                                 migrate_enable();
2259                                 schedule_work_on(cpu_id,
2260                                                  &cpu_buffer->update_pages_work);
2261                                 wait_for_completion(&cpu_buffer->update_done);
2262                         }
2263                 }
2264
2265                 cpu_buffer->nr_pages_to_update = 0;
2266                 cpus_read_unlock();
2267         }
2268
2269  out:
2270         /*
2271          * The ring buffer resize can happen with the ring buffer
2272          * enabled, so that the update disturbs the tracing as little
2273          * as possible. But if the buffer is disabled, we do not need
2274          * to worry about that, and we can take the time to verify
2275          * that the buffer is not corrupt.
2276          */
2277         if (atomic_read(&buffer->record_disabled)) {
2278                 atomic_inc(&buffer->record_disabled);
2279                 /*
2280                  * Even though the buffer was disabled, we must make sure
2281                  * that it is truly disabled before calling rb_check_pages.
2282                  * There could have been a race between checking
2283                  * record_disable and incrementing it.
2284                  */
2285                 synchronize_rcu();
2286                 for_each_buffer_cpu(buffer, cpu) {
2287                         cpu_buffer = buffer->buffers[cpu];
2288                         rb_check_pages(cpu_buffer);
2289                 }
2290                 atomic_dec(&buffer->record_disabled);
2291         }
2292
2293         atomic_dec(&buffer->resizing);
2294         mutex_unlock(&buffer->mutex);
2295         return 0;
2296
2297  out_err:
2298         for_each_buffer_cpu(buffer, cpu) {
2299                 struct buffer_page *bpage, *tmp;
2300
2301                 cpu_buffer = buffer->buffers[cpu];
2302                 cpu_buffer->nr_pages_to_update = 0;
2303
2304                 if (list_empty(&cpu_buffer->new_pages))
2305                         continue;
2306
2307                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2308                                         list) {
2309                         list_del_init(&bpage->list);
2310                         free_buffer_page(bpage);
2311                 }
2312         }
2313  out_err_unlock:
2314         atomic_dec(&buffer->resizing);
2315         mutex_unlock(&buffer->mutex);
2316         return err;
2317 }
2318 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2319
2320 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2321 {
2322         mutex_lock(&buffer->mutex);
2323         if (val)
2324                 buffer->flags |= RB_FL_OVERWRITE;
2325         else
2326                 buffer->flags &= ~RB_FL_OVERWRITE;
2327         mutex_unlock(&buffer->mutex);
2328 }
2329 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2330
2331 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2332 {
2333         return bpage->page->data + index;
2334 }
2335
2336 static __always_inline struct ring_buffer_event *
2337 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2338 {
2339         return __rb_page_index(cpu_buffer->reader_page,
2340                                cpu_buffer->reader_page->read);
2341 }
2342
2343 static struct ring_buffer_event *
2344 rb_iter_head_event(struct ring_buffer_iter *iter)
2345 {
2346         struct ring_buffer_event *event;
2347         struct buffer_page *iter_head_page = iter->head_page;
2348         unsigned long commit;
2349         unsigned length;
2350
2351         if (iter->head != iter->next_event)
2352                 return iter->event;
2353
2354         /*
2355          * When the writer goes across pages, it issues a cmpxchg which
2356          * is a mb(), which will synchronize with the rmb here.
2357          * (see rb_tail_page_update() and __rb_reserve_next())
2358          */
2359         commit = rb_page_commit(iter_head_page);
2360         smp_rmb();
2361
2362         /* An event needs to be at least 8 bytes in size */
2363         if (iter->head > commit - 8)
2364                 goto reset;
2365
2366         event = __rb_page_index(iter_head_page, iter->head);
2367         length = rb_event_length(event);
2368
2369         /*
2370          * READ_ONCE() doesn't work on functions and we don't want the
2371          * compiler doing any crazy optimizations with length.
2372          */
2373         barrier();
2374
2375         if ((iter->head + length) > commit || length > BUF_PAGE_SIZE)
2376                 /* Writer corrupted the read? */
2377                 goto reset;
2378
2379         memcpy(iter->event, event, length);
2380         /*
2381          * If the page stamp is still the same after this rmb() then the
2382          * event was safely copied without the writer entering the page.
2383          */
2384         smp_rmb();
2385
2386         /* Make sure the page didn't change since we read this */
2387         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2388             commit > rb_page_commit(iter_head_page))
2389                 goto reset;
2390
2391         iter->next_event = iter->head + length;
2392         return iter->event;
2393  reset:
2394         /* Reset to the beginning */
2395         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2396         iter->head = 0;
2397         iter->next_event = 0;
2398         iter->missed_events = 1;
2399         return NULL;
2400 }
2401
2402 /* Size is determined by what has been committed */
2403 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2404 {
2405         return rb_page_commit(bpage);
2406 }
2407
2408 static __always_inline unsigned
2409 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2410 {
2411         return rb_page_commit(cpu_buffer->commit_page);
2412 }
2413
2414 static __always_inline unsigned
2415 rb_event_index(struct ring_buffer_event *event)
2416 {
2417         unsigned long addr = (unsigned long)event;
2418
2419         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2420 }
2421
2422 static void rb_inc_iter(struct ring_buffer_iter *iter)
2423 {
2424         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2425
2426         /*
2427          * The iterator could be on the reader page (it starts there).
2428          * But the head could have moved, since the reader was
2429          * found. Check for this case and assign the iterator
2430          * to the head page instead of next.
2431          */
2432         if (iter->head_page == cpu_buffer->reader_page)
2433                 iter->head_page = rb_set_head_page(cpu_buffer);
2434         else
2435                 rb_inc_page(&iter->head_page);
2436
2437         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2438         iter->head = 0;
2439         iter->next_event = 0;
2440 }
2441
2442 /*
2443  * rb_handle_head_page - writer hit the head page
2444  *
2445  * Returns: +1 to retry page
2446  *           0 to continue
2447  *          -1 on error
2448  */
2449 static int
2450 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2451                     struct buffer_page *tail_page,
2452                     struct buffer_page *next_page)
2453 {
2454         struct buffer_page *new_head;
2455         int entries;
2456         int type;
2457         int ret;
2458
2459         entries = rb_page_entries(next_page);
2460
2461         /*
2462          * The hard part is here. We need to move the head
2463          * forward, and protect against both readers on
2464          * other CPUs and writers coming in via interrupts.
2465          */
2466         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2467                                        RB_PAGE_HEAD);
2468
2469         /*
2470          * type can be one of four:
2471          *  NORMAL - an interrupt already moved it for us
2472          *  HEAD   - we are the first to get here.
2473          *  UPDATE - we are the interrupt interrupting
2474          *           a current move.
2475          *  MOVED  - a reader on another CPU moved the next
2476          *           pointer to its reader page. Give up
2477          *           and try again.
2478          */
2479
2480         switch (type) {
2481         case RB_PAGE_HEAD:
2482                 /*
2483                  * We changed the head to UPDATE, thus
2484                  * it is our responsibility to update
2485                  * the counters.
2486                  */
2487                 local_add(entries, &cpu_buffer->overrun);
2488                 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2489                 local_inc(&cpu_buffer->pages_lost);
2490
2491                 /*
2492                  * The entries will be zeroed out when we move the
2493                  * tail page.
2494                  */
2495
2496                 /* still more to do */
2497                 break;
2498
2499         case RB_PAGE_UPDATE:
2500                 /*
2501                  * This is an interrupt that interrupt the
2502                  * previous update. Still more to do.
2503                  */
2504                 break;
2505         case RB_PAGE_NORMAL:
2506                 /*
2507                  * An interrupt came in before the update
2508                  * and processed this for us.
2509                  * Nothing left to do.
2510                  */
2511                 return 1;
2512         case RB_PAGE_MOVED:
2513                 /*
2514                  * The reader is on another CPU and just did
2515                  * a swap with our next_page.
2516                  * Try again.
2517                  */
2518                 return 1;
2519         default:
2520                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2521                 return -1;
2522         }
2523
2524         /*
2525          * Now that we are here, the old head pointer is
2526          * set to UPDATE. This will keep the reader from
2527          * swapping the head page with the reader page.
2528          * The reader (on another CPU) will spin till
2529          * we are finished.
2530          *
2531          * We just need to protect against interrupts
2532          * doing the job. We will set the next pointer
2533          * to HEAD. After that, we set the old pointer
2534          * to NORMAL, but only if it was HEAD before.
2535          * otherwise we are an interrupt, and only
2536          * want the outer most commit to reset it.
2537          */
2538         new_head = next_page;
2539         rb_inc_page(&new_head);
2540
2541         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2542                                     RB_PAGE_NORMAL);
2543
2544         /*
2545          * Valid returns are:
2546          *  HEAD   - an interrupt came in and already set it.
2547          *  NORMAL - One of two things:
2548          *            1) We really set it.
2549          *            2) A bunch of interrupts came in and moved
2550          *               the page forward again.
2551          */
2552         switch (ret) {
2553         case RB_PAGE_HEAD:
2554         case RB_PAGE_NORMAL:
2555                 /* OK */
2556                 break;
2557         default:
2558                 RB_WARN_ON(cpu_buffer, 1);
2559                 return -1;
2560         }
2561
2562         /*
2563          * It is possible that an interrupt came in,
2564          * set the head up, then more interrupts came in
2565          * and moved it again. When we get back here,
2566          * the page would have been set to NORMAL but we
2567          * just set it back to HEAD.
2568          *
2569          * How do you detect this? Well, if that happened
2570          * the tail page would have moved.
2571          */
2572         if (ret == RB_PAGE_NORMAL) {
2573                 struct buffer_page *buffer_tail_page;
2574
2575                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2576                 /*
2577                  * If the tail had moved passed next, then we need
2578                  * to reset the pointer.
2579                  */
2580                 if (buffer_tail_page != tail_page &&
2581                     buffer_tail_page != next_page)
2582                         rb_head_page_set_normal(cpu_buffer, new_head,
2583                                                 next_page,
2584                                                 RB_PAGE_HEAD);
2585         }
2586
2587         /*
2588          * If this was the outer most commit (the one that
2589          * changed the original pointer from HEAD to UPDATE),
2590          * then it is up to us to reset it to NORMAL.
2591          */
2592         if (type == RB_PAGE_HEAD) {
2593                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2594                                               tail_page,
2595                                               RB_PAGE_UPDATE);
2596                 if (RB_WARN_ON(cpu_buffer,
2597                                ret != RB_PAGE_UPDATE))
2598                         return -1;
2599         }
2600
2601         return 0;
2602 }
2603
2604 static inline void
2605 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2606               unsigned long tail, struct rb_event_info *info)
2607 {
2608         struct buffer_page *tail_page = info->tail_page;
2609         struct ring_buffer_event *event;
2610         unsigned long length = info->length;
2611
2612         /*
2613          * Only the event that crossed the page boundary
2614          * must fill the old tail_page with padding.
2615          */
2616         if (tail >= BUF_PAGE_SIZE) {
2617                 /*
2618                  * If the page was filled, then we still need
2619                  * to update the real_end. Reset it to zero
2620                  * and the reader will ignore it.
2621                  */
2622                 if (tail == BUF_PAGE_SIZE)
2623                         tail_page->real_end = 0;
2624
2625                 local_sub(length, &tail_page->write);
2626                 return;
2627         }
2628
2629         event = __rb_page_index(tail_page, tail);
2630
2631         /*
2632          * Save the original length to the meta data.
2633          * This will be used by the reader to add lost event
2634          * counter.
2635          */
2636         tail_page->real_end = tail;
2637
2638         /*
2639          * If this event is bigger than the minimum size, then
2640          * we need to be careful that we don't subtract the
2641          * write counter enough to allow another writer to slip
2642          * in on this page.
2643          * We put in a discarded commit instead, to make sure
2644          * that this space is not used again, and this space will
2645          * not be accounted into 'entries_bytes'.
2646          *
2647          * If we are less than the minimum size, we don't need to
2648          * worry about it.
2649          */
2650         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2651                 /* No room for any events */
2652
2653                 /* Mark the rest of the page with padding */
2654                 rb_event_set_padding(event);
2655
2656                 /* Make sure the padding is visible before the write update */
2657                 smp_wmb();
2658
2659                 /* Set the write back to the previous setting */
2660                 local_sub(length, &tail_page->write);
2661                 return;
2662         }
2663
2664         /* Put in a discarded event */
2665         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2666         event->type_len = RINGBUF_TYPE_PADDING;
2667         /* time delta must be non zero */
2668         event->time_delta = 1;
2669
2670         /* account for padding bytes */
2671         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2672
2673         /* Make sure the padding is visible before the tail_page->write update */
2674         smp_wmb();
2675
2676         /* Set write to end of buffer */
2677         length = (tail + length) - BUF_PAGE_SIZE;
2678         local_sub(length, &tail_page->write);
2679 }
2680
2681 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2682
2683 /*
2684  * This is the slow path, force gcc not to inline it.
2685  */
2686 static noinline struct ring_buffer_event *
2687 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2688              unsigned long tail, struct rb_event_info *info)
2689 {
2690         struct buffer_page *tail_page = info->tail_page;
2691         struct buffer_page *commit_page = cpu_buffer->commit_page;
2692         struct trace_buffer *buffer = cpu_buffer->buffer;
2693         struct buffer_page *next_page;
2694         int ret;
2695
2696         next_page = tail_page;
2697
2698         rb_inc_page(&next_page);
2699
2700         /*
2701          * If for some reason, we had an interrupt storm that made
2702          * it all the way around the buffer, bail, and warn
2703          * about it.
2704          */
2705         if (unlikely(next_page == commit_page)) {
2706                 local_inc(&cpu_buffer->commit_overrun);
2707                 goto out_reset;
2708         }
2709
2710         /*
2711          * This is where the fun begins!
2712          *
2713          * We are fighting against races between a reader that
2714          * could be on another CPU trying to swap its reader
2715          * page with the buffer head.
2716          *
2717          * We are also fighting against interrupts coming in and
2718          * moving the head or tail on us as well.
2719          *
2720          * If the next page is the head page then we have filled
2721          * the buffer, unless the commit page is still on the
2722          * reader page.
2723          */
2724         if (rb_is_head_page(next_page, &tail_page->list)) {
2725
2726                 /*
2727                  * If the commit is not on the reader page, then
2728                  * move the header page.
2729                  */
2730                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2731                         /*
2732                          * If we are not in overwrite mode,
2733                          * this is easy, just stop here.
2734                          */
2735                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2736                                 local_inc(&cpu_buffer->dropped_events);
2737                                 goto out_reset;
2738                         }
2739
2740                         ret = rb_handle_head_page(cpu_buffer,
2741                                                   tail_page,
2742                                                   next_page);
2743                         if (ret < 0)
2744                                 goto out_reset;
2745                         if (ret)
2746                                 goto out_again;
2747                 } else {
2748                         /*
2749                          * We need to be careful here too. The
2750                          * commit page could still be on the reader
2751                          * page. We could have a small buffer, and
2752                          * have filled up the buffer with events
2753                          * from interrupts and such, and wrapped.
2754                          *
2755                          * Note, if the tail page is also on the
2756                          * reader_page, we let it move out.
2757                          */
2758                         if (unlikely((cpu_buffer->commit_page !=
2759                                       cpu_buffer->tail_page) &&
2760                                      (cpu_buffer->commit_page ==
2761                                       cpu_buffer->reader_page))) {
2762                                 local_inc(&cpu_buffer->commit_overrun);
2763                                 goto out_reset;
2764                         }
2765                 }
2766         }
2767
2768         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2769
2770  out_again:
2771
2772         rb_reset_tail(cpu_buffer, tail, info);
2773
2774         /* Commit what we have for now. */
2775         rb_end_commit(cpu_buffer);
2776         /* rb_end_commit() decs committing */
2777         local_inc(&cpu_buffer->committing);
2778
2779         /* fail and let the caller try again */
2780         return ERR_PTR(-EAGAIN);
2781
2782  out_reset:
2783         /* reset write */
2784         rb_reset_tail(cpu_buffer, tail, info);
2785
2786         return NULL;
2787 }
2788
2789 /* Slow path */
2790 static struct ring_buffer_event *
2791 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2792 {
2793         if (abs)
2794                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2795         else
2796                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2797
2798         /* Not the first event on the page, or not delta? */
2799         if (abs || rb_event_index(event)) {
2800                 event->time_delta = delta & TS_MASK;
2801                 event->array[0] = delta >> TS_SHIFT;
2802         } else {
2803                 /* nope, just zero it */
2804                 event->time_delta = 0;
2805                 event->array[0] = 0;
2806         }
2807
2808         return skip_time_extend(event);
2809 }
2810
2811 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2812 static inline bool sched_clock_stable(void)
2813 {
2814         return true;
2815 }
2816 #endif
2817
2818 static void
2819 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2820                    struct rb_event_info *info)
2821 {
2822         u64 write_stamp;
2823
2824         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2825                   (unsigned long long)info->delta,
2826                   (unsigned long long)info->ts,
2827                   (unsigned long long)info->before,
2828                   (unsigned long long)info->after,
2829                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2830                   sched_clock_stable() ? "" :
2831                   "If you just came from a suspend/resume,\n"
2832                   "please switch to the trace global clock:\n"
2833                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2834                   "or add trace_clock=global to the kernel command line\n");
2835 }
2836
2837 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2838                                       struct ring_buffer_event **event,
2839                                       struct rb_event_info *info,
2840                                       u64 *delta,
2841                                       unsigned int *length)
2842 {
2843         bool abs = info->add_timestamp &
2844                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2845
2846         if (unlikely(info->delta > (1ULL << 59))) {
2847                 /*
2848                  * Some timers can use more than 59 bits, and when a timestamp
2849                  * is added to the buffer, it will lose those bits.
2850                  */
2851                 if (abs && (info->ts & TS_MSB)) {
2852                         info->delta &= ABS_TS_MASK;
2853
2854                 /* did the clock go backwards */
2855                 } else if (info->before == info->after && info->before > info->ts) {
2856                         /* not interrupted */
2857                         static int once;
2858
2859                         /*
2860                          * This is possible with a recalibrating of the TSC.
2861                          * Do not produce a call stack, but just report it.
2862                          */
2863                         if (!once) {
2864                                 once++;
2865                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2866                                         info->before, info->ts);
2867                         }
2868                 } else
2869                         rb_check_timestamp(cpu_buffer, info);
2870                 if (!abs)
2871                         info->delta = 0;
2872         }
2873         *event = rb_add_time_stamp(*event, info->delta, abs);
2874         *length -= RB_LEN_TIME_EXTEND;
2875         *delta = 0;
2876 }
2877
2878 /**
2879  * rb_update_event - update event type and data
2880  * @cpu_buffer: The per cpu buffer of the @event
2881  * @event: the event to update
2882  * @info: The info to update the @event with (contains length and delta)
2883  *
2884  * Update the type and data fields of the @event. The length
2885  * is the actual size that is written to the ring buffer,
2886  * and with this, we can determine what to place into the
2887  * data field.
2888  */
2889 static void
2890 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2891                 struct ring_buffer_event *event,
2892                 struct rb_event_info *info)
2893 {
2894         unsigned length = info->length;
2895         u64 delta = info->delta;
2896         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2897
2898         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2899                 cpu_buffer->event_stamp[nest] = info->ts;
2900
2901         /*
2902          * If we need to add a timestamp, then we
2903          * add it to the start of the reserved space.
2904          */
2905         if (unlikely(info->add_timestamp))
2906                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2907
2908         event->time_delta = delta;
2909         length -= RB_EVNT_HDR_SIZE;
2910         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2911                 event->type_len = 0;
2912                 event->array[0] = length;
2913         } else
2914                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2915 }
2916
2917 static unsigned rb_calculate_event_length(unsigned length)
2918 {
2919         struct ring_buffer_event event; /* Used only for sizeof array */
2920
2921         /* zero length can cause confusions */
2922         if (!length)
2923                 length++;
2924
2925         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2926                 length += sizeof(event.array[0]);
2927
2928         length += RB_EVNT_HDR_SIZE;
2929         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2930
2931         /*
2932          * In case the time delta is larger than the 27 bits for it
2933          * in the header, we need to add a timestamp. If another
2934          * event comes in when trying to discard this one to increase
2935          * the length, then the timestamp will be added in the allocated
2936          * space of this event. If length is bigger than the size needed
2937          * for the TIME_EXTEND, then padding has to be used. The events
2938          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2939          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2940          * As length is a multiple of 4, we only need to worry if it
2941          * is 12 (RB_LEN_TIME_EXTEND + 4).
2942          */
2943         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2944                 length += RB_ALIGNMENT;
2945
2946         return length;
2947 }
2948
2949 static inline bool
2950 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2951                   struct ring_buffer_event *event)
2952 {
2953         unsigned long new_index, old_index;
2954         struct buffer_page *bpage;
2955         unsigned long addr;
2956
2957         new_index = rb_event_index(event);
2958         old_index = new_index + rb_event_ts_length(event);
2959         addr = (unsigned long)event;
2960         addr &= PAGE_MASK;
2961
2962         bpage = READ_ONCE(cpu_buffer->tail_page);
2963
2964         /*
2965          * Make sure the tail_page is still the same and
2966          * the next write location is the end of this event
2967          */
2968         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2969                 unsigned long write_mask =
2970                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2971                 unsigned long event_length = rb_event_length(event);
2972
2973                 /*
2974                  * For the before_stamp to be different than the write_stamp
2975                  * to make sure that the next event adds an absolute
2976                  * value and does not rely on the saved write stamp, which
2977                  * is now going to be bogus.
2978                  *
2979                  * By setting the before_stamp to zero, the next event
2980                  * is not going to use the write_stamp and will instead
2981                  * create an absolute timestamp. This means there's no
2982                  * reason to update the wirte_stamp!
2983                  */
2984                 rb_time_set(&cpu_buffer->before_stamp, 0);
2985
2986                 /*
2987                  * If an event were to come in now, it would see that the
2988                  * write_stamp and the before_stamp are different, and assume
2989                  * that this event just added itself before updating
2990                  * the write stamp. The interrupting event will fix the
2991                  * write stamp for us, and use an absolute timestamp.
2992                  */
2993
2994                 /*
2995                  * This is on the tail page. It is possible that
2996                  * a write could come in and move the tail page
2997                  * and write to the next page. That is fine
2998                  * because we just shorten what is on this page.
2999                  */
3000                 old_index += write_mask;
3001                 new_index += write_mask;
3002
3003                 /* caution: old_index gets updated on cmpxchg failure */
3004                 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3005                         /* update counters */
3006                         local_sub(event_length, &cpu_buffer->entries_bytes);
3007                         return true;
3008                 }
3009         }
3010
3011         /* could not discard */
3012         return false;
3013 }
3014
3015 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3016 {
3017         local_inc(&cpu_buffer->committing);
3018         local_inc(&cpu_buffer->commits);
3019 }
3020
3021 static __always_inline void
3022 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3023 {
3024         unsigned long max_count;
3025
3026         /*
3027          * We only race with interrupts and NMIs on this CPU.
3028          * If we own the commit event, then we can commit
3029          * all others that interrupted us, since the interruptions
3030          * are in stack format (they finish before they come
3031          * back to us). This allows us to do a simple loop to
3032          * assign the commit to the tail.
3033          */
3034  again:
3035         max_count = cpu_buffer->nr_pages * 100;
3036
3037         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3038                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3039                         return;
3040                 if (RB_WARN_ON(cpu_buffer,
3041                                rb_is_reader_page(cpu_buffer->tail_page)))
3042                         return;
3043                 /*
3044                  * No need for a memory barrier here, as the update
3045                  * of the tail_page did it for this page.
3046                  */
3047                 local_set(&cpu_buffer->commit_page->page->commit,
3048                           rb_page_write(cpu_buffer->commit_page));
3049                 rb_inc_page(&cpu_buffer->commit_page);
3050                 /* add barrier to keep gcc from optimizing too much */
3051                 barrier();
3052         }
3053         while (rb_commit_index(cpu_buffer) !=
3054                rb_page_write(cpu_buffer->commit_page)) {
3055
3056                 /* Make sure the readers see the content of what is committed. */
3057                 smp_wmb();
3058                 local_set(&cpu_buffer->commit_page->page->commit,
3059                           rb_page_write(cpu_buffer->commit_page));
3060                 RB_WARN_ON(cpu_buffer,
3061                            local_read(&cpu_buffer->commit_page->page->commit) &
3062                            ~RB_WRITE_MASK);
3063                 barrier();
3064         }
3065
3066         /* again, keep gcc from optimizing */
3067         barrier();
3068
3069         /*
3070          * If an interrupt came in just after the first while loop
3071          * and pushed the tail page forward, we will be left with
3072          * a dangling commit that will never go forward.
3073          */
3074         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3075                 goto again;
3076 }
3077
3078 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3079 {
3080         unsigned long commits;
3081
3082         if (RB_WARN_ON(cpu_buffer,
3083                        !local_read(&cpu_buffer->committing)))
3084                 return;
3085
3086  again:
3087         commits = local_read(&cpu_buffer->commits);
3088         /* synchronize with interrupts */
3089         barrier();
3090         if (local_read(&cpu_buffer->committing) == 1)
3091                 rb_set_commit_to_write(cpu_buffer);
3092
3093         local_dec(&cpu_buffer->committing);
3094
3095         /* synchronize with interrupts */
3096         barrier();
3097
3098         /*
3099          * Need to account for interrupts coming in between the
3100          * updating of the commit page and the clearing of the
3101          * committing counter.
3102          */
3103         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3104             !local_read(&cpu_buffer->committing)) {
3105                 local_inc(&cpu_buffer->committing);
3106                 goto again;
3107         }
3108 }
3109
3110 static inline void rb_event_discard(struct ring_buffer_event *event)
3111 {
3112         if (extended_time(event))
3113                 event = skip_time_extend(event);
3114
3115         /* array[0] holds the actual length for the discarded event */
3116         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3117         event->type_len = RINGBUF_TYPE_PADDING;
3118         /* time delta must be non zero */
3119         if (!event->time_delta)
3120                 event->time_delta = 1;
3121 }
3122
3123 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3124 {
3125         local_inc(&cpu_buffer->entries);
3126         rb_end_commit(cpu_buffer);
3127 }
3128
3129 static __always_inline void
3130 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3131 {
3132         if (buffer->irq_work.waiters_pending) {
3133                 buffer->irq_work.waiters_pending = false;
3134                 /* irq_work_queue() supplies it's own memory barriers */
3135                 irq_work_queue(&buffer->irq_work.work);
3136         }
3137
3138         if (cpu_buffer->irq_work.waiters_pending) {
3139                 cpu_buffer->irq_work.waiters_pending = false;
3140                 /* irq_work_queue() supplies it's own memory barriers */
3141                 irq_work_queue(&cpu_buffer->irq_work.work);
3142         }
3143
3144         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3145                 return;
3146
3147         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3148                 return;
3149
3150         if (!cpu_buffer->irq_work.full_waiters_pending)
3151                 return;
3152
3153         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3154
3155         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3156                 return;
3157
3158         cpu_buffer->irq_work.wakeup_full = true;
3159         cpu_buffer->irq_work.full_waiters_pending = false;
3160         /* irq_work_queue() supplies it's own memory barriers */
3161         irq_work_queue(&cpu_buffer->irq_work.work);
3162 }
3163
3164 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3165 # define do_ring_buffer_record_recursion()      \
3166         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3167 #else
3168 # define do_ring_buffer_record_recursion() do { } while (0)
3169 #endif
3170
3171 /*
3172  * The lock and unlock are done within a preempt disable section.
3173  * The current_context per_cpu variable can only be modified
3174  * by the current task between lock and unlock. But it can
3175  * be modified more than once via an interrupt. To pass this
3176  * information from the lock to the unlock without having to
3177  * access the 'in_interrupt()' functions again (which do show
3178  * a bit of overhead in something as critical as function tracing,
3179  * we use a bitmask trick.
3180  *
3181  *  bit 1 =  NMI context
3182  *  bit 2 =  IRQ context
3183  *  bit 3 =  SoftIRQ context
3184  *  bit 4 =  normal context.
3185  *
3186  * This works because this is the order of contexts that can
3187  * preempt other contexts. A SoftIRQ never preempts an IRQ
3188  * context.
3189  *
3190  * When the context is determined, the corresponding bit is
3191  * checked and set (if it was set, then a recursion of that context
3192  * happened).
3193  *
3194  * On unlock, we need to clear this bit. To do so, just subtract
3195  * 1 from the current_context and AND it to itself.
3196  *
3197  * (binary)
3198  *  101 - 1 = 100
3199  *  101 & 100 = 100 (clearing bit zero)
3200  *
3201  *  1010 - 1 = 1001
3202  *  1010 & 1001 = 1000 (clearing bit 1)
3203  *
3204  * The least significant bit can be cleared this way, and it
3205  * just so happens that it is the same bit corresponding to
3206  * the current context.
3207  *
3208  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3209  * is set when a recursion is detected at the current context, and if
3210  * the TRANSITION bit is already set, it will fail the recursion.
3211  * This is needed because there's a lag between the changing of
3212  * interrupt context and updating the preempt count. In this case,
3213  * a false positive will be found. To handle this, one extra recursion
3214  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3215  * bit is already set, then it is considered a recursion and the function
3216  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3217  *
3218  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3219  * to be cleared. Even if it wasn't the context that set it. That is,
3220  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3221  * is called before preempt_count() is updated, since the check will
3222  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3223  * NMI then comes in, it will set the NMI bit, but when the NMI code
3224  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3225  * and leave the NMI bit set. But this is fine, because the interrupt
3226  * code that set the TRANSITION bit will then clear the NMI bit when it
3227  * calls trace_recursive_unlock(). If another NMI comes in, it will
3228  * set the TRANSITION bit and continue.
3229  *
3230  * Note: The TRANSITION bit only handles a single transition between context.
3231  */
3232
3233 static __always_inline bool
3234 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3235 {
3236         unsigned int val = cpu_buffer->current_context;
3237         int bit = interrupt_context_level();
3238
3239         bit = RB_CTX_NORMAL - bit;
3240
3241         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3242                 /*
3243                  * It is possible that this was called by transitioning
3244                  * between interrupt context, and preempt_count() has not
3245                  * been updated yet. In this case, use the TRANSITION bit.
3246                  */
3247                 bit = RB_CTX_TRANSITION;
3248                 if (val & (1 << (bit + cpu_buffer->nest))) {
3249                         do_ring_buffer_record_recursion();
3250                         return true;
3251                 }
3252         }
3253
3254         val |= (1 << (bit + cpu_buffer->nest));
3255         cpu_buffer->current_context = val;
3256
3257         return false;
3258 }
3259
3260 static __always_inline void
3261 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3262 {
3263         cpu_buffer->current_context &=
3264                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3265 }
3266
3267 /* The recursive locking above uses 5 bits */
3268 #define NESTED_BITS 5
3269
3270 /**
3271  * ring_buffer_nest_start - Allow to trace while nested
3272  * @buffer: The ring buffer to modify
3273  *
3274  * The ring buffer has a safety mechanism to prevent recursion.
3275  * But there may be a case where a trace needs to be done while
3276  * tracing something else. In this case, calling this function
3277  * will allow this function to nest within a currently active
3278  * ring_buffer_lock_reserve().
3279  *
3280  * Call this function before calling another ring_buffer_lock_reserve() and
3281  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3282  */
3283 void ring_buffer_nest_start(struct trace_buffer *buffer)
3284 {
3285         struct ring_buffer_per_cpu *cpu_buffer;
3286         int cpu;
3287
3288         /* Enabled by ring_buffer_nest_end() */
3289         preempt_disable_notrace();
3290         cpu = raw_smp_processor_id();
3291         cpu_buffer = buffer->buffers[cpu];
3292         /* This is the shift value for the above recursive locking */
3293         cpu_buffer->nest += NESTED_BITS;
3294 }
3295
3296 /**
3297  * ring_buffer_nest_end - Allow to trace while nested
3298  * @buffer: The ring buffer to modify
3299  *
3300  * Must be called after ring_buffer_nest_start() and after the
3301  * ring_buffer_unlock_commit().
3302  */
3303 void ring_buffer_nest_end(struct trace_buffer *buffer)
3304 {
3305         struct ring_buffer_per_cpu *cpu_buffer;
3306         int cpu;
3307
3308         /* disabled by ring_buffer_nest_start() */
3309         cpu = raw_smp_processor_id();
3310         cpu_buffer = buffer->buffers[cpu];
3311         /* This is the shift value for the above recursive locking */
3312         cpu_buffer->nest -= NESTED_BITS;
3313         preempt_enable_notrace();
3314 }
3315
3316 /**
3317  * ring_buffer_unlock_commit - commit a reserved
3318  * @buffer: The buffer to commit to
3319  *
3320  * This commits the data to the ring buffer, and releases any locks held.
3321  *
3322  * Must be paired with ring_buffer_lock_reserve.
3323  */
3324 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3325 {
3326         struct ring_buffer_per_cpu *cpu_buffer;
3327         int cpu = raw_smp_processor_id();
3328
3329         cpu_buffer = buffer->buffers[cpu];
3330
3331         rb_commit(cpu_buffer);
3332
3333         rb_wakeups(buffer, cpu_buffer);
3334
3335         trace_recursive_unlock(cpu_buffer);
3336
3337         preempt_enable_notrace();
3338
3339         return 0;
3340 }
3341 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3342
3343 /* Special value to validate all deltas on a page. */
3344 #define CHECK_FULL_PAGE         1L
3345
3346 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3347 static void dump_buffer_page(struct buffer_data_page *bpage,
3348                              struct rb_event_info *info,
3349                              unsigned long tail)
3350 {
3351         struct ring_buffer_event *event;
3352         u64 ts, delta;
3353         int e;
3354
3355         ts = bpage->time_stamp;
3356         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3357
3358         for (e = 0; e < tail; e += rb_event_length(event)) {
3359
3360                 event = (struct ring_buffer_event *)(bpage->data + e);
3361
3362                 switch (event->type_len) {
3363
3364                 case RINGBUF_TYPE_TIME_EXTEND:
3365                         delta = rb_event_time_stamp(event);
3366                         ts += delta;
3367                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3368                         break;
3369
3370                 case RINGBUF_TYPE_TIME_STAMP:
3371                         delta = rb_event_time_stamp(event);
3372                         ts = rb_fix_abs_ts(delta, ts);
3373                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3374                         break;
3375
3376                 case RINGBUF_TYPE_PADDING:
3377                         ts += event->time_delta;
3378                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3379                         break;
3380
3381                 case RINGBUF_TYPE_DATA:
3382                         ts += event->time_delta;
3383                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3384                         break;
3385
3386                 default:
3387                         break;
3388                 }
3389         }
3390 }
3391
3392 static DEFINE_PER_CPU(atomic_t, checking);
3393 static atomic_t ts_dump;
3394
3395 /*
3396  * Check if the current event time stamp matches the deltas on
3397  * the buffer page.
3398  */
3399 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3400                          struct rb_event_info *info,
3401                          unsigned long tail)
3402 {
3403         struct ring_buffer_event *event;
3404         struct buffer_data_page *bpage;
3405         u64 ts, delta;
3406         bool full = false;
3407         int e;
3408
3409         bpage = info->tail_page->page;
3410
3411         if (tail == CHECK_FULL_PAGE) {
3412                 full = true;
3413                 tail = local_read(&bpage->commit);
3414         } else if (info->add_timestamp &
3415                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3416                 /* Ignore events with absolute time stamps */
3417                 return;
3418         }
3419
3420         /*
3421          * Do not check the first event (skip possible extends too).
3422          * Also do not check if previous events have not been committed.
3423          */
3424         if (tail <= 8 || tail > local_read(&bpage->commit))
3425                 return;
3426
3427         /*
3428          * If this interrupted another event,
3429          */
3430         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3431                 goto out;
3432
3433         ts = bpage->time_stamp;
3434
3435         for (e = 0; e < tail; e += rb_event_length(event)) {
3436
3437                 event = (struct ring_buffer_event *)(bpage->data + e);
3438
3439                 switch (event->type_len) {
3440
3441                 case RINGBUF_TYPE_TIME_EXTEND:
3442                         delta = rb_event_time_stamp(event);
3443                         ts += delta;
3444                         break;
3445
3446                 case RINGBUF_TYPE_TIME_STAMP:
3447                         delta = rb_event_time_stamp(event);
3448                         ts = rb_fix_abs_ts(delta, ts);
3449                         break;
3450
3451                 case RINGBUF_TYPE_PADDING:
3452                         if (event->time_delta == 1)
3453                                 break;
3454                         fallthrough;
3455                 case RINGBUF_TYPE_DATA:
3456                         ts += event->time_delta;
3457                         break;
3458
3459                 default:
3460                         RB_WARN_ON(cpu_buffer, 1);
3461                 }
3462         }
3463         if ((full && ts > info->ts) ||
3464             (!full && ts + info->delta != info->ts)) {
3465                 /* If another report is happening, ignore this one */
3466                 if (atomic_inc_return(&ts_dump) != 1) {
3467                         atomic_dec(&ts_dump);
3468                         goto out;
3469                 }
3470                 atomic_inc(&cpu_buffer->record_disabled);
3471                 /* There's some cases in boot up that this can happen */
3472                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3473                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3474                         cpu_buffer->cpu,
3475                         ts + info->delta, info->ts, info->delta,
3476                         info->before, info->after,
3477                         full ? " (full)" : "");
3478                 dump_buffer_page(bpage, info, tail);
3479                 atomic_dec(&ts_dump);
3480                 /* Do not re-enable checking */
3481                 return;
3482         }
3483 out:
3484         atomic_dec(this_cpu_ptr(&checking));
3485 }
3486 #else
3487 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3488                          struct rb_event_info *info,
3489                          unsigned long tail)
3490 {
3491 }
3492 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3493
3494 static struct ring_buffer_event *
3495 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3496                   struct rb_event_info *info)
3497 {
3498         struct ring_buffer_event *event;
3499         struct buffer_page *tail_page;
3500         unsigned long tail, write, w;
3501         bool a_ok;
3502         bool b_ok;
3503
3504         /* Don't let the compiler play games with cpu_buffer->tail_page */
3505         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3506
3507  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3508         barrier();
3509         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3510         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3511         barrier();
3512         info->ts = rb_time_stamp(cpu_buffer->buffer);
3513
3514         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3515                 info->delta = info->ts;
3516         } else {
3517                 /*
3518                  * If interrupting an event time update, we may need an
3519                  * absolute timestamp.
3520                  * Don't bother if this is the start of a new page (w == 0).
3521                  */
3522                 if (!w) {
3523                         /* Use the sub-buffer timestamp */
3524                         info->delta = 0;
3525                 } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) {
3526                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3527                         info->length += RB_LEN_TIME_EXTEND;
3528                 } else {
3529                         info->delta = info->ts - info->after;
3530                         if (unlikely(test_time_stamp(info->delta))) {
3531                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3532                                 info->length += RB_LEN_TIME_EXTEND;
3533                         }
3534                 }
3535         }
3536
3537  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3538
3539  /*C*/  write = local_add_return(info->length, &tail_page->write);
3540
3541         /* set write to only the index of the write */
3542         write &= RB_WRITE_MASK;
3543
3544         tail = write - info->length;
3545
3546         /* See if we shot pass the end of this buffer page */
3547         if (unlikely(write > BUF_PAGE_SIZE)) {
3548                 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3549                 return rb_move_tail(cpu_buffer, tail, info);
3550         }
3551
3552         if (likely(tail == w)) {
3553                 /* Nothing interrupted us between A and C */
3554  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3555                 /*
3556                  * If something came in between C and D, the write stamp
3557                  * may now not be in sync. But that's fine as the before_stamp
3558                  * will be different and then next event will just be forced
3559                  * to use an absolute timestamp.
3560                  */
3561                 if (likely(!(info->add_timestamp &
3562                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3563                         /* This did not interrupt any time update */
3564                         info->delta = info->ts - info->after;
3565                 else
3566                         /* Just use full timestamp for interrupting event */
3567                         info->delta = info->ts;
3568                 check_buffer(cpu_buffer, info, tail);
3569         } else {
3570                 u64 ts;
3571                 /* SLOW PATH - Interrupted between A and C */
3572
3573                 /* Save the old before_stamp */
3574                 a_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3575                 RB_WARN_ON(cpu_buffer, !a_ok);
3576
3577                 /*
3578                  * Read a new timestamp and update the before_stamp to make
3579                  * the next event after this one force using an absolute
3580                  * timestamp. This is in case an interrupt were to come in
3581                  * between E and F.
3582                  */
3583                 ts = rb_time_stamp(cpu_buffer->buffer);
3584                 rb_time_set(&cpu_buffer->before_stamp, ts);
3585
3586                 barrier();
3587  /*E*/          a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3588                 /* Was interrupted before here, write_stamp must be valid */
3589                 RB_WARN_ON(cpu_buffer, !a_ok);
3590                 barrier();
3591  /*F*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3592                     info->after == info->before && info->after < ts) {
3593                         /*
3594                          * Nothing came after this event between C and F, it is
3595                          * safe to use info->after for the delta as it
3596                          * matched info->before and is still valid.
3597                          */
3598                         info->delta = ts - info->after;
3599                 } else {
3600                         /*
3601                          * Interrupted between C and F:
3602                          * Lost the previous events time stamp. Just set the
3603                          * delta to zero, and this will be the same time as
3604                          * the event this event interrupted. And the events that
3605                          * came after this will still be correct (as they would
3606                          * have built their delta on the previous event.
3607                          */
3608                         info->delta = 0;
3609                 }
3610                 info->ts = ts;
3611                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3612         }
3613
3614         /*
3615          * If this is the first commit on the page, then it has the same
3616          * timestamp as the page itself.
3617          */
3618         if (unlikely(!tail && !(info->add_timestamp &
3619                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3620                 info->delta = 0;
3621
3622         /* We reserved something on the buffer */
3623
3624         event = __rb_page_index(tail_page, tail);
3625         rb_update_event(cpu_buffer, event, info);
3626
3627         local_inc(&tail_page->entries);
3628
3629         /*
3630          * If this is the first commit on the page, then update
3631          * its timestamp.
3632          */
3633         if (unlikely(!tail))
3634                 tail_page->page->time_stamp = info->ts;
3635
3636         /* account for these added bytes */
3637         local_add(info->length, &cpu_buffer->entries_bytes);
3638
3639         return event;
3640 }
3641
3642 static __always_inline struct ring_buffer_event *
3643 rb_reserve_next_event(struct trace_buffer *buffer,
3644                       struct ring_buffer_per_cpu *cpu_buffer,
3645                       unsigned long length)
3646 {
3647         struct ring_buffer_event *event;
3648         struct rb_event_info info;
3649         int nr_loops = 0;
3650         int add_ts_default;
3651
3652         /* ring buffer does cmpxchg, make sure it is safe in NMI context */
3653         if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3654             (unlikely(in_nmi()))) {
3655                 return NULL;
3656         }
3657
3658         rb_start_commit(cpu_buffer);
3659         /* The commit page can not change after this */
3660
3661 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3662         /*
3663          * Due to the ability to swap a cpu buffer from a buffer
3664          * it is possible it was swapped before we committed.
3665          * (committing stops a swap). We check for it here and
3666          * if it happened, we have to fail the write.
3667          */
3668         barrier();
3669         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3670                 local_dec(&cpu_buffer->committing);
3671                 local_dec(&cpu_buffer->commits);
3672                 return NULL;
3673         }
3674 #endif
3675
3676         info.length = rb_calculate_event_length(length);
3677
3678         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3679                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3680                 info.length += RB_LEN_TIME_EXTEND;
3681                 if (info.length > BUF_MAX_DATA_SIZE)
3682                         goto out_fail;
3683         } else {
3684                 add_ts_default = RB_ADD_STAMP_NONE;
3685         }
3686
3687  again:
3688         info.add_timestamp = add_ts_default;
3689         info.delta = 0;
3690
3691         /*
3692          * We allow for interrupts to reenter here and do a trace.
3693          * If one does, it will cause this original code to loop
3694          * back here. Even with heavy interrupts happening, this
3695          * should only happen a few times in a row. If this happens
3696          * 1000 times in a row, there must be either an interrupt
3697          * storm or we have something buggy.
3698          * Bail!
3699          */
3700         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3701                 goto out_fail;
3702
3703         event = __rb_reserve_next(cpu_buffer, &info);
3704
3705         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3706                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3707                         info.length -= RB_LEN_TIME_EXTEND;
3708                 goto again;
3709         }
3710
3711         if (likely(event))
3712                 return event;
3713  out_fail:
3714         rb_end_commit(cpu_buffer);
3715         return NULL;
3716 }
3717
3718 /**
3719  * ring_buffer_lock_reserve - reserve a part of the buffer
3720  * @buffer: the ring buffer to reserve from
3721  * @length: the length of the data to reserve (excluding event header)
3722  *
3723  * Returns a reserved event on the ring buffer to copy directly to.
3724  * The user of this interface will need to get the body to write into
3725  * and can use the ring_buffer_event_data() interface.
3726  *
3727  * The length is the length of the data needed, not the event length
3728  * which also includes the event header.
3729  *
3730  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3731  * If NULL is returned, then nothing has been allocated or locked.
3732  */
3733 struct ring_buffer_event *
3734 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3735 {
3736         struct ring_buffer_per_cpu *cpu_buffer;
3737         struct ring_buffer_event *event;
3738         int cpu;
3739
3740         /* If we are tracing schedule, we don't want to recurse */
3741         preempt_disable_notrace();
3742
3743         if (unlikely(atomic_read(&buffer->record_disabled)))
3744                 goto out;
3745
3746         cpu = raw_smp_processor_id();
3747
3748         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3749                 goto out;
3750
3751         cpu_buffer = buffer->buffers[cpu];
3752
3753         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3754                 goto out;
3755
3756         if (unlikely(length > BUF_MAX_DATA_SIZE))
3757                 goto out;
3758
3759         if (unlikely(trace_recursive_lock(cpu_buffer)))
3760                 goto out;
3761
3762         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3763         if (!event)
3764                 goto out_unlock;
3765
3766         return event;
3767
3768  out_unlock:
3769         trace_recursive_unlock(cpu_buffer);
3770  out:
3771         preempt_enable_notrace();
3772         return NULL;
3773 }
3774 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3775
3776 /*
3777  * Decrement the entries to the page that an event is on.
3778  * The event does not even need to exist, only the pointer
3779  * to the page it is on. This may only be called before the commit
3780  * takes place.
3781  */
3782 static inline void
3783 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3784                    struct ring_buffer_event *event)
3785 {
3786         unsigned long addr = (unsigned long)event;
3787         struct buffer_page *bpage = cpu_buffer->commit_page;
3788         struct buffer_page *start;
3789
3790         addr &= PAGE_MASK;
3791
3792         /* Do the likely case first */
3793         if (likely(bpage->page == (void *)addr)) {
3794                 local_dec(&bpage->entries);
3795                 return;
3796         }
3797
3798         /*
3799          * Because the commit page may be on the reader page we
3800          * start with the next page and check the end loop there.
3801          */
3802         rb_inc_page(&bpage);
3803         start = bpage;
3804         do {
3805                 if (bpage->page == (void *)addr) {
3806                         local_dec(&bpage->entries);
3807                         return;
3808                 }
3809                 rb_inc_page(&bpage);
3810         } while (bpage != start);
3811
3812         /* commit not part of this buffer?? */
3813         RB_WARN_ON(cpu_buffer, 1);
3814 }
3815
3816 /**
3817  * ring_buffer_discard_commit - discard an event that has not been committed
3818  * @buffer: the ring buffer
3819  * @event: non committed event to discard
3820  *
3821  * Sometimes an event that is in the ring buffer needs to be ignored.
3822  * This function lets the user discard an event in the ring buffer
3823  * and then that event will not be read later.
3824  *
3825  * This function only works if it is called before the item has been
3826  * committed. It will try to free the event from the ring buffer
3827  * if another event has not been added behind it.
3828  *
3829  * If another event has been added behind it, it will set the event
3830  * up as discarded, and perform the commit.
3831  *
3832  * If this function is called, do not call ring_buffer_unlock_commit on
3833  * the event.
3834  */
3835 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3836                                 struct ring_buffer_event *event)
3837 {
3838         struct ring_buffer_per_cpu *cpu_buffer;
3839         int cpu;
3840
3841         /* The event is discarded regardless */
3842         rb_event_discard(event);
3843
3844         cpu = smp_processor_id();
3845         cpu_buffer = buffer->buffers[cpu];
3846
3847         /*
3848          * This must only be called if the event has not been
3849          * committed yet. Thus we can assume that preemption
3850          * is still disabled.
3851          */
3852         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3853
3854         rb_decrement_entry(cpu_buffer, event);
3855         if (rb_try_to_discard(cpu_buffer, event))
3856                 goto out;
3857
3858  out:
3859         rb_end_commit(cpu_buffer);
3860
3861         trace_recursive_unlock(cpu_buffer);
3862
3863         preempt_enable_notrace();
3864
3865 }
3866 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3867
3868 /**
3869  * ring_buffer_write - write data to the buffer without reserving
3870  * @buffer: The ring buffer to write to.
3871  * @length: The length of the data being written (excluding the event header)
3872  * @data: The data to write to the buffer.
3873  *
3874  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3875  * one function. If you already have the data to write to the buffer, it
3876  * may be easier to simply call this function.
3877  *
3878  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3879  * and not the length of the event which would hold the header.
3880  */
3881 int ring_buffer_write(struct trace_buffer *buffer,
3882                       unsigned long length,
3883                       void *data)
3884 {
3885         struct ring_buffer_per_cpu *cpu_buffer;
3886         struct ring_buffer_event *event;
3887         void *body;
3888         int ret = -EBUSY;
3889         int cpu;
3890
3891         preempt_disable_notrace();
3892
3893         if (atomic_read(&buffer->record_disabled))
3894                 goto out;
3895
3896         cpu = raw_smp_processor_id();
3897
3898         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3899                 goto out;
3900
3901         cpu_buffer = buffer->buffers[cpu];
3902
3903         if (atomic_read(&cpu_buffer->record_disabled))
3904                 goto out;
3905
3906         if (length > BUF_MAX_DATA_SIZE)
3907                 goto out;
3908
3909         if (unlikely(trace_recursive_lock(cpu_buffer)))
3910                 goto out;
3911
3912         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3913         if (!event)
3914                 goto out_unlock;
3915
3916         body = rb_event_data(event);
3917
3918         memcpy(body, data, length);
3919
3920         rb_commit(cpu_buffer);
3921
3922         rb_wakeups(buffer, cpu_buffer);
3923
3924         ret = 0;
3925
3926  out_unlock:
3927         trace_recursive_unlock(cpu_buffer);
3928
3929  out:
3930         preempt_enable_notrace();
3931
3932         return ret;
3933 }
3934 EXPORT_SYMBOL_GPL(ring_buffer_write);
3935
3936 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3937 {
3938         struct buffer_page *reader = cpu_buffer->reader_page;
3939         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3940         struct buffer_page *commit = cpu_buffer->commit_page;
3941
3942         /* In case of error, head will be NULL */
3943         if (unlikely(!head))
3944                 return true;
3945
3946         /* Reader should exhaust content in reader page */
3947         if (reader->read != rb_page_commit(reader))
3948                 return false;
3949
3950         /*
3951          * If writers are committing on the reader page, knowing all
3952          * committed content has been read, the ring buffer is empty.
3953          */
3954         if (commit == reader)
3955                 return true;
3956
3957         /*
3958          * If writers are committing on a page other than reader page
3959          * and head page, there should always be content to read.
3960          */
3961         if (commit != head)
3962                 return false;
3963
3964         /*
3965          * Writers are committing on the head page, we just need
3966          * to care about there're committed data, and the reader will
3967          * swap reader page with head page when it is to read data.
3968          */
3969         return rb_page_commit(commit) == 0;
3970 }
3971
3972 /**
3973  * ring_buffer_record_disable - stop all writes into the buffer
3974  * @buffer: The ring buffer to stop writes to.
3975  *
3976  * This prevents all writes to the buffer. Any attempt to write
3977  * to the buffer after this will fail and return NULL.
3978  *
3979  * The caller should call synchronize_rcu() after this.
3980  */
3981 void ring_buffer_record_disable(struct trace_buffer *buffer)
3982 {
3983         atomic_inc(&buffer->record_disabled);
3984 }
3985 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3986
3987 /**
3988  * ring_buffer_record_enable - enable writes to the buffer
3989  * @buffer: The ring buffer to enable writes
3990  *
3991  * Note, multiple disables will need the same number of enables
3992  * to truly enable the writing (much like preempt_disable).
3993  */
3994 void ring_buffer_record_enable(struct trace_buffer *buffer)
3995 {
3996         atomic_dec(&buffer->record_disabled);
3997 }
3998 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3999
4000 /**
4001  * ring_buffer_record_off - stop all writes into the buffer
4002  * @buffer: The ring buffer to stop writes to.
4003  *
4004  * This prevents all writes to the buffer. Any attempt to write
4005  * to the buffer after this will fail and return NULL.
4006  *
4007  * This is different than ring_buffer_record_disable() as
4008  * it works like an on/off switch, where as the disable() version
4009  * must be paired with a enable().
4010  */
4011 void ring_buffer_record_off(struct trace_buffer *buffer)
4012 {
4013         unsigned int rd;
4014         unsigned int new_rd;
4015
4016         rd = atomic_read(&buffer->record_disabled);
4017         do {
4018                 new_rd = rd | RB_BUFFER_OFF;
4019         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4020 }
4021 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4022
4023 /**
4024  * ring_buffer_record_on - restart writes into the buffer
4025  * @buffer: The ring buffer to start writes to.
4026  *
4027  * This enables all writes to the buffer that was disabled by
4028  * ring_buffer_record_off().
4029  *
4030  * This is different than ring_buffer_record_enable() as
4031  * it works like an on/off switch, where as the enable() version
4032  * must be paired with a disable().
4033  */
4034 void ring_buffer_record_on(struct trace_buffer *buffer)
4035 {
4036         unsigned int rd;
4037         unsigned int new_rd;
4038
4039         rd = atomic_read(&buffer->record_disabled);
4040         do {
4041                 new_rd = rd & ~RB_BUFFER_OFF;
4042         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4043 }
4044 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4045
4046 /**
4047  * ring_buffer_record_is_on - return true if the ring buffer can write
4048  * @buffer: The ring buffer to see if write is enabled
4049  *
4050  * Returns true if the ring buffer is in a state that it accepts writes.
4051  */
4052 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4053 {
4054         return !atomic_read(&buffer->record_disabled);
4055 }
4056
4057 /**
4058  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4059  * @buffer: The ring buffer to see if write is set enabled
4060  *
4061  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4062  * Note that this does NOT mean it is in a writable state.
4063  *
4064  * It may return true when the ring buffer has been disabled by
4065  * ring_buffer_record_disable(), as that is a temporary disabling of
4066  * the ring buffer.
4067  */
4068 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4069 {
4070         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4071 }
4072
4073 /**
4074  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4075  * @buffer: The ring buffer to stop writes to.
4076  * @cpu: The CPU buffer to stop
4077  *
4078  * This prevents all writes to the buffer. Any attempt to write
4079  * to the buffer after this will fail and return NULL.
4080  *
4081  * The caller should call synchronize_rcu() after this.
4082  */
4083 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4084 {
4085         struct ring_buffer_per_cpu *cpu_buffer;
4086
4087         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4088                 return;
4089
4090         cpu_buffer = buffer->buffers[cpu];
4091         atomic_inc(&cpu_buffer->record_disabled);
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4094
4095 /**
4096  * ring_buffer_record_enable_cpu - enable writes to the buffer
4097  * @buffer: The ring buffer to enable writes
4098  * @cpu: The CPU to enable.
4099  *
4100  * Note, multiple disables will need the same number of enables
4101  * to truly enable the writing (much like preempt_disable).
4102  */
4103 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4104 {
4105         struct ring_buffer_per_cpu *cpu_buffer;
4106
4107         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4108                 return;
4109
4110         cpu_buffer = buffer->buffers[cpu];
4111         atomic_dec(&cpu_buffer->record_disabled);
4112 }
4113 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4114
4115 /*
4116  * The total entries in the ring buffer is the running counter
4117  * of entries entered into the ring buffer, minus the sum of
4118  * the entries read from the ring buffer and the number of
4119  * entries that were overwritten.
4120  */
4121 static inline unsigned long
4122 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4123 {
4124         return local_read(&cpu_buffer->entries) -
4125                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4126 }
4127
4128 /**
4129  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4130  * @buffer: The ring buffer
4131  * @cpu: The per CPU buffer to read from.
4132  */
4133 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4134 {
4135         unsigned long flags;
4136         struct ring_buffer_per_cpu *cpu_buffer;
4137         struct buffer_page *bpage;
4138         u64 ret = 0;
4139
4140         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4141                 return 0;
4142
4143         cpu_buffer = buffer->buffers[cpu];
4144         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4145         /*
4146          * if the tail is on reader_page, oldest time stamp is on the reader
4147          * page
4148          */
4149         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4150                 bpage = cpu_buffer->reader_page;
4151         else
4152                 bpage = rb_set_head_page(cpu_buffer);
4153         if (bpage)
4154                 ret = bpage->page->time_stamp;
4155         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4156
4157         return ret;
4158 }
4159 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4160
4161 /**
4162  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4163  * @buffer: The ring buffer
4164  * @cpu: The per CPU buffer to read from.
4165  */
4166 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4167 {
4168         struct ring_buffer_per_cpu *cpu_buffer;
4169         unsigned long ret;
4170
4171         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4172                 return 0;
4173
4174         cpu_buffer = buffer->buffers[cpu];
4175         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4176
4177         return ret;
4178 }
4179 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4180
4181 /**
4182  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4183  * @buffer: The ring buffer
4184  * @cpu: The per CPU buffer to get the entries from.
4185  */
4186 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4187 {
4188         struct ring_buffer_per_cpu *cpu_buffer;
4189
4190         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4191                 return 0;
4192
4193         cpu_buffer = buffer->buffers[cpu];
4194
4195         return rb_num_of_entries(cpu_buffer);
4196 }
4197 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4198
4199 /**
4200  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4201  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4202  * @buffer: The ring buffer
4203  * @cpu: The per CPU buffer to get the number of overruns from
4204  */
4205 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4206 {
4207         struct ring_buffer_per_cpu *cpu_buffer;
4208         unsigned long ret;
4209
4210         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4211                 return 0;
4212
4213         cpu_buffer = buffer->buffers[cpu];
4214         ret = local_read(&cpu_buffer->overrun);
4215
4216         return ret;
4217 }
4218 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4219
4220 /**
4221  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4222  * commits failing due to the buffer wrapping around while there are uncommitted
4223  * events, such as during an interrupt storm.
4224  * @buffer: The ring buffer
4225  * @cpu: The per CPU buffer to get the number of overruns from
4226  */
4227 unsigned long
4228 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4229 {
4230         struct ring_buffer_per_cpu *cpu_buffer;
4231         unsigned long ret;
4232
4233         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4234                 return 0;
4235
4236         cpu_buffer = buffer->buffers[cpu];
4237         ret = local_read(&cpu_buffer->commit_overrun);
4238
4239         return ret;
4240 }
4241 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4242
4243 /**
4244  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4245  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4246  * @buffer: The ring buffer
4247  * @cpu: The per CPU buffer to get the number of overruns from
4248  */
4249 unsigned long
4250 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4251 {
4252         struct ring_buffer_per_cpu *cpu_buffer;
4253         unsigned long ret;
4254
4255         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4256                 return 0;
4257
4258         cpu_buffer = buffer->buffers[cpu];
4259         ret = local_read(&cpu_buffer->dropped_events);
4260
4261         return ret;
4262 }
4263 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4264
4265 /**
4266  * ring_buffer_read_events_cpu - get the number of events successfully read
4267  * @buffer: The ring buffer
4268  * @cpu: The per CPU buffer to get the number of events read
4269  */
4270 unsigned long
4271 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4272 {
4273         struct ring_buffer_per_cpu *cpu_buffer;
4274
4275         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4276                 return 0;
4277
4278         cpu_buffer = buffer->buffers[cpu];
4279         return cpu_buffer->read;
4280 }
4281 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4282
4283 /**
4284  * ring_buffer_entries - get the number of entries in a buffer
4285  * @buffer: The ring buffer
4286  *
4287  * Returns the total number of entries in the ring buffer
4288  * (all CPU entries)
4289  */
4290 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4291 {
4292         struct ring_buffer_per_cpu *cpu_buffer;
4293         unsigned long entries = 0;
4294         int cpu;
4295
4296         /* if you care about this being correct, lock the buffer */
4297         for_each_buffer_cpu(buffer, cpu) {
4298                 cpu_buffer = buffer->buffers[cpu];
4299                 entries += rb_num_of_entries(cpu_buffer);
4300         }
4301
4302         return entries;
4303 }
4304 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4305
4306 /**
4307  * ring_buffer_overruns - get the number of overruns in buffer
4308  * @buffer: The ring buffer
4309  *
4310  * Returns the total number of overruns in the ring buffer
4311  * (all CPU entries)
4312  */
4313 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4314 {
4315         struct ring_buffer_per_cpu *cpu_buffer;
4316         unsigned long overruns = 0;
4317         int cpu;
4318
4319         /* if you care about this being correct, lock the buffer */
4320         for_each_buffer_cpu(buffer, cpu) {
4321                 cpu_buffer = buffer->buffers[cpu];
4322                 overruns += local_read(&cpu_buffer->overrun);
4323         }
4324
4325         return overruns;
4326 }
4327 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4328
4329 static void rb_iter_reset(struct ring_buffer_iter *iter)
4330 {
4331         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4332
4333         /* Iterator usage is expected to have record disabled */
4334         iter->head_page = cpu_buffer->reader_page;
4335         iter->head = cpu_buffer->reader_page->read;
4336         iter->next_event = iter->head;
4337
4338         iter->cache_reader_page = iter->head_page;
4339         iter->cache_read = cpu_buffer->read;
4340         iter->cache_pages_removed = cpu_buffer->pages_removed;
4341
4342         if (iter->head) {
4343                 iter->read_stamp = cpu_buffer->read_stamp;
4344                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4345         } else {
4346                 iter->read_stamp = iter->head_page->page->time_stamp;
4347                 iter->page_stamp = iter->read_stamp;
4348         }
4349 }
4350
4351 /**
4352  * ring_buffer_iter_reset - reset an iterator
4353  * @iter: The iterator to reset
4354  *
4355  * Resets the iterator, so that it will start from the beginning
4356  * again.
4357  */
4358 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4359 {
4360         struct ring_buffer_per_cpu *cpu_buffer;
4361         unsigned long flags;
4362
4363         if (!iter)
4364                 return;
4365
4366         cpu_buffer = iter->cpu_buffer;
4367
4368         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4369         rb_iter_reset(iter);
4370         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4373
4374 /**
4375  * ring_buffer_iter_empty - check if an iterator has no more to read
4376  * @iter: The iterator to check
4377  */
4378 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4379 {
4380         struct ring_buffer_per_cpu *cpu_buffer;
4381         struct buffer_page *reader;
4382         struct buffer_page *head_page;
4383         struct buffer_page *commit_page;
4384         struct buffer_page *curr_commit_page;
4385         unsigned commit;
4386         u64 curr_commit_ts;
4387         u64 commit_ts;
4388
4389         cpu_buffer = iter->cpu_buffer;
4390         reader = cpu_buffer->reader_page;
4391         head_page = cpu_buffer->head_page;
4392         commit_page = cpu_buffer->commit_page;
4393         commit_ts = commit_page->page->time_stamp;
4394
4395         /*
4396          * When the writer goes across pages, it issues a cmpxchg which
4397          * is a mb(), which will synchronize with the rmb here.
4398          * (see rb_tail_page_update())
4399          */
4400         smp_rmb();
4401         commit = rb_page_commit(commit_page);
4402         /* We want to make sure that the commit page doesn't change */
4403         smp_rmb();
4404
4405         /* Make sure commit page didn't change */
4406         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4407         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4408
4409         /* If the commit page changed, then there's more data */
4410         if (curr_commit_page != commit_page ||
4411             curr_commit_ts != commit_ts)
4412                 return 0;
4413
4414         /* Still racy, as it may return a false positive, but that's OK */
4415         return ((iter->head_page == commit_page && iter->head >= commit) ||
4416                 (iter->head_page == reader && commit_page == head_page &&
4417                  head_page->read == commit &&
4418                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4419 }
4420 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4421
4422 static void
4423 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4424                      struct ring_buffer_event *event)
4425 {
4426         u64 delta;
4427
4428         switch (event->type_len) {
4429         case RINGBUF_TYPE_PADDING:
4430                 return;
4431
4432         case RINGBUF_TYPE_TIME_EXTEND:
4433                 delta = rb_event_time_stamp(event);
4434                 cpu_buffer->read_stamp += delta;
4435                 return;
4436
4437         case RINGBUF_TYPE_TIME_STAMP:
4438                 delta = rb_event_time_stamp(event);
4439                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4440                 cpu_buffer->read_stamp = delta;
4441                 return;
4442
4443         case RINGBUF_TYPE_DATA:
4444                 cpu_buffer->read_stamp += event->time_delta;
4445                 return;
4446
4447         default:
4448                 RB_WARN_ON(cpu_buffer, 1);
4449         }
4450 }
4451
4452 static void
4453 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4454                           struct ring_buffer_event *event)
4455 {
4456         u64 delta;
4457
4458         switch (event->type_len) {
4459         case RINGBUF_TYPE_PADDING:
4460                 return;
4461
4462         case RINGBUF_TYPE_TIME_EXTEND:
4463                 delta = rb_event_time_stamp(event);
4464                 iter->read_stamp += delta;
4465                 return;
4466
4467         case RINGBUF_TYPE_TIME_STAMP:
4468                 delta = rb_event_time_stamp(event);
4469                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4470                 iter->read_stamp = delta;
4471                 return;
4472
4473         case RINGBUF_TYPE_DATA:
4474                 iter->read_stamp += event->time_delta;
4475                 return;
4476
4477         default:
4478                 RB_WARN_ON(iter->cpu_buffer, 1);
4479         }
4480 }
4481
4482 static struct buffer_page *
4483 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4484 {
4485         struct buffer_page *reader = NULL;
4486         unsigned long overwrite;
4487         unsigned long flags;
4488         int nr_loops = 0;
4489         bool ret;
4490
4491         local_irq_save(flags);
4492         arch_spin_lock(&cpu_buffer->lock);
4493
4494  again:
4495         /*
4496          * This should normally only loop twice. But because the
4497          * start of the reader inserts an empty page, it causes
4498          * a case where we will loop three times. There should be no
4499          * reason to loop four times (that I know of).
4500          */
4501         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4502                 reader = NULL;
4503                 goto out;
4504         }
4505
4506         reader = cpu_buffer->reader_page;
4507
4508         /* If there's more to read, return this page */
4509         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4510                 goto out;
4511
4512         /* Never should we have an index greater than the size */
4513         if (RB_WARN_ON(cpu_buffer,
4514                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4515                 goto out;
4516
4517         /* check if we caught up to the tail */
4518         reader = NULL;
4519         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4520                 goto out;
4521
4522         /* Don't bother swapping if the ring buffer is empty */
4523         if (rb_num_of_entries(cpu_buffer) == 0)
4524                 goto out;
4525
4526         /*
4527          * Reset the reader page to size zero.
4528          */
4529         local_set(&cpu_buffer->reader_page->write, 0);
4530         local_set(&cpu_buffer->reader_page->entries, 0);
4531         local_set(&cpu_buffer->reader_page->page->commit, 0);
4532         cpu_buffer->reader_page->real_end = 0;
4533
4534  spin:
4535         /*
4536          * Splice the empty reader page into the list around the head.
4537          */
4538         reader = rb_set_head_page(cpu_buffer);
4539         if (!reader)
4540                 goto out;
4541         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4542         cpu_buffer->reader_page->list.prev = reader->list.prev;
4543
4544         /*
4545          * cpu_buffer->pages just needs to point to the buffer, it
4546          *  has no specific buffer page to point to. Lets move it out
4547          *  of our way so we don't accidentally swap it.
4548          */
4549         cpu_buffer->pages = reader->list.prev;
4550
4551         /* The reader page will be pointing to the new head */
4552         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4553
4554         /*
4555          * We want to make sure we read the overruns after we set up our
4556          * pointers to the next object. The writer side does a
4557          * cmpxchg to cross pages which acts as the mb on the writer
4558          * side. Note, the reader will constantly fail the swap
4559          * while the writer is updating the pointers, so this
4560          * guarantees that the overwrite recorded here is the one we
4561          * want to compare with the last_overrun.
4562          */
4563         smp_mb();
4564         overwrite = local_read(&(cpu_buffer->overrun));
4565
4566         /*
4567          * Here's the tricky part.
4568          *
4569          * We need to move the pointer past the header page.
4570          * But we can only do that if a writer is not currently
4571          * moving it. The page before the header page has the
4572          * flag bit '1' set if it is pointing to the page we want.
4573          * but if the writer is in the process of moving it
4574          * than it will be '2' or already moved '0'.
4575          */
4576
4577         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4578
4579         /*
4580          * If we did not convert it, then we must try again.
4581          */
4582         if (!ret)
4583                 goto spin;
4584
4585         /*
4586          * Yay! We succeeded in replacing the page.
4587          *
4588          * Now make the new head point back to the reader page.
4589          */
4590         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4591         rb_inc_page(&cpu_buffer->head_page);
4592
4593         local_inc(&cpu_buffer->pages_read);
4594
4595         /* Finally update the reader page to the new head */
4596         cpu_buffer->reader_page = reader;
4597         cpu_buffer->reader_page->read = 0;
4598
4599         if (overwrite != cpu_buffer->last_overrun) {
4600                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4601                 cpu_buffer->last_overrun = overwrite;
4602         }
4603
4604         goto again;
4605
4606  out:
4607         /* Update the read_stamp on the first event */
4608         if (reader && reader->read == 0)
4609                 cpu_buffer->read_stamp = reader->page->time_stamp;
4610
4611         arch_spin_unlock(&cpu_buffer->lock);
4612         local_irq_restore(flags);
4613
4614         /*
4615          * The writer has preempt disable, wait for it. But not forever
4616          * Although, 1 second is pretty much "forever"
4617          */
4618 #define USECS_WAIT      1000000
4619         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4620                 /* If the write is past the end of page, a writer is still updating it */
4621                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4622                         break;
4623
4624                 udelay(1);
4625
4626                 /* Get the latest version of the reader write value */
4627                 smp_rmb();
4628         }
4629
4630         /* The writer is not moving forward? Something is wrong */
4631         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4632                 reader = NULL;
4633
4634         /*
4635          * Make sure we see any padding after the write update
4636          * (see rb_reset_tail()).
4637          *
4638          * In addition, a writer may be writing on the reader page
4639          * if the page has not been fully filled, so the read barrier
4640          * is also needed to make sure we see the content of what is
4641          * committed by the writer (see rb_set_commit_to_write()).
4642          */
4643         smp_rmb();
4644
4645
4646         return reader;
4647 }
4648
4649 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4650 {
4651         struct ring_buffer_event *event;
4652         struct buffer_page *reader;
4653         unsigned length;
4654
4655         reader = rb_get_reader_page(cpu_buffer);
4656
4657         /* This function should not be called when buffer is empty */
4658         if (RB_WARN_ON(cpu_buffer, !reader))
4659                 return;
4660
4661         event = rb_reader_event(cpu_buffer);
4662
4663         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4664                 cpu_buffer->read++;
4665
4666         rb_update_read_stamp(cpu_buffer, event);
4667
4668         length = rb_event_length(event);
4669         cpu_buffer->reader_page->read += length;
4670         cpu_buffer->read_bytes += length;
4671 }
4672
4673 static void rb_advance_iter(struct ring_buffer_iter *iter)
4674 {
4675         struct ring_buffer_per_cpu *cpu_buffer;
4676
4677         cpu_buffer = iter->cpu_buffer;
4678
4679         /* If head == next_event then we need to jump to the next event */
4680         if (iter->head == iter->next_event) {
4681                 /* If the event gets overwritten again, there's nothing to do */
4682                 if (rb_iter_head_event(iter) == NULL)
4683                         return;
4684         }
4685
4686         iter->head = iter->next_event;
4687
4688         /*
4689          * Check if we are at the end of the buffer.
4690          */
4691         if (iter->next_event >= rb_page_size(iter->head_page)) {
4692                 /* discarded commits can make the page empty */
4693                 if (iter->head_page == cpu_buffer->commit_page)
4694                         return;
4695                 rb_inc_iter(iter);
4696                 return;
4697         }
4698
4699         rb_update_iter_read_stamp(iter, iter->event);
4700 }
4701
4702 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4703 {
4704         return cpu_buffer->lost_events;
4705 }
4706
4707 static struct ring_buffer_event *
4708 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4709                unsigned long *lost_events)
4710 {
4711         struct ring_buffer_event *event;
4712         struct buffer_page *reader;
4713         int nr_loops = 0;
4714
4715         if (ts)
4716                 *ts = 0;
4717  again:
4718         /*
4719          * We repeat when a time extend is encountered.
4720          * Since the time extend is always attached to a data event,
4721          * we should never loop more than once.
4722          * (We never hit the following condition more than twice).
4723          */
4724         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4725                 return NULL;
4726
4727         reader = rb_get_reader_page(cpu_buffer);
4728         if (!reader)
4729                 return NULL;
4730
4731         event = rb_reader_event(cpu_buffer);
4732
4733         switch (event->type_len) {
4734         case RINGBUF_TYPE_PADDING:
4735                 if (rb_null_event(event))
4736                         RB_WARN_ON(cpu_buffer, 1);
4737                 /*
4738                  * Because the writer could be discarding every
4739                  * event it creates (which would probably be bad)
4740                  * if we were to go back to "again" then we may never
4741                  * catch up, and will trigger the warn on, or lock
4742                  * the box. Return the padding, and we will release
4743                  * the current locks, and try again.
4744                  */
4745                 return event;
4746
4747         case RINGBUF_TYPE_TIME_EXTEND:
4748                 /* Internal data, OK to advance */
4749                 rb_advance_reader(cpu_buffer);
4750                 goto again;
4751
4752         case RINGBUF_TYPE_TIME_STAMP:
4753                 if (ts) {
4754                         *ts = rb_event_time_stamp(event);
4755                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4756                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4757                                                          cpu_buffer->cpu, ts);
4758                 }
4759                 /* Internal data, OK to advance */
4760                 rb_advance_reader(cpu_buffer);
4761                 goto again;
4762
4763         case RINGBUF_TYPE_DATA:
4764                 if (ts && !(*ts)) {
4765                         *ts = cpu_buffer->read_stamp + event->time_delta;
4766                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4767                                                          cpu_buffer->cpu, ts);
4768                 }
4769                 if (lost_events)
4770                         *lost_events = rb_lost_events(cpu_buffer);
4771                 return event;
4772
4773         default:
4774                 RB_WARN_ON(cpu_buffer, 1);
4775         }
4776
4777         return NULL;
4778 }
4779 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4780
4781 static struct ring_buffer_event *
4782 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4783 {
4784         struct trace_buffer *buffer;
4785         struct ring_buffer_per_cpu *cpu_buffer;
4786         struct ring_buffer_event *event;
4787         int nr_loops = 0;
4788
4789         if (ts)
4790                 *ts = 0;
4791
4792         cpu_buffer = iter->cpu_buffer;
4793         buffer = cpu_buffer->buffer;
4794
4795         /*
4796          * Check if someone performed a consuming read to the buffer
4797          * or removed some pages from the buffer. In these cases,
4798          * iterator was invalidated and we need to reset it.
4799          */
4800         if (unlikely(iter->cache_read != cpu_buffer->read ||
4801                      iter->cache_reader_page != cpu_buffer->reader_page ||
4802                      iter->cache_pages_removed != cpu_buffer->pages_removed))
4803                 rb_iter_reset(iter);
4804
4805  again:
4806         if (ring_buffer_iter_empty(iter))
4807                 return NULL;
4808
4809         /*
4810          * As the writer can mess with what the iterator is trying
4811          * to read, just give up if we fail to get an event after
4812          * three tries. The iterator is not as reliable when reading
4813          * the ring buffer with an active write as the consumer is.
4814          * Do not warn if the three failures is reached.
4815          */
4816         if (++nr_loops > 3)
4817                 return NULL;
4818
4819         if (rb_per_cpu_empty(cpu_buffer))
4820                 return NULL;
4821
4822         if (iter->head >= rb_page_size(iter->head_page)) {
4823                 rb_inc_iter(iter);
4824                 goto again;
4825         }
4826
4827         event = rb_iter_head_event(iter);
4828         if (!event)
4829                 goto again;
4830
4831         switch (event->type_len) {
4832         case RINGBUF_TYPE_PADDING:
4833                 if (rb_null_event(event)) {
4834                         rb_inc_iter(iter);
4835                         goto again;
4836                 }
4837                 rb_advance_iter(iter);
4838                 return event;
4839
4840         case RINGBUF_TYPE_TIME_EXTEND:
4841                 /* Internal data, OK to advance */
4842                 rb_advance_iter(iter);
4843                 goto again;
4844
4845         case RINGBUF_TYPE_TIME_STAMP:
4846                 if (ts) {
4847                         *ts = rb_event_time_stamp(event);
4848                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4849                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4850                                                          cpu_buffer->cpu, ts);
4851                 }
4852                 /* Internal data, OK to advance */
4853                 rb_advance_iter(iter);
4854                 goto again;
4855
4856         case RINGBUF_TYPE_DATA:
4857                 if (ts && !(*ts)) {
4858                         *ts = iter->read_stamp + event->time_delta;
4859                         ring_buffer_normalize_time_stamp(buffer,
4860                                                          cpu_buffer->cpu, ts);
4861                 }
4862                 return event;
4863
4864         default:
4865                 RB_WARN_ON(cpu_buffer, 1);
4866         }
4867
4868         return NULL;
4869 }
4870 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4871
4872 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4873 {
4874         if (likely(!in_nmi())) {
4875                 raw_spin_lock(&cpu_buffer->reader_lock);
4876                 return true;
4877         }
4878
4879         /*
4880          * If an NMI die dumps out the content of the ring buffer
4881          * trylock must be used to prevent a deadlock if the NMI
4882          * preempted a task that holds the ring buffer locks. If
4883          * we get the lock then all is fine, if not, then continue
4884          * to do the read, but this can corrupt the ring buffer,
4885          * so it must be permanently disabled from future writes.
4886          * Reading from NMI is a oneshot deal.
4887          */
4888         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4889                 return true;
4890
4891         /* Continue without locking, but disable the ring buffer */
4892         atomic_inc(&cpu_buffer->record_disabled);
4893         return false;
4894 }
4895
4896 static inline void
4897 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4898 {
4899         if (likely(locked))
4900                 raw_spin_unlock(&cpu_buffer->reader_lock);
4901 }
4902
4903 /**
4904  * ring_buffer_peek - peek at the next event to be read
4905  * @buffer: The ring buffer to read
4906  * @cpu: The cpu to peak at
4907  * @ts: The timestamp counter of this event.
4908  * @lost_events: a variable to store if events were lost (may be NULL)
4909  *
4910  * This will return the event that will be read next, but does
4911  * not consume the data.
4912  */
4913 struct ring_buffer_event *
4914 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4915                  unsigned long *lost_events)
4916 {
4917         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4918         struct ring_buffer_event *event;
4919         unsigned long flags;
4920         bool dolock;
4921
4922         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4923                 return NULL;
4924
4925  again:
4926         local_irq_save(flags);
4927         dolock = rb_reader_lock(cpu_buffer);
4928         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4929         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4930                 rb_advance_reader(cpu_buffer);
4931         rb_reader_unlock(cpu_buffer, dolock);
4932         local_irq_restore(flags);
4933
4934         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4935                 goto again;
4936
4937         return event;
4938 }
4939
4940 /** ring_buffer_iter_dropped - report if there are dropped events
4941  * @iter: The ring buffer iterator
4942  *
4943  * Returns true if there was dropped events since the last peek.
4944  */
4945 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4946 {
4947         bool ret = iter->missed_events != 0;
4948
4949         iter->missed_events = 0;
4950         return ret;
4951 }
4952 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4953
4954 /**
4955  * ring_buffer_iter_peek - peek at the next event to be read
4956  * @iter: The ring buffer iterator
4957  * @ts: The timestamp counter of this event.
4958  *
4959  * This will return the event that will be read next, but does
4960  * not increment the iterator.
4961  */
4962 struct ring_buffer_event *
4963 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4964 {
4965         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4966         struct ring_buffer_event *event;
4967         unsigned long flags;
4968
4969  again:
4970         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4971         event = rb_iter_peek(iter, ts);
4972         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4973
4974         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4975                 goto again;
4976
4977         return event;
4978 }
4979
4980 /**
4981  * ring_buffer_consume - return an event and consume it
4982  * @buffer: The ring buffer to get the next event from
4983  * @cpu: the cpu to read the buffer from
4984  * @ts: a variable to store the timestamp (may be NULL)
4985  * @lost_events: a variable to store if events were lost (may be NULL)
4986  *
4987  * Returns the next event in the ring buffer, and that event is consumed.
4988  * Meaning, that sequential reads will keep returning a different event,
4989  * and eventually empty the ring buffer if the producer is slower.
4990  */
4991 struct ring_buffer_event *
4992 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4993                     unsigned long *lost_events)
4994 {
4995         struct ring_buffer_per_cpu *cpu_buffer;
4996         struct ring_buffer_event *event = NULL;
4997         unsigned long flags;
4998         bool dolock;
4999
5000  again:
5001         /* might be called in atomic */
5002         preempt_disable();
5003
5004         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5005                 goto out;
5006
5007         cpu_buffer = buffer->buffers[cpu];
5008         local_irq_save(flags);
5009         dolock = rb_reader_lock(cpu_buffer);
5010
5011         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5012         if (event) {
5013                 cpu_buffer->lost_events = 0;
5014                 rb_advance_reader(cpu_buffer);
5015         }
5016
5017         rb_reader_unlock(cpu_buffer, dolock);
5018         local_irq_restore(flags);
5019
5020  out:
5021         preempt_enable();
5022
5023         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5024                 goto again;
5025
5026         return event;
5027 }
5028 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5029
5030 /**
5031  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5032  * @buffer: The ring buffer to read from
5033  * @cpu: The cpu buffer to iterate over
5034  * @flags: gfp flags to use for memory allocation
5035  *
5036  * This performs the initial preparations necessary to iterate
5037  * through the buffer.  Memory is allocated, buffer recording
5038  * is disabled, and the iterator pointer is returned to the caller.
5039  *
5040  * Disabling buffer recording prevents the reading from being
5041  * corrupted. This is not a consuming read, so a producer is not
5042  * expected.
5043  *
5044  * After a sequence of ring_buffer_read_prepare calls, the user is
5045  * expected to make at least one call to ring_buffer_read_prepare_sync.
5046  * Afterwards, ring_buffer_read_start is invoked to get things going
5047  * for real.
5048  *
5049  * This overall must be paired with ring_buffer_read_finish.
5050  */
5051 struct ring_buffer_iter *
5052 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5053 {
5054         struct ring_buffer_per_cpu *cpu_buffer;
5055         struct ring_buffer_iter *iter;
5056
5057         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5058                 return NULL;
5059
5060         iter = kzalloc(sizeof(*iter), flags);
5061         if (!iter)
5062                 return NULL;
5063
5064         /* Holds the entire event: data and meta data */
5065         iter->event = kmalloc(BUF_PAGE_SIZE, flags);
5066         if (!iter->event) {
5067                 kfree(iter);
5068                 return NULL;
5069         }
5070
5071         cpu_buffer = buffer->buffers[cpu];
5072
5073         iter->cpu_buffer = cpu_buffer;
5074
5075         atomic_inc(&cpu_buffer->resize_disabled);
5076
5077         return iter;
5078 }
5079 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5080
5081 /**
5082  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5083  *
5084  * All previously invoked ring_buffer_read_prepare calls to prepare
5085  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5086  * calls on those iterators are allowed.
5087  */
5088 void
5089 ring_buffer_read_prepare_sync(void)
5090 {
5091         synchronize_rcu();
5092 }
5093 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5094
5095 /**
5096  * ring_buffer_read_start - start a non consuming read of the buffer
5097  * @iter: The iterator returned by ring_buffer_read_prepare
5098  *
5099  * This finalizes the startup of an iteration through the buffer.
5100  * The iterator comes from a call to ring_buffer_read_prepare and
5101  * an intervening ring_buffer_read_prepare_sync must have been
5102  * performed.
5103  *
5104  * Must be paired with ring_buffer_read_finish.
5105  */
5106 void
5107 ring_buffer_read_start(struct ring_buffer_iter *iter)
5108 {
5109         struct ring_buffer_per_cpu *cpu_buffer;
5110         unsigned long flags;
5111
5112         if (!iter)
5113                 return;
5114
5115         cpu_buffer = iter->cpu_buffer;
5116
5117         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5118         arch_spin_lock(&cpu_buffer->lock);
5119         rb_iter_reset(iter);
5120         arch_spin_unlock(&cpu_buffer->lock);
5121         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5122 }
5123 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5124
5125 /**
5126  * ring_buffer_read_finish - finish reading the iterator of the buffer
5127  * @iter: The iterator retrieved by ring_buffer_start
5128  *
5129  * This re-enables the recording to the buffer, and frees the
5130  * iterator.
5131  */
5132 void
5133 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5134 {
5135         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5136         unsigned long flags;
5137
5138         /*
5139          * Ring buffer is disabled from recording, here's a good place
5140          * to check the integrity of the ring buffer.
5141          * Must prevent readers from trying to read, as the check
5142          * clears the HEAD page and readers require it.
5143          */
5144         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5145         rb_check_pages(cpu_buffer);
5146         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5147
5148         atomic_dec(&cpu_buffer->resize_disabled);
5149         kfree(iter->event);
5150         kfree(iter);
5151 }
5152 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5153
5154 /**
5155  * ring_buffer_iter_advance - advance the iterator to the next location
5156  * @iter: The ring buffer iterator
5157  *
5158  * Move the location of the iterator such that the next read will
5159  * be the next location of the iterator.
5160  */
5161 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5162 {
5163         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5164         unsigned long flags;
5165
5166         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5167
5168         rb_advance_iter(iter);
5169
5170         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5171 }
5172 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5173
5174 /**
5175  * ring_buffer_size - return the size of the ring buffer (in bytes)
5176  * @buffer: The ring buffer.
5177  * @cpu: The CPU to get ring buffer size from.
5178  */
5179 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5180 {
5181         /*
5182          * Earlier, this method returned
5183          *      BUF_PAGE_SIZE * buffer->nr_pages
5184          * Since the nr_pages field is now removed, we have converted this to
5185          * return the per cpu buffer value.
5186          */
5187         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5188                 return 0;
5189
5190         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5191 }
5192 EXPORT_SYMBOL_GPL(ring_buffer_size);
5193
5194 static void rb_clear_buffer_page(struct buffer_page *page)
5195 {
5196         local_set(&page->write, 0);
5197         local_set(&page->entries, 0);
5198         rb_init_page(page->page);
5199         page->read = 0;
5200 }
5201
5202 static void
5203 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5204 {
5205         struct buffer_page *page;
5206
5207         rb_head_page_deactivate(cpu_buffer);
5208
5209         cpu_buffer->head_page
5210                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5211         rb_clear_buffer_page(cpu_buffer->head_page);
5212         list_for_each_entry(page, cpu_buffer->pages, list) {
5213                 rb_clear_buffer_page(page);
5214         }
5215
5216         cpu_buffer->tail_page = cpu_buffer->head_page;
5217         cpu_buffer->commit_page = cpu_buffer->head_page;
5218
5219         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5220         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5221         rb_clear_buffer_page(cpu_buffer->reader_page);
5222
5223         local_set(&cpu_buffer->entries_bytes, 0);
5224         local_set(&cpu_buffer->overrun, 0);
5225         local_set(&cpu_buffer->commit_overrun, 0);
5226         local_set(&cpu_buffer->dropped_events, 0);
5227         local_set(&cpu_buffer->entries, 0);
5228         local_set(&cpu_buffer->committing, 0);
5229         local_set(&cpu_buffer->commits, 0);
5230         local_set(&cpu_buffer->pages_touched, 0);
5231         local_set(&cpu_buffer->pages_lost, 0);
5232         local_set(&cpu_buffer->pages_read, 0);
5233         cpu_buffer->last_pages_touch = 0;
5234         cpu_buffer->shortest_full = 0;
5235         cpu_buffer->read = 0;
5236         cpu_buffer->read_bytes = 0;
5237
5238         rb_time_set(&cpu_buffer->write_stamp, 0);
5239         rb_time_set(&cpu_buffer->before_stamp, 0);
5240
5241         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5242
5243         cpu_buffer->lost_events = 0;
5244         cpu_buffer->last_overrun = 0;
5245
5246         rb_head_page_activate(cpu_buffer);
5247         cpu_buffer->pages_removed = 0;
5248 }
5249
5250 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5251 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5252 {
5253         unsigned long flags;
5254
5255         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5256
5257         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5258                 goto out;
5259
5260         arch_spin_lock(&cpu_buffer->lock);
5261
5262         rb_reset_cpu(cpu_buffer);
5263
5264         arch_spin_unlock(&cpu_buffer->lock);
5265
5266  out:
5267         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5268 }
5269
5270 /**
5271  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5272  * @buffer: The ring buffer to reset a per cpu buffer of
5273  * @cpu: The CPU buffer to be reset
5274  */
5275 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5276 {
5277         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5278
5279         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5280                 return;
5281
5282         /* prevent another thread from changing buffer sizes */
5283         mutex_lock(&buffer->mutex);
5284
5285         atomic_inc(&cpu_buffer->resize_disabled);
5286         atomic_inc(&cpu_buffer->record_disabled);
5287
5288         /* Make sure all commits have finished */
5289         synchronize_rcu();
5290
5291         reset_disabled_cpu_buffer(cpu_buffer);
5292
5293         atomic_dec(&cpu_buffer->record_disabled);
5294         atomic_dec(&cpu_buffer->resize_disabled);
5295
5296         mutex_unlock(&buffer->mutex);
5297 }
5298 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5299
5300 /* Flag to ensure proper resetting of atomic variables */
5301 #define RESET_BIT       (1 << 30)
5302
5303 /**
5304  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5305  * @buffer: The ring buffer to reset a per cpu buffer of
5306  */
5307 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5308 {
5309         struct ring_buffer_per_cpu *cpu_buffer;
5310         int cpu;
5311
5312         /* prevent another thread from changing buffer sizes */
5313         mutex_lock(&buffer->mutex);
5314
5315         for_each_online_buffer_cpu(buffer, cpu) {
5316                 cpu_buffer = buffer->buffers[cpu];
5317
5318                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5319                 atomic_inc(&cpu_buffer->record_disabled);
5320         }
5321
5322         /* Make sure all commits have finished */
5323         synchronize_rcu();
5324
5325         for_each_buffer_cpu(buffer, cpu) {
5326                 cpu_buffer = buffer->buffers[cpu];
5327
5328                 /*
5329                  * If a CPU came online during the synchronize_rcu(), then
5330                  * ignore it.
5331                  */
5332                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5333                         continue;
5334
5335                 reset_disabled_cpu_buffer(cpu_buffer);
5336
5337                 atomic_dec(&cpu_buffer->record_disabled);
5338                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5339         }
5340
5341         mutex_unlock(&buffer->mutex);
5342 }
5343
5344 /**
5345  * ring_buffer_reset - reset a ring buffer
5346  * @buffer: The ring buffer to reset all cpu buffers
5347  */
5348 void ring_buffer_reset(struct trace_buffer *buffer)
5349 {
5350         struct ring_buffer_per_cpu *cpu_buffer;
5351         int cpu;
5352
5353         /* prevent another thread from changing buffer sizes */
5354         mutex_lock(&buffer->mutex);
5355
5356         for_each_buffer_cpu(buffer, cpu) {
5357                 cpu_buffer = buffer->buffers[cpu];
5358
5359                 atomic_inc(&cpu_buffer->resize_disabled);
5360                 atomic_inc(&cpu_buffer->record_disabled);
5361         }
5362
5363         /* Make sure all commits have finished */
5364         synchronize_rcu();
5365
5366         for_each_buffer_cpu(buffer, cpu) {
5367                 cpu_buffer = buffer->buffers[cpu];
5368
5369                 reset_disabled_cpu_buffer(cpu_buffer);
5370
5371                 atomic_dec(&cpu_buffer->record_disabled);
5372                 atomic_dec(&cpu_buffer->resize_disabled);
5373         }
5374
5375         mutex_unlock(&buffer->mutex);
5376 }
5377 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5378
5379 /**
5380  * ring_buffer_empty - is the ring buffer empty?
5381  * @buffer: The ring buffer to test
5382  */
5383 bool ring_buffer_empty(struct trace_buffer *buffer)
5384 {
5385         struct ring_buffer_per_cpu *cpu_buffer;
5386         unsigned long flags;
5387         bool dolock;
5388         bool ret;
5389         int cpu;
5390
5391         /* yes this is racy, but if you don't like the race, lock the buffer */
5392         for_each_buffer_cpu(buffer, cpu) {
5393                 cpu_buffer = buffer->buffers[cpu];
5394                 local_irq_save(flags);
5395                 dolock = rb_reader_lock(cpu_buffer);
5396                 ret = rb_per_cpu_empty(cpu_buffer);
5397                 rb_reader_unlock(cpu_buffer, dolock);
5398                 local_irq_restore(flags);
5399
5400                 if (!ret)
5401                         return false;
5402         }
5403
5404         return true;
5405 }
5406 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5407
5408 /**
5409  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5410  * @buffer: The ring buffer
5411  * @cpu: The CPU buffer to test
5412  */
5413 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5414 {
5415         struct ring_buffer_per_cpu *cpu_buffer;
5416         unsigned long flags;
5417         bool dolock;
5418         bool ret;
5419
5420         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5421                 return true;
5422
5423         cpu_buffer = buffer->buffers[cpu];
5424         local_irq_save(flags);
5425         dolock = rb_reader_lock(cpu_buffer);
5426         ret = rb_per_cpu_empty(cpu_buffer);
5427         rb_reader_unlock(cpu_buffer, dolock);
5428         local_irq_restore(flags);
5429
5430         return ret;
5431 }
5432 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5433
5434 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5435 /**
5436  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5437  * @buffer_a: One buffer to swap with
5438  * @buffer_b: The other buffer to swap with
5439  * @cpu: the CPU of the buffers to swap
5440  *
5441  * This function is useful for tracers that want to take a "snapshot"
5442  * of a CPU buffer and has another back up buffer lying around.
5443  * it is expected that the tracer handles the cpu buffer not being
5444  * used at the moment.
5445  */
5446 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5447                          struct trace_buffer *buffer_b, int cpu)
5448 {
5449         struct ring_buffer_per_cpu *cpu_buffer_a;
5450         struct ring_buffer_per_cpu *cpu_buffer_b;
5451         int ret = -EINVAL;
5452
5453         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5454             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5455                 goto out;
5456
5457         cpu_buffer_a = buffer_a->buffers[cpu];
5458         cpu_buffer_b = buffer_b->buffers[cpu];
5459
5460         /* At least make sure the two buffers are somewhat the same */
5461         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5462                 goto out;
5463
5464         ret = -EAGAIN;
5465
5466         if (atomic_read(&buffer_a->record_disabled))
5467                 goto out;
5468
5469         if (atomic_read(&buffer_b->record_disabled))
5470                 goto out;
5471
5472         if (atomic_read(&cpu_buffer_a->record_disabled))
5473                 goto out;
5474
5475         if (atomic_read(&cpu_buffer_b->record_disabled))
5476                 goto out;
5477
5478         /*
5479          * We can't do a synchronize_rcu here because this
5480          * function can be called in atomic context.
5481          * Normally this will be called from the same CPU as cpu.
5482          * If not it's up to the caller to protect this.
5483          */
5484         atomic_inc(&cpu_buffer_a->record_disabled);
5485         atomic_inc(&cpu_buffer_b->record_disabled);
5486
5487         ret = -EBUSY;
5488         if (local_read(&cpu_buffer_a->committing))
5489                 goto out_dec;
5490         if (local_read(&cpu_buffer_b->committing))
5491                 goto out_dec;
5492
5493         /*
5494          * When resize is in progress, we cannot swap it because
5495          * it will mess the state of the cpu buffer.
5496          */
5497         if (atomic_read(&buffer_a->resizing))
5498                 goto out_dec;
5499         if (atomic_read(&buffer_b->resizing))
5500                 goto out_dec;
5501
5502         buffer_a->buffers[cpu] = cpu_buffer_b;
5503         buffer_b->buffers[cpu] = cpu_buffer_a;
5504
5505         cpu_buffer_b->buffer = buffer_a;
5506         cpu_buffer_a->buffer = buffer_b;
5507
5508         ret = 0;
5509
5510 out_dec:
5511         atomic_dec(&cpu_buffer_a->record_disabled);
5512         atomic_dec(&cpu_buffer_b->record_disabled);
5513 out:
5514         return ret;
5515 }
5516 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5517 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5518
5519 /**
5520  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5521  * @buffer: the buffer to allocate for.
5522  * @cpu: the cpu buffer to allocate.
5523  *
5524  * This function is used in conjunction with ring_buffer_read_page.
5525  * When reading a full page from the ring buffer, these functions
5526  * can be used to speed up the process. The calling function should
5527  * allocate a few pages first with this function. Then when it
5528  * needs to get pages from the ring buffer, it passes the result
5529  * of this function into ring_buffer_read_page, which will swap
5530  * the page that was allocated, with the read page of the buffer.
5531  *
5532  * Returns:
5533  *  The page allocated, or ERR_PTR
5534  */
5535 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5536 {
5537         struct ring_buffer_per_cpu *cpu_buffer;
5538         struct buffer_data_page *bpage = NULL;
5539         unsigned long flags;
5540         struct page *page;
5541
5542         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5543                 return ERR_PTR(-ENODEV);
5544
5545         cpu_buffer = buffer->buffers[cpu];
5546         local_irq_save(flags);
5547         arch_spin_lock(&cpu_buffer->lock);
5548
5549         if (cpu_buffer->free_page) {
5550                 bpage = cpu_buffer->free_page;
5551                 cpu_buffer->free_page = NULL;
5552         }
5553
5554         arch_spin_unlock(&cpu_buffer->lock);
5555         local_irq_restore(flags);
5556
5557         if (bpage)
5558                 goto out;
5559
5560         page = alloc_pages_node(cpu_to_node(cpu),
5561                                 GFP_KERNEL | __GFP_NORETRY, 0);
5562         if (!page)
5563                 return ERR_PTR(-ENOMEM);
5564
5565         bpage = page_address(page);
5566
5567  out:
5568         rb_init_page(bpage);
5569
5570         return bpage;
5571 }
5572 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5573
5574 /**
5575  * ring_buffer_free_read_page - free an allocated read page
5576  * @buffer: the buffer the page was allocate for
5577  * @cpu: the cpu buffer the page came from
5578  * @data: the page to free
5579  *
5580  * Free a page allocated from ring_buffer_alloc_read_page.
5581  */
5582 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5583 {
5584         struct ring_buffer_per_cpu *cpu_buffer;
5585         struct buffer_data_page *bpage = data;
5586         struct page *page = virt_to_page(bpage);
5587         unsigned long flags;
5588
5589         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5590                 return;
5591
5592         cpu_buffer = buffer->buffers[cpu];
5593
5594         /* If the page is still in use someplace else, we can't reuse it */
5595         if (page_ref_count(page) > 1)
5596                 goto out;
5597
5598         local_irq_save(flags);
5599         arch_spin_lock(&cpu_buffer->lock);
5600
5601         if (!cpu_buffer->free_page) {
5602                 cpu_buffer->free_page = bpage;
5603                 bpage = NULL;
5604         }
5605
5606         arch_spin_unlock(&cpu_buffer->lock);
5607         local_irq_restore(flags);
5608
5609  out:
5610         free_page((unsigned long)bpage);
5611 }
5612 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5613
5614 /**
5615  * ring_buffer_read_page - extract a page from the ring buffer
5616  * @buffer: buffer to extract from
5617  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5618  * @len: amount to extract
5619  * @cpu: the cpu of the buffer to extract
5620  * @full: should the extraction only happen when the page is full.
5621  *
5622  * This function will pull out a page from the ring buffer and consume it.
5623  * @data_page must be the address of the variable that was returned
5624  * from ring_buffer_alloc_read_page. This is because the page might be used
5625  * to swap with a page in the ring buffer.
5626  *
5627  * for example:
5628  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5629  *      if (IS_ERR(rpage))
5630  *              return PTR_ERR(rpage);
5631  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5632  *      if (ret >= 0)
5633  *              process_page(rpage, ret);
5634  *
5635  * When @full is set, the function will not return true unless
5636  * the writer is off the reader page.
5637  *
5638  * Note: it is up to the calling functions to handle sleeps and wakeups.
5639  *  The ring buffer can be used anywhere in the kernel and can not
5640  *  blindly call wake_up. The layer that uses the ring buffer must be
5641  *  responsible for that.
5642  *
5643  * Returns:
5644  *  >=0 if data has been transferred, returns the offset of consumed data.
5645  *  <0 if no data has been transferred.
5646  */
5647 int ring_buffer_read_page(struct trace_buffer *buffer,
5648                           void **data_page, size_t len, int cpu, int full)
5649 {
5650         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5651         struct ring_buffer_event *event;
5652         struct buffer_data_page *bpage;
5653         struct buffer_page *reader;
5654         unsigned long missed_events;
5655         unsigned long flags;
5656         unsigned int commit;
5657         unsigned int read;
5658         u64 save_timestamp;
5659         int ret = -1;
5660
5661         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5662                 goto out;
5663
5664         /*
5665          * If len is not big enough to hold the page header, then
5666          * we can not copy anything.
5667          */
5668         if (len <= BUF_PAGE_HDR_SIZE)
5669                 goto out;
5670
5671         len -= BUF_PAGE_HDR_SIZE;
5672
5673         if (!data_page)
5674                 goto out;
5675
5676         bpage = *data_page;
5677         if (!bpage)
5678                 goto out;
5679
5680         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5681
5682         reader = rb_get_reader_page(cpu_buffer);
5683         if (!reader)
5684                 goto out_unlock;
5685
5686         event = rb_reader_event(cpu_buffer);
5687
5688         read = reader->read;
5689         commit = rb_page_commit(reader);
5690
5691         /* Check if any events were dropped */
5692         missed_events = cpu_buffer->lost_events;
5693
5694         /*
5695          * If this page has been partially read or
5696          * if len is not big enough to read the rest of the page or
5697          * a writer is still on the page, then
5698          * we must copy the data from the page to the buffer.
5699          * Otherwise, we can simply swap the page with the one passed in.
5700          */
5701         if (read || (len < (commit - read)) ||
5702             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5703                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5704                 unsigned int rpos = read;
5705                 unsigned int pos = 0;
5706                 unsigned int size;
5707
5708                 /*
5709                  * If a full page is expected, this can still be returned
5710                  * if there's been a previous partial read and the
5711                  * rest of the page can be read and the commit page is off
5712                  * the reader page.
5713                  */
5714                 if (full &&
5715                     (!read || (len < (commit - read)) ||
5716                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5717                         goto out_unlock;
5718
5719                 if (len > (commit - read))
5720                         len = (commit - read);
5721
5722                 /* Always keep the time extend and data together */
5723                 size = rb_event_ts_length(event);
5724
5725                 if (len < size)
5726                         goto out_unlock;
5727
5728                 /* save the current timestamp, since the user will need it */
5729                 save_timestamp = cpu_buffer->read_stamp;
5730
5731                 /* Need to copy one event at a time */
5732                 do {
5733                         /* We need the size of one event, because
5734                          * rb_advance_reader only advances by one event,
5735                          * whereas rb_event_ts_length may include the size of
5736                          * one or two events.
5737                          * We have already ensured there's enough space if this
5738                          * is a time extend. */
5739                         size = rb_event_length(event);
5740                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5741
5742                         len -= size;
5743
5744                         rb_advance_reader(cpu_buffer);
5745                         rpos = reader->read;
5746                         pos += size;
5747
5748                         if (rpos >= commit)
5749                                 break;
5750
5751                         event = rb_reader_event(cpu_buffer);
5752                         /* Always keep the time extend and data together */
5753                         size = rb_event_ts_length(event);
5754                 } while (len >= size);
5755
5756                 /* update bpage */
5757                 local_set(&bpage->commit, pos);
5758                 bpage->time_stamp = save_timestamp;
5759
5760                 /* we copied everything to the beginning */
5761                 read = 0;
5762         } else {
5763                 /* update the entry counter */
5764                 cpu_buffer->read += rb_page_entries(reader);
5765                 cpu_buffer->read_bytes += rb_page_commit(reader);
5766
5767                 /* swap the pages */
5768                 rb_init_page(bpage);
5769                 bpage = reader->page;
5770                 reader->page = *data_page;
5771                 local_set(&reader->write, 0);
5772                 local_set(&reader->entries, 0);
5773                 reader->read = 0;
5774                 *data_page = bpage;
5775
5776                 /*
5777                  * Use the real_end for the data size,
5778                  * This gives us a chance to store the lost events
5779                  * on the page.
5780                  */
5781                 if (reader->real_end)
5782                         local_set(&bpage->commit, reader->real_end);
5783         }
5784         ret = read;
5785
5786         cpu_buffer->lost_events = 0;
5787
5788         commit = local_read(&bpage->commit);
5789         /*
5790          * Set a flag in the commit field if we lost events
5791          */
5792         if (missed_events) {
5793                 /* If there is room at the end of the page to save the
5794                  * missed events, then record it there.
5795                  */
5796                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5797                         memcpy(&bpage->data[commit], &missed_events,
5798                                sizeof(missed_events));
5799                         local_add(RB_MISSED_STORED, &bpage->commit);
5800                         commit += sizeof(missed_events);
5801                 }
5802                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5803         }
5804
5805         /*
5806          * This page may be off to user land. Zero it out here.
5807          */
5808         if (commit < BUF_PAGE_SIZE)
5809                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5810
5811  out_unlock:
5812         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5813
5814  out:
5815         return ret;
5816 }
5817 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5818
5819 /*
5820  * We only allocate new buffers, never free them if the CPU goes down.
5821  * If we were to free the buffer, then the user would lose any trace that was in
5822  * the buffer.
5823  */
5824 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5825 {
5826         struct trace_buffer *buffer;
5827         long nr_pages_same;
5828         int cpu_i;
5829         unsigned long nr_pages;
5830
5831         buffer = container_of(node, struct trace_buffer, node);
5832         if (cpumask_test_cpu(cpu, buffer->cpumask))
5833                 return 0;
5834
5835         nr_pages = 0;
5836         nr_pages_same = 1;
5837         /* check if all cpu sizes are same */
5838         for_each_buffer_cpu(buffer, cpu_i) {
5839                 /* fill in the size from first enabled cpu */
5840                 if (nr_pages == 0)
5841                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5842                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5843                         nr_pages_same = 0;
5844                         break;
5845                 }
5846         }
5847         /* allocate minimum pages, user can later expand it */
5848         if (!nr_pages_same)
5849                 nr_pages = 2;
5850         buffer->buffers[cpu] =
5851                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5852         if (!buffer->buffers[cpu]) {
5853                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5854                      cpu);
5855                 return -ENOMEM;
5856         }
5857         smp_wmb();
5858         cpumask_set_cpu(cpu, buffer->cpumask);
5859         return 0;
5860 }
5861
5862 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5863 /*
5864  * This is a basic integrity check of the ring buffer.
5865  * Late in the boot cycle this test will run when configured in.
5866  * It will kick off a thread per CPU that will go into a loop
5867  * writing to the per cpu ring buffer various sizes of data.
5868  * Some of the data will be large items, some small.
5869  *
5870  * Another thread is created that goes into a spin, sending out
5871  * IPIs to the other CPUs to also write into the ring buffer.
5872  * this is to test the nesting ability of the buffer.
5873  *
5874  * Basic stats are recorded and reported. If something in the
5875  * ring buffer should happen that's not expected, a big warning
5876  * is displayed and all ring buffers are disabled.
5877  */
5878 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5879
5880 struct rb_test_data {
5881         struct trace_buffer *buffer;
5882         unsigned long           events;
5883         unsigned long           bytes_written;
5884         unsigned long           bytes_alloc;
5885         unsigned long           bytes_dropped;
5886         unsigned long           events_nested;
5887         unsigned long           bytes_written_nested;
5888         unsigned long           bytes_alloc_nested;
5889         unsigned long           bytes_dropped_nested;
5890         int                     min_size_nested;
5891         int                     max_size_nested;
5892         int                     max_size;
5893         int                     min_size;
5894         int                     cpu;
5895         int                     cnt;
5896 };
5897
5898 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5899
5900 /* 1 meg per cpu */
5901 #define RB_TEST_BUFFER_SIZE     1048576
5902
5903 static char rb_string[] __initdata =
5904         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5905         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5906         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5907
5908 static bool rb_test_started __initdata;
5909
5910 struct rb_item {
5911         int size;
5912         char str[];
5913 };
5914
5915 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5916 {
5917         struct ring_buffer_event *event;
5918         struct rb_item *item;
5919         bool started;
5920         int event_len;
5921         int size;
5922         int len;
5923         int cnt;
5924
5925         /* Have nested writes different that what is written */
5926         cnt = data->cnt + (nested ? 27 : 0);
5927
5928         /* Multiply cnt by ~e, to make some unique increment */
5929         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5930
5931         len = size + sizeof(struct rb_item);
5932
5933         started = rb_test_started;
5934         /* read rb_test_started before checking buffer enabled */
5935         smp_rmb();
5936
5937         event = ring_buffer_lock_reserve(data->buffer, len);
5938         if (!event) {
5939                 /* Ignore dropped events before test starts. */
5940                 if (started) {
5941                         if (nested)
5942                                 data->bytes_dropped += len;
5943                         else
5944                                 data->bytes_dropped_nested += len;
5945                 }
5946                 return len;
5947         }
5948
5949         event_len = ring_buffer_event_length(event);
5950
5951         if (RB_WARN_ON(data->buffer, event_len < len))
5952                 goto out;
5953
5954         item = ring_buffer_event_data(event);
5955         item->size = size;
5956         memcpy(item->str, rb_string, size);
5957
5958         if (nested) {
5959                 data->bytes_alloc_nested += event_len;
5960                 data->bytes_written_nested += len;
5961                 data->events_nested++;
5962                 if (!data->min_size_nested || len < data->min_size_nested)
5963                         data->min_size_nested = len;
5964                 if (len > data->max_size_nested)
5965                         data->max_size_nested = len;
5966         } else {
5967                 data->bytes_alloc += event_len;
5968                 data->bytes_written += len;
5969                 data->events++;
5970                 if (!data->min_size || len < data->min_size)
5971                         data->max_size = len;
5972                 if (len > data->max_size)
5973                         data->max_size = len;
5974         }
5975
5976  out:
5977         ring_buffer_unlock_commit(data->buffer);
5978
5979         return 0;
5980 }
5981
5982 static __init int rb_test(void *arg)
5983 {
5984         struct rb_test_data *data = arg;
5985
5986         while (!kthread_should_stop()) {
5987                 rb_write_something(data, false);
5988                 data->cnt++;
5989
5990                 set_current_state(TASK_INTERRUPTIBLE);
5991                 /* Now sleep between a min of 100-300us and a max of 1ms */
5992                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5993         }
5994
5995         return 0;
5996 }
5997
5998 static __init void rb_ipi(void *ignore)
5999 {
6000         struct rb_test_data *data;
6001         int cpu = smp_processor_id();
6002
6003         data = &rb_data[cpu];
6004         rb_write_something(data, true);
6005 }
6006
6007 static __init int rb_hammer_test(void *arg)
6008 {
6009         while (!kthread_should_stop()) {
6010
6011                 /* Send an IPI to all cpus to write data! */
6012                 smp_call_function(rb_ipi, NULL, 1);
6013                 /* No sleep, but for non preempt, let others run */
6014                 schedule();
6015         }
6016
6017         return 0;
6018 }
6019
6020 static __init int test_ringbuffer(void)
6021 {
6022         struct task_struct *rb_hammer;
6023         struct trace_buffer *buffer;
6024         int cpu;
6025         int ret = 0;
6026
6027         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6028                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6029                 return 0;
6030         }
6031
6032         pr_info("Running ring buffer tests...\n");
6033
6034         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6035         if (WARN_ON(!buffer))
6036                 return 0;
6037
6038         /* Disable buffer so that threads can't write to it yet */
6039         ring_buffer_record_off(buffer);
6040
6041         for_each_online_cpu(cpu) {
6042                 rb_data[cpu].buffer = buffer;
6043                 rb_data[cpu].cpu = cpu;
6044                 rb_data[cpu].cnt = cpu;
6045                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6046                                                      cpu, "rbtester/%u");
6047                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6048                         pr_cont("FAILED\n");
6049                         ret = PTR_ERR(rb_threads[cpu]);
6050                         goto out_free;
6051                 }
6052         }
6053
6054         /* Now create the rb hammer! */
6055         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6056         if (WARN_ON(IS_ERR(rb_hammer))) {
6057                 pr_cont("FAILED\n");
6058                 ret = PTR_ERR(rb_hammer);
6059                 goto out_free;
6060         }
6061
6062         ring_buffer_record_on(buffer);
6063         /*
6064          * Show buffer is enabled before setting rb_test_started.
6065          * Yes there's a small race window where events could be
6066          * dropped and the thread wont catch it. But when a ring
6067          * buffer gets enabled, there will always be some kind of
6068          * delay before other CPUs see it. Thus, we don't care about
6069          * those dropped events. We care about events dropped after
6070          * the threads see that the buffer is active.
6071          */
6072         smp_wmb();
6073         rb_test_started = true;
6074
6075         set_current_state(TASK_INTERRUPTIBLE);
6076         /* Just run for 10 seconds */;
6077         schedule_timeout(10 * HZ);
6078
6079         kthread_stop(rb_hammer);
6080
6081  out_free:
6082         for_each_online_cpu(cpu) {
6083                 if (!rb_threads[cpu])
6084                         break;
6085                 kthread_stop(rb_threads[cpu]);
6086         }
6087         if (ret) {
6088                 ring_buffer_free(buffer);
6089                 return ret;
6090         }
6091
6092         /* Report! */
6093         pr_info("finished\n");
6094         for_each_online_cpu(cpu) {
6095                 struct ring_buffer_event *event;
6096                 struct rb_test_data *data = &rb_data[cpu];
6097                 struct rb_item *item;
6098                 unsigned long total_events;
6099                 unsigned long total_dropped;
6100                 unsigned long total_written;
6101                 unsigned long total_alloc;
6102                 unsigned long total_read = 0;
6103                 unsigned long total_size = 0;
6104                 unsigned long total_len = 0;
6105                 unsigned long total_lost = 0;
6106                 unsigned long lost;
6107                 int big_event_size;
6108                 int small_event_size;
6109
6110                 ret = -1;
6111
6112                 total_events = data->events + data->events_nested;
6113                 total_written = data->bytes_written + data->bytes_written_nested;
6114                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6115                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6116
6117                 big_event_size = data->max_size + data->max_size_nested;
6118                 small_event_size = data->min_size + data->min_size_nested;
6119
6120                 pr_info("CPU %d:\n", cpu);
6121                 pr_info("              events:    %ld\n", total_events);
6122                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6123                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6124                 pr_info("       written bytes:    %ld\n", total_written);
6125                 pr_info("       biggest event:    %d\n", big_event_size);
6126                 pr_info("      smallest event:    %d\n", small_event_size);
6127
6128                 if (RB_WARN_ON(buffer, total_dropped))
6129                         break;
6130
6131                 ret = 0;
6132
6133                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6134                         total_lost += lost;
6135                         item = ring_buffer_event_data(event);
6136                         total_len += ring_buffer_event_length(event);
6137                         total_size += item->size + sizeof(struct rb_item);
6138                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6139                                 pr_info("FAILED!\n");
6140                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6141                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6142                                 RB_WARN_ON(buffer, 1);
6143                                 ret = -1;
6144                                 break;
6145                         }
6146                         total_read++;
6147                 }
6148                 if (ret)
6149                         break;
6150
6151                 ret = -1;
6152
6153                 pr_info("         read events:   %ld\n", total_read);
6154                 pr_info("         lost events:   %ld\n", total_lost);
6155                 pr_info("        total events:   %ld\n", total_lost + total_read);
6156                 pr_info("  recorded len bytes:   %ld\n", total_len);
6157                 pr_info(" recorded size bytes:   %ld\n", total_size);
6158                 if (total_lost) {
6159                         pr_info(" With dropped events, record len and size may not match\n"
6160                                 " alloced and written from above\n");
6161                 } else {
6162                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6163                                        total_size != total_written))
6164                                 break;
6165                 }
6166                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6167                         break;
6168
6169                 ret = 0;
6170         }
6171         if (!ret)
6172                 pr_info("Ring buffer PASSED!\n");
6173
6174         ring_buffer_free(buffer);
6175         return 0;
6176 }
6177
6178 late_initcall(test_ringbuffer);
6179 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */