ring-buffer: Add ring buffer startup selftest
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         int ret;
38
39         ret = trace_seq_printf(s, "# compressed entry header\n");
40         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
41         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
42         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
43         ret = trace_seq_printf(s, "\n");
44         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45                                RINGBUF_TYPE_PADDING);
46         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                                RINGBUF_TYPE_TIME_EXTEND);
48         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return ret;
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150
151 enum {
152         RB_BUFFERS_ON_BIT       = 0,
153         RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
158         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF           (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT            4U
181 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
183
184 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
185 # define RB_FORCE_8BYTE_ALIGNMENT       0
186 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT       1
189 # define RB_ARCH_ALIGNMENT              8U
190 #endif
191
192 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
193 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
194
195 enum {
196         RB_LEN_TIME_EXTEND = 8,
197         RB_LEN_TIME_STAMP = 16,
198 };
199
200 #define skip_time_extend(event) \
201         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
202
203 static inline int rb_null_event(struct ring_buffer_event *event)
204 {
205         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
206 }
207
208 static void rb_event_set_padding(struct ring_buffer_event *event)
209 {
210         /* padding has a NULL time_delta */
211         event->type_len = RINGBUF_TYPE_PADDING;
212         event->time_delta = 0;
213 }
214
215 static unsigned
216 rb_event_data_length(struct ring_buffer_event *event)
217 {
218         unsigned length;
219
220         if (event->type_len)
221                 length = event->type_len * RB_ALIGNMENT;
222         else
223                 length = event->array[0];
224         return length + RB_EVNT_HDR_SIZE;
225 }
226
227 /*
228  * Return the length of the given event. Will return
229  * the length of the time extend if the event is a
230  * time extend.
231  */
232 static inline unsigned
233 rb_event_length(struct ring_buffer_event *event)
234 {
235         switch (event->type_len) {
236         case RINGBUF_TYPE_PADDING:
237                 if (rb_null_event(event))
238                         /* undefined */
239                         return -1;
240                 return  event->array[0] + RB_EVNT_HDR_SIZE;
241
242         case RINGBUF_TYPE_TIME_EXTEND:
243                 return RB_LEN_TIME_EXTEND;
244
245         case RINGBUF_TYPE_TIME_STAMP:
246                 return RB_LEN_TIME_STAMP;
247
248         case RINGBUF_TYPE_DATA:
249                 return rb_event_data_length(event);
250         default:
251                 BUG();
252         }
253         /* not hit */
254         return 0;
255 }
256
257 /*
258  * Return total length of time extend and data,
259  *   or just the event length for all other events.
260  */
261 static inline unsigned
262 rb_event_ts_length(struct ring_buffer_event *event)
263 {
264         unsigned len = 0;
265
266         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
267                 /* time extends include the data event after it */
268                 len = RB_LEN_TIME_EXTEND;
269                 event = skip_time_extend(event);
270         }
271         return len + rb_event_length(event);
272 }
273
274 /**
275  * ring_buffer_event_length - return the length of the event
276  * @event: the event to get the length of
277  *
278  * Returns the size of the data load of a data event.
279  * If the event is something other than a data event, it
280  * returns the size of the event itself. With the exception
281  * of a TIME EXTEND, where it still returns the size of the
282  * data load of the data event after it.
283  */
284 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
285 {
286         unsigned length;
287
288         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
289                 event = skip_time_extend(event);
290
291         length = rb_event_length(event);
292         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
293                 return length;
294         length -= RB_EVNT_HDR_SIZE;
295         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
296                 length -= sizeof(event->array[0]);
297         return length;
298 }
299 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
300
301 /* inline for ring buffer fast paths */
302 static void *
303 rb_event_data(struct ring_buffer_event *event)
304 {
305         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
306                 event = skip_time_extend(event);
307         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
308         /* If length is in len field, then array[0] has the data */
309         if (event->type_len)
310                 return (void *)&event->array[0];
311         /* Otherwise length is in array[0] and array[1] has the data */
312         return (void *)&event->array[1];
313 }
314
315 /**
316  * ring_buffer_event_data - return the data of the event
317  * @event: the event to get the data from
318  */
319 void *ring_buffer_event_data(struct ring_buffer_event *event)
320 {
321         return rb_event_data(event);
322 }
323 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
324
325 #define for_each_buffer_cpu(buffer, cpu)                \
326         for_each_cpu(cpu, buffer->cpumask)
327
328 #define TS_SHIFT        27
329 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
330 #define TS_DELTA_TEST   (~TS_MASK)
331
332 /* Flag when events were overwritten */
333 #define RB_MISSED_EVENTS        (1 << 31)
334 /* Missed count stored at end */
335 #define RB_MISSED_STORED        (1 << 30)
336
337 struct buffer_data_page {
338         u64              time_stamp;    /* page time stamp */
339         local_t          commit;        /* write committed index */
340         unsigned char    data[];        /* data of buffer page */
341 };
342
343 /*
344  * Note, the buffer_page list must be first. The buffer pages
345  * are allocated in cache lines, which means that each buffer
346  * page will be at the beginning of a cache line, and thus
347  * the least significant bits will be zero. We use this to
348  * add flags in the list struct pointers, to make the ring buffer
349  * lockless.
350  */
351 struct buffer_page {
352         struct list_head list;          /* list of buffer pages */
353         local_t          write;         /* index for next write */
354         unsigned         read;          /* index for next read */
355         local_t          entries;       /* entries on this page */
356         unsigned long    real_end;      /* real end of data */
357         struct buffer_data_page *page;  /* Actual data page */
358 };
359
360 /*
361  * The buffer page counters, write and entries, must be reset
362  * atomically when crossing page boundaries. To synchronize this
363  * update, two counters are inserted into the number. One is
364  * the actual counter for the write position or count on the page.
365  *
366  * The other is a counter of updaters. Before an update happens
367  * the update partition of the counter is incremented. This will
368  * allow the updater to update the counter atomically.
369  *
370  * The counter is 20 bits, and the state data is 12.
371  */
372 #define RB_WRITE_MASK           0xfffff
373 #define RB_WRITE_INTCNT         (1 << 20)
374
375 static void rb_init_page(struct buffer_data_page *bpage)
376 {
377         local_set(&bpage->commit, 0);
378 }
379
380 /**
381  * ring_buffer_page_len - the size of data on the page.
382  * @page: The page to read
383  *
384  * Returns the amount of data on the page, including buffer page header.
385  */
386 size_t ring_buffer_page_len(void *page)
387 {
388         return local_read(&((struct buffer_data_page *)page)->commit)
389                 + BUF_PAGE_HDR_SIZE;
390 }
391
392 /*
393  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
394  * this issue out.
395  */
396 static void free_buffer_page(struct buffer_page *bpage)
397 {
398         free_page((unsigned long)bpage->page);
399         kfree(bpage);
400 }
401
402 /*
403  * We need to fit the time_stamp delta into 27 bits.
404  */
405 static inline int test_time_stamp(u64 delta)
406 {
407         if (delta & TS_DELTA_TEST)
408                 return 1;
409         return 0;
410 }
411
412 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
413
414 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
415 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
416
417 int ring_buffer_print_page_header(struct trace_seq *s)
418 {
419         struct buffer_data_page field;
420         int ret;
421
422         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
423                                "offset:0;\tsize:%u;\tsigned:%u;\n",
424                                (unsigned int)sizeof(field.time_stamp),
425                                (unsigned int)is_signed_type(u64));
426
427         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
428                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
429                                (unsigned int)offsetof(typeof(field), commit),
430                                (unsigned int)sizeof(field.commit),
431                                (unsigned int)is_signed_type(long));
432
433         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
434                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
435                                (unsigned int)offsetof(typeof(field), commit),
436                                1,
437                                (unsigned int)is_signed_type(long));
438
439         ret = trace_seq_printf(s, "\tfield: char data;\t"
440                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
441                                (unsigned int)offsetof(typeof(field), data),
442                                (unsigned int)BUF_PAGE_SIZE,
443                                (unsigned int)is_signed_type(char));
444
445         return ret;
446 }
447
448 struct rb_irq_work {
449         struct irq_work                 work;
450         wait_queue_head_t               waiters;
451         bool                            waiters_pending;
452 };
453
454 /*
455  * head_page == tail_page && head == tail then buffer is empty.
456  */
457 struct ring_buffer_per_cpu {
458         int                             cpu;
459         atomic_t                        record_disabled;
460         struct ring_buffer              *buffer;
461         raw_spinlock_t                  reader_lock;    /* serialize readers */
462         arch_spinlock_t                 lock;
463         struct lock_class_key           lock_key;
464         unsigned int                    nr_pages;
465         struct list_head                *pages;
466         struct buffer_page              *head_page;     /* read from head */
467         struct buffer_page              *tail_page;     /* write to tail */
468         struct buffer_page              *commit_page;   /* committed pages */
469         struct buffer_page              *reader_page;
470         unsigned long                   lost_events;
471         unsigned long                   last_overrun;
472         local_t                         entries_bytes;
473         local_t                         entries;
474         local_t                         overrun;
475         local_t                         commit_overrun;
476         local_t                         dropped_events;
477         local_t                         committing;
478         local_t                         commits;
479         unsigned long                   read;
480         unsigned long                   read_bytes;
481         u64                             write_stamp;
482         u64                             read_stamp;
483         /* ring buffer pages to update, > 0 to add, < 0 to remove */
484         int                             nr_pages_to_update;
485         struct list_head                new_pages; /* new pages to add */
486         struct work_struct              update_pages_work;
487         struct completion               update_done;
488
489         struct rb_irq_work              irq_work;
490 };
491
492 struct ring_buffer {
493         unsigned                        flags;
494         int                             cpus;
495         atomic_t                        record_disabled;
496         atomic_t                        resize_disabled;
497         cpumask_var_t                   cpumask;
498
499         struct lock_class_key           *reader_lock_key;
500
501         struct mutex                    mutex;
502
503         struct ring_buffer_per_cpu      **buffers;
504
505 #ifdef CONFIG_HOTPLUG_CPU
506         struct notifier_block           cpu_notify;
507 #endif
508         u64                             (*clock)(void);
509
510         struct rb_irq_work              irq_work;
511 };
512
513 struct ring_buffer_iter {
514         struct ring_buffer_per_cpu      *cpu_buffer;
515         unsigned long                   head;
516         struct buffer_page              *head_page;
517         struct buffer_page              *cache_reader_page;
518         unsigned long                   cache_read;
519         u64                             read_stamp;
520 };
521
522 /*
523  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
524  *
525  * Schedules a delayed work to wake up any task that is blocked on the
526  * ring buffer waiters queue.
527  */
528 static void rb_wake_up_waiters(struct irq_work *work)
529 {
530         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
531
532         wake_up_all(&rbwork->waiters);
533 }
534
535 /**
536  * ring_buffer_wait - wait for input to the ring buffer
537  * @buffer: buffer to wait on
538  * @cpu: the cpu buffer to wait on
539  *
540  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
541  * as data is added to any of the @buffer's cpu buffers. Otherwise
542  * it will wait for data to be added to a specific cpu buffer.
543  */
544 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
545 {
546         struct ring_buffer_per_cpu *cpu_buffer;
547         DEFINE_WAIT(wait);
548         struct rb_irq_work *work;
549
550         /*
551          * Depending on what the caller is waiting for, either any
552          * data in any cpu buffer, or a specific buffer, put the
553          * caller on the appropriate wait queue.
554          */
555         if (cpu == RING_BUFFER_ALL_CPUS)
556                 work = &buffer->irq_work;
557         else {
558                 cpu_buffer = buffer->buffers[cpu];
559                 work = &cpu_buffer->irq_work;
560         }
561
562
563         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
564
565         /*
566          * The events can happen in critical sections where
567          * checking a work queue can cause deadlocks.
568          * After adding a task to the queue, this flag is set
569          * only to notify events to try to wake up the queue
570          * using irq_work.
571          *
572          * We don't clear it even if the buffer is no longer
573          * empty. The flag only causes the next event to run
574          * irq_work to do the work queue wake up. The worse
575          * that can happen if we race with !trace_empty() is that
576          * an event will cause an irq_work to try to wake up
577          * an empty queue.
578          *
579          * There's no reason to protect this flag either, as
580          * the work queue and irq_work logic will do the necessary
581          * synchronization for the wake ups. The only thing
582          * that is necessary is that the wake up happens after
583          * a task has been queued. It's OK for spurious wake ups.
584          */
585         work->waiters_pending = true;
586
587         if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
588             (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
589                 schedule();
590
591         finish_wait(&work->waiters, &wait);
592 }
593
594 /**
595  * ring_buffer_poll_wait - poll on buffer input
596  * @buffer: buffer to wait on
597  * @cpu: the cpu buffer to wait on
598  * @filp: the file descriptor
599  * @poll_table: The poll descriptor
600  *
601  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
602  * as data is added to any of the @buffer's cpu buffers. Otherwise
603  * it will wait for data to be added to a specific cpu buffer.
604  *
605  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
606  * zero otherwise.
607  */
608 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
609                           struct file *filp, poll_table *poll_table)
610 {
611         struct ring_buffer_per_cpu *cpu_buffer;
612         struct rb_irq_work *work;
613
614         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
615             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
616                 return POLLIN | POLLRDNORM;
617
618         if (cpu == RING_BUFFER_ALL_CPUS)
619                 work = &buffer->irq_work;
620         else {
621                 cpu_buffer = buffer->buffers[cpu];
622                 work = &cpu_buffer->irq_work;
623         }
624
625         work->waiters_pending = true;
626         poll_wait(filp, &work->waiters, poll_table);
627
628         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
629             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
630                 return POLLIN | POLLRDNORM;
631         return 0;
632 }
633
634 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
635 #define RB_WARN_ON(b, cond)                                             \
636         ({                                                              \
637                 int _____ret = unlikely(cond);                          \
638                 if (_____ret) {                                         \
639                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
640                                 struct ring_buffer_per_cpu *__b =       \
641                                         (void *)b;                      \
642                                 atomic_inc(&__b->buffer->record_disabled); \
643                         } else                                          \
644                                 atomic_inc(&b->record_disabled);        \
645                         WARN_ON(1);                                     \
646                 }                                                       \
647                 _____ret;                                               \
648         })
649
650 /* Up this if you want to test the TIME_EXTENTS and normalization */
651 #define DEBUG_SHIFT 0
652
653 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
654 {
655         /* shift to debug/test normalization and TIME_EXTENTS */
656         return buffer->clock() << DEBUG_SHIFT;
657 }
658
659 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
660 {
661         u64 time;
662
663         preempt_disable_notrace();
664         time = rb_time_stamp(buffer);
665         preempt_enable_no_resched_notrace();
666
667         return time;
668 }
669 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
670
671 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
672                                       int cpu, u64 *ts)
673 {
674         /* Just stupid testing the normalize function and deltas */
675         *ts >>= DEBUG_SHIFT;
676 }
677 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
678
679 /*
680  * Making the ring buffer lockless makes things tricky.
681  * Although writes only happen on the CPU that they are on,
682  * and they only need to worry about interrupts. Reads can
683  * happen on any CPU.
684  *
685  * The reader page is always off the ring buffer, but when the
686  * reader finishes with a page, it needs to swap its page with
687  * a new one from the buffer. The reader needs to take from
688  * the head (writes go to the tail). But if a writer is in overwrite
689  * mode and wraps, it must push the head page forward.
690  *
691  * Here lies the problem.
692  *
693  * The reader must be careful to replace only the head page, and
694  * not another one. As described at the top of the file in the
695  * ASCII art, the reader sets its old page to point to the next
696  * page after head. It then sets the page after head to point to
697  * the old reader page. But if the writer moves the head page
698  * during this operation, the reader could end up with the tail.
699  *
700  * We use cmpxchg to help prevent this race. We also do something
701  * special with the page before head. We set the LSB to 1.
702  *
703  * When the writer must push the page forward, it will clear the
704  * bit that points to the head page, move the head, and then set
705  * the bit that points to the new head page.
706  *
707  * We also don't want an interrupt coming in and moving the head
708  * page on another writer. Thus we use the second LSB to catch
709  * that too. Thus:
710  *
711  * head->list->prev->next        bit 1          bit 0
712  *                              -------        -------
713  * Normal page                     0              0
714  * Points to head page             0              1
715  * New head page                   1              0
716  *
717  * Note we can not trust the prev pointer of the head page, because:
718  *
719  * +----+       +-----+        +-----+
720  * |    |------>|  T  |---X--->|  N  |
721  * |    |<------|     |        |     |
722  * +----+       +-----+        +-----+
723  *   ^                           ^ |
724  *   |          +-----+          | |
725  *   +----------|  R  |----------+ |
726  *              |     |<-----------+
727  *              +-----+
728  *
729  * Key:  ---X-->  HEAD flag set in pointer
730  *         T      Tail page
731  *         R      Reader page
732  *         N      Next page
733  *
734  * (see __rb_reserve_next() to see where this happens)
735  *
736  *  What the above shows is that the reader just swapped out
737  *  the reader page with a page in the buffer, but before it
738  *  could make the new header point back to the new page added
739  *  it was preempted by a writer. The writer moved forward onto
740  *  the new page added by the reader and is about to move forward
741  *  again.
742  *
743  *  You can see, it is legitimate for the previous pointer of
744  *  the head (or any page) not to point back to itself. But only
745  *  temporarially.
746  */
747
748 #define RB_PAGE_NORMAL          0UL
749 #define RB_PAGE_HEAD            1UL
750 #define RB_PAGE_UPDATE          2UL
751
752
753 #define RB_FLAG_MASK            3UL
754
755 /* PAGE_MOVED is not part of the mask */
756 #define RB_PAGE_MOVED           4UL
757
758 /*
759  * rb_list_head - remove any bit
760  */
761 static struct list_head *rb_list_head(struct list_head *list)
762 {
763         unsigned long val = (unsigned long)list;
764
765         return (struct list_head *)(val & ~RB_FLAG_MASK);
766 }
767
768 /*
769  * rb_is_head_page - test if the given page is the head page
770  *
771  * Because the reader may move the head_page pointer, we can
772  * not trust what the head page is (it may be pointing to
773  * the reader page). But if the next page is a header page,
774  * its flags will be non zero.
775  */
776 static inline int
777 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
778                 struct buffer_page *page, struct list_head *list)
779 {
780         unsigned long val;
781
782         val = (unsigned long)list->next;
783
784         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
785                 return RB_PAGE_MOVED;
786
787         return val & RB_FLAG_MASK;
788 }
789
790 /*
791  * rb_is_reader_page
792  *
793  * The unique thing about the reader page, is that, if the
794  * writer is ever on it, the previous pointer never points
795  * back to the reader page.
796  */
797 static int rb_is_reader_page(struct buffer_page *page)
798 {
799         struct list_head *list = page->list.prev;
800
801         return rb_list_head(list->next) != &page->list;
802 }
803
804 /*
805  * rb_set_list_to_head - set a list_head to be pointing to head.
806  */
807 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
808                                 struct list_head *list)
809 {
810         unsigned long *ptr;
811
812         ptr = (unsigned long *)&list->next;
813         *ptr |= RB_PAGE_HEAD;
814         *ptr &= ~RB_PAGE_UPDATE;
815 }
816
817 /*
818  * rb_head_page_activate - sets up head page
819  */
820 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
821 {
822         struct buffer_page *head;
823
824         head = cpu_buffer->head_page;
825         if (!head)
826                 return;
827
828         /*
829          * Set the previous list pointer to have the HEAD flag.
830          */
831         rb_set_list_to_head(cpu_buffer, head->list.prev);
832 }
833
834 static void rb_list_head_clear(struct list_head *list)
835 {
836         unsigned long *ptr = (unsigned long *)&list->next;
837
838         *ptr &= ~RB_FLAG_MASK;
839 }
840
841 /*
842  * rb_head_page_dactivate - clears head page ptr (for free list)
843  */
844 static void
845 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
846 {
847         struct list_head *hd;
848
849         /* Go through the whole list and clear any pointers found. */
850         rb_list_head_clear(cpu_buffer->pages);
851
852         list_for_each(hd, cpu_buffer->pages)
853                 rb_list_head_clear(hd);
854 }
855
856 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
857                             struct buffer_page *head,
858                             struct buffer_page *prev,
859                             int old_flag, int new_flag)
860 {
861         struct list_head *list;
862         unsigned long val = (unsigned long)&head->list;
863         unsigned long ret;
864
865         list = &prev->list;
866
867         val &= ~RB_FLAG_MASK;
868
869         ret = cmpxchg((unsigned long *)&list->next,
870                       val | old_flag, val | new_flag);
871
872         /* check if the reader took the page */
873         if ((ret & ~RB_FLAG_MASK) != val)
874                 return RB_PAGE_MOVED;
875
876         return ret & RB_FLAG_MASK;
877 }
878
879 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
880                                    struct buffer_page *head,
881                                    struct buffer_page *prev,
882                                    int old_flag)
883 {
884         return rb_head_page_set(cpu_buffer, head, prev,
885                                 old_flag, RB_PAGE_UPDATE);
886 }
887
888 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
889                                  struct buffer_page *head,
890                                  struct buffer_page *prev,
891                                  int old_flag)
892 {
893         return rb_head_page_set(cpu_buffer, head, prev,
894                                 old_flag, RB_PAGE_HEAD);
895 }
896
897 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
898                                    struct buffer_page *head,
899                                    struct buffer_page *prev,
900                                    int old_flag)
901 {
902         return rb_head_page_set(cpu_buffer, head, prev,
903                                 old_flag, RB_PAGE_NORMAL);
904 }
905
906 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
907                                struct buffer_page **bpage)
908 {
909         struct list_head *p = rb_list_head((*bpage)->list.next);
910
911         *bpage = list_entry(p, struct buffer_page, list);
912 }
913
914 static struct buffer_page *
915 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
916 {
917         struct buffer_page *head;
918         struct buffer_page *page;
919         struct list_head *list;
920         int i;
921
922         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
923                 return NULL;
924
925         /* sanity check */
926         list = cpu_buffer->pages;
927         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
928                 return NULL;
929
930         page = head = cpu_buffer->head_page;
931         /*
932          * It is possible that the writer moves the header behind
933          * where we started, and we miss in one loop.
934          * A second loop should grab the header, but we'll do
935          * three loops just because I'm paranoid.
936          */
937         for (i = 0; i < 3; i++) {
938                 do {
939                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
940                                 cpu_buffer->head_page = page;
941                                 return page;
942                         }
943                         rb_inc_page(cpu_buffer, &page);
944                 } while (page != head);
945         }
946
947         RB_WARN_ON(cpu_buffer, 1);
948
949         return NULL;
950 }
951
952 static int rb_head_page_replace(struct buffer_page *old,
953                                 struct buffer_page *new)
954 {
955         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
956         unsigned long val;
957         unsigned long ret;
958
959         val = *ptr & ~RB_FLAG_MASK;
960         val |= RB_PAGE_HEAD;
961
962         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
963
964         return ret == val;
965 }
966
967 /*
968  * rb_tail_page_update - move the tail page forward
969  *
970  * Returns 1 if moved tail page, 0 if someone else did.
971  */
972 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
973                                struct buffer_page *tail_page,
974                                struct buffer_page *next_page)
975 {
976         struct buffer_page *old_tail;
977         unsigned long old_entries;
978         unsigned long old_write;
979         int ret = 0;
980
981         /*
982          * The tail page now needs to be moved forward.
983          *
984          * We need to reset the tail page, but without messing
985          * with possible erasing of data brought in by interrupts
986          * that have moved the tail page and are currently on it.
987          *
988          * We add a counter to the write field to denote this.
989          */
990         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
991         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
992
993         /*
994          * Just make sure we have seen our old_write and synchronize
995          * with any interrupts that come in.
996          */
997         barrier();
998
999         /*
1000          * If the tail page is still the same as what we think
1001          * it is, then it is up to us to update the tail
1002          * pointer.
1003          */
1004         if (tail_page == cpu_buffer->tail_page) {
1005                 /* Zero the write counter */
1006                 unsigned long val = old_write & ~RB_WRITE_MASK;
1007                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1008
1009                 /*
1010                  * This will only succeed if an interrupt did
1011                  * not come in and change it. In which case, we
1012                  * do not want to modify it.
1013                  *
1014                  * We add (void) to let the compiler know that we do not care
1015                  * about the return value of these functions. We use the
1016                  * cmpxchg to only update if an interrupt did not already
1017                  * do it for us. If the cmpxchg fails, we don't care.
1018                  */
1019                 (void)local_cmpxchg(&next_page->write, old_write, val);
1020                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1021
1022                 /*
1023                  * No need to worry about races with clearing out the commit.
1024                  * it only can increment when a commit takes place. But that
1025                  * only happens in the outer most nested commit.
1026                  */
1027                 local_set(&next_page->page->commit, 0);
1028
1029                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1030                                    tail_page, next_page);
1031
1032                 if (old_tail == tail_page)
1033                         ret = 1;
1034         }
1035
1036         return ret;
1037 }
1038
1039 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1040                           struct buffer_page *bpage)
1041 {
1042         unsigned long val = (unsigned long)bpage;
1043
1044         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1045                 return 1;
1046
1047         return 0;
1048 }
1049
1050 /**
1051  * rb_check_list - make sure a pointer to a list has the last bits zero
1052  */
1053 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1054                          struct list_head *list)
1055 {
1056         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1057                 return 1;
1058         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1059                 return 1;
1060         return 0;
1061 }
1062
1063 /**
1064  * check_pages - integrity check of buffer pages
1065  * @cpu_buffer: CPU buffer with pages to test
1066  *
1067  * As a safety measure we check to make sure the data pages have not
1068  * been corrupted.
1069  */
1070 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1071 {
1072         struct list_head *head = cpu_buffer->pages;
1073         struct buffer_page *bpage, *tmp;
1074
1075         /* Reset the head page if it exists */
1076         if (cpu_buffer->head_page)
1077                 rb_set_head_page(cpu_buffer);
1078
1079         rb_head_page_deactivate(cpu_buffer);
1080
1081         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1082                 return -1;
1083         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1084                 return -1;
1085
1086         if (rb_check_list(cpu_buffer, head))
1087                 return -1;
1088
1089         list_for_each_entry_safe(bpage, tmp, head, list) {
1090                 if (RB_WARN_ON(cpu_buffer,
1091                                bpage->list.next->prev != &bpage->list))
1092                         return -1;
1093                 if (RB_WARN_ON(cpu_buffer,
1094                                bpage->list.prev->next != &bpage->list))
1095                         return -1;
1096                 if (rb_check_list(cpu_buffer, &bpage->list))
1097                         return -1;
1098         }
1099
1100         rb_head_page_activate(cpu_buffer);
1101
1102         return 0;
1103 }
1104
1105 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1106 {
1107         int i;
1108         struct buffer_page *bpage, *tmp;
1109
1110         for (i = 0; i < nr_pages; i++) {
1111                 struct page *page;
1112                 /*
1113                  * __GFP_NORETRY flag makes sure that the allocation fails
1114                  * gracefully without invoking oom-killer and the system is
1115                  * not destabilized.
1116                  */
1117                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1118                                     GFP_KERNEL | __GFP_NORETRY,
1119                                     cpu_to_node(cpu));
1120                 if (!bpage)
1121                         goto free_pages;
1122
1123                 list_add(&bpage->list, pages);
1124
1125                 page = alloc_pages_node(cpu_to_node(cpu),
1126                                         GFP_KERNEL | __GFP_NORETRY, 0);
1127                 if (!page)
1128                         goto free_pages;
1129                 bpage->page = page_address(page);
1130                 rb_init_page(bpage->page);
1131         }
1132
1133         return 0;
1134
1135 free_pages:
1136         list_for_each_entry_safe(bpage, tmp, pages, list) {
1137                 list_del_init(&bpage->list);
1138                 free_buffer_page(bpage);
1139         }
1140
1141         return -ENOMEM;
1142 }
1143
1144 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1145                              unsigned nr_pages)
1146 {
1147         LIST_HEAD(pages);
1148
1149         WARN_ON(!nr_pages);
1150
1151         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1152                 return -ENOMEM;
1153
1154         /*
1155          * The ring buffer page list is a circular list that does not
1156          * start and end with a list head. All page list items point to
1157          * other pages.
1158          */
1159         cpu_buffer->pages = pages.next;
1160         list_del(&pages);
1161
1162         cpu_buffer->nr_pages = nr_pages;
1163
1164         rb_check_pages(cpu_buffer);
1165
1166         return 0;
1167 }
1168
1169 static struct ring_buffer_per_cpu *
1170 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1171 {
1172         struct ring_buffer_per_cpu *cpu_buffer;
1173         struct buffer_page *bpage;
1174         struct page *page;
1175         int ret;
1176
1177         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1178                                   GFP_KERNEL, cpu_to_node(cpu));
1179         if (!cpu_buffer)
1180                 return NULL;
1181
1182         cpu_buffer->cpu = cpu;
1183         cpu_buffer->buffer = buffer;
1184         raw_spin_lock_init(&cpu_buffer->reader_lock);
1185         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1186         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1187         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1188         init_completion(&cpu_buffer->update_done);
1189         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1190         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1191
1192         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1193                             GFP_KERNEL, cpu_to_node(cpu));
1194         if (!bpage)
1195                 goto fail_free_buffer;
1196
1197         rb_check_bpage(cpu_buffer, bpage);
1198
1199         cpu_buffer->reader_page = bpage;
1200         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1201         if (!page)
1202                 goto fail_free_reader;
1203         bpage->page = page_address(page);
1204         rb_init_page(bpage->page);
1205
1206         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1207         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1208
1209         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1210         if (ret < 0)
1211                 goto fail_free_reader;
1212
1213         cpu_buffer->head_page
1214                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1215         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1216
1217         rb_head_page_activate(cpu_buffer);
1218
1219         return cpu_buffer;
1220
1221  fail_free_reader:
1222         free_buffer_page(cpu_buffer->reader_page);
1223
1224  fail_free_buffer:
1225         kfree(cpu_buffer);
1226         return NULL;
1227 }
1228
1229 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1230 {
1231         struct list_head *head = cpu_buffer->pages;
1232         struct buffer_page *bpage, *tmp;
1233
1234         free_buffer_page(cpu_buffer->reader_page);
1235
1236         rb_head_page_deactivate(cpu_buffer);
1237
1238         if (head) {
1239                 list_for_each_entry_safe(bpage, tmp, head, list) {
1240                         list_del_init(&bpage->list);
1241                         free_buffer_page(bpage);
1242                 }
1243                 bpage = list_entry(head, struct buffer_page, list);
1244                 free_buffer_page(bpage);
1245         }
1246
1247         kfree(cpu_buffer);
1248 }
1249
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 static int rb_cpu_notify(struct notifier_block *self,
1252                          unsigned long action, void *hcpu);
1253 #endif
1254
1255 /**
1256  * ring_buffer_alloc - allocate a new ring_buffer
1257  * @size: the size in bytes per cpu that is needed.
1258  * @flags: attributes to set for the ring buffer.
1259  *
1260  * Currently the only flag that is available is the RB_FL_OVERWRITE
1261  * flag. This flag means that the buffer will overwrite old data
1262  * when the buffer wraps. If this flag is not set, the buffer will
1263  * drop data when the tail hits the head.
1264  */
1265 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1266                                         struct lock_class_key *key)
1267 {
1268         struct ring_buffer *buffer;
1269         int bsize;
1270         int cpu, nr_pages;
1271
1272         /* keep it in its own cache line */
1273         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1274                          GFP_KERNEL);
1275         if (!buffer)
1276                 return NULL;
1277
1278         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1279                 goto fail_free_buffer;
1280
1281         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1282         buffer->flags = flags;
1283         buffer->clock = trace_clock_local;
1284         buffer->reader_lock_key = key;
1285
1286         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1287         init_waitqueue_head(&buffer->irq_work.waiters);
1288
1289         /* need at least two pages */
1290         if (nr_pages < 2)
1291                 nr_pages = 2;
1292
1293         /*
1294          * In case of non-hotplug cpu, if the ring-buffer is allocated
1295          * in early initcall, it will not be notified of secondary cpus.
1296          * In that off case, we need to allocate for all possible cpus.
1297          */
1298 #ifdef CONFIG_HOTPLUG_CPU
1299         get_online_cpus();
1300         cpumask_copy(buffer->cpumask, cpu_online_mask);
1301 #else
1302         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1303 #endif
1304         buffer->cpus = nr_cpu_ids;
1305
1306         bsize = sizeof(void *) * nr_cpu_ids;
1307         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1308                                   GFP_KERNEL);
1309         if (!buffer->buffers)
1310                 goto fail_free_cpumask;
1311
1312         for_each_buffer_cpu(buffer, cpu) {
1313                 buffer->buffers[cpu] =
1314                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1315                 if (!buffer->buffers[cpu])
1316                         goto fail_free_buffers;
1317         }
1318
1319 #ifdef CONFIG_HOTPLUG_CPU
1320         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1321         buffer->cpu_notify.priority = 0;
1322         register_cpu_notifier(&buffer->cpu_notify);
1323 #endif
1324
1325         put_online_cpus();
1326         mutex_init(&buffer->mutex);
1327
1328         return buffer;
1329
1330  fail_free_buffers:
1331         for_each_buffer_cpu(buffer, cpu) {
1332                 if (buffer->buffers[cpu])
1333                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1334         }
1335         kfree(buffer->buffers);
1336
1337  fail_free_cpumask:
1338         free_cpumask_var(buffer->cpumask);
1339         put_online_cpus();
1340
1341  fail_free_buffer:
1342         kfree(buffer);
1343         return NULL;
1344 }
1345 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1346
1347 /**
1348  * ring_buffer_free - free a ring buffer.
1349  * @buffer: the buffer to free.
1350  */
1351 void
1352 ring_buffer_free(struct ring_buffer *buffer)
1353 {
1354         int cpu;
1355
1356         get_online_cpus();
1357
1358 #ifdef CONFIG_HOTPLUG_CPU
1359         unregister_cpu_notifier(&buffer->cpu_notify);
1360 #endif
1361
1362         for_each_buffer_cpu(buffer, cpu)
1363                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1364
1365         put_online_cpus();
1366
1367         kfree(buffer->buffers);
1368         free_cpumask_var(buffer->cpumask);
1369
1370         kfree(buffer);
1371 }
1372 EXPORT_SYMBOL_GPL(ring_buffer_free);
1373
1374 void ring_buffer_set_clock(struct ring_buffer *buffer,
1375                            u64 (*clock)(void))
1376 {
1377         buffer->clock = clock;
1378 }
1379
1380 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1381
1382 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1383 {
1384         return local_read(&bpage->entries) & RB_WRITE_MASK;
1385 }
1386
1387 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1388 {
1389         return local_read(&bpage->write) & RB_WRITE_MASK;
1390 }
1391
1392 static int
1393 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1394 {
1395         struct list_head *tail_page, *to_remove, *next_page;
1396         struct buffer_page *to_remove_page, *tmp_iter_page;
1397         struct buffer_page *last_page, *first_page;
1398         unsigned int nr_removed;
1399         unsigned long head_bit;
1400         int page_entries;
1401
1402         head_bit = 0;
1403
1404         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1405         atomic_inc(&cpu_buffer->record_disabled);
1406         /*
1407          * We don't race with the readers since we have acquired the reader
1408          * lock. We also don't race with writers after disabling recording.
1409          * This makes it easy to figure out the first and the last page to be
1410          * removed from the list. We unlink all the pages in between including
1411          * the first and last pages. This is done in a busy loop so that we
1412          * lose the least number of traces.
1413          * The pages are freed after we restart recording and unlock readers.
1414          */
1415         tail_page = &cpu_buffer->tail_page->list;
1416
1417         /*
1418          * tail page might be on reader page, we remove the next page
1419          * from the ring buffer
1420          */
1421         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1422                 tail_page = rb_list_head(tail_page->next);
1423         to_remove = tail_page;
1424
1425         /* start of pages to remove */
1426         first_page = list_entry(rb_list_head(to_remove->next),
1427                                 struct buffer_page, list);
1428
1429         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1430                 to_remove = rb_list_head(to_remove)->next;
1431                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1432         }
1433
1434         next_page = rb_list_head(to_remove)->next;
1435
1436         /*
1437          * Now we remove all pages between tail_page and next_page.
1438          * Make sure that we have head_bit value preserved for the
1439          * next page
1440          */
1441         tail_page->next = (struct list_head *)((unsigned long)next_page |
1442                                                 head_bit);
1443         next_page = rb_list_head(next_page);
1444         next_page->prev = tail_page;
1445
1446         /* make sure pages points to a valid page in the ring buffer */
1447         cpu_buffer->pages = next_page;
1448
1449         /* update head page */
1450         if (head_bit)
1451                 cpu_buffer->head_page = list_entry(next_page,
1452                                                 struct buffer_page, list);
1453
1454         /*
1455          * change read pointer to make sure any read iterators reset
1456          * themselves
1457          */
1458         cpu_buffer->read = 0;
1459
1460         /* pages are removed, resume tracing and then free the pages */
1461         atomic_dec(&cpu_buffer->record_disabled);
1462         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1463
1464         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1465
1466         /* last buffer page to remove */
1467         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1468                                 list);
1469         tmp_iter_page = first_page;
1470
1471         do {
1472                 to_remove_page = tmp_iter_page;
1473                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1474
1475                 /* update the counters */
1476                 page_entries = rb_page_entries(to_remove_page);
1477                 if (page_entries) {
1478                         /*
1479                          * If something was added to this page, it was full
1480                          * since it is not the tail page. So we deduct the
1481                          * bytes consumed in ring buffer from here.
1482                          * Increment overrun to account for the lost events.
1483                          */
1484                         local_add(page_entries, &cpu_buffer->overrun);
1485                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1486                 }
1487
1488                 /*
1489                  * We have already removed references to this list item, just
1490                  * free up the buffer_page and its page
1491                  */
1492                 free_buffer_page(to_remove_page);
1493                 nr_removed--;
1494
1495         } while (to_remove_page != last_page);
1496
1497         RB_WARN_ON(cpu_buffer, nr_removed);
1498
1499         return nr_removed == 0;
1500 }
1501
1502 static int
1503 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1504 {
1505         struct list_head *pages = &cpu_buffer->new_pages;
1506         int retries, success;
1507
1508         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1509         /*
1510          * We are holding the reader lock, so the reader page won't be swapped
1511          * in the ring buffer. Now we are racing with the writer trying to
1512          * move head page and the tail page.
1513          * We are going to adapt the reader page update process where:
1514          * 1. We first splice the start and end of list of new pages between
1515          *    the head page and its previous page.
1516          * 2. We cmpxchg the prev_page->next to point from head page to the
1517          *    start of new pages list.
1518          * 3. Finally, we update the head->prev to the end of new list.
1519          *
1520          * We will try this process 10 times, to make sure that we don't keep
1521          * spinning.
1522          */
1523         retries = 10;
1524         success = 0;
1525         while (retries--) {
1526                 struct list_head *head_page, *prev_page, *r;
1527                 struct list_head *last_page, *first_page;
1528                 struct list_head *head_page_with_bit;
1529
1530                 head_page = &rb_set_head_page(cpu_buffer)->list;
1531                 if (!head_page)
1532                         break;
1533                 prev_page = head_page->prev;
1534
1535                 first_page = pages->next;
1536                 last_page  = pages->prev;
1537
1538                 head_page_with_bit = (struct list_head *)
1539                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1540
1541                 last_page->next = head_page_with_bit;
1542                 first_page->prev = prev_page;
1543
1544                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1545
1546                 if (r == head_page_with_bit) {
1547                         /*
1548                          * yay, we replaced the page pointer to our new list,
1549                          * now, we just have to update to head page's prev
1550                          * pointer to point to end of list
1551                          */
1552                         head_page->prev = last_page;
1553                         success = 1;
1554                         break;
1555                 }
1556         }
1557
1558         if (success)
1559                 INIT_LIST_HEAD(pages);
1560         /*
1561          * If we weren't successful in adding in new pages, warn and stop
1562          * tracing
1563          */
1564         RB_WARN_ON(cpu_buffer, !success);
1565         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1566
1567         /* free pages if they weren't inserted */
1568         if (!success) {
1569                 struct buffer_page *bpage, *tmp;
1570                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1571                                          list) {
1572                         list_del_init(&bpage->list);
1573                         free_buffer_page(bpage);
1574                 }
1575         }
1576         return success;
1577 }
1578
1579 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1580 {
1581         int success;
1582
1583         if (cpu_buffer->nr_pages_to_update > 0)
1584                 success = rb_insert_pages(cpu_buffer);
1585         else
1586                 success = rb_remove_pages(cpu_buffer,
1587                                         -cpu_buffer->nr_pages_to_update);
1588
1589         if (success)
1590                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1591 }
1592
1593 static void update_pages_handler(struct work_struct *work)
1594 {
1595         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1596                         struct ring_buffer_per_cpu, update_pages_work);
1597         rb_update_pages(cpu_buffer);
1598         complete(&cpu_buffer->update_done);
1599 }
1600
1601 /**
1602  * ring_buffer_resize - resize the ring buffer
1603  * @buffer: the buffer to resize.
1604  * @size: the new size.
1605  *
1606  * Minimum size is 2 * BUF_PAGE_SIZE.
1607  *
1608  * Returns 0 on success and < 0 on failure.
1609  */
1610 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1611                         int cpu_id)
1612 {
1613         struct ring_buffer_per_cpu *cpu_buffer;
1614         unsigned nr_pages;
1615         int cpu, err = 0;
1616
1617         /*
1618          * Always succeed at resizing a non-existent buffer:
1619          */
1620         if (!buffer)
1621                 return size;
1622
1623         /* Make sure the requested buffer exists */
1624         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1625             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1626                 return size;
1627
1628         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1629         size *= BUF_PAGE_SIZE;
1630
1631         /* we need a minimum of two pages */
1632         if (size < BUF_PAGE_SIZE * 2)
1633                 size = BUF_PAGE_SIZE * 2;
1634
1635         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1636
1637         /*
1638          * Don't succeed if resizing is disabled, as a reader might be
1639          * manipulating the ring buffer and is expecting a sane state while
1640          * this is true.
1641          */
1642         if (atomic_read(&buffer->resize_disabled))
1643                 return -EBUSY;
1644
1645         /* prevent another thread from changing buffer sizes */
1646         mutex_lock(&buffer->mutex);
1647
1648         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1649                 /* calculate the pages to update */
1650                 for_each_buffer_cpu(buffer, cpu) {
1651                         cpu_buffer = buffer->buffers[cpu];
1652
1653                         cpu_buffer->nr_pages_to_update = nr_pages -
1654                                                         cpu_buffer->nr_pages;
1655                         /*
1656                          * nothing more to do for removing pages or no update
1657                          */
1658                         if (cpu_buffer->nr_pages_to_update <= 0)
1659                                 continue;
1660                         /*
1661                          * to add pages, make sure all new pages can be
1662                          * allocated without receiving ENOMEM
1663                          */
1664                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1665                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1666                                                 &cpu_buffer->new_pages, cpu)) {
1667                                 /* not enough memory for new pages */
1668                                 err = -ENOMEM;
1669                                 goto out_err;
1670                         }
1671                 }
1672
1673                 get_online_cpus();
1674                 /*
1675                  * Fire off all the required work handlers
1676                  * We can't schedule on offline CPUs, but it's not necessary
1677                  * since we can change their buffer sizes without any race.
1678                  */
1679                 for_each_buffer_cpu(buffer, cpu) {
1680                         cpu_buffer = buffer->buffers[cpu];
1681                         if (!cpu_buffer->nr_pages_to_update)
1682                                 continue;
1683
1684                         /* The update must run on the CPU that is being updated. */
1685                         preempt_disable();
1686                         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1687                                 rb_update_pages(cpu_buffer);
1688                                 cpu_buffer->nr_pages_to_update = 0;
1689                         } else {
1690                                 /*
1691                                  * Can not disable preemption for schedule_work_on()
1692                                  * on PREEMPT_RT.
1693                                  */
1694                                 preempt_enable();
1695                                 schedule_work_on(cpu,
1696                                                 &cpu_buffer->update_pages_work);
1697                                 preempt_disable();
1698                         }
1699                         preempt_enable();
1700                 }
1701
1702                 /* wait for all the updates to complete */
1703                 for_each_buffer_cpu(buffer, cpu) {
1704                         cpu_buffer = buffer->buffers[cpu];
1705                         if (!cpu_buffer->nr_pages_to_update)
1706                                 continue;
1707
1708                         if (cpu_online(cpu))
1709                                 wait_for_completion(&cpu_buffer->update_done);
1710                         cpu_buffer->nr_pages_to_update = 0;
1711                 }
1712
1713                 put_online_cpus();
1714         } else {
1715                 /* Make sure this CPU has been intitialized */
1716                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1717                         goto out;
1718
1719                 cpu_buffer = buffer->buffers[cpu_id];
1720
1721                 if (nr_pages == cpu_buffer->nr_pages)
1722                         goto out;
1723
1724                 cpu_buffer->nr_pages_to_update = nr_pages -
1725                                                 cpu_buffer->nr_pages;
1726
1727                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728                 if (cpu_buffer->nr_pages_to_update > 0 &&
1729                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1730                                             &cpu_buffer->new_pages, cpu_id)) {
1731                         err = -ENOMEM;
1732                         goto out_err;
1733                 }
1734
1735                 get_online_cpus();
1736
1737                 preempt_disable();
1738                 /* The update must run on the CPU that is being updated. */
1739                 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1740                         rb_update_pages(cpu_buffer);
1741                 else {
1742                         /*
1743                          * Can not disable preemption for schedule_work_on()
1744                          * on PREEMPT_RT.
1745                          */
1746                         preempt_enable();
1747                         schedule_work_on(cpu_id,
1748                                          &cpu_buffer->update_pages_work);
1749                         wait_for_completion(&cpu_buffer->update_done);
1750                         preempt_disable();
1751                 }
1752                 preempt_enable();
1753
1754                 cpu_buffer->nr_pages_to_update = 0;
1755                 put_online_cpus();
1756         }
1757
1758  out:
1759         /*
1760          * The ring buffer resize can happen with the ring buffer
1761          * enabled, so that the update disturbs the tracing as little
1762          * as possible. But if the buffer is disabled, we do not need
1763          * to worry about that, and we can take the time to verify
1764          * that the buffer is not corrupt.
1765          */
1766         if (atomic_read(&buffer->record_disabled)) {
1767                 atomic_inc(&buffer->record_disabled);
1768                 /*
1769                  * Even though the buffer was disabled, we must make sure
1770                  * that it is truly disabled before calling rb_check_pages.
1771                  * There could have been a race between checking
1772                  * record_disable and incrementing it.
1773                  */
1774                 synchronize_sched();
1775                 for_each_buffer_cpu(buffer, cpu) {
1776                         cpu_buffer = buffer->buffers[cpu];
1777                         rb_check_pages(cpu_buffer);
1778                 }
1779                 atomic_dec(&buffer->record_disabled);
1780         }
1781
1782         mutex_unlock(&buffer->mutex);
1783         return size;
1784
1785  out_err:
1786         for_each_buffer_cpu(buffer, cpu) {
1787                 struct buffer_page *bpage, *tmp;
1788
1789                 cpu_buffer = buffer->buffers[cpu];
1790                 cpu_buffer->nr_pages_to_update = 0;
1791
1792                 if (list_empty(&cpu_buffer->new_pages))
1793                         continue;
1794
1795                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1796                                         list) {
1797                         list_del_init(&bpage->list);
1798                         free_buffer_page(bpage);
1799                 }
1800         }
1801         mutex_unlock(&buffer->mutex);
1802         return err;
1803 }
1804 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1805
1806 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1807 {
1808         mutex_lock(&buffer->mutex);
1809         if (val)
1810                 buffer->flags |= RB_FL_OVERWRITE;
1811         else
1812                 buffer->flags &= ~RB_FL_OVERWRITE;
1813         mutex_unlock(&buffer->mutex);
1814 }
1815 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1816
1817 static inline void *
1818 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1819 {
1820         return bpage->data + index;
1821 }
1822
1823 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1824 {
1825         return bpage->page->data + index;
1826 }
1827
1828 static inline struct ring_buffer_event *
1829 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1830 {
1831         return __rb_page_index(cpu_buffer->reader_page,
1832                                cpu_buffer->reader_page->read);
1833 }
1834
1835 static inline struct ring_buffer_event *
1836 rb_iter_head_event(struct ring_buffer_iter *iter)
1837 {
1838         return __rb_page_index(iter->head_page, iter->head);
1839 }
1840
1841 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1842 {
1843         return local_read(&bpage->page->commit);
1844 }
1845
1846 /* Size is determined by what has been committed */
1847 static inline unsigned rb_page_size(struct buffer_page *bpage)
1848 {
1849         return rb_page_commit(bpage);
1850 }
1851
1852 static inline unsigned
1853 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1854 {
1855         return rb_page_commit(cpu_buffer->commit_page);
1856 }
1857
1858 static inline unsigned
1859 rb_event_index(struct ring_buffer_event *event)
1860 {
1861         unsigned long addr = (unsigned long)event;
1862
1863         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1864 }
1865
1866 static inline int
1867 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1868                    struct ring_buffer_event *event)
1869 {
1870         unsigned long addr = (unsigned long)event;
1871         unsigned long index;
1872
1873         index = rb_event_index(event);
1874         addr &= PAGE_MASK;
1875
1876         return cpu_buffer->commit_page->page == (void *)addr &&
1877                 rb_commit_index(cpu_buffer) == index;
1878 }
1879
1880 static void
1881 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1882 {
1883         unsigned long max_count;
1884
1885         /*
1886          * We only race with interrupts and NMIs on this CPU.
1887          * If we own the commit event, then we can commit
1888          * all others that interrupted us, since the interruptions
1889          * are in stack format (they finish before they come
1890          * back to us). This allows us to do a simple loop to
1891          * assign the commit to the tail.
1892          */
1893  again:
1894         max_count = cpu_buffer->nr_pages * 100;
1895
1896         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1897                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1898                         return;
1899                 if (RB_WARN_ON(cpu_buffer,
1900                                rb_is_reader_page(cpu_buffer->tail_page)))
1901                         return;
1902                 local_set(&cpu_buffer->commit_page->page->commit,
1903                           rb_page_write(cpu_buffer->commit_page));
1904                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1905                 cpu_buffer->write_stamp =
1906                         cpu_buffer->commit_page->page->time_stamp;
1907                 /* add barrier to keep gcc from optimizing too much */
1908                 barrier();
1909         }
1910         while (rb_commit_index(cpu_buffer) !=
1911                rb_page_write(cpu_buffer->commit_page)) {
1912
1913                 local_set(&cpu_buffer->commit_page->page->commit,
1914                           rb_page_write(cpu_buffer->commit_page));
1915                 RB_WARN_ON(cpu_buffer,
1916                            local_read(&cpu_buffer->commit_page->page->commit) &
1917                            ~RB_WRITE_MASK);
1918                 barrier();
1919         }
1920
1921         /* again, keep gcc from optimizing */
1922         barrier();
1923
1924         /*
1925          * If an interrupt came in just after the first while loop
1926          * and pushed the tail page forward, we will be left with
1927          * a dangling commit that will never go forward.
1928          */
1929         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1930                 goto again;
1931 }
1932
1933 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1934 {
1935         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1936         cpu_buffer->reader_page->read = 0;
1937 }
1938
1939 static void rb_inc_iter(struct ring_buffer_iter *iter)
1940 {
1941         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1942
1943         /*
1944          * The iterator could be on the reader page (it starts there).
1945          * But the head could have moved, since the reader was
1946          * found. Check for this case and assign the iterator
1947          * to the head page instead of next.
1948          */
1949         if (iter->head_page == cpu_buffer->reader_page)
1950                 iter->head_page = rb_set_head_page(cpu_buffer);
1951         else
1952                 rb_inc_page(cpu_buffer, &iter->head_page);
1953
1954         iter->read_stamp = iter->head_page->page->time_stamp;
1955         iter->head = 0;
1956 }
1957
1958 /* Slow path, do not inline */
1959 static noinline struct ring_buffer_event *
1960 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1961 {
1962         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1963
1964         /* Not the first event on the page? */
1965         if (rb_event_index(event)) {
1966                 event->time_delta = delta & TS_MASK;
1967                 event->array[0] = delta >> TS_SHIFT;
1968         } else {
1969                 /* nope, just zero it */
1970                 event->time_delta = 0;
1971                 event->array[0] = 0;
1972         }
1973
1974         return skip_time_extend(event);
1975 }
1976
1977 /**
1978  * rb_update_event - update event type and data
1979  * @event: the even to update
1980  * @type: the type of event
1981  * @length: the size of the event field in the ring buffer
1982  *
1983  * Update the type and data fields of the event. The length
1984  * is the actual size that is written to the ring buffer,
1985  * and with this, we can determine what to place into the
1986  * data field.
1987  */
1988 static void
1989 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1990                 struct ring_buffer_event *event, unsigned length,
1991                 int add_timestamp, u64 delta)
1992 {
1993         /* Only a commit updates the timestamp */
1994         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1995                 delta = 0;
1996
1997         /*
1998          * If we need to add a timestamp, then we
1999          * add it to the start of the resevered space.
2000          */
2001         if (unlikely(add_timestamp)) {
2002                 event = rb_add_time_stamp(event, delta);
2003                 length -= RB_LEN_TIME_EXTEND;
2004                 delta = 0;
2005         }
2006
2007         event->time_delta = delta;
2008         length -= RB_EVNT_HDR_SIZE;
2009         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2010                 event->type_len = 0;
2011                 event->array[0] = length;
2012         } else
2013                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2014 }
2015
2016 /*
2017  * rb_handle_head_page - writer hit the head page
2018  *
2019  * Returns: +1 to retry page
2020  *           0 to continue
2021  *          -1 on error
2022  */
2023 static int
2024 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2025                     struct buffer_page *tail_page,
2026                     struct buffer_page *next_page)
2027 {
2028         struct buffer_page *new_head;
2029         int entries;
2030         int type;
2031         int ret;
2032
2033         entries = rb_page_entries(next_page);
2034
2035         /*
2036          * The hard part is here. We need to move the head
2037          * forward, and protect against both readers on
2038          * other CPUs and writers coming in via interrupts.
2039          */
2040         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2041                                        RB_PAGE_HEAD);
2042
2043         /*
2044          * type can be one of four:
2045          *  NORMAL - an interrupt already moved it for us
2046          *  HEAD   - we are the first to get here.
2047          *  UPDATE - we are the interrupt interrupting
2048          *           a current move.
2049          *  MOVED  - a reader on another CPU moved the next
2050          *           pointer to its reader page. Give up
2051          *           and try again.
2052          */
2053
2054         switch (type) {
2055         case RB_PAGE_HEAD:
2056                 /*
2057                  * We changed the head to UPDATE, thus
2058                  * it is our responsibility to update
2059                  * the counters.
2060                  */
2061                 local_add(entries, &cpu_buffer->overrun);
2062                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2063
2064                 /*
2065                  * The entries will be zeroed out when we move the
2066                  * tail page.
2067                  */
2068
2069                 /* still more to do */
2070                 break;
2071
2072         case RB_PAGE_UPDATE:
2073                 /*
2074                  * This is an interrupt that interrupt the
2075                  * previous update. Still more to do.
2076                  */
2077                 break;
2078         case RB_PAGE_NORMAL:
2079                 /*
2080                  * An interrupt came in before the update
2081                  * and processed this for us.
2082                  * Nothing left to do.
2083                  */
2084                 return 1;
2085         case RB_PAGE_MOVED:
2086                 /*
2087                  * The reader is on another CPU and just did
2088                  * a swap with our next_page.
2089                  * Try again.
2090                  */
2091                 return 1;
2092         default:
2093                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2094                 return -1;
2095         }
2096
2097         /*
2098          * Now that we are here, the old head pointer is
2099          * set to UPDATE. This will keep the reader from
2100          * swapping the head page with the reader page.
2101          * The reader (on another CPU) will spin till
2102          * we are finished.
2103          *
2104          * We just need to protect against interrupts
2105          * doing the job. We will set the next pointer
2106          * to HEAD. After that, we set the old pointer
2107          * to NORMAL, but only if it was HEAD before.
2108          * otherwise we are an interrupt, and only
2109          * want the outer most commit to reset it.
2110          */
2111         new_head = next_page;
2112         rb_inc_page(cpu_buffer, &new_head);
2113
2114         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2115                                     RB_PAGE_NORMAL);
2116
2117         /*
2118          * Valid returns are:
2119          *  HEAD   - an interrupt came in and already set it.
2120          *  NORMAL - One of two things:
2121          *            1) We really set it.
2122          *            2) A bunch of interrupts came in and moved
2123          *               the page forward again.
2124          */
2125         switch (ret) {
2126         case RB_PAGE_HEAD:
2127         case RB_PAGE_NORMAL:
2128                 /* OK */
2129                 break;
2130         default:
2131                 RB_WARN_ON(cpu_buffer, 1);
2132                 return -1;
2133         }
2134
2135         /*
2136          * It is possible that an interrupt came in,
2137          * set the head up, then more interrupts came in
2138          * and moved it again. When we get back here,
2139          * the page would have been set to NORMAL but we
2140          * just set it back to HEAD.
2141          *
2142          * How do you detect this? Well, if that happened
2143          * the tail page would have moved.
2144          */
2145         if (ret == RB_PAGE_NORMAL) {
2146                 /*
2147                  * If the tail had moved passed next, then we need
2148                  * to reset the pointer.
2149                  */
2150                 if (cpu_buffer->tail_page != tail_page &&
2151                     cpu_buffer->tail_page != next_page)
2152                         rb_head_page_set_normal(cpu_buffer, new_head,
2153                                                 next_page,
2154                                                 RB_PAGE_HEAD);
2155         }
2156
2157         /*
2158          * If this was the outer most commit (the one that
2159          * changed the original pointer from HEAD to UPDATE),
2160          * then it is up to us to reset it to NORMAL.
2161          */
2162         if (type == RB_PAGE_HEAD) {
2163                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2164                                               tail_page,
2165                                               RB_PAGE_UPDATE);
2166                 if (RB_WARN_ON(cpu_buffer,
2167                                ret != RB_PAGE_UPDATE))
2168                         return -1;
2169         }
2170
2171         return 0;
2172 }
2173
2174 static unsigned rb_calculate_event_length(unsigned length)
2175 {
2176         struct ring_buffer_event event; /* Used only for sizeof array */
2177
2178         /* zero length can cause confusions */
2179         if (!length)
2180                 length = 1;
2181
2182         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2183                 length += sizeof(event.array[0]);
2184
2185         length += RB_EVNT_HDR_SIZE;
2186         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2187
2188         return length;
2189 }
2190
2191 static inline void
2192 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2193               struct buffer_page *tail_page,
2194               unsigned long tail, unsigned long length)
2195 {
2196         struct ring_buffer_event *event;
2197
2198         /*
2199          * Only the event that crossed the page boundary
2200          * must fill the old tail_page with padding.
2201          */
2202         if (tail >= BUF_PAGE_SIZE) {
2203                 /*
2204                  * If the page was filled, then we still need
2205                  * to update the real_end. Reset it to zero
2206                  * and the reader will ignore it.
2207                  */
2208                 if (tail == BUF_PAGE_SIZE)
2209                         tail_page->real_end = 0;
2210
2211                 local_sub(length, &tail_page->write);
2212                 return;
2213         }
2214
2215         event = __rb_page_index(tail_page, tail);
2216         kmemcheck_annotate_bitfield(event, bitfield);
2217
2218         /* account for padding bytes */
2219         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2220
2221         /*
2222          * Save the original length to the meta data.
2223          * This will be used by the reader to add lost event
2224          * counter.
2225          */
2226         tail_page->real_end = tail;
2227
2228         /*
2229          * If this event is bigger than the minimum size, then
2230          * we need to be careful that we don't subtract the
2231          * write counter enough to allow another writer to slip
2232          * in on this page.
2233          * We put in a discarded commit instead, to make sure
2234          * that this space is not used again.
2235          *
2236          * If we are less than the minimum size, we don't need to
2237          * worry about it.
2238          */
2239         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2240                 /* No room for any events */
2241
2242                 /* Mark the rest of the page with padding */
2243                 rb_event_set_padding(event);
2244
2245                 /* Set the write back to the previous setting */
2246                 local_sub(length, &tail_page->write);
2247                 return;
2248         }
2249
2250         /* Put in a discarded event */
2251         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2252         event->type_len = RINGBUF_TYPE_PADDING;
2253         /* time delta must be non zero */
2254         event->time_delta = 1;
2255
2256         /* Set write to end of buffer */
2257         length = (tail + length) - BUF_PAGE_SIZE;
2258         local_sub(length, &tail_page->write);
2259 }
2260
2261 /*
2262  * This is the slow path, force gcc not to inline it.
2263  */
2264 static noinline struct ring_buffer_event *
2265 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2266              unsigned long length, unsigned long tail,
2267              struct buffer_page *tail_page, u64 ts)
2268 {
2269         struct buffer_page *commit_page = cpu_buffer->commit_page;
2270         struct ring_buffer *buffer = cpu_buffer->buffer;
2271         struct buffer_page *next_page;
2272         int ret;
2273
2274         next_page = tail_page;
2275
2276         rb_inc_page(cpu_buffer, &next_page);
2277
2278         /*
2279          * If for some reason, we had an interrupt storm that made
2280          * it all the way around the buffer, bail, and warn
2281          * about it.
2282          */
2283         if (unlikely(next_page == commit_page)) {
2284                 local_inc(&cpu_buffer->commit_overrun);
2285                 goto out_reset;
2286         }
2287
2288         /*
2289          * This is where the fun begins!
2290          *
2291          * We are fighting against races between a reader that
2292          * could be on another CPU trying to swap its reader
2293          * page with the buffer head.
2294          *
2295          * We are also fighting against interrupts coming in and
2296          * moving the head or tail on us as well.
2297          *
2298          * If the next page is the head page then we have filled
2299          * the buffer, unless the commit page is still on the
2300          * reader page.
2301          */
2302         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2303
2304                 /*
2305                  * If the commit is not on the reader page, then
2306                  * move the header page.
2307                  */
2308                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2309                         /*
2310                          * If we are not in overwrite mode,
2311                          * this is easy, just stop here.
2312                          */
2313                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2314                                 local_inc(&cpu_buffer->dropped_events);
2315                                 goto out_reset;
2316                         }
2317
2318                         ret = rb_handle_head_page(cpu_buffer,
2319                                                   tail_page,
2320                                                   next_page);
2321                         if (ret < 0)
2322                                 goto out_reset;
2323                         if (ret)
2324                                 goto out_again;
2325                 } else {
2326                         /*
2327                          * We need to be careful here too. The
2328                          * commit page could still be on the reader
2329                          * page. We could have a small buffer, and
2330                          * have filled up the buffer with events
2331                          * from interrupts and such, and wrapped.
2332                          *
2333                          * Note, if the tail page is also the on the
2334                          * reader_page, we let it move out.
2335                          */
2336                         if (unlikely((cpu_buffer->commit_page !=
2337                                       cpu_buffer->tail_page) &&
2338                                      (cpu_buffer->commit_page ==
2339                                       cpu_buffer->reader_page))) {
2340                                 local_inc(&cpu_buffer->commit_overrun);
2341                                 goto out_reset;
2342                         }
2343                 }
2344         }
2345
2346         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2347         if (ret) {
2348                 /*
2349                  * Nested commits always have zero deltas, so
2350                  * just reread the time stamp
2351                  */
2352                 ts = rb_time_stamp(buffer);
2353                 next_page->page->time_stamp = ts;
2354         }
2355
2356  out_again:
2357
2358         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2359
2360         /* fail and let the caller try again */
2361         return ERR_PTR(-EAGAIN);
2362
2363  out_reset:
2364         /* reset write */
2365         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2366
2367         return NULL;
2368 }
2369
2370 static struct ring_buffer_event *
2371 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2372                   unsigned long length, u64 ts,
2373                   u64 delta, int add_timestamp)
2374 {
2375         struct buffer_page *tail_page;
2376         struct ring_buffer_event *event;
2377         unsigned long tail, write;
2378
2379         /*
2380          * If the time delta since the last event is too big to
2381          * hold in the time field of the event, then we append a
2382          * TIME EXTEND event ahead of the data event.
2383          */
2384         if (unlikely(add_timestamp))
2385                 length += RB_LEN_TIME_EXTEND;
2386
2387         tail_page = cpu_buffer->tail_page;
2388         write = local_add_return(length, &tail_page->write);
2389
2390         /* set write to only the index of the write */
2391         write &= RB_WRITE_MASK;
2392         tail = write - length;
2393
2394         /* See if we shot pass the end of this buffer page */
2395         if (unlikely(write > BUF_PAGE_SIZE))
2396                 return rb_move_tail(cpu_buffer, length, tail,
2397                                     tail_page, ts);
2398
2399         /* We reserved something on the buffer */
2400
2401         event = __rb_page_index(tail_page, tail);
2402         kmemcheck_annotate_bitfield(event, bitfield);
2403         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2404
2405         local_inc(&tail_page->entries);
2406
2407         /*
2408          * If this is the first commit on the page, then update
2409          * its timestamp.
2410          */
2411         if (!tail)
2412                 tail_page->page->time_stamp = ts;
2413
2414         /* account for these added bytes */
2415         local_add(length, &cpu_buffer->entries_bytes);
2416
2417         return event;
2418 }
2419
2420 static inline int
2421 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2422                   struct ring_buffer_event *event)
2423 {
2424         unsigned long new_index, old_index;
2425         struct buffer_page *bpage;
2426         unsigned long index;
2427         unsigned long addr;
2428
2429         new_index = rb_event_index(event);
2430         old_index = new_index + rb_event_ts_length(event);
2431         addr = (unsigned long)event;
2432         addr &= PAGE_MASK;
2433
2434         bpage = cpu_buffer->tail_page;
2435
2436         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2437                 unsigned long write_mask =
2438                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2439                 unsigned long event_length = rb_event_length(event);
2440                 /*
2441                  * This is on the tail page. It is possible that
2442                  * a write could come in and move the tail page
2443                  * and write to the next page. That is fine
2444                  * because we just shorten what is on this page.
2445                  */
2446                 old_index += write_mask;
2447                 new_index += write_mask;
2448                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2449                 if (index == old_index) {
2450                         /* update counters */
2451                         local_sub(event_length, &cpu_buffer->entries_bytes);
2452                         return 1;
2453                 }
2454         }
2455
2456         /* could not discard */
2457         return 0;
2458 }
2459
2460 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2461 {
2462         local_inc(&cpu_buffer->committing);
2463         local_inc(&cpu_buffer->commits);
2464 }
2465
2466 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2467 {
2468         unsigned long commits;
2469
2470         if (RB_WARN_ON(cpu_buffer,
2471                        !local_read(&cpu_buffer->committing)))
2472                 return;
2473
2474  again:
2475         commits = local_read(&cpu_buffer->commits);
2476         /* synchronize with interrupts */
2477         barrier();
2478         if (local_read(&cpu_buffer->committing) == 1)
2479                 rb_set_commit_to_write(cpu_buffer);
2480
2481         local_dec(&cpu_buffer->committing);
2482
2483         /* synchronize with interrupts */
2484         barrier();
2485
2486         /*
2487          * Need to account for interrupts coming in between the
2488          * updating of the commit page and the clearing of the
2489          * committing counter.
2490          */
2491         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2492             !local_read(&cpu_buffer->committing)) {
2493                 local_inc(&cpu_buffer->committing);
2494                 goto again;
2495         }
2496 }
2497
2498 static struct ring_buffer_event *
2499 rb_reserve_next_event(struct ring_buffer *buffer,
2500                       struct ring_buffer_per_cpu *cpu_buffer,
2501                       unsigned long length)
2502 {
2503         struct ring_buffer_event *event;
2504         u64 ts, delta;
2505         int nr_loops = 0;
2506         int add_timestamp;
2507         u64 diff;
2508
2509         rb_start_commit(cpu_buffer);
2510
2511 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2512         /*
2513          * Due to the ability to swap a cpu buffer from a buffer
2514          * it is possible it was swapped before we committed.
2515          * (committing stops a swap). We check for it here and
2516          * if it happened, we have to fail the write.
2517          */
2518         barrier();
2519         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2520                 local_dec(&cpu_buffer->committing);
2521                 local_dec(&cpu_buffer->commits);
2522                 return NULL;
2523         }
2524 #endif
2525
2526         length = rb_calculate_event_length(length);
2527  again:
2528         add_timestamp = 0;
2529         delta = 0;
2530
2531         /*
2532          * We allow for interrupts to reenter here and do a trace.
2533          * If one does, it will cause this original code to loop
2534          * back here. Even with heavy interrupts happening, this
2535          * should only happen a few times in a row. If this happens
2536          * 1000 times in a row, there must be either an interrupt
2537          * storm or we have something buggy.
2538          * Bail!
2539          */
2540         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2541                 goto out_fail;
2542
2543         ts = rb_time_stamp(cpu_buffer->buffer);
2544         diff = ts - cpu_buffer->write_stamp;
2545
2546         /* make sure this diff is calculated here */
2547         barrier();
2548
2549         /* Did the write stamp get updated already? */
2550         if (likely(ts >= cpu_buffer->write_stamp)) {
2551                 delta = diff;
2552                 if (unlikely(test_time_stamp(delta))) {
2553                         int local_clock_stable = 1;
2554 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2555                         local_clock_stable = sched_clock_stable;
2556 #endif
2557                         WARN_ONCE(delta > (1ULL << 59),
2558                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2559                                   (unsigned long long)delta,
2560                                   (unsigned long long)ts,
2561                                   (unsigned long long)cpu_buffer->write_stamp,
2562                                   local_clock_stable ? "" :
2563                                   "If you just came from a suspend/resume,\n"
2564                                   "please switch to the trace global clock:\n"
2565                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2566                         add_timestamp = 1;
2567                 }
2568         }
2569
2570         event = __rb_reserve_next(cpu_buffer, length, ts,
2571                                   delta, add_timestamp);
2572         if (unlikely(PTR_ERR(event) == -EAGAIN))
2573                 goto again;
2574
2575         if (!event)
2576                 goto out_fail;
2577
2578         return event;
2579
2580  out_fail:
2581         rb_end_commit(cpu_buffer);
2582         return NULL;
2583 }
2584
2585 #ifdef CONFIG_TRACING
2586
2587 /*
2588  * The lock and unlock are done within a preempt disable section.
2589  * The current_context per_cpu variable can only be modified
2590  * by the current task between lock and unlock. But it can
2591  * be modified more than once via an interrupt. To pass this
2592  * information from the lock to the unlock without having to
2593  * access the 'in_interrupt()' functions again (which do show
2594  * a bit of overhead in something as critical as function tracing,
2595  * we use a bitmask trick.
2596  *
2597  *  bit 0 =  NMI context
2598  *  bit 1 =  IRQ context
2599  *  bit 2 =  SoftIRQ context
2600  *  bit 3 =  normal context.
2601  *
2602  * This works because this is the order of contexts that can
2603  * preempt other contexts. A SoftIRQ never preempts an IRQ
2604  * context.
2605  *
2606  * When the context is determined, the corresponding bit is
2607  * checked and set (if it was set, then a recursion of that context
2608  * happened).
2609  *
2610  * On unlock, we need to clear this bit. To do so, just subtract
2611  * 1 from the current_context and AND it to itself.
2612  *
2613  * (binary)
2614  *  101 - 1 = 100
2615  *  101 & 100 = 100 (clearing bit zero)
2616  *
2617  *  1010 - 1 = 1001
2618  *  1010 & 1001 = 1000 (clearing bit 1)
2619  *
2620  * The least significant bit can be cleared this way, and it
2621  * just so happens that it is the same bit corresponding to
2622  * the current context.
2623  */
2624 static DEFINE_PER_CPU(unsigned int, current_context);
2625
2626 static __always_inline int trace_recursive_lock(void)
2627 {
2628         unsigned int val = this_cpu_read(current_context);
2629         int bit;
2630
2631         if (in_interrupt()) {
2632                 if (in_nmi())
2633                         bit = 0;
2634                 else if (in_irq())
2635                         bit = 1;
2636                 else
2637                         bit = 2;
2638         } else
2639                 bit = 3;
2640
2641         if (unlikely(val & (1 << bit)))
2642                 return 1;
2643
2644         val |= (1 << bit);
2645         this_cpu_write(current_context, val);
2646
2647         return 0;
2648 }
2649
2650 static __always_inline void trace_recursive_unlock(void)
2651 {
2652         unsigned int val = this_cpu_read(current_context);
2653
2654         val--;
2655         val &= this_cpu_read(current_context);
2656         this_cpu_write(current_context, val);
2657 }
2658
2659 #else
2660
2661 #define trace_recursive_lock()          (0)
2662 #define trace_recursive_unlock()        do { } while (0)
2663
2664 #endif
2665
2666 /**
2667  * ring_buffer_lock_reserve - reserve a part of the buffer
2668  * @buffer: the ring buffer to reserve from
2669  * @length: the length of the data to reserve (excluding event header)
2670  *
2671  * Returns a reseverd event on the ring buffer to copy directly to.
2672  * The user of this interface will need to get the body to write into
2673  * and can use the ring_buffer_event_data() interface.
2674  *
2675  * The length is the length of the data needed, not the event length
2676  * which also includes the event header.
2677  *
2678  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2679  * If NULL is returned, then nothing has been allocated or locked.
2680  */
2681 struct ring_buffer_event *
2682 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2683 {
2684         struct ring_buffer_per_cpu *cpu_buffer;
2685         struct ring_buffer_event *event;
2686         int cpu;
2687
2688         if (ring_buffer_flags != RB_BUFFERS_ON)
2689                 return NULL;
2690
2691         /* If we are tracing schedule, we don't want to recurse */
2692         preempt_disable_notrace();
2693
2694         if (atomic_read(&buffer->record_disabled))
2695                 goto out_nocheck;
2696
2697         if (trace_recursive_lock())
2698                 goto out_nocheck;
2699
2700         cpu = raw_smp_processor_id();
2701
2702         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2703                 goto out;
2704
2705         cpu_buffer = buffer->buffers[cpu];
2706
2707         if (atomic_read(&cpu_buffer->record_disabled))
2708                 goto out;
2709
2710         if (length > BUF_MAX_DATA_SIZE)
2711                 goto out;
2712
2713         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2714         if (!event)
2715                 goto out;
2716
2717         return event;
2718
2719  out:
2720         trace_recursive_unlock();
2721
2722  out_nocheck:
2723         preempt_enable_notrace();
2724         return NULL;
2725 }
2726 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2727
2728 static void
2729 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2730                       struct ring_buffer_event *event)
2731 {
2732         u64 delta;
2733
2734         /*
2735          * The event first in the commit queue updates the
2736          * time stamp.
2737          */
2738         if (rb_event_is_commit(cpu_buffer, event)) {
2739                 /*
2740                  * A commit event that is first on a page
2741                  * updates the write timestamp with the page stamp
2742                  */
2743                 if (!rb_event_index(event))
2744                         cpu_buffer->write_stamp =
2745                                 cpu_buffer->commit_page->page->time_stamp;
2746                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2747                         delta = event->array[0];
2748                         delta <<= TS_SHIFT;
2749                         delta += event->time_delta;
2750                         cpu_buffer->write_stamp += delta;
2751                 } else
2752                         cpu_buffer->write_stamp += event->time_delta;
2753         }
2754 }
2755
2756 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2757                       struct ring_buffer_event *event)
2758 {
2759         local_inc(&cpu_buffer->entries);
2760         rb_update_write_stamp(cpu_buffer, event);
2761         rb_end_commit(cpu_buffer);
2762 }
2763
2764 static __always_inline void
2765 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2766 {
2767         if (buffer->irq_work.waiters_pending) {
2768                 buffer->irq_work.waiters_pending = false;
2769                 /* irq_work_queue() supplies it's own memory barriers */
2770                 irq_work_queue(&buffer->irq_work.work);
2771         }
2772
2773         if (cpu_buffer->irq_work.waiters_pending) {
2774                 cpu_buffer->irq_work.waiters_pending = false;
2775                 /* irq_work_queue() supplies it's own memory barriers */
2776                 irq_work_queue(&cpu_buffer->irq_work.work);
2777         }
2778 }
2779
2780 /**
2781  * ring_buffer_unlock_commit - commit a reserved
2782  * @buffer: The buffer to commit to
2783  * @event: The event pointer to commit.
2784  *
2785  * This commits the data to the ring buffer, and releases any locks held.
2786  *
2787  * Must be paired with ring_buffer_lock_reserve.
2788  */
2789 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2790                               struct ring_buffer_event *event)
2791 {
2792         struct ring_buffer_per_cpu *cpu_buffer;
2793         int cpu = raw_smp_processor_id();
2794
2795         cpu_buffer = buffer->buffers[cpu];
2796
2797         rb_commit(cpu_buffer, event);
2798
2799         rb_wakeups(buffer, cpu_buffer);
2800
2801         trace_recursive_unlock();
2802
2803         preempt_enable_notrace();
2804
2805         return 0;
2806 }
2807 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2808
2809 static inline void rb_event_discard(struct ring_buffer_event *event)
2810 {
2811         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2812                 event = skip_time_extend(event);
2813
2814         /* array[0] holds the actual length for the discarded event */
2815         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2816         event->type_len = RINGBUF_TYPE_PADDING;
2817         /* time delta must be non zero */
2818         if (!event->time_delta)
2819                 event->time_delta = 1;
2820 }
2821
2822 /*
2823  * Decrement the entries to the page that an event is on.
2824  * The event does not even need to exist, only the pointer
2825  * to the page it is on. This may only be called before the commit
2826  * takes place.
2827  */
2828 static inline void
2829 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2830                    struct ring_buffer_event *event)
2831 {
2832         unsigned long addr = (unsigned long)event;
2833         struct buffer_page *bpage = cpu_buffer->commit_page;
2834         struct buffer_page *start;
2835
2836         addr &= PAGE_MASK;
2837
2838         /* Do the likely case first */
2839         if (likely(bpage->page == (void *)addr)) {
2840                 local_dec(&bpage->entries);
2841                 return;
2842         }
2843
2844         /*
2845          * Because the commit page may be on the reader page we
2846          * start with the next page and check the end loop there.
2847          */
2848         rb_inc_page(cpu_buffer, &bpage);
2849         start = bpage;
2850         do {
2851                 if (bpage->page == (void *)addr) {
2852                         local_dec(&bpage->entries);
2853                         return;
2854                 }
2855                 rb_inc_page(cpu_buffer, &bpage);
2856         } while (bpage != start);
2857
2858         /* commit not part of this buffer?? */
2859         RB_WARN_ON(cpu_buffer, 1);
2860 }
2861
2862 /**
2863  * ring_buffer_commit_discard - discard an event that has not been committed
2864  * @buffer: the ring buffer
2865  * @event: non committed event to discard
2866  *
2867  * Sometimes an event that is in the ring buffer needs to be ignored.
2868  * This function lets the user discard an event in the ring buffer
2869  * and then that event will not be read later.
2870  *
2871  * This function only works if it is called before the the item has been
2872  * committed. It will try to free the event from the ring buffer
2873  * if another event has not been added behind it.
2874  *
2875  * If another event has been added behind it, it will set the event
2876  * up as discarded, and perform the commit.
2877  *
2878  * If this function is called, do not call ring_buffer_unlock_commit on
2879  * the event.
2880  */
2881 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2882                                 struct ring_buffer_event *event)
2883 {
2884         struct ring_buffer_per_cpu *cpu_buffer;
2885         int cpu;
2886
2887         /* The event is discarded regardless */
2888         rb_event_discard(event);
2889
2890         cpu = smp_processor_id();
2891         cpu_buffer = buffer->buffers[cpu];
2892
2893         /*
2894          * This must only be called if the event has not been
2895          * committed yet. Thus we can assume that preemption
2896          * is still disabled.
2897          */
2898         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2899
2900         rb_decrement_entry(cpu_buffer, event);
2901         if (rb_try_to_discard(cpu_buffer, event))
2902                 goto out;
2903
2904         /*
2905          * The commit is still visible by the reader, so we
2906          * must still update the timestamp.
2907          */
2908         rb_update_write_stamp(cpu_buffer, event);
2909  out:
2910         rb_end_commit(cpu_buffer);
2911
2912         trace_recursive_unlock();
2913
2914         preempt_enable_notrace();
2915
2916 }
2917 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2918
2919 /**
2920  * ring_buffer_write - write data to the buffer without reserving
2921  * @buffer: The ring buffer to write to.
2922  * @length: The length of the data being written (excluding the event header)
2923  * @data: The data to write to the buffer.
2924  *
2925  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2926  * one function. If you already have the data to write to the buffer, it
2927  * may be easier to simply call this function.
2928  *
2929  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2930  * and not the length of the event which would hold the header.
2931  */
2932 int ring_buffer_write(struct ring_buffer *buffer,
2933                       unsigned long length,
2934                       void *data)
2935 {
2936         struct ring_buffer_per_cpu *cpu_buffer;
2937         struct ring_buffer_event *event;
2938         void *body;
2939         int ret = -EBUSY;
2940         int cpu;
2941
2942         if (ring_buffer_flags != RB_BUFFERS_ON)
2943                 return -EBUSY;
2944
2945         preempt_disable_notrace();
2946
2947         if (atomic_read(&buffer->record_disabled))
2948                 goto out;
2949
2950         cpu = raw_smp_processor_id();
2951
2952         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2953                 goto out;
2954
2955         cpu_buffer = buffer->buffers[cpu];
2956
2957         if (atomic_read(&cpu_buffer->record_disabled))
2958                 goto out;
2959
2960         if (length > BUF_MAX_DATA_SIZE)
2961                 goto out;
2962
2963         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2964         if (!event)
2965                 goto out;
2966
2967         body = rb_event_data(event);
2968
2969         memcpy(body, data, length);
2970
2971         rb_commit(cpu_buffer, event);
2972
2973         rb_wakeups(buffer, cpu_buffer);
2974
2975         ret = 0;
2976  out:
2977         preempt_enable_notrace();
2978
2979         return ret;
2980 }
2981 EXPORT_SYMBOL_GPL(ring_buffer_write);
2982
2983 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2984 {
2985         struct buffer_page *reader = cpu_buffer->reader_page;
2986         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2987         struct buffer_page *commit = cpu_buffer->commit_page;
2988
2989         /* In case of error, head will be NULL */
2990         if (unlikely(!head))
2991                 return 1;
2992
2993         return reader->read == rb_page_commit(reader) &&
2994                 (commit == reader ||
2995                  (commit == head &&
2996                   head->read == rb_page_commit(commit)));
2997 }
2998
2999 /**
3000  * ring_buffer_record_disable - stop all writes into the buffer
3001  * @buffer: The ring buffer to stop writes to.
3002  *
3003  * This prevents all writes to the buffer. Any attempt to write
3004  * to the buffer after this will fail and return NULL.
3005  *
3006  * The caller should call synchronize_sched() after this.
3007  */
3008 void ring_buffer_record_disable(struct ring_buffer *buffer)
3009 {
3010         atomic_inc(&buffer->record_disabled);
3011 }
3012 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3013
3014 /**
3015  * ring_buffer_record_enable - enable writes to the buffer
3016  * @buffer: The ring buffer to enable writes
3017  *
3018  * Note, multiple disables will need the same number of enables
3019  * to truly enable the writing (much like preempt_disable).
3020  */
3021 void ring_buffer_record_enable(struct ring_buffer *buffer)
3022 {
3023         atomic_dec(&buffer->record_disabled);
3024 }
3025 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3026
3027 /**
3028  * ring_buffer_record_off - stop all writes into the buffer
3029  * @buffer: The ring buffer to stop writes to.
3030  *
3031  * This prevents all writes to the buffer. Any attempt to write
3032  * to the buffer after this will fail and return NULL.
3033  *
3034  * This is different than ring_buffer_record_disable() as
3035  * it works like an on/off switch, where as the disable() version
3036  * must be paired with a enable().
3037  */
3038 void ring_buffer_record_off(struct ring_buffer *buffer)
3039 {
3040         unsigned int rd;
3041         unsigned int new_rd;
3042
3043         do {
3044                 rd = atomic_read(&buffer->record_disabled);
3045                 new_rd = rd | RB_BUFFER_OFF;
3046         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3047 }
3048 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3049
3050 /**
3051  * ring_buffer_record_on - restart writes into the buffer
3052  * @buffer: The ring buffer to start writes to.
3053  *
3054  * This enables all writes to the buffer that was disabled by
3055  * ring_buffer_record_off().
3056  *
3057  * This is different than ring_buffer_record_enable() as
3058  * it works like an on/off switch, where as the enable() version
3059  * must be paired with a disable().
3060  */
3061 void ring_buffer_record_on(struct ring_buffer *buffer)
3062 {
3063         unsigned int rd;
3064         unsigned int new_rd;
3065
3066         do {
3067                 rd = atomic_read(&buffer->record_disabled);
3068                 new_rd = rd & ~RB_BUFFER_OFF;
3069         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3070 }
3071 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3072
3073 /**
3074  * ring_buffer_record_is_on - return true if the ring buffer can write
3075  * @buffer: The ring buffer to see if write is enabled
3076  *
3077  * Returns true if the ring buffer is in a state that it accepts writes.
3078  */
3079 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3080 {
3081         return !atomic_read(&buffer->record_disabled);
3082 }
3083
3084 /**
3085  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3086  * @buffer: The ring buffer to stop writes to.
3087  * @cpu: The CPU buffer to stop
3088  *
3089  * This prevents all writes to the buffer. Any attempt to write
3090  * to the buffer after this will fail and return NULL.
3091  *
3092  * The caller should call synchronize_sched() after this.
3093  */
3094 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3095 {
3096         struct ring_buffer_per_cpu *cpu_buffer;
3097
3098         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3099                 return;
3100
3101         cpu_buffer = buffer->buffers[cpu];
3102         atomic_inc(&cpu_buffer->record_disabled);
3103 }
3104 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3105
3106 /**
3107  * ring_buffer_record_enable_cpu - enable writes to the buffer
3108  * @buffer: The ring buffer to enable writes
3109  * @cpu: The CPU to enable.
3110  *
3111  * Note, multiple disables will need the same number of enables
3112  * to truly enable the writing (much like preempt_disable).
3113  */
3114 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3115 {
3116         struct ring_buffer_per_cpu *cpu_buffer;
3117
3118         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3119                 return;
3120
3121         cpu_buffer = buffer->buffers[cpu];
3122         atomic_dec(&cpu_buffer->record_disabled);
3123 }
3124 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3125
3126 /*
3127  * The total entries in the ring buffer is the running counter
3128  * of entries entered into the ring buffer, minus the sum of
3129  * the entries read from the ring buffer and the number of
3130  * entries that were overwritten.
3131  */
3132 static inline unsigned long
3133 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3134 {
3135         return local_read(&cpu_buffer->entries) -
3136                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3137 }
3138
3139 /**
3140  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3141  * @buffer: The ring buffer
3142  * @cpu: The per CPU buffer to read from.
3143  */
3144 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3145 {
3146         unsigned long flags;
3147         struct ring_buffer_per_cpu *cpu_buffer;
3148         struct buffer_page *bpage;
3149         u64 ret = 0;
3150
3151         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3152                 return 0;
3153
3154         cpu_buffer = buffer->buffers[cpu];
3155         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3156         /*
3157          * if the tail is on reader_page, oldest time stamp is on the reader
3158          * page
3159          */
3160         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3161                 bpage = cpu_buffer->reader_page;
3162         else
3163                 bpage = rb_set_head_page(cpu_buffer);
3164         if (bpage)
3165                 ret = bpage->page->time_stamp;
3166         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3167
3168         return ret;
3169 }
3170 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3171
3172 /**
3173  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3174  * @buffer: The ring buffer
3175  * @cpu: The per CPU buffer to read from.
3176  */
3177 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3178 {
3179         struct ring_buffer_per_cpu *cpu_buffer;
3180         unsigned long ret;
3181
3182         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3183                 return 0;
3184
3185         cpu_buffer = buffer->buffers[cpu];
3186         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3187
3188         return ret;
3189 }
3190 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3191
3192 /**
3193  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3194  * @buffer: The ring buffer
3195  * @cpu: The per CPU buffer to get the entries from.
3196  */
3197 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3198 {
3199         struct ring_buffer_per_cpu *cpu_buffer;
3200
3201         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3202                 return 0;
3203
3204         cpu_buffer = buffer->buffers[cpu];
3205
3206         return rb_num_of_entries(cpu_buffer);
3207 }
3208 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3209
3210 /**
3211  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3212  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3213  * @buffer: The ring buffer
3214  * @cpu: The per CPU buffer to get the number of overruns from
3215  */
3216 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3217 {
3218         struct ring_buffer_per_cpu *cpu_buffer;
3219         unsigned long ret;
3220
3221         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3222                 return 0;
3223
3224         cpu_buffer = buffer->buffers[cpu];
3225         ret = local_read(&cpu_buffer->overrun);
3226
3227         return ret;
3228 }
3229 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3230
3231 /**
3232  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3233  * commits failing due to the buffer wrapping around while there are uncommitted
3234  * events, such as during an interrupt storm.
3235  * @buffer: The ring buffer
3236  * @cpu: The per CPU buffer to get the number of overruns from
3237  */
3238 unsigned long
3239 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3240 {
3241         struct ring_buffer_per_cpu *cpu_buffer;
3242         unsigned long ret;
3243
3244         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3245                 return 0;
3246
3247         cpu_buffer = buffer->buffers[cpu];
3248         ret = local_read(&cpu_buffer->commit_overrun);
3249
3250         return ret;
3251 }
3252 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3253
3254 /**
3255  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3256  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3257  * @buffer: The ring buffer
3258  * @cpu: The per CPU buffer to get the number of overruns from
3259  */
3260 unsigned long
3261 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3262 {
3263         struct ring_buffer_per_cpu *cpu_buffer;
3264         unsigned long ret;
3265
3266         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3267                 return 0;
3268
3269         cpu_buffer = buffer->buffers[cpu];
3270         ret = local_read(&cpu_buffer->dropped_events);
3271
3272         return ret;
3273 }
3274 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3275
3276 /**
3277  * ring_buffer_read_events_cpu - get the number of events successfully read
3278  * @buffer: The ring buffer
3279  * @cpu: The per CPU buffer to get the number of events read
3280  */
3281 unsigned long
3282 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3283 {
3284         struct ring_buffer_per_cpu *cpu_buffer;
3285
3286         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3287                 return 0;
3288
3289         cpu_buffer = buffer->buffers[cpu];
3290         return cpu_buffer->read;
3291 }
3292 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3293
3294 /**
3295  * ring_buffer_entries - get the number of entries in a buffer
3296  * @buffer: The ring buffer
3297  *
3298  * Returns the total number of entries in the ring buffer
3299  * (all CPU entries)
3300  */
3301 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3302 {
3303         struct ring_buffer_per_cpu *cpu_buffer;
3304         unsigned long entries = 0;
3305         int cpu;
3306
3307         /* if you care about this being correct, lock the buffer */
3308         for_each_buffer_cpu(buffer, cpu) {
3309                 cpu_buffer = buffer->buffers[cpu];
3310                 entries += rb_num_of_entries(cpu_buffer);
3311         }
3312
3313         return entries;
3314 }
3315 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3316
3317 /**
3318  * ring_buffer_overruns - get the number of overruns in buffer
3319  * @buffer: The ring buffer
3320  *
3321  * Returns the total number of overruns in the ring buffer
3322  * (all CPU entries)
3323  */
3324 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3325 {
3326         struct ring_buffer_per_cpu *cpu_buffer;
3327         unsigned long overruns = 0;
3328         int cpu;
3329
3330         /* if you care about this being correct, lock the buffer */
3331         for_each_buffer_cpu(buffer, cpu) {
3332                 cpu_buffer = buffer->buffers[cpu];
3333                 overruns += local_read(&cpu_buffer->overrun);
3334         }
3335
3336         return overruns;
3337 }
3338 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3339
3340 static void rb_iter_reset(struct ring_buffer_iter *iter)
3341 {
3342         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3343
3344         /* Iterator usage is expected to have record disabled */
3345         if (list_empty(&cpu_buffer->reader_page->list)) {
3346                 iter->head_page = rb_set_head_page(cpu_buffer);
3347                 if (unlikely(!iter->head_page))
3348                         return;
3349                 iter->head = iter->head_page->read;
3350         } else {
3351                 iter->head_page = cpu_buffer->reader_page;
3352                 iter->head = cpu_buffer->reader_page->read;
3353         }
3354         if (iter->head)
3355                 iter->read_stamp = cpu_buffer->read_stamp;
3356         else
3357                 iter->read_stamp = iter->head_page->page->time_stamp;
3358         iter->cache_reader_page = cpu_buffer->reader_page;
3359         iter->cache_read = cpu_buffer->read;
3360 }
3361
3362 /**
3363  * ring_buffer_iter_reset - reset an iterator
3364  * @iter: The iterator to reset
3365  *
3366  * Resets the iterator, so that it will start from the beginning
3367  * again.
3368  */
3369 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3370 {
3371         struct ring_buffer_per_cpu *cpu_buffer;
3372         unsigned long flags;
3373
3374         if (!iter)
3375                 return;
3376
3377         cpu_buffer = iter->cpu_buffer;
3378
3379         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3380         rb_iter_reset(iter);
3381         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3382 }
3383 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3384
3385 /**
3386  * ring_buffer_iter_empty - check if an iterator has no more to read
3387  * @iter: The iterator to check
3388  */
3389 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3390 {
3391         struct ring_buffer_per_cpu *cpu_buffer;
3392
3393         cpu_buffer = iter->cpu_buffer;
3394
3395         return iter->head_page == cpu_buffer->commit_page &&
3396                 iter->head == rb_commit_index(cpu_buffer);
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3399
3400 static void
3401 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3402                      struct ring_buffer_event *event)
3403 {
3404         u64 delta;
3405
3406         switch (event->type_len) {
3407         case RINGBUF_TYPE_PADDING:
3408                 return;
3409
3410         case RINGBUF_TYPE_TIME_EXTEND:
3411                 delta = event->array[0];
3412                 delta <<= TS_SHIFT;
3413                 delta += event->time_delta;
3414                 cpu_buffer->read_stamp += delta;
3415                 return;
3416
3417         case RINGBUF_TYPE_TIME_STAMP:
3418                 /* FIXME: not implemented */
3419                 return;
3420
3421         case RINGBUF_TYPE_DATA:
3422                 cpu_buffer->read_stamp += event->time_delta;
3423                 return;
3424
3425         default:
3426                 BUG();
3427         }
3428         return;
3429 }
3430
3431 static void
3432 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3433                           struct ring_buffer_event *event)
3434 {
3435         u64 delta;
3436
3437         switch (event->type_len) {
3438         case RINGBUF_TYPE_PADDING:
3439                 return;
3440
3441         case RINGBUF_TYPE_TIME_EXTEND:
3442                 delta = event->array[0];
3443                 delta <<= TS_SHIFT;
3444                 delta += event->time_delta;
3445                 iter->read_stamp += delta;
3446                 return;
3447
3448         case RINGBUF_TYPE_TIME_STAMP:
3449                 /* FIXME: not implemented */
3450                 return;
3451
3452         case RINGBUF_TYPE_DATA:
3453                 iter->read_stamp += event->time_delta;
3454                 return;
3455
3456         default:
3457                 BUG();
3458         }
3459         return;
3460 }
3461
3462 static struct buffer_page *
3463 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3464 {
3465         struct buffer_page *reader = NULL;
3466         unsigned long overwrite;
3467         unsigned long flags;
3468         int nr_loops = 0;
3469         int ret;
3470
3471         local_irq_save(flags);
3472         arch_spin_lock(&cpu_buffer->lock);
3473
3474  again:
3475         /*
3476          * This should normally only loop twice. But because the
3477          * start of the reader inserts an empty page, it causes
3478          * a case where we will loop three times. There should be no
3479          * reason to loop four times (that I know of).
3480          */
3481         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3482                 reader = NULL;
3483                 goto out;
3484         }
3485
3486         reader = cpu_buffer->reader_page;
3487
3488         /* If there's more to read, return this page */
3489         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3490                 goto out;
3491
3492         /* Never should we have an index greater than the size */
3493         if (RB_WARN_ON(cpu_buffer,
3494                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3495                 goto out;
3496
3497         /* check if we caught up to the tail */
3498         reader = NULL;
3499         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3500                 goto out;
3501
3502         /* Don't bother swapping if the ring buffer is empty */
3503         if (rb_num_of_entries(cpu_buffer) == 0)
3504                 goto out;
3505
3506         /*
3507          * Reset the reader page to size zero.
3508          */
3509         local_set(&cpu_buffer->reader_page->write, 0);
3510         local_set(&cpu_buffer->reader_page->entries, 0);
3511         local_set(&cpu_buffer->reader_page->page->commit, 0);
3512         cpu_buffer->reader_page->real_end = 0;
3513
3514  spin:
3515         /*
3516          * Splice the empty reader page into the list around the head.
3517          */
3518         reader = rb_set_head_page(cpu_buffer);
3519         if (!reader)
3520                 goto out;
3521         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3522         cpu_buffer->reader_page->list.prev = reader->list.prev;
3523
3524         /*
3525          * cpu_buffer->pages just needs to point to the buffer, it
3526          *  has no specific buffer page to point to. Lets move it out
3527          *  of our way so we don't accidentally swap it.
3528          */
3529         cpu_buffer->pages = reader->list.prev;
3530
3531         /* The reader page will be pointing to the new head */
3532         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3533
3534         /*
3535          * We want to make sure we read the overruns after we set up our
3536          * pointers to the next object. The writer side does a
3537          * cmpxchg to cross pages which acts as the mb on the writer
3538          * side. Note, the reader will constantly fail the swap
3539          * while the writer is updating the pointers, so this
3540          * guarantees that the overwrite recorded here is the one we
3541          * want to compare with the last_overrun.
3542          */
3543         smp_mb();
3544         overwrite = local_read(&(cpu_buffer->overrun));
3545
3546         /*
3547          * Here's the tricky part.
3548          *
3549          * We need to move the pointer past the header page.
3550          * But we can only do that if a writer is not currently
3551          * moving it. The page before the header page has the
3552          * flag bit '1' set if it is pointing to the page we want.
3553          * but if the writer is in the process of moving it
3554          * than it will be '2' or already moved '0'.
3555          */
3556
3557         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3558
3559         /*
3560          * If we did not convert it, then we must try again.
3561          */
3562         if (!ret)
3563                 goto spin;
3564
3565         /*
3566          * Yeah! We succeeded in replacing the page.
3567          *
3568          * Now make the new head point back to the reader page.
3569          */
3570         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3571         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3572
3573         /* Finally update the reader page to the new head */
3574         cpu_buffer->reader_page = reader;
3575         rb_reset_reader_page(cpu_buffer);
3576
3577         if (overwrite != cpu_buffer->last_overrun) {
3578                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3579                 cpu_buffer->last_overrun = overwrite;
3580         }
3581
3582         goto again;
3583
3584  out:
3585         arch_spin_unlock(&cpu_buffer->lock);
3586         local_irq_restore(flags);
3587
3588         return reader;
3589 }
3590
3591 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3592 {
3593         struct ring_buffer_event *event;
3594         struct buffer_page *reader;
3595         unsigned length;
3596
3597         reader = rb_get_reader_page(cpu_buffer);
3598
3599         /* This function should not be called when buffer is empty */
3600         if (RB_WARN_ON(cpu_buffer, !reader))
3601                 return;
3602
3603         event = rb_reader_event(cpu_buffer);
3604
3605         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3606                 cpu_buffer->read++;
3607
3608         rb_update_read_stamp(cpu_buffer, event);
3609
3610         length = rb_event_length(event);
3611         cpu_buffer->reader_page->read += length;
3612 }
3613
3614 static void rb_advance_iter(struct ring_buffer_iter *iter)
3615 {
3616         struct ring_buffer_per_cpu *cpu_buffer;
3617         struct ring_buffer_event *event;
3618         unsigned length;
3619
3620         cpu_buffer = iter->cpu_buffer;
3621
3622         /*
3623          * Check if we are at the end of the buffer.
3624          */
3625         if (iter->head >= rb_page_size(iter->head_page)) {
3626                 /* discarded commits can make the page empty */
3627                 if (iter->head_page == cpu_buffer->commit_page)
3628                         return;
3629                 rb_inc_iter(iter);
3630                 return;
3631         }
3632
3633         event = rb_iter_head_event(iter);
3634
3635         length = rb_event_length(event);
3636
3637         /*
3638          * This should not be called to advance the header if we are
3639          * at the tail of the buffer.
3640          */
3641         if (RB_WARN_ON(cpu_buffer,
3642                        (iter->head_page == cpu_buffer->commit_page) &&
3643                        (iter->head + length > rb_commit_index(cpu_buffer))))
3644                 return;
3645
3646         rb_update_iter_read_stamp(iter, event);
3647
3648         iter->head += length;
3649
3650         /* check for end of page padding */
3651         if ((iter->head >= rb_page_size(iter->head_page)) &&
3652             (iter->head_page != cpu_buffer->commit_page))
3653                 rb_inc_iter(iter);
3654 }
3655
3656 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3657 {
3658         return cpu_buffer->lost_events;
3659 }
3660
3661 static struct ring_buffer_event *
3662 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3663                unsigned long *lost_events)
3664 {
3665         struct ring_buffer_event *event;
3666         struct buffer_page *reader;
3667         int nr_loops = 0;
3668
3669  again:
3670         /*
3671          * We repeat when a time extend is encountered.
3672          * Since the time extend is always attached to a data event,
3673          * we should never loop more than once.
3674          * (We never hit the following condition more than twice).
3675          */
3676         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3677                 return NULL;
3678
3679         reader = rb_get_reader_page(cpu_buffer);
3680         if (!reader)
3681                 return NULL;
3682
3683         event = rb_reader_event(cpu_buffer);
3684
3685         switch (event->type_len) {
3686         case RINGBUF_TYPE_PADDING:
3687                 if (rb_null_event(event))
3688                         RB_WARN_ON(cpu_buffer, 1);
3689                 /*
3690                  * Because the writer could be discarding every
3691                  * event it creates (which would probably be bad)
3692                  * if we were to go back to "again" then we may never
3693                  * catch up, and will trigger the warn on, or lock
3694                  * the box. Return the padding, and we will release
3695                  * the current locks, and try again.
3696                  */
3697                 return event;
3698
3699         case RINGBUF_TYPE_TIME_EXTEND:
3700                 /* Internal data, OK to advance */
3701                 rb_advance_reader(cpu_buffer);
3702                 goto again;
3703
3704         case RINGBUF_TYPE_TIME_STAMP:
3705                 /* FIXME: not implemented */
3706                 rb_advance_reader(cpu_buffer);
3707                 goto again;
3708
3709         case RINGBUF_TYPE_DATA:
3710                 if (ts) {
3711                         *ts = cpu_buffer->read_stamp + event->time_delta;
3712                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3713                                                          cpu_buffer->cpu, ts);
3714                 }
3715                 if (lost_events)
3716                         *lost_events = rb_lost_events(cpu_buffer);
3717                 return event;
3718
3719         default:
3720                 BUG();
3721         }
3722
3723         return NULL;
3724 }
3725 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3726
3727 static struct ring_buffer_event *
3728 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3729 {
3730         struct ring_buffer *buffer;
3731         struct ring_buffer_per_cpu *cpu_buffer;
3732         struct ring_buffer_event *event;
3733         int nr_loops = 0;
3734
3735         cpu_buffer = iter->cpu_buffer;
3736         buffer = cpu_buffer->buffer;
3737
3738         /*
3739          * Check if someone performed a consuming read to
3740          * the buffer. A consuming read invalidates the iterator
3741          * and we need to reset the iterator in this case.
3742          */
3743         if (unlikely(iter->cache_read != cpu_buffer->read ||
3744                      iter->cache_reader_page != cpu_buffer->reader_page))
3745                 rb_iter_reset(iter);
3746
3747  again:
3748         if (ring_buffer_iter_empty(iter))
3749                 return NULL;
3750
3751         /*
3752          * We repeat when a time extend is encountered.
3753          * Since the time extend is always attached to a data event,
3754          * we should never loop more than once.
3755          * (We never hit the following condition more than twice).
3756          */
3757         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3758                 return NULL;
3759
3760         if (rb_per_cpu_empty(cpu_buffer))
3761                 return NULL;
3762
3763         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3764                 rb_inc_iter(iter);
3765                 goto again;
3766         }
3767
3768         event = rb_iter_head_event(iter);
3769
3770         switch (event->type_len) {
3771         case RINGBUF_TYPE_PADDING:
3772                 if (rb_null_event(event)) {
3773                         rb_inc_iter(iter);
3774                         goto again;
3775                 }
3776                 rb_advance_iter(iter);
3777                 return event;
3778
3779         case RINGBUF_TYPE_TIME_EXTEND:
3780                 /* Internal data, OK to advance */
3781                 rb_advance_iter(iter);
3782                 goto again;
3783
3784         case RINGBUF_TYPE_TIME_STAMP:
3785                 /* FIXME: not implemented */
3786                 rb_advance_iter(iter);
3787                 goto again;
3788
3789         case RINGBUF_TYPE_DATA:
3790                 if (ts) {
3791                         *ts = iter->read_stamp + event->time_delta;
3792                         ring_buffer_normalize_time_stamp(buffer,
3793                                                          cpu_buffer->cpu, ts);
3794                 }
3795                 return event;
3796
3797         default:
3798                 BUG();
3799         }
3800
3801         return NULL;
3802 }
3803 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3804
3805 static inline int rb_ok_to_lock(void)
3806 {
3807         /*
3808          * If an NMI die dumps out the content of the ring buffer
3809          * do not grab locks. We also permanently disable the ring
3810          * buffer too. A one time deal is all you get from reading
3811          * the ring buffer from an NMI.
3812          */
3813         if (likely(!in_nmi()))
3814                 return 1;
3815
3816         tracing_off_permanent();
3817         return 0;
3818 }
3819
3820 /**
3821  * ring_buffer_peek - peek at the next event to be read
3822  * @buffer: The ring buffer to read
3823  * @cpu: The cpu to peak at
3824  * @ts: The timestamp counter of this event.
3825  * @lost_events: a variable to store if events were lost (may be NULL)
3826  *
3827  * This will return the event that will be read next, but does
3828  * not consume the data.
3829  */
3830 struct ring_buffer_event *
3831 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3832                  unsigned long *lost_events)
3833 {
3834         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3835         struct ring_buffer_event *event;
3836         unsigned long flags;
3837         int dolock;
3838
3839         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3840                 return NULL;
3841
3842         dolock = rb_ok_to_lock();
3843  again:
3844         local_irq_save(flags);
3845         if (dolock)
3846                 raw_spin_lock(&cpu_buffer->reader_lock);
3847         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3848         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3849                 rb_advance_reader(cpu_buffer);
3850         if (dolock)
3851                 raw_spin_unlock(&cpu_buffer->reader_lock);
3852         local_irq_restore(flags);
3853
3854         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3855                 goto again;
3856
3857         return event;
3858 }
3859
3860 /**
3861  * ring_buffer_iter_peek - peek at the next event to be read
3862  * @iter: The ring buffer iterator
3863  * @ts: The timestamp counter of this event.
3864  *
3865  * This will return the event that will be read next, but does
3866  * not increment the iterator.
3867  */
3868 struct ring_buffer_event *
3869 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3870 {
3871         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3872         struct ring_buffer_event *event;
3873         unsigned long flags;
3874
3875  again:
3876         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3877         event = rb_iter_peek(iter, ts);
3878         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3879
3880         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3881                 goto again;
3882
3883         return event;
3884 }
3885
3886 /**
3887  * ring_buffer_consume - return an event and consume it
3888  * @buffer: The ring buffer to get the next event from
3889  * @cpu: the cpu to read the buffer from
3890  * @ts: a variable to store the timestamp (may be NULL)
3891  * @lost_events: a variable to store if events were lost (may be NULL)
3892  *
3893  * Returns the next event in the ring buffer, and that event is consumed.
3894  * Meaning, that sequential reads will keep returning a different event,
3895  * and eventually empty the ring buffer if the producer is slower.
3896  */
3897 struct ring_buffer_event *
3898 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3899                     unsigned long *lost_events)
3900 {
3901         struct ring_buffer_per_cpu *cpu_buffer;
3902         struct ring_buffer_event *event = NULL;
3903         unsigned long flags;
3904         int dolock;
3905
3906         dolock = rb_ok_to_lock();
3907
3908  again:
3909         /* might be called in atomic */
3910         preempt_disable();
3911
3912         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3913                 goto out;
3914
3915         cpu_buffer = buffer->buffers[cpu];
3916         local_irq_save(flags);
3917         if (dolock)
3918                 raw_spin_lock(&cpu_buffer->reader_lock);
3919
3920         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3921         if (event) {
3922                 cpu_buffer->lost_events = 0;
3923                 rb_advance_reader(cpu_buffer);
3924         }
3925
3926         if (dolock)
3927                 raw_spin_unlock(&cpu_buffer->reader_lock);
3928         local_irq_restore(flags);
3929
3930  out:
3931         preempt_enable();
3932
3933         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3934                 goto again;
3935
3936         return event;
3937 }
3938 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3939
3940 /**
3941  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3942  * @buffer: The ring buffer to read from
3943  * @cpu: The cpu buffer to iterate over
3944  *
3945  * This performs the initial preparations necessary to iterate
3946  * through the buffer.  Memory is allocated, buffer recording
3947  * is disabled, and the iterator pointer is returned to the caller.
3948  *
3949  * Disabling buffer recordng prevents the reading from being
3950  * corrupted. This is not a consuming read, so a producer is not
3951  * expected.
3952  *
3953  * After a sequence of ring_buffer_read_prepare calls, the user is
3954  * expected to make at least one call to ring_buffer_prepare_sync.
3955  * Afterwards, ring_buffer_read_start is invoked to get things going
3956  * for real.
3957  *
3958  * This overall must be paired with ring_buffer_finish.
3959  */
3960 struct ring_buffer_iter *
3961 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3962 {
3963         struct ring_buffer_per_cpu *cpu_buffer;
3964         struct ring_buffer_iter *iter;
3965
3966         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3967                 return NULL;
3968
3969         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3970         if (!iter)
3971                 return NULL;
3972
3973         cpu_buffer = buffer->buffers[cpu];
3974
3975         iter->cpu_buffer = cpu_buffer;
3976
3977         atomic_inc(&buffer->resize_disabled);
3978         atomic_inc(&cpu_buffer->record_disabled);
3979
3980         return iter;
3981 }
3982 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3983
3984 /**
3985  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3986  *
3987  * All previously invoked ring_buffer_read_prepare calls to prepare
3988  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3989  * calls on those iterators are allowed.
3990  */
3991 void
3992 ring_buffer_read_prepare_sync(void)
3993 {
3994         synchronize_sched();
3995 }
3996 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3997
3998 /**
3999  * ring_buffer_read_start - start a non consuming read of the buffer
4000  * @iter: The iterator returned by ring_buffer_read_prepare
4001  *
4002  * This finalizes the startup of an iteration through the buffer.
4003  * The iterator comes from a call to ring_buffer_read_prepare and
4004  * an intervening ring_buffer_read_prepare_sync must have been
4005  * performed.
4006  *
4007  * Must be paired with ring_buffer_finish.
4008  */
4009 void
4010 ring_buffer_read_start(struct ring_buffer_iter *iter)
4011 {
4012         struct ring_buffer_per_cpu *cpu_buffer;
4013         unsigned long flags;
4014
4015         if (!iter)
4016                 return;
4017
4018         cpu_buffer = iter->cpu_buffer;
4019
4020         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4021         arch_spin_lock(&cpu_buffer->lock);
4022         rb_iter_reset(iter);
4023         arch_spin_unlock(&cpu_buffer->lock);
4024         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4025 }
4026 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4027
4028 /**
4029  * ring_buffer_finish - finish reading the iterator of the buffer
4030  * @iter: The iterator retrieved by ring_buffer_start
4031  *
4032  * This re-enables the recording to the buffer, and frees the
4033  * iterator.
4034  */
4035 void
4036 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4037 {
4038         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4039         unsigned long flags;
4040
4041         /*
4042          * Ring buffer is disabled from recording, here's a good place
4043          * to check the integrity of the ring buffer.
4044          * Must prevent readers from trying to read, as the check
4045          * clears the HEAD page and readers require it.
4046          */
4047         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4048         rb_check_pages(cpu_buffer);
4049         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4050
4051         atomic_dec(&cpu_buffer->record_disabled);
4052         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4053         kfree(iter);
4054 }
4055 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4056
4057 /**
4058  * ring_buffer_read - read the next item in the ring buffer by the iterator
4059  * @iter: The ring buffer iterator
4060  * @ts: The time stamp of the event read.
4061  *
4062  * This reads the next event in the ring buffer and increments the iterator.
4063  */
4064 struct ring_buffer_event *
4065 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4066 {
4067         struct ring_buffer_event *event;
4068         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4069         unsigned long flags;
4070
4071         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4072  again:
4073         event = rb_iter_peek(iter, ts);
4074         if (!event)
4075                 goto out;
4076
4077         if (event->type_len == RINGBUF_TYPE_PADDING)
4078                 goto again;
4079
4080         rb_advance_iter(iter);
4081  out:
4082         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4083
4084         return event;
4085 }
4086 EXPORT_SYMBOL_GPL(ring_buffer_read);
4087
4088 /**
4089  * ring_buffer_size - return the size of the ring buffer (in bytes)
4090  * @buffer: The ring buffer.
4091  */
4092 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4093 {
4094         /*
4095          * Earlier, this method returned
4096          *      BUF_PAGE_SIZE * buffer->nr_pages
4097          * Since the nr_pages field is now removed, we have converted this to
4098          * return the per cpu buffer value.
4099          */
4100         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4101                 return 0;
4102
4103         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4104 }
4105 EXPORT_SYMBOL_GPL(ring_buffer_size);
4106
4107 static void
4108 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4109 {
4110         rb_head_page_deactivate(cpu_buffer);
4111
4112         cpu_buffer->head_page
4113                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4114         local_set(&cpu_buffer->head_page->write, 0);
4115         local_set(&cpu_buffer->head_page->entries, 0);
4116         local_set(&cpu_buffer->head_page->page->commit, 0);
4117
4118         cpu_buffer->head_page->read = 0;
4119
4120         cpu_buffer->tail_page = cpu_buffer->head_page;
4121         cpu_buffer->commit_page = cpu_buffer->head_page;
4122
4123         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4124         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4125         local_set(&cpu_buffer->reader_page->write, 0);
4126         local_set(&cpu_buffer->reader_page->entries, 0);
4127         local_set(&cpu_buffer->reader_page->page->commit, 0);
4128         cpu_buffer->reader_page->read = 0;
4129
4130         local_set(&cpu_buffer->entries_bytes, 0);
4131         local_set(&cpu_buffer->overrun, 0);
4132         local_set(&cpu_buffer->commit_overrun, 0);
4133         local_set(&cpu_buffer->dropped_events, 0);
4134         local_set(&cpu_buffer->entries, 0);
4135         local_set(&cpu_buffer->committing, 0);
4136         local_set(&cpu_buffer->commits, 0);
4137         cpu_buffer->read = 0;
4138         cpu_buffer->read_bytes = 0;
4139
4140         cpu_buffer->write_stamp = 0;
4141         cpu_buffer->read_stamp = 0;
4142
4143         cpu_buffer->lost_events = 0;
4144         cpu_buffer->last_overrun = 0;
4145
4146         rb_head_page_activate(cpu_buffer);
4147 }
4148
4149 /**
4150  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4151  * @buffer: The ring buffer to reset a per cpu buffer of
4152  * @cpu: The CPU buffer to be reset
4153  */
4154 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4155 {
4156         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4157         unsigned long flags;
4158
4159         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4160                 return;
4161
4162         atomic_inc(&buffer->resize_disabled);
4163         atomic_inc(&cpu_buffer->record_disabled);
4164
4165         /* Make sure all commits have finished */
4166         synchronize_sched();
4167
4168         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4169
4170         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4171                 goto out;
4172
4173         arch_spin_lock(&cpu_buffer->lock);
4174
4175         rb_reset_cpu(cpu_buffer);
4176
4177         arch_spin_unlock(&cpu_buffer->lock);
4178
4179  out:
4180         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4181
4182         atomic_dec(&cpu_buffer->record_disabled);
4183         atomic_dec(&buffer->resize_disabled);
4184 }
4185 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4186
4187 /**
4188  * ring_buffer_reset - reset a ring buffer
4189  * @buffer: The ring buffer to reset all cpu buffers
4190  */
4191 void ring_buffer_reset(struct ring_buffer *buffer)
4192 {
4193         int cpu;
4194
4195         for_each_buffer_cpu(buffer, cpu)
4196                 ring_buffer_reset_cpu(buffer, cpu);
4197 }
4198 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4199
4200 /**
4201  * rind_buffer_empty - is the ring buffer empty?
4202  * @buffer: The ring buffer to test
4203  */
4204 int ring_buffer_empty(struct ring_buffer *buffer)
4205 {
4206         struct ring_buffer_per_cpu *cpu_buffer;
4207         unsigned long flags;
4208         int dolock;
4209         int cpu;
4210         int ret;
4211
4212         dolock = rb_ok_to_lock();
4213
4214         /* yes this is racy, but if you don't like the race, lock the buffer */
4215         for_each_buffer_cpu(buffer, cpu) {
4216                 cpu_buffer = buffer->buffers[cpu];
4217                 local_irq_save(flags);
4218                 if (dolock)
4219                         raw_spin_lock(&cpu_buffer->reader_lock);
4220                 ret = rb_per_cpu_empty(cpu_buffer);
4221                 if (dolock)
4222                         raw_spin_unlock(&cpu_buffer->reader_lock);
4223                 local_irq_restore(flags);
4224
4225                 if (!ret)
4226                         return 0;
4227         }
4228
4229         return 1;
4230 }
4231 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4232
4233 /**
4234  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4235  * @buffer: The ring buffer
4236  * @cpu: The CPU buffer to test
4237  */
4238 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4239 {
4240         struct ring_buffer_per_cpu *cpu_buffer;
4241         unsigned long flags;
4242         int dolock;
4243         int ret;
4244
4245         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4246                 return 1;
4247
4248         dolock = rb_ok_to_lock();
4249
4250         cpu_buffer = buffer->buffers[cpu];
4251         local_irq_save(flags);
4252         if (dolock)
4253                 raw_spin_lock(&cpu_buffer->reader_lock);
4254         ret = rb_per_cpu_empty(cpu_buffer);
4255         if (dolock)
4256                 raw_spin_unlock(&cpu_buffer->reader_lock);
4257         local_irq_restore(flags);
4258
4259         return ret;
4260 }
4261 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4262
4263 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4264 /**
4265  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4266  * @buffer_a: One buffer to swap with
4267  * @buffer_b: The other buffer to swap with
4268  *
4269  * This function is useful for tracers that want to take a "snapshot"
4270  * of a CPU buffer and has another back up buffer lying around.
4271  * it is expected that the tracer handles the cpu buffer not being
4272  * used at the moment.
4273  */
4274 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4275                          struct ring_buffer *buffer_b, int cpu)
4276 {
4277         struct ring_buffer_per_cpu *cpu_buffer_a;
4278         struct ring_buffer_per_cpu *cpu_buffer_b;
4279         int ret = -EINVAL;
4280
4281         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4282             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4283                 goto out;
4284
4285         cpu_buffer_a = buffer_a->buffers[cpu];
4286         cpu_buffer_b = buffer_b->buffers[cpu];
4287
4288         /* At least make sure the two buffers are somewhat the same */
4289         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4290                 goto out;
4291
4292         ret = -EAGAIN;
4293
4294         if (ring_buffer_flags != RB_BUFFERS_ON)
4295                 goto out;
4296
4297         if (atomic_read(&buffer_a->record_disabled))
4298                 goto out;
4299
4300         if (atomic_read(&buffer_b->record_disabled))
4301                 goto out;
4302
4303         if (atomic_read(&cpu_buffer_a->record_disabled))
4304                 goto out;
4305
4306         if (atomic_read(&cpu_buffer_b->record_disabled))
4307                 goto out;
4308
4309         /*
4310          * We can't do a synchronize_sched here because this
4311          * function can be called in atomic context.
4312          * Normally this will be called from the same CPU as cpu.
4313          * If not it's up to the caller to protect this.
4314          */
4315         atomic_inc(&cpu_buffer_a->record_disabled);
4316         atomic_inc(&cpu_buffer_b->record_disabled);
4317
4318         ret = -EBUSY;
4319         if (local_read(&cpu_buffer_a->committing))
4320                 goto out_dec;
4321         if (local_read(&cpu_buffer_b->committing))
4322                 goto out_dec;
4323
4324         buffer_a->buffers[cpu] = cpu_buffer_b;
4325         buffer_b->buffers[cpu] = cpu_buffer_a;
4326
4327         cpu_buffer_b->buffer = buffer_a;
4328         cpu_buffer_a->buffer = buffer_b;
4329
4330         ret = 0;
4331
4332 out_dec:
4333         atomic_dec(&cpu_buffer_a->record_disabled);
4334         atomic_dec(&cpu_buffer_b->record_disabled);
4335 out:
4336         return ret;
4337 }
4338 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4339 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4340
4341 /**
4342  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4343  * @buffer: the buffer to allocate for.
4344  *
4345  * This function is used in conjunction with ring_buffer_read_page.
4346  * When reading a full page from the ring buffer, these functions
4347  * can be used to speed up the process. The calling function should
4348  * allocate a few pages first with this function. Then when it
4349  * needs to get pages from the ring buffer, it passes the result
4350  * of this function into ring_buffer_read_page, which will swap
4351  * the page that was allocated, with the read page of the buffer.
4352  *
4353  * Returns:
4354  *  The page allocated, or NULL on error.
4355  */
4356 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4357 {
4358         struct buffer_data_page *bpage;
4359         struct page *page;
4360
4361         page = alloc_pages_node(cpu_to_node(cpu),
4362                                 GFP_KERNEL | __GFP_NORETRY, 0);
4363         if (!page)
4364                 return NULL;
4365
4366         bpage = page_address(page);
4367
4368         rb_init_page(bpage);
4369
4370         return bpage;
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4373
4374 /**
4375  * ring_buffer_free_read_page - free an allocated read page
4376  * @buffer: the buffer the page was allocate for
4377  * @data: the page to free
4378  *
4379  * Free a page allocated from ring_buffer_alloc_read_page.
4380  */
4381 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4382 {
4383         free_page((unsigned long)data);
4384 }
4385 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4386
4387 /**
4388  * ring_buffer_read_page - extract a page from the ring buffer
4389  * @buffer: buffer to extract from
4390  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4391  * @len: amount to extract
4392  * @cpu: the cpu of the buffer to extract
4393  * @full: should the extraction only happen when the page is full.
4394  *
4395  * This function will pull out a page from the ring buffer and consume it.
4396  * @data_page must be the address of the variable that was returned
4397  * from ring_buffer_alloc_read_page. This is because the page might be used
4398  * to swap with a page in the ring buffer.
4399  *
4400  * for example:
4401  *      rpage = ring_buffer_alloc_read_page(buffer);
4402  *      if (!rpage)
4403  *              return error;
4404  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4405  *      if (ret >= 0)
4406  *              process_page(rpage, ret);
4407  *
4408  * When @full is set, the function will not return true unless
4409  * the writer is off the reader page.
4410  *
4411  * Note: it is up to the calling functions to handle sleeps and wakeups.
4412  *  The ring buffer can be used anywhere in the kernel and can not
4413  *  blindly call wake_up. The layer that uses the ring buffer must be
4414  *  responsible for that.
4415  *
4416  * Returns:
4417  *  >=0 if data has been transferred, returns the offset of consumed data.
4418  *  <0 if no data has been transferred.
4419  */
4420 int ring_buffer_read_page(struct ring_buffer *buffer,
4421                           void **data_page, size_t len, int cpu, int full)
4422 {
4423         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4424         struct ring_buffer_event *event;
4425         struct buffer_data_page *bpage;
4426         struct buffer_page *reader;
4427         unsigned long missed_events;
4428         unsigned long flags;
4429         unsigned int commit;
4430         unsigned int read;
4431         u64 save_timestamp;
4432         int ret = -1;
4433
4434         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4435                 goto out;
4436
4437         /*
4438          * If len is not big enough to hold the page header, then
4439          * we can not copy anything.
4440          */
4441         if (len <= BUF_PAGE_HDR_SIZE)
4442                 goto out;
4443
4444         len -= BUF_PAGE_HDR_SIZE;
4445
4446         if (!data_page)
4447                 goto out;
4448
4449         bpage = *data_page;
4450         if (!bpage)
4451                 goto out;
4452
4453         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4454
4455         reader = rb_get_reader_page(cpu_buffer);
4456         if (!reader)
4457                 goto out_unlock;
4458
4459         event = rb_reader_event(cpu_buffer);
4460
4461         read = reader->read;
4462         commit = rb_page_commit(reader);
4463
4464         /* Check if any events were dropped */
4465         missed_events = cpu_buffer->lost_events;
4466
4467         /*
4468          * If this page has been partially read or
4469          * if len is not big enough to read the rest of the page or
4470          * a writer is still on the page, then
4471          * we must copy the data from the page to the buffer.
4472          * Otherwise, we can simply swap the page with the one passed in.
4473          */
4474         if (read || (len < (commit - read)) ||
4475             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4476                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4477                 unsigned int rpos = read;
4478                 unsigned int pos = 0;
4479                 unsigned int size;
4480
4481                 if (full)
4482                         goto out_unlock;
4483
4484                 if (len > (commit - read))
4485                         len = (commit - read);
4486
4487                 /* Always keep the time extend and data together */
4488                 size = rb_event_ts_length(event);
4489
4490                 if (len < size)
4491                         goto out_unlock;
4492
4493                 /* save the current timestamp, since the user will need it */
4494                 save_timestamp = cpu_buffer->read_stamp;
4495
4496                 /* Need to copy one event at a time */
4497                 do {
4498                         /* We need the size of one event, because
4499                          * rb_advance_reader only advances by one event,
4500                          * whereas rb_event_ts_length may include the size of
4501                          * one or two events.
4502                          * We have already ensured there's enough space if this
4503                          * is a time extend. */
4504                         size = rb_event_length(event);
4505                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4506
4507                         len -= size;
4508
4509                         rb_advance_reader(cpu_buffer);
4510                         rpos = reader->read;
4511                         pos += size;
4512
4513                         if (rpos >= commit)
4514                                 break;
4515
4516                         event = rb_reader_event(cpu_buffer);
4517                         /* Always keep the time extend and data together */
4518                         size = rb_event_ts_length(event);
4519                 } while (len >= size);
4520
4521                 /* update bpage */
4522                 local_set(&bpage->commit, pos);
4523                 bpage->time_stamp = save_timestamp;
4524
4525                 /* we copied everything to the beginning */
4526                 read = 0;
4527         } else {
4528                 /* update the entry counter */
4529                 cpu_buffer->read += rb_page_entries(reader);
4530                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4531
4532                 /* swap the pages */
4533                 rb_init_page(bpage);
4534                 bpage = reader->page;
4535                 reader->page = *data_page;
4536                 local_set(&reader->write, 0);
4537                 local_set(&reader->entries, 0);
4538                 reader->read = 0;
4539                 *data_page = bpage;
4540
4541                 /*
4542                  * Use the real_end for the data size,
4543                  * This gives us a chance to store the lost events
4544                  * on the page.
4545                  */
4546                 if (reader->real_end)
4547                         local_set(&bpage->commit, reader->real_end);
4548         }
4549         ret = read;
4550
4551         cpu_buffer->lost_events = 0;
4552
4553         commit = local_read(&bpage->commit);
4554         /*
4555          * Set a flag in the commit field if we lost events
4556          */
4557         if (missed_events) {
4558                 /* If there is room at the end of the page to save the
4559                  * missed events, then record it there.
4560                  */
4561                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4562                         memcpy(&bpage->data[commit], &missed_events,
4563                                sizeof(missed_events));
4564                         local_add(RB_MISSED_STORED, &bpage->commit);
4565                         commit += sizeof(missed_events);
4566                 }
4567                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4568         }
4569
4570         /*
4571          * This page may be off to user land. Zero it out here.
4572          */
4573         if (commit < BUF_PAGE_SIZE)
4574                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4575
4576  out_unlock:
4577         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4578
4579  out:
4580         return ret;
4581 }
4582 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4583
4584 #ifdef CONFIG_HOTPLUG_CPU
4585 static int rb_cpu_notify(struct notifier_block *self,
4586                          unsigned long action, void *hcpu)
4587 {
4588         struct ring_buffer *buffer =
4589                 container_of(self, struct ring_buffer, cpu_notify);
4590         long cpu = (long)hcpu;
4591         int cpu_i, nr_pages_same;
4592         unsigned int nr_pages;
4593
4594         switch (action) {
4595         case CPU_UP_PREPARE:
4596         case CPU_UP_PREPARE_FROZEN:
4597                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4598                         return NOTIFY_OK;
4599
4600                 nr_pages = 0;
4601                 nr_pages_same = 1;
4602                 /* check if all cpu sizes are same */
4603                 for_each_buffer_cpu(buffer, cpu_i) {
4604                         /* fill in the size from first enabled cpu */
4605                         if (nr_pages == 0)
4606                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4607                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4608                                 nr_pages_same = 0;
4609                                 break;
4610                         }
4611                 }
4612                 /* allocate minimum pages, user can later expand it */
4613                 if (!nr_pages_same)
4614                         nr_pages = 2;
4615                 buffer->buffers[cpu] =
4616                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4617                 if (!buffer->buffers[cpu]) {
4618                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4619                              cpu);
4620                         return NOTIFY_OK;
4621                 }
4622                 smp_wmb();
4623                 cpumask_set_cpu(cpu, buffer->cpumask);
4624                 break;
4625         case CPU_DOWN_PREPARE:
4626         case CPU_DOWN_PREPARE_FROZEN:
4627                 /*
4628                  * Do nothing.
4629                  *  If we were to free the buffer, then the user would
4630                  *  lose any trace that was in the buffer.
4631                  */
4632                 break;
4633         default:
4634                 break;
4635         }
4636         return NOTIFY_OK;
4637 }
4638 #endif
4639
4640 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4641 /*
4642  * This is a basic integrity check of the ring buffer.
4643  * Late in the boot cycle this test will run when configured in.
4644  * It will kick off a thread per CPU that will go into a loop
4645  * writing to the per cpu ring buffer various sizes of data.
4646  * Some of the data will be large items, some small.
4647  *
4648  * Another thread is created that goes into a spin, sending out
4649  * IPIs to the other CPUs to also write into the ring buffer.
4650  * this is to test the nesting ability of the buffer.
4651  *
4652  * Basic stats are recorded and reported. If something in the
4653  * ring buffer should happen that's not expected, a big warning
4654  * is displayed and all ring buffers are disabled.
4655  */
4656 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4657
4658 struct rb_test_data {
4659         struct ring_buffer      *buffer;
4660         unsigned long           events;
4661         unsigned long           bytes_written;
4662         unsigned long           bytes_alloc;
4663         unsigned long           bytes_dropped;
4664         unsigned long           events_nested;
4665         unsigned long           bytes_written_nested;
4666         unsigned long           bytes_alloc_nested;
4667         unsigned long           bytes_dropped_nested;
4668         int                     min_size_nested;
4669         int                     max_size_nested;
4670         int                     max_size;
4671         int                     min_size;
4672         int                     cpu;
4673         int                     cnt;
4674 };
4675
4676 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4677
4678 /* 1 meg per cpu */
4679 #define RB_TEST_BUFFER_SIZE     1048576
4680
4681 static char rb_string[] __initdata =
4682         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4683         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4684         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4685
4686 static bool rb_test_started __initdata;
4687
4688 struct rb_item {
4689         int size;
4690         char str[];
4691 };
4692
4693 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4694 {
4695         struct ring_buffer_event *event;
4696         struct rb_item *item;
4697         bool started;
4698         int event_len;
4699         int size;
4700         int len;
4701         int cnt;
4702
4703         /* Have nested writes different that what is written */
4704         cnt = data->cnt + (nested ? 27 : 0);
4705
4706         /* Multiply cnt by ~e, to make some unique increment */
4707         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4708
4709         len = size + sizeof(struct rb_item);
4710
4711         started = rb_test_started;
4712         /* read rb_test_started before checking buffer enabled */
4713         smp_rmb();
4714
4715         event = ring_buffer_lock_reserve(data->buffer, len);
4716         if (!event) {
4717                 /* Ignore dropped events before test starts. */
4718                 if (started) {
4719                         if (nested)
4720                                 data->bytes_dropped += len;
4721                         else
4722                                 data->bytes_dropped_nested += len;
4723                 }
4724                 return len;
4725         }
4726
4727         event_len = ring_buffer_event_length(event);
4728
4729         if (RB_WARN_ON(data->buffer, event_len < len))
4730                 goto out;
4731
4732         item = ring_buffer_event_data(event);
4733         item->size = size;
4734         memcpy(item->str, rb_string, size);
4735
4736         if (nested) {
4737                 data->bytes_alloc_nested += event_len;
4738                 data->bytes_written_nested += len;
4739                 data->events_nested++;
4740                 if (!data->min_size_nested || len < data->min_size_nested)
4741                         data->min_size_nested = len;
4742                 if (len > data->max_size_nested)
4743                         data->max_size_nested = len;
4744         } else {
4745                 data->bytes_alloc += event_len;
4746                 data->bytes_written += len;
4747                 data->events++;
4748                 if (!data->min_size || len < data->min_size)
4749                         data->max_size = len;
4750                 if (len > data->max_size)
4751                         data->max_size = len;
4752         }
4753
4754  out:
4755         ring_buffer_unlock_commit(data->buffer, event);
4756
4757         return 0;
4758 }
4759
4760 static __init int rb_test(void *arg)
4761 {
4762         struct rb_test_data *data = arg;
4763
4764         while (!kthread_should_stop()) {
4765                 rb_write_something(data, false);
4766                 data->cnt++;
4767
4768                 set_current_state(TASK_INTERRUPTIBLE);
4769                 /* Now sleep between a min of 100-300us and a max of 1ms */
4770                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4771         }
4772
4773         return 0;
4774 }
4775
4776 static __init void rb_ipi(void *ignore)
4777 {
4778         struct rb_test_data *data;
4779         int cpu = smp_processor_id();
4780
4781         data = &rb_data[cpu];
4782         rb_write_something(data, true);
4783 }
4784
4785 static __init int rb_hammer_test(void *arg)
4786 {
4787         while (!kthread_should_stop()) {
4788
4789                 /* Send an IPI to all cpus to write data! */
4790                 smp_call_function(rb_ipi, NULL, 1);
4791                 /* No sleep, but for non preempt, let others run */
4792                 schedule();
4793         }
4794
4795         return 0;
4796 }
4797
4798 static __init int test_ringbuffer(void)
4799 {
4800         struct task_struct *rb_hammer;
4801         struct ring_buffer *buffer;
4802         int cpu;
4803         int ret = 0;
4804
4805         pr_info("Running ring buffer tests...\n");
4806
4807         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4808         if (WARN_ON(!buffer))
4809                 return 0;
4810
4811         /* Disable buffer so that threads can't write to it yet */
4812         ring_buffer_record_off(buffer);
4813
4814         for_each_online_cpu(cpu) {
4815                 rb_data[cpu].buffer = buffer;
4816                 rb_data[cpu].cpu = cpu;
4817                 rb_data[cpu].cnt = cpu;
4818                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4819                                                  "rbtester/%d", cpu);
4820                 if (WARN_ON(!rb_threads[cpu])) {
4821                         pr_cont("FAILED\n");
4822                         ret = -1;
4823                         goto out_free;
4824                 }
4825
4826                 kthread_bind(rb_threads[cpu], cpu);
4827                 wake_up_process(rb_threads[cpu]);
4828         }
4829
4830         /* Now create the rb hammer! */
4831         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4832         if (WARN_ON(!rb_hammer)) {
4833                 pr_cont("FAILED\n");
4834                 ret = -1;
4835                 goto out_free;
4836         }
4837
4838         ring_buffer_record_on(buffer);
4839         /*
4840          * Show buffer is enabled before setting rb_test_started.
4841          * Yes there's a small race window where events could be
4842          * dropped and the thread wont catch it. But when a ring
4843          * buffer gets enabled, there will always be some kind of
4844          * delay before other CPUs see it. Thus, we don't care about
4845          * those dropped events. We care about events dropped after
4846          * the threads see that the buffer is active.
4847          */
4848         smp_wmb();
4849         rb_test_started = true;
4850
4851         set_current_state(TASK_INTERRUPTIBLE);
4852         /* Just run for 10 seconds */;
4853         schedule_timeout(10 * HZ);
4854
4855         kthread_stop(rb_hammer);
4856
4857  out_free:
4858         for_each_online_cpu(cpu) {
4859                 if (!rb_threads[cpu])
4860                         break;
4861                 kthread_stop(rb_threads[cpu]);
4862         }
4863         if (ret) {
4864                 ring_buffer_free(buffer);
4865                 return ret;
4866         }
4867
4868         /* Report! */
4869         pr_info("finished\n");
4870         for_each_online_cpu(cpu) {
4871                 struct ring_buffer_event *event;
4872                 struct rb_test_data *data = &rb_data[cpu];
4873                 struct rb_item *item;
4874                 unsigned long total_events;
4875                 unsigned long total_dropped;
4876                 unsigned long total_written;
4877                 unsigned long total_alloc;
4878                 unsigned long total_read = 0;
4879                 unsigned long total_size = 0;
4880                 unsigned long total_len = 0;
4881                 unsigned long total_lost = 0;
4882                 unsigned long lost;
4883                 int big_event_size;
4884                 int small_event_size;
4885
4886                 ret = -1;
4887
4888                 total_events = data->events + data->events_nested;
4889                 total_written = data->bytes_written + data->bytes_written_nested;
4890                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4891                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4892
4893                 big_event_size = data->max_size + data->max_size_nested;
4894                 small_event_size = data->min_size + data->min_size_nested;
4895
4896                 pr_info("CPU %d:\n", cpu);
4897                 pr_info("              events:    %ld\n", total_events);
4898                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4899                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4900                 pr_info("       written bytes:    %ld\n", total_written);
4901                 pr_info("       biggest event:    %d\n", big_event_size);
4902                 pr_info("      smallest event:    %d\n", small_event_size);
4903
4904                 if (RB_WARN_ON(buffer, total_dropped))
4905                         break;
4906
4907                 ret = 0;
4908
4909                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4910                         total_lost += lost;
4911                         item = ring_buffer_event_data(event);
4912                         total_len += ring_buffer_event_length(event);
4913                         total_size += item->size + sizeof(struct rb_item);
4914                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4915                                 pr_info("FAILED!\n");
4916                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4917                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4918                                 RB_WARN_ON(buffer, 1);
4919                                 ret = -1;
4920                                 break;
4921                         }
4922                         total_read++;
4923                 }
4924                 if (ret)
4925                         break;
4926
4927                 ret = -1;
4928
4929                 pr_info("         read events:   %ld\n", total_read);
4930                 pr_info("         lost events:   %ld\n", total_lost);
4931                 pr_info("        total events:   %ld\n", total_lost + total_read);
4932                 pr_info("  recorded len bytes:   %ld\n", total_len);
4933                 pr_info(" recorded size bytes:   %ld\n", total_size);
4934                 if (total_lost)
4935                         pr_info(" With dropped events, record len and size may not match\n"
4936                                 " alloced and written from above\n");
4937                 if (!total_lost) {
4938                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4939                                        total_size != total_written))
4940                                 break;
4941                 }
4942                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4943                         break;
4944
4945                 ret = 0;
4946         }
4947         if (!ret)
4948                 pr_info("Ring buffer PASSED!\n");
4949
4950         ring_buffer_free(buffer);
4951         return 0;
4952 }
4953
4954 late_initcall(test_ringbuffer);
4955 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */