1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h> /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
30 #include <asm/local.h>
33 * The "absolute" timestamp in the buffer is only 59 bits.
34 * If a clock has the 5 MSBs set, it needs to be saved and
37 #define TS_MSB (0xf8ULL << 56)
38 #define ABS_TS_MASK (~TS_MSB)
40 static void update_pages_handler(struct work_struct *work);
43 * The ring buffer header is special. We must manually up keep it.
45 int ring_buffer_print_entry_header(struct trace_seq *s)
47 trace_seq_puts(s, "# compressed entry header\n");
48 trace_seq_puts(s, "\ttype_len : 5 bits\n");
49 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
50 trace_seq_puts(s, "\tarray : 32 bits\n");
51 trace_seq_putc(s, '\n');
52 trace_seq_printf(s, "\tpadding : type == %d\n",
53 RINGBUF_TYPE_PADDING);
54 trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 RINGBUF_TYPE_TIME_EXTEND);
56 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 RINGBUF_TYPE_TIME_STAMP);
58 trace_seq_printf(s, "\tdata max type_len == %d\n",
59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
61 return !trace_seq_has_overflowed(s);
65 * The ring buffer is made up of a list of pages. A separate list of pages is
66 * allocated for each CPU. A writer may only write to a buffer that is
67 * associated with the CPU it is currently executing on. A reader may read
68 * from any per cpu buffer.
70 * The reader is special. For each per cpu buffer, the reader has its own
71 * reader page. When a reader has read the entire reader page, this reader
72 * page is swapped with another page in the ring buffer.
74 * Now, as long as the writer is off the reader page, the reader can do what
75 * ever it wants with that page. The writer will never write to that page
76 * again (as long as it is out of the ring buffer).
78 * Here's some silly ASCII art.
81 * |reader| RING BUFFER
83 * +------+ +---+ +---+ +---+
92 * |reader| RING BUFFER
93 * |page |------------------v
94 * +------+ +---+ +---+ +---+
103 * |reader| RING BUFFER
104 * |page |------------------v
105 * +------+ +---+ +---+ +---+
107 * | +---+ +---+ +---+
110 * +------------------------------+
114 * |buffer| RING BUFFER
115 * |page |------------------v
116 * +------+ +---+ +---+ +---+
118 * | New +---+ +---+ +---+
121 * +------------------------------+
124 * After we make this swap, the reader can hand this page off to the splice
125 * code and be done with it. It can even allocate a new page if it needs to
126 * and swap that into the ring buffer.
128 * We will be using cmpxchg soon to make all this lockless.
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF (1 << 20)
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT 4U
139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT 0
144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
146 # define RB_FORCE_8BYTE_ALIGNMENT 1
147 # define RB_ARCH_ALIGNMENT 8U
150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
156 RB_LEN_TIME_EXTEND = 8,
157 RB_LEN_TIME_STAMP = 8,
160 #define skip_time_extend(event) \
161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
163 #define extended_time(event) \
164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
166 static inline int rb_null_event(struct ring_buffer_event *event)
168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
171 static void rb_event_set_padding(struct ring_buffer_event *event)
173 /* padding has a NULL time_delta */
174 event->type_len = RINGBUF_TYPE_PADDING;
175 event->time_delta = 0;
179 rb_event_data_length(struct ring_buffer_event *event)
184 length = event->type_len * RB_ALIGNMENT;
186 length = event->array[0];
187 return length + RB_EVNT_HDR_SIZE;
191 * Return the length of the given event. Will return
192 * the length of the time extend if the event is a
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
198 switch (event->type_len) {
199 case RINGBUF_TYPE_PADDING:
200 if (rb_null_event(event))
203 return event->array[0] + RB_EVNT_HDR_SIZE;
205 case RINGBUF_TYPE_TIME_EXTEND:
206 return RB_LEN_TIME_EXTEND;
208 case RINGBUF_TYPE_TIME_STAMP:
209 return RB_LEN_TIME_STAMP;
211 case RINGBUF_TYPE_DATA:
212 return rb_event_data_length(event);
221 * Return total length of time extend and data,
222 * or just the event length for all other events.
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
229 if (extended_time(event)) {
230 /* time extends include the data event after it */
231 len = RB_LEN_TIME_EXTEND;
232 event = skip_time_extend(event);
234 return len + rb_event_length(event);
238 * ring_buffer_event_length - return the length of the event
239 * @event: the event to get the length of
241 * Returns the size of the data load of a data event.
242 * If the event is something other than a data event, it
243 * returns the size of the event itself. With the exception
244 * of a TIME EXTEND, where it still returns the size of the
245 * data load of the data event after it.
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
251 if (extended_time(event))
252 event = skip_time_extend(event);
254 length = rb_event_length(event);
255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
257 length -= RB_EVNT_HDR_SIZE;
258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259 length -= sizeof(event->array[0]);
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
268 if (extended_time(event))
269 event = skip_time_extend(event);
270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 /* If length is in len field, then array[0] has the data */
273 return (void *)&event->array[0];
274 /* Otherwise length is in array[0] and array[1] has the data */
275 return (void *)&event->array[1];
279 * ring_buffer_event_data - return the data of the event
280 * @event: the event to get the data from
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
284 return rb_event_data(event);
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
288 #define for_each_buffer_cpu(buffer, cpu) \
289 for_each_cpu(cpu, buffer->cpumask)
291 #define for_each_online_buffer_cpu(buffer, cpu) \
292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
295 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST (~TS_MASK)
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
302 ts = event->array[0];
304 ts += event->time_delta;
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED (1 << 30)
314 struct buffer_data_page {
315 u64 time_stamp; /* page time stamp */
316 local_t commit; /* write committed index */
317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
321 * Note, the buffer_page list must be first. The buffer pages
322 * are allocated in cache lines, which means that each buffer
323 * page will be at the beginning of a cache line, and thus
324 * the least significant bits will be zero. We use this to
325 * add flags in the list struct pointers, to make the ring buffer
329 struct list_head list; /* list of buffer pages */
330 local_t write; /* index for next write */
331 unsigned read; /* index for next read */
332 local_t entries; /* entries on this page */
333 unsigned long real_end; /* real end of data */
334 struct buffer_data_page *page; /* Actual data page */
338 * The buffer page counters, write and entries, must be reset
339 * atomically when crossing page boundaries. To synchronize this
340 * update, two counters are inserted into the number. One is
341 * the actual counter for the write position or count on the page.
343 * The other is a counter of updaters. Before an update happens
344 * the update partition of the counter is incremented. This will
345 * allow the updater to update the counter atomically.
347 * The counter is 20 bits, and the state data is 12.
349 #define RB_WRITE_MASK 0xfffff
350 #define RB_WRITE_INTCNT (1 << 20)
352 static void rb_init_page(struct buffer_data_page *bpage)
354 local_set(&bpage->commit, 0);
358 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
361 static void free_buffer_page(struct buffer_page *bpage)
363 free_page((unsigned long)bpage->page);
368 * We need to fit the time_stamp delta into 27 bits.
370 static inline int test_time_stamp(u64 delta)
372 if (delta & TS_DELTA_TEST)
377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
382 int ring_buffer_print_page_header(struct trace_seq *s)
384 struct buffer_data_page field;
386 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
387 "offset:0;\tsize:%u;\tsigned:%u;\n",
388 (unsigned int)sizeof(field.time_stamp),
389 (unsigned int)is_signed_type(u64));
391 trace_seq_printf(s, "\tfield: local_t commit;\t"
392 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 (unsigned int)offsetof(typeof(field), commit),
394 (unsigned int)sizeof(field.commit),
395 (unsigned int)is_signed_type(long));
397 trace_seq_printf(s, "\tfield: int overwrite;\t"
398 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 (unsigned int)offsetof(typeof(field), commit),
401 (unsigned int)is_signed_type(long));
403 trace_seq_printf(s, "\tfield: char data;\t"
404 "offset:%u;\tsize:%u;\tsigned:%u;\n",
405 (unsigned int)offsetof(typeof(field), data),
406 (unsigned int)BUF_PAGE_SIZE,
407 (unsigned int)is_signed_type(char));
409 return !trace_seq_has_overflowed(s);
413 struct irq_work work;
414 wait_queue_head_t waiters;
415 wait_queue_head_t full_waiters;
416 bool waiters_pending;
417 bool full_waiters_pending;
422 * Structure to hold event state and handle nested events.
424 struct rb_event_info {
429 unsigned long length;
430 struct buffer_page *tail_page;
435 * Used for the add_timestamp
437 * EXTEND - wants a time extend
438 * ABSOLUTE - the buffer requests all events to have absolute time stamps
439 * FORCE - force a full time stamp.
442 RB_ADD_STAMP_NONE = 0,
443 RB_ADD_STAMP_EXTEND = BIT(1),
444 RB_ADD_STAMP_ABSOLUTE = BIT(2),
445 RB_ADD_STAMP_FORCE = BIT(3)
448 * Used for which event context the event is in.
455 * See trace_recursive_lock() comment below for more details.
466 #if BITS_PER_LONG == 32
470 /* To test on 64 bit machines */
475 struct rb_time_struct {
482 #include <asm/local64.h>
483 struct rb_time_struct {
487 typedef struct rb_time_struct rb_time_t;
492 * head_page == tail_page && head == tail then buffer is empty.
494 struct ring_buffer_per_cpu {
496 atomic_t record_disabled;
497 atomic_t resize_disabled;
498 struct trace_buffer *buffer;
499 raw_spinlock_t reader_lock; /* serialize readers */
500 arch_spinlock_t lock;
501 struct lock_class_key lock_key;
502 struct buffer_data_page *free_page;
503 unsigned long nr_pages;
504 unsigned int current_context;
505 struct list_head *pages;
506 struct buffer_page *head_page; /* read from head */
507 struct buffer_page *tail_page; /* write to tail */
508 struct buffer_page *commit_page; /* committed pages */
509 struct buffer_page *reader_page;
510 unsigned long lost_events;
511 unsigned long last_overrun;
513 local_t entries_bytes;
516 local_t commit_overrun;
517 local_t dropped_events;
520 local_t pages_touched;
522 long last_pages_touch;
523 size_t shortest_full;
525 unsigned long read_bytes;
526 rb_time_t write_stamp;
527 rb_time_t before_stamp;
528 u64 event_stamp[MAX_NEST];
530 /* ring buffer pages to update, > 0 to add, < 0 to remove */
531 long nr_pages_to_update;
532 struct list_head new_pages; /* new pages to add */
533 struct work_struct update_pages_work;
534 struct completion update_done;
536 struct rb_irq_work irq_work;
539 struct trace_buffer {
542 atomic_t record_disabled;
543 cpumask_var_t cpumask;
545 struct lock_class_key *reader_lock_key;
549 struct ring_buffer_per_cpu **buffers;
551 struct hlist_node node;
554 struct rb_irq_work irq_work;
558 struct ring_buffer_iter {
559 struct ring_buffer_per_cpu *cpu_buffer;
561 unsigned long next_event;
562 struct buffer_page *head_page;
563 struct buffer_page *cache_reader_page;
564 unsigned long cache_read;
567 struct ring_buffer_event *event;
574 * On 32 bit machines, local64_t is very expensive. As the ring
575 * buffer doesn't need all the features of a true 64 bit atomic,
576 * on 32 bit, it uses these functions (64 still uses local64_t).
578 * For the ring buffer, 64 bit required operations for the time is
581 * - Reads may fail if it interrupted a modification of the time stamp.
582 * It will succeed if it did not interrupt another write even if
583 * the read itself is interrupted by a write.
584 * It returns whether it was successful or not.
586 * - Writes always succeed and will overwrite other writes and writes
587 * that were done by events interrupting the current write.
589 * - A write followed by a read of the same time stamp will always succeed,
590 * but may not contain the same value.
592 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
593 * Other than that, it acts like a normal cmpxchg.
595 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
596 * (bottom being the least significant 30 bits of the 60 bit time stamp).
598 * The two most significant bits of each half holds a 2 bit counter (0-3).
599 * Each update will increment this counter by one.
600 * When reading the top and bottom, if the two counter bits match then the
601 * top and bottom together make a valid 60 bit number.
603 #define RB_TIME_SHIFT 30
604 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
605 #define RB_TIME_MSB_SHIFT 60
607 static inline int rb_time_cnt(unsigned long val)
609 return (val >> RB_TIME_SHIFT) & 3;
612 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
616 val = top & RB_TIME_VAL_MASK;
617 val <<= RB_TIME_SHIFT;
618 val |= bottom & RB_TIME_VAL_MASK;
623 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
625 unsigned long top, bottom, msb;
629 * If the read is interrupted by a write, then the cnt will
630 * be different. Loop until both top and bottom have been read
631 * without interruption.
634 c = local_read(&t->cnt);
635 top = local_read(&t->top);
636 bottom = local_read(&t->bottom);
637 msb = local_read(&t->msb);
638 } while (c != local_read(&t->cnt));
640 *cnt = rb_time_cnt(top);
642 /* If top and bottom counts don't match, this interrupted a write */
643 if (*cnt != rb_time_cnt(bottom))
646 /* The shift to msb will lose its cnt bits */
647 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
651 static bool rb_time_read(rb_time_t *t, u64 *ret)
655 return __rb_time_read(t, ret, &cnt);
658 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
660 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
663 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
666 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
667 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
668 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
671 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
673 val = rb_time_val_cnt(val, cnt);
677 static void rb_time_set(rb_time_t *t, u64 val)
679 unsigned long cnt, top, bottom, msb;
681 rb_time_split(val, &top, &bottom, &msb);
683 /* Writes always succeed with a valid number even if it gets interrupted. */
685 cnt = local_inc_return(&t->cnt);
686 rb_time_val_set(&t->top, top, cnt);
687 rb_time_val_set(&t->bottom, bottom, cnt);
688 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
689 } while (cnt != local_read(&t->cnt));
693 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
697 ret = local_cmpxchg(l, expect, set);
698 return ret == expect;
701 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
703 unsigned long cnt, top, bottom, msb;
704 unsigned long cnt2, top2, bottom2, msb2;
707 /* The cmpxchg always fails if it interrupted an update */
708 if (!__rb_time_read(t, &val, &cnt2))
714 cnt = local_read(&t->cnt);
715 if ((cnt & 3) != cnt2)
720 rb_time_split(val, &top, &bottom, &msb);
721 top = rb_time_val_cnt(top, cnt);
722 bottom = rb_time_val_cnt(bottom, cnt);
724 rb_time_split(set, &top2, &bottom2, &msb2);
725 top2 = rb_time_val_cnt(top2, cnt2);
726 bottom2 = rb_time_val_cnt(bottom2, cnt2);
728 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
730 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
732 if (!rb_time_read_cmpxchg(&t->top, top, top2))
734 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
741 /* local64_t always succeeds */
743 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
745 *ret = local64_read(&t->time);
748 static void rb_time_set(rb_time_t *t, u64 val)
750 local64_set(&t->time, val);
753 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
756 val = local64_cmpxchg(&t->time, expect, set);
757 return val == expect;
762 * Enable this to make sure that the event passed to
763 * ring_buffer_event_time_stamp() is not committed and also
764 * is on the buffer that it passed in.
766 //#define RB_VERIFY_EVENT
767 #ifdef RB_VERIFY_EVENT
768 static struct list_head *rb_list_head(struct list_head *list);
769 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
772 struct buffer_page *page = cpu_buffer->commit_page;
773 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
774 struct list_head *next;
776 unsigned long addr = (unsigned long)event;
780 /* Make sure the event exists and is not committed yet */
782 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
784 commit = local_read(&page->page->commit);
785 write = local_read(&page->write);
786 if (addr >= (unsigned long)&page->page->data[commit] &&
787 addr < (unsigned long)&page->page->data[write])
790 next = rb_list_head(page->list.next);
791 page = list_entry(next, struct buffer_page, list);
796 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
803 * The absolute time stamp drops the 5 MSBs and some clocks may
804 * require them. The rb_fix_abs_ts() will take a previous full
805 * time stamp, and add the 5 MSB of that time stamp on to the
806 * saved absolute time stamp. Then they are compared in case of
807 * the unlikely event that the latest time stamp incremented
810 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
812 if (save_ts & TS_MSB) {
813 abs |= save_ts & TS_MSB;
814 /* Check for overflow */
815 if (unlikely(abs < save_ts))
821 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
824 * ring_buffer_event_time_stamp - return the event's current time stamp
825 * @buffer: The buffer that the event is on
826 * @event: the event to get the time stamp of
828 * Note, this must be called after @event is reserved, and before it is
829 * committed to the ring buffer. And must be called from the same
830 * context where the event was reserved (normal, softirq, irq, etc).
832 * Returns the time stamp associated with the current event.
833 * If the event has an extended time stamp, then that is used as
834 * the time stamp to return.
835 * In the highly unlikely case that the event was nested more than
836 * the max nesting, then the write_stamp of the buffer is returned,
837 * otherwise current time is returned, but that really neither of
838 * the last two cases should ever happen.
840 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
841 struct ring_buffer_event *event)
843 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
847 /* If the event includes an absolute time, then just use that */
848 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
849 ts = rb_event_time_stamp(event);
850 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
853 nest = local_read(&cpu_buffer->committing);
854 verify_event(cpu_buffer, event);
855 if (WARN_ON_ONCE(!nest))
858 /* Read the current saved nesting level time stamp */
859 if (likely(--nest < MAX_NEST))
860 return cpu_buffer->event_stamp[nest];
862 /* Shouldn't happen, warn if it does */
863 WARN_ONCE(1, "nest (%d) greater than max", nest);
866 /* Can only fail on 32 bit */
867 if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
868 /* Screw it, just read the current time */
869 ts = rb_time_stamp(cpu_buffer->buffer);
875 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
876 * @buffer: The ring_buffer to get the number of pages from
877 * @cpu: The cpu of the ring_buffer to get the number of pages from
879 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
881 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
883 return buffer->buffers[cpu]->nr_pages;
887 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
888 * @buffer: The ring_buffer to get the number of pages from
889 * @cpu: The cpu of the ring_buffer to get the number of pages from
891 * Returns the number of pages that have content in the ring buffer.
893 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
898 read = local_read(&buffer->buffers[cpu]->pages_read);
899 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
900 /* The reader can read an empty page, but not more than that */
902 WARN_ON_ONCE(read > cnt + 1);
910 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
912 * Schedules a delayed work to wake up any task that is blocked on the
913 * ring buffer waiters queue.
915 static void rb_wake_up_waiters(struct irq_work *work)
917 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
919 wake_up_all(&rbwork->waiters);
920 if (rbwork->wakeup_full) {
921 rbwork->wakeup_full = false;
922 wake_up_all(&rbwork->full_waiters);
927 * ring_buffer_wait - wait for input to the ring buffer
928 * @buffer: buffer to wait on
929 * @cpu: the cpu buffer to wait on
930 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
932 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
933 * as data is added to any of the @buffer's cpu buffers. Otherwise
934 * it will wait for data to be added to a specific cpu buffer.
936 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
938 struct ring_buffer_per_cpu *cpu_buffer;
940 struct rb_irq_work *work;
944 * Depending on what the caller is waiting for, either any
945 * data in any cpu buffer, or a specific buffer, put the
946 * caller on the appropriate wait queue.
948 if (cpu == RING_BUFFER_ALL_CPUS) {
949 work = &buffer->irq_work;
950 /* Full only makes sense on per cpu reads */
953 if (!cpumask_test_cpu(cpu, buffer->cpumask))
955 cpu_buffer = buffer->buffers[cpu];
956 work = &cpu_buffer->irq_work;
962 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
964 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
967 * The events can happen in critical sections where
968 * checking a work queue can cause deadlocks.
969 * After adding a task to the queue, this flag is set
970 * only to notify events to try to wake up the queue
973 * We don't clear it even if the buffer is no longer
974 * empty. The flag only causes the next event to run
975 * irq_work to do the work queue wake up. The worse
976 * that can happen if we race with !trace_empty() is that
977 * an event will cause an irq_work to try to wake up
980 * There's no reason to protect this flag either, as
981 * the work queue and irq_work logic will do the necessary
982 * synchronization for the wake ups. The only thing
983 * that is necessary is that the wake up happens after
984 * a task has been queued. It's OK for spurious wake ups.
987 work->full_waiters_pending = true;
989 work->waiters_pending = true;
991 if (signal_pending(current)) {
996 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
999 if (cpu != RING_BUFFER_ALL_CPUS &&
1000 !ring_buffer_empty_cpu(buffer, cpu)) {
1001 unsigned long flags;
1009 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1010 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1011 nr_pages = cpu_buffer->nr_pages;
1012 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
1013 if (!cpu_buffer->shortest_full ||
1014 cpu_buffer->shortest_full < full)
1015 cpu_buffer->shortest_full = full;
1016 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1018 (!nr_pages || (dirty * 100) > full * nr_pages))
1026 finish_wait(&work->full_waiters, &wait);
1028 finish_wait(&work->waiters, &wait);
1034 * ring_buffer_poll_wait - poll on buffer input
1035 * @buffer: buffer to wait on
1036 * @cpu: the cpu buffer to wait on
1037 * @filp: the file descriptor
1038 * @poll_table: The poll descriptor
1040 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1041 * as data is added to any of the @buffer's cpu buffers. Otherwise
1042 * it will wait for data to be added to a specific cpu buffer.
1044 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1047 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1048 struct file *filp, poll_table *poll_table)
1050 struct ring_buffer_per_cpu *cpu_buffer;
1051 struct rb_irq_work *work;
1053 if (cpu == RING_BUFFER_ALL_CPUS)
1054 work = &buffer->irq_work;
1056 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1059 cpu_buffer = buffer->buffers[cpu];
1060 work = &cpu_buffer->irq_work;
1063 poll_wait(filp, &work->waiters, poll_table);
1064 work->waiters_pending = true;
1066 * There's a tight race between setting the waiters_pending and
1067 * checking if the ring buffer is empty. Once the waiters_pending bit
1068 * is set, the next event will wake the task up, but we can get stuck
1069 * if there's only a single event in.
1071 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1072 * but adding a memory barrier to all events will cause too much of a
1073 * performance hit in the fast path. We only need a memory barrier when
1074 * the buffer goes from empty to having content. But as this race is
1075 * extremely small, and it's not a problem if another event comes in, we
1076 * will fix it later.
1080 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1081 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1082 return EPOLLIN | EPOLLRDNORM;
1086 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1087 #define RB_WARN_ON(b, cond) \
1089 int _____ret = unlikely(cond); \
1091 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1092 struct ring_buffer_per_cpu *__b = \
1094 atomic_inc(&__b->buffer->record_disabled); \
1096 atomic_inc(&b->record_disabled); \
1102 /* Up this if you want to test the TIME_EXTENTS and normalization */
1103 #define DEBUG_SHIFT 0
1105 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1109 /* Skip retpolines :-( */
1110 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1111 ts = trace_clock_local();
1113 ts = buffer->clock();
1115 /* shift to debug/test normalization and TIME_EXTENTS */
1116 return ts << DEBUG_SHIFT;
1119 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1123 preempt_disable_notrace();
1124 time = rb_time_stamp(buffer);
1125 preempt_enable_notrace();
1129 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1131 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1134 /* Just stupid testing the normalize function and deltas */
1135 *ts >>= DEBUG_SHIFT;
1137 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1140 * Making the ring buffer lockless makes things tricky.
1141 * Although writes only happen on the CPU that they are on,
1142 * and they only need to worry about interrupts. Reads can
1143 * happen on any CPU.
1145 * The reader page is always off the ring buffer, but when the
1146 * reader finishes with a page, it needs to swap its page with
1147 * a new one from the buffer. The reader needs to take from
1148 * the head (writes go to the tail). But if a writer is in overwrite
1149 * mode and wraps, it must push the head page forward.
1151 * Here lies the problem.
1153 * The reader must be careful to replace only the head page, and
1154 * not another one. As described at the top of the file in the
1155 * ASCII art, the reader sets its old page to point to the next
1156 * page after head. It then sets the page after head to point to
1157 * the old reader page. But if the writer moves the head page
1158 * during this operation, the reader could end up with the tail.
1160 * We use cmpxchg to help prevent this race. We also do something
1161 * special with the page before head. We set the LSB to 1.
1163 * When the writer must push the page forward, it will clear the
1164 * bit that points to the head page, move the head, and then set
1165 * the bit that points to the new head page.
1167 * We also don't want an interrupt coming in and moving the head
1168 * page on another writer. Thus we use the second LSB to catch
1171 * head->list->prev->next bit 1 bit 0
1174 * Points to head page 0 1
1177 * Note we can not trust the prev pointer of the head page, because:
1179 * +----+ +-----+ +-----+
1180 * | |------>| T |---X--->| N |
1182 * +----+ +-----+ +-----+
1185 * +----------| R |----------+ |
1189 * Key: ---X--> HEAD flag set in pointer
1194 * (see __rb_reserve_next() to see where this happens)
1196 * What the above shows is that the reader just swapped out
1197 * the reader page with a page in the buffer, but before it
1198 * could make the new header point back to the new page added
1199 * it was preempted by a writer. The writer moved forward onto
1200 * the new page added by the reader and is about to move forward
1203 * You can see, it is legitimate for the previous pointer of
1204 * the head (or any page) not to point back to itself. But only
1208 #define RB_PAGE_NORMAL 0UL
1209 #define RB_PAGE_HEAD 1UL
1210 #define RB_PAGE_UPDATE 2UL
1213 #define RB_FLAG_MASK 3UL
1215 /* PAGE_MOVED is not part of the mask */
1216 #define RB_PAGE_MOVED 4UL
1219 * rb_list_head - remove any bit
1221 static struct list_head *rb_list_head(struct list_head *list)
1223 unsigned long val = (unsigned long)list;
1225 return (struct list_head *)(val & ~RB_FLAG_MASK);
1229 * rb_is_head_page - test if the given page is the head page
1231 * Because the reader may move the head_page pointer, we can
1232 * not trust what the head page is (it may be pointing to
1233 * the reader page). But if the next page is a header page,
1234 * its flags will be non zero.
1237 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1241 val = (unsigned long)list->next;
1243 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1244 return RB_PAGE_MOVED;
1246 return val & RB_FLAG_MASK;
1252 * The unique thing about the reader page, is that, if the
1253 * writer is ever on it, the previous pointer never points
1254 * back to the reader page.
1256 static bool rb_is_reader_page(struct buffer_page *page)
1258 struct list_head *list = page->list.prev;
1260 return rb_list_head(list->next) != &page->list;
1264 * rb_set_list_to_head - set a list_head to be pointing to head.
1266 static void rb_set_list_to_head(struct list_head *list)
1270 ptr = (unsigned long *)&list->next;
1271 *ptr |= RB_PAGE_HEAD;
1272 *ptr &= ~RB_PAGE_UPDATE;
1276 * rb_head_page_activate - sets up head page
1278 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1280 struct buffer_page *head;
1282 head = cpu_buffer->head_page;
1287 * Set the previous list pointer to have the HEAD flag.
1289 rb_set_list_to_head(head->list.prev);
1292 static void rb_list_head_clear(struct list_head *list)
1294 unsigned long *ptr = (unsigned long *)&list->next;
1296 *ptr &= ~RB_FLAG_MASK;
1300 * rb_head_page_deactivate - clears head page ptr (for free list)
1303 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1305 struct list_head *hd;
1307 /* Go through the whole list and clear any pointers found. */
1308 rb_list_head_clear(cpu_buffer->pages);
1310 list_for_each(hd, cpu_buffer->pages)
1311 rb_list_head_clear(hd);
1314 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1315 struct buffer_page *head,
1316 struct buffer_page *prev,
1317 int old_flag, int new_flag)
1319 struct list_head *list;
1320 unsigned long val = (unsigned long)&head->list;
1325 val &= ~RB_FLAG_MASK;
1327 ret = cmpxchg((unsigned long *)&list->next,
1328 val | old_flag, val | new_flag);
1330 /* check if the reader took the page */
1331 if ((ret & ~RB_FLAG_MASK) != val)
1332 return RB_PAGE_MOVED;
1334 return ret & RB_FLAG_MASK;
1337 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1338 struct buffer_page *head,
1339 struct buffer_page *prev,
1342 return rb_head_page_set(cpu_buffer, head, prev,
1343 old_flag, RB_PAGE_UPDATE);
1346 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1347 struct buffer_page *head,
1348 struct buffer_page *prev,
1351 return rb_head_page_set(cpu_buffer, head, prev,
1352 old_flag, RB_PAGE_HEAD);
1355 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1356 struct buffer_page *head,
1357 struct buffer_page *prev,
1360 return rb_head_page_set(cpu_buffer, head, prev,
1361 old_flag, RB_PAGE_NORMAL);
1364 static inline void rb_inc_page(struct buffer_page **bpage)
1366 struct list_head *p = rb_list_head((*bpage)->list.next);
1368 *bpage = list_entry(p, struct buffer_page, list);
1371 static struct buffer_page *
1372 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1374 struct buffer_page *head;
1375 struct buffer_page *page;
1376 struct list_head *list;
1379 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1383 list = cpu_buffer->pages;
1384 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1387 page = head = cpu_buffer->head_page;
1389 * It is possible that the writer moves the header behind
1390 * where we started, and we miss in one loop.
1391 * A second loop should grab the header, but we'll do
1392 * three loops just because I'm paranoid.
1394 for (i = 0; i < 3; i++) {
1396 if (rb_is_head_page(page, page->list.prev)) {
1397 cpu_buffer->head_page = page;
1401 } while (page != head);
1404 RB_WARN_ON(cpu_buffer, 1);
1409 static int rb_head_page_replace(struct buffer_page *old,
1410 struct buffer_page *new)
1412 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1416 val = *ptr & ~RB_FLAG_MASK;
1417 val |= RB_PAGE_HEAD;
1419 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1425 * rb_tail_page_update - move the tail page forward
1427 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1428 struct buffer_page *tail_page,
1429 struct buffer_page *next_page)
1431 unsigned long old_entries;
1432 unsigned long old_write;
1435 * The tail page now needs to be moved forward.
1437 * We need to reset the tail page, but without messing
1438 * with possible erasing of data brought in by interrupts
1439 * that have moved the tail page and are currently on it.
1441 * We add a counter to the write field to denote this.
1443 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1444 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1446 local_inc(&cpu_buffer->pages_touched);
1448 * Just make sure we have seen our old_write and synchronize
1449 * with any interrupts that come in.
1454 * If the tail page is still the same as what we think
1455 * it is, then it is up to us to update the tail
1458 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1459 /* Zero the write counter */
1460 unsigned long val = old_write & ~RB_WRITE_MASK;
1461 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1464 * This will only succeed if an interrupt did
1465 * not come in and change it. In which case, we
1466 * do not want to modify it.
1468 * We add (void) to let the compiler know that we do not care
1469 * about the return value of these functions. We use the
1470 * cmpxchg to only update if an interrupt did not already
1471 * do it for us. If the cmpxchg fails, we don't care.
1473 (void)local_cmpxchg(&next_page->write, old_write, val);
1474 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1477 * No need to worry about races with clearing out the commit.
1478 * it only can increment when a commit takes place. But that
1479 * only happens in the outer most nested commit.
1481 local_set(&next_page->page->commit, 0);
1483 /* Again, either we update tail_page or an interrupt does */
1484 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1488 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1489 struct buffer_page *bpage)
1491 unsigned long val = (unsigned long)bpage;
1493 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1500 * rb_check_list - make sure a pointer to a list has the last bits zero
1502 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1503 struct list_head *list)
1505 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1507 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1513 * rb_check_pages - integrity check of buffer pages
1514 * @cpu_buffer: CPU buffer with pages to test
1516 * As a safety measure we check to make sure the data pages have not
1519 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1521 struct list_head *head = cpu_buffer->pages;
1522 struct buffer_page *bpage, *tmp;
1524 /* Reset the head page if it exists */
1525 if (cpu_buffer->head_page)
1526 rb_set_head_page(cpu_buffer);
1528 rb_head_page_deactivate(cpu_buffer);
1530 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1532 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1535 if (rb_check_list(cpu_buffer, head))
1538 list_for_each_entry_safe(bpage, tmp, head, list) {
1539 if (RB_WARN_ON(cpu_buffer,
1540 bpage->list.next->prev != &bpage->list))
1542 if (RB_WARN_ON(cpu_buffer,
1543 bpage->list.prev->next != &bpage->list))
1545 if (rb_check_list(cpu_buffer, &bpage->list))
1549 rb_head_page_activate(cpu_buffer);
1554 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1555 long nr_pages, struct list_head *pages)
1557 struct buffer_page *bpage, *tmp;
1558 bool user_thread = current->mm != NULL;
1563 * Check if the available memory is there first.
1564 * Note, si_mem_available() only gives us a rough estimate of available
1565 * memory. It may not be accurate. But we don't care, we just want
1566 * to prevent doing any allocation when it is obvious that it is
1567 * not going to succeed.
1569 i = si_mem_available();
1574 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1575 * gracefully without invoking oom-killer and the system is not
1578 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1581 * If a user thread allocates too much, and si_mem_available()
1582 * reports there's enough memory, even though there is not.
1583 * Make sure the OOM killer kills this thread. This can happen
1584 * even with RETRY_MAYFAIL because another task may be doing
1585 * an allocation after this task has taken all memory.
1586 * This is the task the OOM killer needs to take out during this
1587 * loop, even if it was triggered by an allocation somewhere else.
1590 set_current_oom_origin();
1591 for (i = 0; i < nr_pages; i++) {
1594 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1595 mflags, cpu_to_node(cpu_buffer->cpu));
1599 rb_check_bpage(cpu_buffer, bpage);
1601 list_add(&bpage->list, pages);
1603 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1606 bpage->page = page_address(page);
1607 rb_init_page(bpage->page);
1609 if (user_thread && fatal_signal_pending(current))
1613 clear_current_oom_origin();
1618 list_for_each_entry_safe(bpage, tmp, pages, list) {
1619 list_del_init(&bpage->list);
1620 free_buffer_page(bpage);
1623 clear_current_oom_origin();
1628 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1629 unsigned long nr_pages)
1635 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1639 * The ring buffer page list is a circular list that does not
1640 * start and end with a list head. All page list items point to
1643 cpu_buffer->pages = pages.next;
1646 cpu_buffer->nr_pages = nr_pages;
1648 rb_check_pages(cpu_buffer);
1653 static struct ring_buffer_per_cpu *
1654 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1656 struct ring_buffer_per_cpu *cpu_buffer;
1657 struct buffer_page *bpage;
1661 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1662 GFP_KERNEL, cpu_to_node(cpu));
1666 cpu_buffer->cpu = cpu;
1667 cpu_buffer->buffer = buffer;
1668 raw_spin_lock_init(&cpu_buffer->reader_lock);
1669 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1670 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1671 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1672 init_completion(&cpu_buffer->update_done);
1673 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1674 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1675 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1677 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1678 GFP_KERNEL, cpu_to_node(cpu));
1680 goto fail_free_buffer;
1682 rb_check_bpage(cpu_buffer, bpage);
1684 cpu_buffer->reader_page = bpage;
1685 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1687 goto fail_free_reader;
1688 bpage->page = page_address(page);
1689 rb_init_page(bpage->page);
1691 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1692 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1694 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1696 goto fail_free_reader;
1698 cpu_buffer->head_page
1699 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1700 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1702 rb_head_page_activate(cpu_buffer);
1707 free_buffer_page(cpu_buffer->reader_page);
1714 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1716 struct list_head *head = cpu_buffer->pages;
1717 struct buffer_page *bpage, *tmp;
1719 free_buffer_page(cpu_buffer->reader_page);
1721 rb_head_page_deactivate(cpu_buffer);
1724 list_for_each_entry_safe(bpage, tmp, head, list) {
1725 list_del_init(&bpage->list);
1726 free_buffer_page(bpage);
1728 bpage = list_entry(head, struct buffer_page, list);
1729 free_buffer_page(bpage);
1736 * __ring_buffer_alloc - allocate a new ring_buffer
1737 * @size: the size in bytes per cpu that is needed.
1738 * @flags: attributes to set for the ring buffer.
1739 * @key: ring buffer reader_lock_key.
1741 * Currently the only flag that is available is the RB_FL_OVERWRITE
1742 * flag. This flag means that the buffer will overwrite old data
1743 * when the buffer wraps. If this flag is not set, the buffer will
1744 * drop data when the tail hits the head.
1746 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1747 struct lock_class_key *key)
1749 struct trace_buffer *buffer;
1755 /* keep it in its own cache line */
1756 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1761 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1762 goto fail_free_buffer;
1764 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1765 buffer->flags = flags;
1766 buffer->clock = trace_clock_local;
1767 buffer->reader_lock_key = key;
1769 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1770 init_waitqueue_head(&buffer->irq_work.waiters);
1772 /* need at least two pages */
1776 buffer->cpus = nr_cpu_ids;
1778 bsize = sizeof(void *) * nr_cpu_ids;
1779 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1781 if (!buffer->buffers)
1782 goto fail_free_cpumask;
1784 cpu = raw_smp_processor_id();
1785 cpumask_set_cpu(cpu, buffer->cpumask);
1786 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1787 if (!buffer->buffers[cpu])
1788 goto fail_free_buffers;
1790 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1792 goto fail_free_buffers;
1794 mutex_init(&buffer->mutex);
1799 for_each_buffer_cpu(buffer, cpu) {
1800 if (buffer->buffers[cpu])
1801 rb_free_cpu_buffer(buffer->buffers[cpu]);
1803 kfree(buffer->buffers);
1806 free_cpumask_var(buffer->cpumask);
1812 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1815 * ring_buffer_free - free a ring buffer.
1816 * @buffer: the buffer to free.
1819 ring_buffer_free(struct trace_buffer *buffer)
1823 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1825 for_each_buffer_cpu(buffer, cpu)
1826 rb_free_cpu_buffer(buffer->buffers[cpu]);
1828 kfree(buffer->buffers);
1829 free_cpumask_var(buffer->cpumask);
1833 EXPORT_SYMBOL_GPL(ring_buffer_free);
1835 void ring_buffer_set_clock(struct trace_buffer *buffer,
1838 buffer->clock = clock;
1841 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1843 buffer->time_stamp_abs = abs;
1846 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1848 return buffer->time_stamp_abs;
1851 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1853 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1855 return local_read(&bpage->entries) & RB_WRITE_MASK;
1858 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1860 return local_read(&bpage->write) & RB_WRITE_MASK;
1864 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1866 struct list_head *tail_page, *to_remove, *next_page;
1867 struct buffer_page *to_remove_page, *tmp_iter_page;
1868 struct buffer_page *last_page, *first_page;
1869 unsigned long nr_removed;
1870 unsigned long head_bit;
1875 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1876 atomic_inc(&cpu_buffer->record_disabled);
1878 * We don't race with the readers since we have acquired the reader
1879 * lock. We also don't race with writers after disabling recording.
1880 * This makes it easy to figure out the first and the last page to be
1881 * removed from the list. We unlink all the pages in between including
1882 * the first and last pages. This is done in a busy loop so that we
1883 * lose the least number of traces.
1884 * The pages are freed after we restart recording and unlock readers.
1886 tail_page = &cpu_buffer->tail_page->list;
1889 * tail page might be on reader page, we remove the next page
1890 * from the ring buffer
1892 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1893 tail_page = rb_list_head(tail_page->next);
1894 to_remove = tail_page;
1896 /* start of pages to remove */
1897 first_page = list_entry(rb_list_head(to_remove->next),
1898 struct buffer_page, list);
1900 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1901 to_remove = rb_list_head(to_remove)->next;
1902 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1905 next_page = rb_list_head(to_remove)->next;
1908 * Now we remove all pages between tail_page and next_page.
1909 * Make sure that we have head_bit value preserved for the
1912 tail_page->next = (struct list_head *)((unsigned long)next_page |
1914 next_page = rb_list_head(next_page);
1915 next_page->prev = tail_page;
1917 /* make sure pages points to a valid page in the ring buffer */
1918 cpu_buffer->pages = next_page;
1920 /* update head page */
1922 cpu_buffer->head_page = list_entry(next_page,
1923 struct buffer_page, list);
1926 * change read pointer to make sure any read iterators reset
1929 cpu_buffer->read = 0;
1931 /* pages are removed, resume tracing and then free the pages */
1932 atomic_dec(&cpu_buffer->record_disabled);
1933 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1935 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1937 /* last buffer page to remove */
1938 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1940 tmp_iter_page = first_page;
1945 to_remove_page = tmp_iter_page;
1946 rb_inc_page(&tmp_iter_page);
1948 /* update the counters */
1949 page_entries = rb_page_entries(to_remove_page);
1952 * If something was added to this page, it was full
1953 * since it is not the tail page. So we deduct the
1954 * bytes consumed in ring buffer from here.
1955 * Increment overrun to account for the lost events.
1957 local_add(page_entries, &cpu_buffer->overrun);
1958 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1962 * We have already removed references to this list item, just
1963 * free up the buffer_page and its page
1965 free_buffer_page(to_remove_page);
1968 } while (to_remove_page != last_page);
1970 RB_WARN_ON(cpu_buffer, nr_removed);
1972 return nr_removed == 0;
1976 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1978 struct list_head *pages = &cpu_buffer->new_pages;
1979 int retries, success;
1981 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1983 * We are holding the reader lock, so the reader page won't be swapped
1984 * in the ring buffer. Now we are racing with the writer trying to
1985 * move head page and the tail page.
1986 * We are going to adapt the reader page update process where:
1987 * 1. We first splice the start and end of list of new pages between
1988 * the head page and its previous page.
1989 * 2. We cmpxchg the prev_page->next to point from head page to the
1990 * start of new pages list.
1991 * 3. Finally, we update the head->prev to the end of new list.
1993 * We will try this process 10 times, to make sure that we don't keep
1999 struct list_head *head_page, *prev_page, *r;
2000 struct list_head *last_page, *first_page;
2001 struct list_head *head_page_with_bit;
2003 head_page = &rb_set_head_page(cpu_buffer)->list;
2006 prev_page = head_page->prev;
2008 first_page = pages->next;
2009 last_page = pages->prev;
2011 head_page_with_bit = (struct list_head *)
2012 ((unsigned long)head_page | RB_PAGE_HEAD);
2014 last_page->next = head_page_with_bit;
2015 first_page->prev = prev_page;
2017 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2019 if (r == head_page_with_bit) {
2021 * yay, we replaced the page pointer to our new list,
2022 * now, we just have to update to head page's prev
2023 * pointer to point to end of list
2025 head_page->prev = last_page;
2032 INIT_LIST_HEAD(pages);
2034 * If we weren't successful in adding in new pages, warn and stop
2037 RB_WARN_ON(cpu_buffer, !success);
2038 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2040 /* free pages if they weren't inserted */
2042 struct buffer_page *bpage, *tmp;
2043 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2045 list_del_init(&bpage->list);
2046 free_buffer_page(bpage);
2052 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2056 if (cpu_buffer->nr_pages_to_update > 0)
2057 success = rb_insert_pages(cpu_buffer);
2059 success = rb_remove_pages(cpu_buffer,
2060 -cpu_buffer->nr_pages_to_update);
2063 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2066 static void update_pages_handler(struct work_struct *work)
2068 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2069 struct ring_buffer_per_cpu, update_pages_work);
2070 rb_update_pages(cpu_buffer);
2071 complete(&cpu_buffer->update_done);
2075 * ring_buffer_resize - resize the ring buffer
2076 * @buffer: the buffer to resize.
2077 * @size: the new size.
2078 * @cpu_id: the cpu buffer to resize
2080 * Minimum size is 2 * BUF_PAGE_SIZE.
2082 * Returns 0 on success and < 0 on failure.
2084 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2087 struct ring_buffer_per_cpu *cpu_buffer;
2088 unsigned long nr_pages;
2092 * Always succeed at resizing a non-existent buffer:
2097 /* Make sure the requested buffer exists */
2098 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2099 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2102 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2104 /* we need a minimum of two pages */
2108 /* prevent another thread from changing buffer sizes */
2109 mutex_lock(&buffer->mutex);
2112 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2114 * Don't succeed if resizing is disabled, as a reader might be
2115 * manipulating the ring buffer and is expecting a sane state while
2118 for_each_buffer_cpu(buffer, cpu) {
2119 cpu_buffer = buffer->buffers[cpu];
2120 if (atomic_read(&cpu_buffer->resize_disabled)) {
2122 goto out_err_unlock;
2126 /* calculate the pages to update */
2127 for_each_buffer_cpu(buffer, cpu) {
2128 cpu_buffer = buffer->buffers[cpu];
2130 cpu_buffer->nr_pages_to_update = nr_pages -
2131 cpu_buffer->nr_pages;
2133 * nothing more to do for removing pages or no update
2135 if (cpu_buffer->nr_pages_to_update <= 0)
2138 * to add pages, make sure all new pages can be
2139 * allocated without receiving ENOMEM
2141 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2142 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2143 &cpu_buffer->new_pages)) {
2144 /* not enough memory for new pages */
2152 * Fire off all the required work handlers
2153 * We can't schedule on offline CPUs, but it's not necessary
2154 * since we can change their buffer sizes without any race.
2156 for_each_buffer_cpu(buffer, cpu) {
2157 cpu_buffer = buffer->buffers[cpu];
2158 if (!cpu_buffer->nr_pages_to_update)
2161 /* Can't run something on an offline CPU. */
2162 if (!cpu_online(cpu)) {
2163 rb_update_pages(cpu_buffer);
2164 cpu_buffer->nr_pages_to_update = 0;
2166 schedule_work_on(cpu,
2167 &cpu_buffer->update_pages_work);
2171 /* wait for all the updates to complete */
2172 for_each_buffer_cpu(buffer, cpu) {
2173 cpu_buffer = buffer->buffers[cpu];
2174 if (!cpu_buffer->nr_pages_to_update)
2177 if (cpu_online(cpu))
2178 wait_for_completion(&cpu_buffer->update_done);
2179 cpu_buffer->nr_pages_to_update = 0;
2184 cpu_buffer = buffer->buffers[cpu_id];
2186 if (nr_pages == cpu_buffer->nr_pages)
2190 * Don't succeed if resizing is disabled, as a reader might be
2191 * manipulating the ring buffer and is expecting a sane state while
2194 if (atomic_read(&cpu_buffer->resize_disabled)) {
2196 goto out_err_unlock;
2199 cpu_buffer->nr_pages_to_update = nr_pages -
2200 cpu_buffer->nr_pages;
2202 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2203 if (cpu_buffer->nr_pages_to_update > 0 &&
2204 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2205 &cpu_buffer->new_pages)) {
2212 /* Can't run something on an offline CPU. */
2213 if (!cpu_online(cpu_id))
2214 rb_update_pages(cpu_buffer);
2216 schedule_work_on(cpu_id,
2217 &cpu_buffer->update_pages_work);
2218 wait_for_completion(&cpu_buffer->update_done);
2221 cpu_buffer->nr_pages_to_update = 0;
2227 * The ring buffer resize can happen with the ring buffer
2228 * enabled, so that the update disturbs the tracing as little
2229 * as possible. But if the buffer is disabled, we do not need
2230 * to worry about that, and we can take the time to verify
2231 * that the buffer is not corrupt.
2233 if (atomic_read(&buffer->record_disabled)) {
2234 atomic_inc(&buffer->record_disabled);
2236 * Even though the buffer was disabled, we must make sure
2237 * that it is truly disabled before calling rb_check_pages.
2238 * There could have been a race between checking
2239 * record_disable and incrementing it.
2242 for_each_buffer_cpu(buffer, cpu) {
2243 cpu_buffer = buffer->buffers[cpu];
2244 rb_check_pages(cpu_buffer);
2246 atomic_dec(&buffer->record_disabled);
2249 mutex_unlock(&buffer->mutex);
2253 for_each_buffer_cpu(buffer, cpu) {
2254 struct buffer_page *bpage, *tmp;
2256 cpu_buffer = buffer->buffers[cpu];
2257 cpu_buffer->nr_pages_to_update = 0;
2259 if (list_empty(&cpu_buffer->new_pages))
2262 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2264 list_del_init(&bpage->list);
2265 free_buffer_page(bpage);
2269 mutex_unlock(&buffer->mutex);
2272 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2274 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2276 mutex_lock(&buffer->mutex);
2278 buffer->flags |= RB_FL_OVERWRITE;
2280 buffer->flags &= ~RB_FL_OVERWRITE;
2281 mutex_unlock(&buffer->mutex);
2283 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2285 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2287 return bpage->page->data + index;
2290 static __always_inline struct ring_buffer_event *
2291 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2293 return __rb_page_index(cpu_buffer->reader_page,
2294 cpu_buffer->reader_page->read);
2297 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2299 return local_read(&bpage->page->commit);
2302 static struct ring_buffer_event *
2303 rb_iter_head_event(struct ring_buffer_iter *iter)
2305 struct ring_buffer_event *event;
2306 struct buffer_page *iter_head_page = iter->head_page;
2307 unsigned long commit;
2310 if (iter->head != iter->next_event)
2314 * When the writer goes across pages, it issues a cmpxchg which
2315 * is a mb(), which will synchronize with the rmb here.
2316 * (see rb_tail_page_update() and __rb_reserve_next())
2318 commit = rb_page_commit(iter_head_page);
2320 event = __rb_page_index(iter_head_page, iter->head);
2321 length = rb_event_length(event);
2324 * READ_ONCE() doesn't work on functions and we don't want the
2325 * compiler doing any crazy optimizations with length.
2329 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2330 /* Writer corrupted the read? */
2333 memcpy(iter->event, event, length);
2335 * If the page stamp is still the same after this rmb() then the
2336 * event was safely copied without the writer entering the page.
2340 /* Make sure the page didn't change since we read this */
2341 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2342 commit > rb_page_commit(iter_head_page))
2345 iter->next_event = iter->head + length;
2348 /* Reset to the beginning */
2349 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2351 iter->next_event = 0;
2352 iter->missed_events = 1;
2356 /* Size is determined by what has been committed */
2357 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2359 return rb_page_commit(bpage);
2362 static __always_inline unsigned
2363 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2365 return rb_page_commit(cpu_buffer->commit_page);
2368 static __always_inline unsigned
2369 rb_event_index(struct ring_buffer_event *event)
2371 unsigned long addr = (unsigned long)event;
2373 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2376 static void rb_inc_iter(struct ring_buffer_iter *iter)
2378 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2381 * The iterator could be on the reader page (it starts there).
2382 * But the head could have moved, since the reader was
2383 * found. Check for this case and assign the iterator
2384 * to the head page instead of next.
2386 if (iter->head_page == cpu_buffer->reader_page)
2387 iter->head_page = rb_set_head_page(cpu_buffer);
2389 rb_inc_page(&iter->head_page);
2391 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2393 iter->next_event = 0;
2397 * rb_handle_head_page - writer hit the head page
2399 * Returns: +1 to retry page
2404 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2405 struct buffer_page *tail_page,
2406 struct buffer_page *next_page)
2408 struct buffer_page *new_head;
2413 entries = rb_page_entries(next_page);
2416 * The hard part is here. We need to move the head
2417 * forward, and protect against both readers on
2418 * other CPUs and writers coming in via interrupts.
2420 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2424 * type can be one of four:
2425 * NORMAL - an interrupt already moved it for us
2426 * HEAD - we are the first to get here.
2427 * UPDATE - we are the interrupt interrupting
2429 * MOVED - a reader on another CPU moved the next
2430 * pointer to its reader page. Give up
2437 * We changed the head to UPDATE, thus
2438 * it is our responsibility to update
2441 local_add(entries, &cpu_buffer->overrun);
2442 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2445 * The entries will be zeroed out when we move the
2449 /* still more to do */
2452 case RB_PAGE_UPDATE:
2454 * This is an interrupt that interrupt the
2455 * previous update. Still more to do.
2458 case RB_PAGE_NORMAL:
2460 * An interrupt came in before the update
2461 * and processed this for us.
2462 * Nothing left to do.
2467 * The reader is on another CPU and just did
2468 * a swap with our next_page.
2473 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2478 * Now that we are here, the old head pointer is
2479 * set to UPDATE. This will keep the reader from
2480 * swapping the head page with the reader page.
2481 * The reader (on another CPU) will spin till
2484 * We just need to protect against interrupts
2485 * doing the job. We will set the next pointer
2486 * to HEAD. After that, we set the old pointer
2487 * to NORMAL, but only if it was HEAD before.
2488 * otherwise we are an interrupt, and only
2489 * want the outer most commit to reset it.
2491 new_head = next_page;
2492 rb_inc_page(&new_head);
2494 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2498 * Valid returns are:
2499 * HEAD - an interrupt came in and already set it.
2500 * NORMAL - One of two things:
2501 * 1) We really set it.
2502 * 2) A bunch of interrupts came in and moved
2503 * the page forward again.
2507 case RB_PAGE_NORMAL:
2511 RB_WARN_ON(cpu_buffer, 1);
2516 * It is possible that an interrupt came in,
2517 * set the head up, then more interrupts came in
2518 * and moved it again. When we get back here,
2519 * the page would have been set to NORMAL but we
2520 * just set it back to HEAD.
2522 * How do you detect this? Well, if that happened
2523 * the tail page would have moved.
2525 if (ret == RB_PAGE_NORMAL) {
2526 struct buffer_page *buffer_tail_page;
2528 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2530 * If the tail had moved passed next, then we need
2531 * to reset the pointer.
2533 if (buffer_tail_page != tail_page &&
2534 buffer_tail_page != next_page)
2535 rb_head_page_set_normal(cpu_buffer, new_head,
2541 * If this was the outer most commit (the one that
2542 * changed the original pointer from HEAD to UPDATE),
2543 * then it is up to us to reset it to NORMAL.
2545 if (type == RB_PAGE_HEAD) {
2546 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2549 if (RB_WARN_ON(cpu_buffer,
2550 ret != RB_PAGE_UPDATE))
2558 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2559 unsigned long tail, struct rb_event_info *info)
2561 struct buffer_page *tail_page = info->tail_page;
2562 struct ring_buffer_event *event;
2563 unsigned long length = info->length;
2566 * Only the event that crossed the page boundary
2567 * must fill the old tail_page with padding.
2569 if (tail >= BUF_PAGE_SIZE) {
2571 * If the page was filled, then we still need
2572 * to update the real_end. Reset it to zero
2573 * and the reader will ignore it.
2575 if (tail == BUF_PAGE_SIZE)
2576 tail_page->real_end = 0;
2578 local_sub(length, &tail_page->write);
2582 event = __rb_page_index(tail_page, tail);
2584 /* account for padding bytes */
2585 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2588 * Save the original length to the meta data.
2589 * This will be used by the reader to add lost event
2592 tail_page->real_end = tail;
2595 * If this event is bigger than the minimum size, then
2596 * we need to be careful that we don't subtract the
2597 * write counter enough to allow another writer to slip
2599 * We put in a discarded commit instead, to make sure
2600 * that this space is not used again.
2602 * If we are less than the minimum size, we don't need to
2605 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2606 /* No room for any events */
2608 /* Mark the rest of the page with padding */
2609 rb_event_set_padding(event);
2611 /* Set the write back to the previous setting */
2612 local_sub(length, &tail_page->write);
2616 /* Put in a discarded event */
2617 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2618 event->type_len = RINGBUF_TYPE_PADDING;
2619 /* time delta must be non zero */
2620 event->time_delta = 1;
2622 /* Set write to end of buffer */
2623 length = (tail + length) - BUF_PAGE_SIZE;
2624 local_sub(length, &tail_page->write);
2627 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2630 * This is the slow path, force gcc not to inline it.
2632 static noinline struct ring_buffer_event *
2633 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2634 unsigned long tail, struct rb_event_info *info)
2636 struct buffer_page *tail_page = info->tail_page;
2637 struct buffer_page *commit_page = cpu_buffer->commit_page;
2638 struct trace_buffer *buffer = cpu_buffer->buffer;
2639 struct buffer_page *next_page;
2642 next_page = tail_page;
2644 rb_inc_page(&next_page);
2647 * If for some reason, we had an interrupt storm that made
2648 * it all the way around the buffer, bail, and warn
2651 if (unlikely(next_page == commit_page)) {
2652 local_inc(&cpu_buffer->commit_overrun);
2657 * This is where the fun begins!
2659 * We are fighting against races between a reader that
2660 * could be on another CPU trying to swap its reader
2661 * page with the buffer head.
2663 * We are also fighting against interrupts coming in and
2664 * moving the head or tail on us as well.
2666 * If the next page is the head page then we have filled
2667 * the buffer, unless the commit page is still on the
2670 if (rb_is_head_page(next_page, &tail_page->list)) {
2673 * If the commit is not on the reader page, then
2674 * move the header page.
2676 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2678 * If we are not in overwrite mode,
2679 * this is easy, just stop here.
2681 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2682 local_inc(&cpu_buffer->dropped_events);
2686 ret = rb_handle_head_page(cpu_buffer,
2695 * We need to be careful here too. The
2696 * commit page could still be on the reader
2697 * page. We could have a small buffer, and
2698 * have filled up the buffer with events
2699 * from interrupts and such, and wrapped.
2701 * Note, if the tail page is also on the
2702 * reader_page, we let it move out.
2704 if (unlikely((cpu_buffer->commit_page !=
2705 cpu_buffer->tail_page) &&
2706 (cpu_buffer->commit_page ==
2707 cpu_buffer->reader_page))) {
2708 local_inc(&cpu_buffer->commit_overrun);
2714 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2718 rb_reset_tail(cpu_buffer, tail, info);
2720 /* Commit what we have for now. */
2721 rb_end_commit(cpu_buffer);
2722 /* rb_end_commit() decs committing */
2723 local_inc(&cpu_buffer->committing);
2725 /* fail and let the caller try again */
2726 return ERR_PTR(-EAGAIN);
2730 rb_reset_tail(cpu_buffer, tail, info);
2736 static struct ring_buffer_event *
2737 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2740 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2742 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2744 /* Not the first event on the page, or not delta? */
2745 if (abs || rb_event_index(event)) {
2746 event->time_delta = delta & TS_MASK;
2747 event->array[0] = delta >> TS_SHIFT;
2749 /* nope, just zero it */
2750 event->time_delta = 0;
2751 event->array[0] = 0;
2754 return skip_time_extend(event);
2757 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2758 static inline bool sched_clock_stable(void)
2765 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2766 struct rb_event_info *info)
2770 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2771 (unsigned long long)info->delta,
2772 (unsigned long long)info->ts,
2773 (unsigned long long)info->before,
2774 (unsigned long long)info->after,
2775 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2776 sched_clock_stable() ? "" :
2777 "If you just came from a suspend/resume,\n"
2778 "please switch to the trace global clock:\n"
2779 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2780 "or add trace_clock=global to the kernel command line\n");
2783 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2784 struct ring_buffer_event **event,
2785 struct rb_event_info *info,
2787 unsigned int *length)
2789 bool abs = info->add_timestamp &
2790 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2792 if (unlikely(info->delta > (1ULL << 59))) {
2794 * Some timers can use more than 59 bits, and when a timestamp
2795 * is added to the buffer, it will lose those bits.
2797 if (abs && (info->ts & TS_MSB)) {
2798 info->delta &= ABS_TS_MASK;
2800 /* did the clock go backwards */
2801 } else if (info->before == info->after && info->before > info->ts) {
2802 /* not interrupted */
2806 * This is possible with a recalibrating of the TSC.
2807 * Do not produce a call stack, but just report it.
2811 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2812 info->before, info->ts);
2815 rb_check_timestamp(cpu_buffer, info);
2819 *event = rb_add_time_stamp(*event, info->delta, abs);
2820 *length -= RB_LEN_TIME_EXTEND;
2825 * rb_update_event - update event type and data
2826 * @cpu_buffer: The per cpu buffer of the @event
2827 * @event: the event to update
2828 * @info: The info to update the @event with (contains length and delta)
2830 * Update the type and data fields of the @event. The length
2831 * is the actual size that is written to the ring buffer,
2832 * and with this, we can determine what to place into the
2836 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2837 struct ring_buffer_event *event,
2838 struct rb_event_info *info)
2840 unsigned length = info->length;
2841 u64 delta = info->delta;
2842 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2844 if (!WARN_ON_ONCE(nest >= MAX_NEST))
2845 cpu_buffer->event_stamp[nest] = info->ts;
2848 * If we need to add a timestamp, then we
2849 * add it to the start of the reserved space.
2851 if (unlikely(info->add_timestamp))
2852 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2854 event->time_delta = delta;
2855 length -= RB_EVNT_HDR_SIZE;
2856 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2857 event->type_len = 0;
2858 event->array[0] = length;
2860 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2863 static unsigned rb_calculate_event_length(unsigned length)
2865 struct ring_buffer_event event; /* Used only for sizeof array */
2867 /* zero length can cause confusions */
2871 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2872 length += sizeof(event.array[0]);
2874 length += RB_EVNT_HDR_SIZE;
2875 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2878 * In case the time delta is larger than the 27 bits for it
2879 * in the header, we need to add a timestamp. If another
2880 * event comes in when trying to discard this one to increase
2881 * the length, then the timestamp will be added in the allocated
2882 * space of this event. If length is bigger than the size needed
2883 * for the TIME_EXTEND, then padding has to be used. The events
2884 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2885 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2886 * As length is a multiple of 4, we only need to worry if it
2887 * is 12 (RB_LEN_TIME_EXTEND + 4).
2889 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2890 length += RB_ALIGNMENT;
2895 static u64 rb_time_delta(struct ring_buffer_event *event)
2897 switch (event->type_len) {
2898 case RINGBUF_TYPE_PADDING:
2901 case RINGBUF_TYPE_TIME_EXTEND:
2902 return rb_event_time_stamp(event);
2904 case RINGBUF_TYPE_TIME_STAMP:
2907 case RINGBUF_TYPE_DATA:
2908 return event->time_delta;
2915 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2916 struct ring_buffer_event *event)
2918 unsigned long new_index, old_index;
2919 struct buffer_page *bpage;
2920 unsigned long index;
2925 new_index = rb_event_index(event);
2926 old_index = new_index + rb_event_ts_length(event);
2927 addr = (unsigned long)event;
2930 bpage = READ_ONCE(cpu_buffer->tail_page);
2932 delta = rb_time_delta(event);
2934 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2937 /* Make sure the write stamp is read before testing the location */
2940 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2941 unsigned long write_mask =
2942 local_read(&bpage->write) & ~RB_WRITE_MASK;
2943 unsigned long event_length = rb_event_length(event);
2945 /* Something came in, can't discard */
2946 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2947 write_stamp, write_stamp - delta))
2951 * It's possible that the event time delta is zero
2952 * (has the same time stamp as the previous event)
2953 * in which case write_stamp and before_stamp could
2954 * be the same. In such a case, force before_stamp
2955 * to be different than write_stamp. It doesn't
2956 * matter what it is, as long as its different.
2959 rb_time_set(&cpu_buffer->before_stamp, 0);
2962 * If an event were to come in now, it would see that the
2963 * write_stamp and the before_stamp are different, and assume
2964 * that this event just added itself before updating
2965 * the write stamp. The interrupting event will fix the
2966 * write stamp for us, and use the before stamp as its delta.
2970 * This is on the tail page. It is possible that
2971 * a write could come in and move the tail page
2972 * and write to the next page. That is fine
2973 * because we just shorten what is on this page.
2975 old_index += write_mask;
2976 new_index += write_mask;
2977 index = local_cmpxchg(&bpage->write, old_index, new_index);
2978 if (index == old_index) {
2979 /* update counters */
2980 local_sub(event_length, &cpu_buffer->entries_bytes);
2985 /* could not discard */
2989 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2991 local_inc(&cpu_buffer->committing);
2992 local_inc(&cpu_buffer->commits);
2995 static __always_inline void
2996 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2998 unsigned long max_count;
3001 * We only race with interrupts and NMIs on this CPU.
3002 * If we own the commit event, then we can commit
3003 * all others that interrupted us, since the interruptions
3004 * are in stack format (they finish before they come
3005 * back to us). This allows us to do a simple loop to
3006 * assign the commit to the tail.
3009 max_count = cpu_buffer->nr_pages * 100;
3011 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3012 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3014 if (RB_WARN_ON(cpu_buffer,
3015 rb_is_reader_page(cpu_buffer->tail_page)))
3017 local_set(&cpu_buffer->commit_page->page->commit,
3018 rb_page_write(cpu_buffer->commit_page));
3019 rb_inc_page(&cpu_buffer->commit_page);
3020 /* add barrier to keep gcc from optimizing too much */
3023 while (rb_commit_index(cpu_buffer) !=
3024 rb_page_write(cpu_buffer->commit_page)) {
3026 local_set(&cpu_buffer->commit_page->page->commit,
3027 rb_page_write(cpu_buffer->commit_page));
3028 RB_WARN_ON(cpu_buffer,
3029 local_read(&cpu_buffer->commit_page->page->commit) &
3034 /* again, keep gcc from optimizing */
3038 * If an interrupt came in just after the first while loop
3039 * and pushed the tail page forward, we will be left with
3040 * a dangling commit that will never go forward.
3042 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3046 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3048 unsigned long commits;
3050 if (RB_WARN_ON(cpu_buffer,
3051 !local_read(&cpu_buffer->committing)))
3055 commits = local_read(&cpu_buffer->commits);
3056 /* synchronize with interrupts */
3058 if (local_read(&cpu_buffer->committing) == 1)
3059 rb_set_commit_to_write(cpu_buffer);
3061 local_dec(&cpu_buffer->committing);
3063 /* synchronize with interrupts */
3067 * Need to account for interrupts coming in between the
3068 * updating of the commit page and the clearing of the
3069 * committing counter.
3071 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3072 !local_read(&cpu_buffer->committing)) {
3073 local_inc(&cpu_buffer->committing);
3078 static inline void rb_event_discard(struct ring_buffer_event *event)
3080 if (extended_time(event))
3081 event = skip_time_extend(event);
3083 /* array[0] holds the actual length for the discarded event */
3084 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3085 event->type_len = RINGBUF_TYPE_PADDING;
3086 /* time delta must be non zero */
3087 if (!event->time_delta)
3088 event->time_delta = 1;
3091 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3092 struct ring_buffer_event *event)
3094 local_inc(&cpu_buffer->entries);
3095 rb_end_commit(cpu_buffer);
3098 static __always_inline void
3099 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3105 if (buffer->irq_work.waiters_pending) {
3106 buffer->irq_work.waiters_pending = false;
3107 /* irq_work_queue() supplies it's own memory barriers */
3108 irq_work_queue(&buffer->irq_work.work);
3111 if (cpu_buffer->irq_work.waiters_pending) {
3112 cpu_buffer->irq_work.waiters_pending = false;
3113 /* irq_work_queue() supplies it's own memory barriers */
3114 irq_work_queue(&cpu_buffer->irq_work.work);
3117 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3120 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3123 if (!cpu_buffer->irq_work.full_waiters_pending)
3126 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3128 full = cpu_buffer->shortest_full;
3129 nr_pages = cpu_buffer->nr_pages;
3130 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3131 if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3134 cpu_buffer->irq_work.wakeup_full = true;
3135 cpu_buffer->irq_work.full_waiters_pending = false;
3136 /* irq_work_queue() supplies it's own memory barriers */
3137 irq_work_queue(&cpu_buffer->irq_work.work);
3140 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3141 # define do_ring_buffer_record_recursion() \
3142 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3144 # define do_ring_buffer_record_recursion() do { } while (0)
3148 * The lock and unlock are done within a preempt disable section.
3149 * The current_context per_cpu variable can only be modified
3150 * by the current task between lock and unlock. But it can
3151 * be modified more than once via an interrupt. To pass this
3152 * information from the lock to the unlock without having to
3153 * access the 'in_interrupt()' functions again (which do show
3154 * a bit of overhead in something as critical as function tracing,
3155 * we use a bitmask trick.
3157 * bit 1 = NMI context
3158 * bit 2 = IRQ context
3159 * bit 3 = SoftIRQ context
3160 * bit 4 = normal context.
3162 * This works because this is the order of contexts that can
3163 * preempt other contexts. A SoftIRQ never preempts an IRQ
3166 * When the context is determined, the corresponding bit is
3167 * checked and set (if it was set, then a recursion of that context
3170 * On unlock, we need to clear this bit. To do so, just subtract
3171 * 1 from the current_context and AND it to itself.
3175 * 101 & 100 = 100 (clearing bit zero)
3178 * 1010 & 1001 = 1000 (clearing bit 1)
3180 * The least significant bit can be cleared this way, and it
3181 * just so happens that it is the same bit corresponding to
3182 * the current context.
3184 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3185 * is set when a recursion is detected at the current context, and if
3186 * the TRANSITION bit is already set, it will fail the recursion.
3187 * This is needed because there's a lag between the changing of
3188 * interrupt context and updating the preempt count. In this case,
3189 * a false positive will be found. To handle this, one extra recursion
3190 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3191 * bit is already set, then it is considered a recursion and the function
3192 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3194 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3195 * to be cleared. Even if it wasn't the context that set it. That is,
3196 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3197 * is called before preempt_count() is updated, since the check will
3198 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3199 * NMI then comes in, it will set the NMI bit, but when the NMI code
3200 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3201 * and leave the NMI bit set. But this is fine, because the interrupt
3202 * code that set the TRANSITION bit will then clear the NMI bit when it
3203 * calls trace_recursive_unlock(). If another NMI comes in, it will
3204 * set the TRANSITION bit and continue.
3206 * Note: The TRANSITION bit only handles a single transition between context.
3209 static __always_inline int
3210 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3212 unsigned int val = cpu_buffer->current_context;
3213 int bit = interrupt_context_level();
3215 bit = RB_CTX_NORMAL - bit;
3217 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3219 * It is possible that this was called by transitioning
3220 * between interrupt context, and preempt_count() has not
3221 * been updated yet. In this case, use the TRANSITION bit.
3223 bit = RB_CTX_TRANSITION;
3224 if (val & (1 << (bit + cpu_buffer->nest))) {
3225 do_ring_buffer_record_recursion();
3230 val |= (1 << (bit + cpu_buffer->nest));
3231 cpu_buffer->current_context = val;
3236 static __always_inline void
3237 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3239 cpu_buffer->current_context &=
3240 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3243 /* The recursive locking above uses 5 bits */
3244 #define NESTED_BITS 5
3247 * ring_buffer_nest_start - Allow to trace while nested
3248 * @buffer: The ring buffer to modify
3250 * The ring buffer has a safety mechanism to prevent recursion.
3251 * But there may be a case where a trace needs to be done while
3252 * tracing something else. In this case, calling this function
3253 * will allow this function to nest within a currently active
3254 * ring_buffer_lock_reserve().
3256 * Call this function before calling another ring_buffer_lock_reserve() and
3257 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3259 void ring_buffer_nest_start(struct trace_buffer *buffer)
3261 struct ring_buffer_per_cpu *cpu_buffer;
3264 /* Enabled by ring_buffer_nest_end() */
3265 preempt_disable_notrace();
3266 cpu = raw_smp_processor_id();
3267 cpu_buffer = buffer->buffers[cpu];
3268 /* This is the shift value for the above recursive locking */
3269 cpu_buffer->nest += NESTED_BITS;
3273 * ring_buffer_nest_end - Allow to trace while nested
3274 * @buffer: The ring buffer to modify
3276 * Must be called after ring_buffer_nest_start() and after the
3277 * ring_buffer_unlock_commit().
3279 void ring_buffer_nest_end(struct trace_buffer *buffer)
3281 struct ring_buffer_per_cpu *cpu_buffer;
3284 /* disabled by ring_buffer_nest_start() */
3285 cpu = raw_smp_processor_id();
3286 cpu_buffer = buffer->buffers[cpu];
3287 /* This is the shift value for the above recursive locking */
3288 cpu_buffer->nest -= NESTED_BITS;
3289 preempt_enable_notrace();
3293 * ring_buffer_unlock_commit - commit a reserved
3294 * @buffer: The buffer to commit to
3295 * @event: The event pointer to commit.
3297 * This commits the data to the ring buffer, and releases any locks held.
3299 * Must be paired with ring_buffer_lock_reserve.
3301 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3302 struct ring_buffer_event *event)
3304 struct ring_buffer_per_cpu *cpu_buffer;
3305 int cpu = raw_smp_processor_id();
3307 cpu_buffer = buffer->buffers[cpu];
3309 rb_commit(cpu_buffer, event);
3311 rb_wakeups(buffer, cpu_buffer);
3313 trace_recursive_unlock(cpu_buffer);
3315 preempt_enable_notrace();
3319 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3321 /* Special value to validate all deltas on a page. */
3322 #define CHECK_FULL_PAGE 1L
3324 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3325 static void dump_buffer_page(struct buffer_data_page *bpage,
3326 struct rb_event_info *info,
3329 struct ring_buffer_event *event;
3333 ts = bpage->time_stamp;
3334 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
3336 for (e = 0; e < tail; e += rb_event_length(event)) {
3338 event = (struct ring_buffer_event *)(bpage->data + e);
3340 switch (event->type_len) {
3342 case RINGBUF_TYPE_TIME_EXTEND:
3343 delta = rb_event_time_stamp(event);
3345 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3348 case RINGBUF_TYPE_TIME_STAMP:
3349 delta = rb_event_time_stamp(event);
3350 ts = rb_fix_abs_ts(delta, ts);
3351 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3354 case RINGBUF_TYPE_PADDING:
3355 ts += event->time_delta;
3356 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta);
3359 case RINGBUF_TYPE_DATA:
3360 ts += event->time_delta;
3361 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta);
3370 static DEFINE_PER_CPU(atomic_t, checking);
3371 static atomic_t ts_dump;
3374 * Check if the current event time stamp matches the deltas on
3377 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3378 struct rb_event_info *info,
3381 struct ring_buffer_event *event;
3382 struct buffer_data_page *bpage;
3387 bpage = info->tail_page->page;
3389 if (tail == CHECK_FULL_PAGE) {
3391 tail = local_read(&bpage->commit);
3392 } else if (info->add_timestamp &
3393 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3394 /* Ignore events with absolute time stamps */
3399 * Do not check the first event (skip possible extends too).
3400 * Also do not check if previous events have not been committed.
3402 if (tail <= 8 || tail > local_read(&bpage->commit))
3406 * If this interrupted another event,
3408 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3411 ts = bpage->time_stamp;
3413 for (e = 0; e < tail; e += rb_event_length(event)) {
3415 event = (struct ring_buffer_event *)(bpage->data + e);
3417 switch (event->type_len) {
3419 case RINGBUF_TYPE_TIME_EXTEND:
3420 delta = rb_event_time_stamp(event);
3424 case RINGBUF_TYPE_TIME_STAMP:
3425 delta = rb_event_time_stamp(event);
3426 ts = rb_fix_abs_ts(delta, ts);
3429 case RINGBUF_TYPE_PADDING:
3430 if (event->time_delta == 1)
3433 case RINGBUF_TYPE_DATA:
3434 ts += event->time_delta;
3438 RB_WARN_ON(cpu_buffer, 1);
3441 if ((full && ts > info->ts) ||
3442 (!full && ts + info->delta != info->ts)) {
3443 /* If another report is happening, ignore this one */
3444 if (atomic_inc_return(&ts_dump) != 1) {
3445 atomic_dec(&ts_dump);
3448 atomic_inc(&cpu_buffer->record_disabled);
3449 /* There's some cases in boot up that this can happen */
3450 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3451 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3453 ts + info->delta, info->ts, info->delta,
3454 info->before, info->after,
3455 full ? " (full)" : "");
3456 dump_buffer_page(bpage, info, tail);
3457 atomic_dec(&ts_dump);
3458 /* Do not re-enable checking */
3462 atomic_dec(this_cpu_ptr(&checking));
3465 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3466 struct rb_event_info *info,
3470 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3472 static struct ring_buffer_event *
3473 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3474 struct rb_event_info *info)
3476 struct ring_buffer_event *event;
3477 struct buffer_page *tail_page;
3478 unsigned long tail, write, w;
3482 /* Don't let the compiler play games with cpu_buffer->tail_page */
3483 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3485 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3487 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3488 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3490 info->ts = rb_time_stamp(cpu_buffer->buffer);
3492 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3493 info->delta = info->ts;
3496 * If interrupting an event time update, we may need an
3497 * absolute timestamp.
3498 * Don't bother if this is the start of a new page (w == 0).
3500 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3501 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3502 info->length += RB_LEN_TIME_EXTEND;
3504 info->delta = info->ts - info->after;
3505 if (unlikely(test_time_stamp(info->delta))) {
3506 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3507 info->length += RB_LEN_TIME_EXTEND;
3512 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3514 /*C*/ write = local_add_return(info->length, &tail_page->write);
3516 /* set write to only the index of the write */
3517 write &= RB_WRITE_MASK;
3519 tail = write - info->length;
3521 /* See if we shot pass the end of this buffer page */
3522 if (unlikely(write > BUF_PAGE_SIZE)) {
3523 /* before and after may now different, fix it up*/
3524 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3525 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3526 if (a_ok && b_ok && info->before != info->after)
3527 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3528 info->before, info->after);
3530 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3531 return rb_move_tail(cpu_buffer, tail, info);
3534 if (likely(tail == w)) {
3538 /* Nothing interrupted us between A and C */
3539 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3541 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3542 RB_WARN_ON(cpu_buffer, !s_ok);
3543 if (likely(!(info->add_timestamp &
3544 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3545 /* This did not interrupt any time update */
3546 info->delta = info->ts - info->after;
3548 /* Just use full timestamp for interrupting event */
3549 info->delta = info->ts;
3551 check_buffer(cpu_buffer, info, tail);
3552 if (unlikely(info->ts != save_before)) {
3553 /* SLOW PATH - Interrupted between C and E */
3555 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3556 RB_WARN_ON(cpu_buffer, !a_ok);
3558 /* Write stamp must only go forward */
3559 if (save_before > info->after) {
3561 * We do not care about the result, only that
3562 * it gets updated atomically.
3564 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3565 info->after, save_before);
3570 /* SLOW PATH - Interrupted between A and C */
3571 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3572 /* Was interrupted before here, write_stamp must be valid */
3573 RB_WARN_ON(cpu_buffer, !a_ok);
3574 ts = rb_time_stamp(cpu_buffer->buffer);
3576 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3578 rb_time_cmpxchg(&cpu_buffer->write_stamp,
3580 /* Nothing came after this event between C and E */
3581 info->delta = ts - info->after;
3584 * Interrupted between C and E:
3585 * Lost the previous events time stamp. Just set the
3586 * delta to zero, and this will be the same time as
3587 * the event this event interrupted. And the events that
3588 * came after this will still be correct (as they would
3589 * have built their delta on the previous event.
3594 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3598 * If this is the first commit on the page, then it has the same
3599 * timestamp as the page itself.
3601 if (unlikely(!tail && !(info->add_timestamp &
3602 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3605 /* We reserved something on the buffer */
3607 event = __rb_page_index(tail_page, tail);
3608 rb_update_event(cpu_buffer, event, info);
3610 local_inc(&tail_page->entries);
3613 * If this is the first commit on the page, then update
3616 if (unlikely(!tail))
3617 tail_page->page->time_stamp = info->ts;
3619 /* account for these added bytes */
3620 local_add(info->length, &cpu_buffer->entries_bytes);
3625 static __always_inline struct ring_buffer_event *
3626 rb_reserve_next_event(struct trace_buffer *buffer,
3627 struct ring_buffer_per_cpu *cpu_buffer,
3628 unsigned long length)
3630 struct ring_buffer_event *event;
3631 struct rb_event_info info;
3635 rb_start_commit(cpu_buffer);
3636 /* The commit page can not change after this */
3638 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3640 * Due to the ability to swap a cpu buffer from a buffer
3641 * it is possible it was swapped before we committed.
3642 * (committing stops a swap). We check for it here and
3643 * if it happened, we have to fail the write.
3646 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3647 local_dec(&cpu_buffer->committing);
3648 local_dec(&cpu_buffer->commits);
3653 info.length = rb_calculate_event_length(length);
3655 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3656 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3657 info.length += RB_LEN_TIME_EXTEND;
3659 add_ts_default = RB_ADD_STAMP_NONE;
3663 info.add_timestamp = add_ts_default;
3667 * We allow for interrupts to reenter here and do a trace.
3668 * If one does, it will cause this original code to loop
3669 * back here. Even with heavy interrupts happening, this
3670 * should only happen a few times in a row. If this happens
3671 * 1000 times in a row, there must be either an interrupt
3672 * storm or we have something buggy.
3675 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3678 event = __rb_reserve_next(cpu_buffer, &info);
3680 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3681 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3682 info.length -= RB_LEN_TIME_EXTEND;
3689 rb_end_commit(cpu_buffer);
3694 * ring_buffer_lock_reserve - reserve a part of the buffer
3695 * @buffer: the ring buffer to reserve from
3696 * @length: the length of the data to reserve (excluding event header)
3698 * Returns a reserved event on the ring buffer to copy directly to.
3699 * The user of this interface will need to get the body to write into
3700 * and can use the ring_buffer_event_data() interface.
3702 * The length is the length of the data needed, not the event length
3703 * which also includes the event header.
3705 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3706 * If NULL is returned, then nothing has been allocated or locked.
3708 struct ring_buffer_event *
3709 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3711 struct ring_buffer_per_cpu *cpu_buffer;
3712 struct ring_buffer_event *event;
3715 /* If we are tracing schedule, we don't want to recurse */
3716 preempt_disable_notrace();
3718 if (unlikely(atomic_read(&buffer->record_disabled)))
3721 cpu = raw_smp_processor_id();
3723 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3726 cpu_buffer = buffer->buffers[cpu];
3728 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3731 if (unlikely(length > BUF_MAX_DATA_SIZE))
3734 if (unlikely(trace_recursive_lock(cpu_buffer)))
3737 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3744 trace_recursive_unlock(cpu_buffer);
3746 preempt_enable_notrace();
3749 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3752 * Decrement the entries to the page that an event is on.
3753 * The event does not even need to exist, only the pointer
3754 * to the page it is on. This may only be called before the commit
3758 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3759 struct ring_buffer_event *event)
3761 unsigned long addr = (unsigned long)event;
3762 struct buffer_page *bpage = cpu_buffer->commit_page;
3763 struct buffer_page *start;
3767 /* Do the likely case first */
3768 if (likely(bpage->page == (void *)addr)) {
3769 local_dec(&bpage->entries);
3774 * Because the commit page may be on the reader page we
3775 * start with the next page and check the end loop there.
3777 rb_inc_page(&bpage);
3780 if (bpage->page == (void *)addr) {
3781 local_dec(&bpage->entries);
3784 rb_inc_page(&bpage);
3785 } while (bpage != start);
3787 /* commit not part of this buffer?? */
3788 RB_WARN_ON(cpu_buffer, 1);
3792 * ring_buffer_discard_commit - discard an event that has not been committed
3793 * @buffer: the ring buffer
3794 * @event: non committed event to discard
3796 * Sometimes an event that is in the ring buffer needs to be ignored.
3797 * This function lets the user discard an event in the ring buffer
3798 * and then that event will not be read later.
3800 * This function only works if it is called before the item has been
3801 * committed. It will try to free the event from the ring buffer
3802 * if another event has not been added behind it.
3804 * If another event has been added behind it, it will set the event
3805 * up as discarded, and perform the commit.
3807 * If this function is called, do not call ring_buffer_unlock_commit on
3810 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3811 struct ring_buffer_event *event)
3813 struct ring_buffer_per_cpu *cpu_buffer;
3816 /* The event is discarded regardless */
3817 rb_event_discard(event);
3819 cpu = smp_processor_id();
3820 cpu_buffer = buffer->buffers[cpu];
3823 * This must only be called if the event has not been
3824 * committed yet. Thus we can assume that preemption
3825 * is still disabled.
3827 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3829 rb_decrement_entry(cpu_buffer, event);
3830 if (rb_try_to_discard(cpu_buffer, event))
3834 rb_end_commit(cpu_buffer);
3836 trace_recursive_unlock(cpu_buffer);
3838 preempt_enable_notrace();
3841 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3844 * ring_buffer_write - write data to the buffer without reserving
3845 * @buffer: The ring buffer to write to.
3846 * @length: The length of the data being written (excluding the event header)
3847 * @data: The data to write to the buffer.
3849 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3850 * one function. If you already have the data to write to the buffer, it
3851 * may be easier to simply call this function.
3853 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3854 * and not the length of the event which would hold the header.
3856 int ring_buffer_write(struct trace_buffer *buffer,
3857 unsigned long length,
3860 struct ring_buffer_per_cpu *cpu_buffer;
3861 struct ring_buffer_event *event;
3866 preempt_disable_notrace();
3868 if (atomic_read(&buffer->record_disabled))
3871 cpu = raw_smp_processor_id();
3873 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3876 cpu_buffer = buffer->buffers[cpu];
3878 if (atomic_read(&cpu_buffer->record_disabled))
3881 if (length > BUF_MAX_DATA_SIZE)
3884 if (unlikely(trace_recursive_lock(cpu_buffer)))
3887 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3891 body = rb_event_data(event);
3893 memcpy(body, data, length);
3895 rb_commit(cpu_buffer, event);
3897 rb_wakeups(buffer, cpu_buffer);
3902 trace_recursive_unlock(cpu_buffer);
3905 preempt_enable_notrace();
3909 EXPORT_SYMBOL_GPL(ring_buffer_write);
3911 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3913 struct buffer_page *reader = cpu_buffer->reader_page;
3914 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3915 struct buffer_page *commit = cpu_buffer->commit_page;
3917 /* In case of error, head will be NULL */
3918 if (unlikely(!head))
3921 /* Reader should exhaust content in reader page */
3922 if (reader->read != rb_page_commit(reader))
3926 * If writers are committing on the reader page, knowing all
3927 * committed content has been read, the ring buffer is empty.
3929 if (commit == reader)
3933 * If writers are committing on a page other than reader page
3934 * and head page, there should always be content to read.
3940 * Writers are committing on the head page, we just need
3941 * to care about there're committed data, and the reader will
3942 * swap reader page with head page when it is to read data.
3944 return rb_page_commit(commit) == 0;
3948 * ring_buffer_record_disable - stop all writes into the buffer
3949 * @buffer: The ring buffer to stop writes to.
3951 * This prevents all writes to the buffer. Any attempt to write
3952 * to the buffer after this will fail and return NULL.
3954 * The caller should call synchronize_rcu() after this.
3956 void ring_buffer_record_disable(struct trace_buffer *buffer)
3958 atomic_inc(&buffer->record_disabled);
3960 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3963 * ring_buffer_record_enable - enable writes to the buffer
3964 * @buffer: The ring buffer to enable writes
3966 * Note, multiple disables will need the same number of enables
3967 * to truly enable the writing (much like preempt_disable).
3969 void ring_buffer_record_enable(struct trace_buffer *buffer)
3971 atomic_dec(&buffer->record_disabled);
3973 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3976 * ring_buffer_record_off - stop all writes into the buffer
3977 * @buffer: The ring buffer to stop writes to.
3979 * This prevents all writes to the buffer. Any attempt to write
3980 * to the buffer after this will fail and return NULL.
3982 * This is different than ring_buffer_record_disable() as
3983 * it works like an on/off switch, where as the disable() version
3984 * must be paired with a enable().
3986 void ring_buffer_record_off(struct trace_buffer *buffer)
3989 unsigned int new_rd;
3992 rd = atomic_read(&buffer->record_disabled);
3993 new_rd = rd | RB_BUFFER_OFF;
3994 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3996 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3999 * ring_buffer_record_on - restart writes into the buffer
4000 * @buffer: The ring buffer to start writes to.
4002 * This enables all writes to the buffer that was disabled by
4003 * ring_buffer_record_off().
4005 * This is different than ring_buffer_record_enable() as
4006 * it works like an on/off switch, where as the enable() version
4007 * must be paired with a disable().
4009 void ring_buffer_record_on(struct trace_buffer *buffer)
4012 unsigned int new_rd;
4015 rd = atomic_read(&buffer->record_disabled);
4016 new_rd = rd & ~RB_BUFFER_OFF;
4017 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4019 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4022 * ring_buffer_record_is_on - return true if the ring buffer can write
4023 * @buffer: The ring buffer to see if write is enabled
4025 * Returns true if the ring buffer is in a state that it accepts writes.
4027 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4029 return !atomic_read(&buffer->record_disabled);
4033 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4034 * @buffer: The ring buffer to see if write is set enabled
4036 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4037 * Note that this does NOT mean it is in a writable state.
4039 * It may return true when the ring buffer has been disabled by
4040 * ring_buffer_record_disable(), as that is a temporary disabling of
4043 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4045 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4049 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4050 * @buffer: The ring buffer to stop writes to.
4051 * @cpu: The CPU buffer to stop
4053 * This prevents all writes to the buffer. Any attempt to write
4054 * to the buffer after this will fail and return NULL.
4056 * The caller should call synchronize_rcu() after this.
4058 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4060 struct ring_buffer_per_cpu *cpu_buffer;
4062 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4065 cpu_buffer = buffer->buffers[cpu];
4066 atomic_inc(&cpu_buffer->record_disabled);
4068 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4071 * ring_buffer_record_enable_cpu - enable writes to the buffer
4072 * @buffer: The ring buffer to enable writes
4073 * @cpu: The CPU to enable.
4075 * Note, multiple disables will need the same number of enables
4076 * to truly enable the writing (much like preempt_disable).
4078 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4080 struct ring_buffer_per_cpu *cpu_buffer;
4082 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4085 cpu_buffer = buffer->buffers[cpu];
4086 atomic_dec(&cpu_buffer->record_disabled);
4088 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4091 * The total entries in the ring buffer is the running counter
4092 * of entries entered into the ring buffer, minus the sum of
4093 * the entries read from the ring buffer and the number of
4094 * entries that were overwritten.
4096 static inline unsigned long
4097 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4099 return local_read(&cpu_buffer->entries) -
4100 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4104 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4105 * @buffer: The ring buffer
4106 * @cpu: The per CPU buffer to read from.
4108 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4110 unsigned long flags;
4111 struct ring_buffer_per_cpu *cpu_buffer;
4112 struct buffer_page *bpage;
4115 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4118 cpu_buffer = buffer->buffers[cpu];
4119 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4121 * if the tail is on reader_page, oldest time stamp is on the reader
4124 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4125 bpage = cpu_buffer->reader_page;
4127 bpage = rb_set_head_page(cpu_buffer);
4129 ret = bpage->page->time_stamp;
4130 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4134 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4137 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4138 * @buffer: The ring buffer
4139 * @cpu: The per CPU buffer to read from.
4141 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4143 struct ring_buffer_per_cpu *cpu_buffer;
4146 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4149 cpu_buffer = buffer->buffers[cpu];
4150 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4154 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4157 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4158 * @buffer: The ring buffer
4159 * @cpu: The per CPU buffer to get the entries from.
4161 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4163 struct ring_buffer_per_cpu *cpu_buffer;
4165 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168 cpu_buffer = buffer->buffers[cpu];
4170 return rb_num_of_entries(cpu_buffer);
4172 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4175 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4176 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4177 * @buffer: The ring buffer
4178 * @cpu: The per CPU buffer to get the number of overruns from
4180 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4182 struct ring_buffer_per_cpu *cpu_buffer;
4185 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4188 cpu_buffer = buffer->buffers[cpu];
4189 ret = local_read(&cpu_buffer->overrun);
4193 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4196 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4197 * commits failing due to the buffer wrapping around while there are uncommitted
4198 * events, such as during an interrupt storm.
4199 * @buffer: The ring buffer
4200 * @cpu: The per CPU buffer to get the number of overruns from
4203 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4205 struct ring_buffer_per_cpu *cpu_buffer;
4208 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4211 cpu_buffer = buffer->buffers[cpu];
4212 ret = local_read(&cpu_buffer->commit_overrun);
4216 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4219 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4220 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4221 * @buffer: The ring buffer
4222 * @cpu: The per CPU buffer to get the number of overruns from
4225 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4227 struct ring_buffer_per_cpu *cpu_buffer;
4230 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4233 cpu_buffer = buffer->buffers[cpu];
4234 ret = local_read(&cpu_buffer->dropped_events);
4238 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4241 * ring_buffer_read_events_cpu - get the number of events successfully read
4242 * @buffer: The ring buffer
4243 * @cpu: The per CPU buffer to get the number of events read
4246 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4248 struct ring_buffer_per_cpu *cpu_buffer;
4250 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4253 cpu_buffer = buffer->buffers[cpu];
4254 return cpu_buffer->read;
4256 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4259 * ring_buffer_entries - get the number of entries in a buffer
4260 * @buffer: The ring buffer
4262 * Returns the total number of entries in the ring buffer
4265 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4267 struct ring_buffer_per_cpu *cpu_buffer;
4268 unsigned long entries = 0;
4271 /* if you care about this being correct, lock the buffer */
4272 for_each_buffer_cpu(buffer, cpu) {
4273 cpu_buffer = buffer->buffers[cpu];
4274 entries += rb_num_of_entries(cpu_buffer);
4279 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4282 * ring_buffer_overruns - get the number of overruns in buffer
4283 * @buffer: The ring buffer
4285 * Returns the total number of overruns in the ring buffer
4288 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4290 struct ring_buffer_per_cpu *cpu_buffer;
4291 unsigned long overruns = 0;
4294 /* if you care about this being correct, lock the buffer */
4295 for_each_buffer_cpu(buffer, cpu) {
4296 cpu_buffer = buffer->buffers[cpu];
4297 overruns += local_read(&cpu_buffer->overrun);
4302 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4304 static void rb_iter_reset(struct ring_buffer_iter *iter)
4306 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4308 /* Iterator usage is expected to have record disabled */
4309 iter->head_page = cpu_buffer->reader_page;
4310 iter->head = cpu_buffer->reader_page->read;
4311 iter->next_event = iter->head;
4313 iter->cache_reader_page = iter->head_page;
4314 iter->cache_read = cpu_buffer->read;
4317 iter->read_stamp = cpu_buffer->read_stamp;
4318 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4320 iter->read_stamp = iter->head_page->page->time_stamp;
4321 iter->page_stamp = iter->read_stamp;
4326 * ring_buffer_iter_reset - reset an iterator
4327 * @iter: The iterator to reset
4329 * Resets the iterator, so that it will start from the beginning
4332 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4334 struct ring_buffer_per_cpu *cpu_buffer;
4335 unsigned long flags;
4340 cpu_buffer = iter->cpu_buffer;
4342 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4343 rb_iter_reset(iter);
4344 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4346 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4349 * ring_buffer_iter_empty - check if an iterator has no more to read
4350 * @iter: The iterator to check
4352 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4354 struct ring_buffer_per_cpu *cpu_buffer;
4355 struct buffer_page *reader;
4356 struct buffer_page *head_page;
4357 struct buffer_page *commit_page;
4358 struct buffer_page *curr_commit_page;
4363 cpu_buffer = iter->cpu_buffer;
4364 reader = cpu_buffer->reader_page;
4365 head_page = cpu_buffer->head_page;
4366 commit_page = cpu_buffer->commit_page;
4367 commit_ts = commit_page->page->time_stamp;
4370 * When the writer goes across pages, it issues a cmpxchg which
4371 * is a mb(), which will synchronize with the rmb here.
4372 * (see rb_tail_page_update())
4375 commit = rb_page_commit(commit_page);
4376 /* We want to make sure that the commit page doesn't change */
4379 /* Make sure commit page didn't change */
4380 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4381 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4383 /* If the commit page changed, then there's more data */
4384 if (curr_commit_page != commit_page ||
4385 curr_commit_ts != commit_ts)
4388 /* Still racy, as it may return a false positive, but that's OK */
4389 return ((iter->head_page == commit_page && iter->head >= commit) ||
4390 (iter->head_page == reader && commit_page == head_page &&
4391 head_page->read == commit &&
4392 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4394 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4397 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4398 struct ring_buffer_event *event)
4402 switch (event->type_len) {
4403 case RINGBUF_TYPE_PADDING:
4406 case RINGBUF_TYPE_TIME_EXTEND:
4407 delta = rb_event_time_stamp(event);
4408 cpu_buffer->read_stamp += delta;
4411 case RINGBUF_TYPE_TIME_STAMP:
4412 delta = rb_event_time_stamp(event);
4413 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4414 cpu_buffer->read_stamp = delta;
4417 case RINGBUF_TYPE_DATA:
4418 cpu_buffer->read_stamp += event->time_delta;
4422 RB_WARN_ON(cpu_buffer, 1);
4428 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4429 struct ring_buffer_event *event)
4433 switch (event->type_len) {
4434 case RINGBUF_TYPE_PADDING:
4437 case RINGBUF_TYPE_TIME_EXTEND:
4438 delta = rb_event_time_stamp(event);
4439 iter->read_stamp += delta;
4442 case RINGBUF_TYPE_TIME_STAMP:
4443 delta = rb_event_time_stamp(event);
4444 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4445 iter->read_stamp = delta;
4448 case RINGBUF_TYPE_DATA:
4449 iter->read_stamp += event->time_delta;
4453 RB_WARN_ON(iter->cpu_buffer, 1);
4458 static struct buffer_page *
4459 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4461 struct buffer_page *reader = NULL;
4462 unsigned long overwrite;
4463 unsigned long flags;
4467 local_irq_save(flags);
4468 arch_spin_lock(&cpu_buffer->lock);
4472 * This should normally only loop twice. But because the
4473 * start of the reader inserts an empty page, it causes
4474 * a case where we will loop three times. There should be no
4475 * reason to loop four times (that I know of).
4477 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4482 reader = cpu_buffer->reader_page;
4484 /* If there's more to read, return this page */
4485 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4488 /* Never should we have an index greater than the size */
4489 if (RB_WARN_ON(cpu_buffer,
4490 cpu_buffer->reader_page->read > rb_page_size(reader)))
4493 /* check if we caught up to the tail */
4495 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4498 /* Don't bother swapping if the ring buffer is empty */
4499 if (rb_num_of_entries(cpu_buffer) == 0)
4503 * Reset the reader page to size zero.
4505 local_set(&cpu_buffer->reader_page->write, 0);
4506 local_set(&cpu_buffer->reader_page->entries, 0);
4507 local_set(&cpu_buffer->reader_page->page->commit, 0);
4508 cpu_buffer->reader_page->real_end = 0;
4512 * Splice the empty reader page into the list around the head.
4514 reader = rb_set_head_page(cpu_buffer);
4517 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4518 cpu_buffer->reader_page->list.prev = reader->list.prev;
4521 * cpu_buffer->pages just needs to point to the buffer, it
4522 * has no specific buffer page to point to. Lets move it out
4523 * of our way so we don't accidentally swap it.
4525 cpu_buffer->pages = reader->list.prev;
4527 /* The reader page will be pointing to the new head */
4528 rb_set_list_to_head(&cpu_buffer->reader_page->list);
4531 * We want to make sure we read the overruns after we set up our
4532 * pointers to the next object. The writer side does a
4533 * cmpxchg to cross pages which acts as the mb on the writer
4534 * side. Note, the reader will constantly fail the swap
4535 * while the writer is updating the pointers, so this
4536 * guarantees that the overwrite recorded here is the one we
4537 * want to compare with the last_overrun.
4540 overwrite = local_read(&(cpu_buffer->overrun));
4543 * Here's the tricky part.
4545 * We need to move the pointer past the header page.
4546 * But we can only do that if a writer is not currently
4547 * moving it. The page before the header page has the
4548 * flag bit '1' set if it is pointing to the page we want.
4549 * but if the writer is in the process of moving it
4550 * than it will be '2' or already moved '0'.
4553 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4556 * If we did not convert it, then we must try again.
4562 * Yay! We succeeded in replacing the page.
4564 * Now make the new head point back to the reader page.
4566 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4567 rb_inc_page(&cpu_buffer->head_page);
4569 local_inc(&cpu_buffer->pages_read);
4571 /* Finally update the reader page to the new head */
4572 cpu_buffer->reader_page = reader;
4573 cpu_buffer->reader_page->read = 0;
4575 if (overwrite != cpu_buffer->last_overrun) {
4576 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4577 cpu_buffer->last_overrun = overwrite;
4583 /* Update the read_stamp on the first event */
4584 if (reader && reader->read == 0)
4585 cpu_buffer->read_stamp = reader->page->time_stamp;
4587 arch_spin_unlock(&cpu_buffer->lock);
4588 local_irq_restore(flags);
4593 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4595 struct ring_buffer_event *event;
4596 struct buffer_page *reader;
4599 reader = rb_get_reader_page(cpu_buffer);
4601 /* This function should not be called when buffer is empty */
4602 if (RB_WARN_ON(cpu_buffer, !reader))
4605 event = rb_reader_event(cpu_buffer);
4607 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4610 rb_update_read_stamp(cpu_buffer, event);
4612 length = rb_event_length(event);
4613 cpu_buffer->reader_page->read += length;
4616 static void rb_advance_iter(struct ring_buffer_iter *iter)
4618 struct ring_buffer_per_cpu *cpu_buffer;
4620 cpu_buffer = iter->cpu_buffer;
4622 /* If head == next_event then we need to jump to the next event */
4623 if (iter->head == iter->next_event) {
4624 /* If the event gets overwritten again, there's nothing to do */
4625 if (rb_iter_head_event(iter) == NULL)
4629 iter->head = iter->next_event;
4632 * Check if we are at the end of the buffer.
4634 if (iter->next_event >= rb_page_size(iter->head_page)) {
4635 /* discarded commits can make the page empty */
4636 if (iter->head_page == cpu_buffer->commit_page)
4642 rb_update_iter_read_stamp(iter, iter->event);
4645 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4647 return cpu_buffer->lost_events;
4650 static struct ring_buffer_event *
4651 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4652 unsigned long *lost_events)
4654 struct ring_buffer_event *event;
4655 struct buffer_page *reader;
4662 * We repeat when a time extend is encountered.
4663 * Since the time extend is always attached to a data event,
4664 * we should never loop more than once.
4665 * (We never hit the following condition more than twice).
4667 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4670 reader = rb_get_reader_page(cpu_buffer);
4674 event = rb_reader_event(cpu_buffer);
4676 switch (event->type_len) {
4677 case RINGBUF_TYPE_PADDING:
4678 if (rb_null_event(event))
4679 RB_WARN_ON(cpu_buffer, 1);
4681 * Because the writer could be discarding every
4682 * event it creates (which would probably be bad)
4683 * if we were to go back to "again" then we may never
4684 * catch up, and will trigger the warn on, or lock
4685 * the box. Return the padding, and we will release
4686 * the current locks, and try again.
4690 case RINGBUF_TYPE_TIME_EXTEND:
4691 /* Internal data, OK to advance */
4692 rb_advance_reader(cpu_buffer);
4695 case RINGBUF_TYPE_TIME_STAMP:
4697 *ts = rb_event_time_stamp(event);
4698 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4699 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4700 cpu_buffer->cpu, ts);
4702 /* Internal data, OK to advance */
4703 rb_advance_reader(cpu_buffer);
4706 case RINGBUF_TYPE_DATA:
4708 *ts = cpu_buffer->read_stamp + event->time_delta;
4709 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4710 cpu_buffer->cpu, ts);
4713 *lost_events = rb_lost_events(cpu_buffer);
4717 RB_WARN_ON(cpu_buffer, 1);
4722 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4724 static struct ring_buffer_event *
4725 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4727 struct trace_buffer *buffer;
4728 struct ring_buffer_per_cpu *cpu_buffer;
4729 struct ring_buffer_event *event;
4735 cpu_buffer = iter->cpu_buffer;
4736 buffer = cpu_buffer->buffer;
4739 * Check if someone performed a consuming read to
4740 * the buffer. A consuming read invalidates the iterator
4741 * and we need to reset the iterator in this case.
4743 if (unlikely(iter->cache_read != cpu_buffer->read ||
4744 iter->cache_reader_page != cpu_buffer->reader_page))
4745 rb_iter_reset(iter);
4748 if (ring_buffer_iter_empty(iter))
4752 * As the writer can mess with what the iterator is trying
4753 * to read, just give up if we fail to get an event after
4754 * three tries. The iterator is not as reliable when reading
4755 * the ring buffer with an active write as the consumer is.
4756 * Do not warn if the three failures is reached.
4761 if (rb_per_cpu_empty(cpu_buffer))
4764 if (iter->head >= rb_page_size(iter->head_page)) {
4769 event = rb_iter_head_event(iter);
4773 switch (event->type_len) {
4774 case RINGBUF_TYPE_PADDING:
4775 if (rb_null_event(event)) {
4779 rb_advance_iter(iter);
4782 case RINGBUF_TYPE_TIME_EXTEND:
4783 /* Internal data, OK to advance */
4784 rb_advance_iter(iter);
4787 case RINGBUF_TYPE_TIME_STAMP:
4789 *ts = rb_event_time_stamp(event);
4790 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4791 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4792 cpu_buffer->cpu, ts);
4794 /* Internal data, OK to advance */
4795 rb_advance_iter(iter);
4798 case RINGBUF_TYPE_DATA:
4800 *ts = iter->read_stamp + event->time_delta;
4801 ring_buffer_normalize_time_stamp(buffer,
4802 cpu_buffer->cpu, ts);
4807 RB_WARN_ON(cpu_buffer, 1);
4812 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4814 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4816 if (likely(!in_nmi())) {
4817 raw_spin_lock(&cpu_buffer->reader_lock);
4822 * If an NMI die dumps out the content of the ring buffer
4823 * trylock must be used to prevent a deadlock if the NMI
4824 * preempted a task that holds the ring buffer locks. If
4825 * we get the lock then all is fine, if not, then continue
4826 * to do the read, but this can corrupt the ring buffer,
4827 * so it must be permanently disabled from future writes.
4828 * Reading from NMI is a oneshot deal.
4830 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4833 /* Continue without locking, but disable the ring buffer */
4834 atomic_inc(&cpu_buffer->record_disabled);
4839 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4842 raw_spin_unlock(&cpu_buffer->reader_lock);
4847 * ring_buffer_peek - peek at the next event to be read
4848 * @buffer: The ring buffer to read
4849 * @cpu: The cpu to peak at
4850 * @ts: The timestamp counter of this event.
4851 * @lost_events: a variable to store if events were lost (may be NULL)
4853 * This will return the event that will be read next, but does
4854 * not consume the data.
4856 struct ring_buffer_event *
4857 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4858 unsigned long *lost_events)
4860 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4861 struct ring_buffer_event *event;
4862 unsigned long flags;
4865 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4869 local_irq_save(flags);
4870 dolock = rb_reader_lock(cpu_buffer);
4871 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4872 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4873 rb_advance_reader(cpu_buffer);
4874 rb_reader_unlock(cpu_buffer, dolock);
4875 local_irq_restore(flags);
4877 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4883 /** ring_buffer_iter_dropped - report if there are dropped events
4884 * @iter: The ring buffer iterator
4886 * Returns true if there was dropped events since the last peek.
4888 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4890 bool ret = iter->missed_events != 0;
4892 iter->missed_events = 0;
4895 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4898 * ring_buffer_iter_peek - peek at the next event to be read
4899 * @iter: The ring buffer iterator
4900 * @ts: The timestamp counter of this event.
4902 * This will return the event that will be read next, but does
4903 * not increment the iterator.
4905 struct ring_buffer_event *
4906 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4908 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4909 struct ring_buffer_event *event;
4910 unsigned long flags;
4913 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4914 event = rb_iter_peek(iter, ts);
4915 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4917 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4924 * ring_buffer_consume - return an event and consume it
4925 * @buffer: The ring buffer to get the next event from
4926 * @cpu: the cpu to read the buffer from
4927 * @ts: a variable to store the timestamp (may be NULL)
4928 * @lost_events: a variable to store if events were lost (may be NULL)
4930 * Returns the next event in the ring buffer, and that event is consumed.
4931 * Meaning, that sequential reads will keep returning a different event,
4932 * and eventually empty the ring buffer if the producer is slower.
4934 struct ring_buffer_event *
4935 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4936 unsigned long *lost_events)
4938 struct ring_buffer_per_cpu *cpu_buffer;
4939 struct ring_buffer_event *event = NULL;
4940 unsigned long flags;
4944 /* might be called in atomic */
4947 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4950 cpu_buffer = buffer->buffers[cpu];
4951 local_irq_save(flags);
4952 dolock = rb_reader_lock(cpu_buffer);
4954 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4956 cpu_buffer->lost_events = 0;
4957 rb_advance_reader(cpu_buffer);
4960 rb_reader_unlock(cpu_buffer, dolock);
4961 local_irq_restore(flags);
4966 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4971 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4974 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4975 * @buffer: The ring buffer to read from
4976 * @cpu: The cpu buffer to iterate over
4977 * @flags: gfp flags to use for memory allocation
4979 * This performs the initial preparations necessary to iterate
4980 * through the buffer. Memory is allocated, buffer recording
4981 * is disabled, and the iterator pointer is returned to the caller.
4983 * Disabling buffer recording prevents the reading from being
4984 * corrupted. This is not a consuming read, so a producer is not
4987 * After a sequence of ring_buffer_read_prepare calls, the user is
4988 * expected to make at least one call to ring_buffer_read_prepare_sync.
4989 * Afterwards, ring_buffer_read_start is invoked to get things going
4992 * This overall must be paired with ring_buffer_read_finish.
4994 struct ring_buffer_iter *
4995 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4997 struct ring_buffer_per_cpu *cpu_buffer;
4998 struct ring_buffer_iter *iter;
5000 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5003 iter = kzalloc(sizeof(*iter), flags);
5007 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5013 cpu_buffer = buffer->buffers[cpu];
5015 iter->cpu_buffer = cpu_buffer;
5017 atomic_inc(&cpu_buffer->resize_disabled);
5021 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5024 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5026 * All previously invoked ring_buffer_read_prepare calls to prepare
5027 * iterators will be synchronized. Afterwards, read_buffer_read_start
5028 * calls on those iterators are allowed.
5031 ring_buffer_read_prepare_sync(void)
5035 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5038 * ring_buffer_read_start - start a non consuming read of the buffer
5039 * @iter: The iterator returned by ring_buffer_read_prepare
5041 * This finalizes the startup of an iteration through the buffer.
5042 * The iterator comes from a call to ring_buffer_read_prepare and
5043 * an intervening ring_buffer_read_prepare_sync must have been
5046 * Must be paired with ring_buffer_read_finish.
5049 ring_buffer_read_start(struct ring_buffer_iter *iter)
5051 struct ring_buffer_per_cpu *cpu_buffer;
5052 unsigned long flags;
5057 cpu_buffer = iter->cpu_buffer;
5059 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5060 arch_spin_lock(&cpu_buffer->lock);
5061 rb_iter_reset(iter);
5062 arch_spin_unlock(&cpu_buffer->lock);
5063 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5065 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5068 * ring_buffer_read_finish - finish reading the iterator of the buffer
5069 * @iter: The iterator retrieved by ring_buffer_start
5071 * This re-enables the recording to the buffer, and frees the
5075 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5077 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5078 unsigned long flags;
5081 * Ring buffer is disabled from recording, here's a good place
5082 * to check the integrity of the ring buffer.
5083 * Must prevent readers from trying to read, as the check
5084 * clears the HEAD page and readers require it.
5086 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5087 rb_check_pages(cpu_buffer);
5088 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5090 atomic_dec(&cpu_buffer->resize_disabled);
5094 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5097 * ring_buffer_iter_advance - advance the iterator to the next location
5098 * @iter: The ring buffer iterator
5100 * Move the location of the iterator such that the next read will
5101 * be the next location of the iterator.
5103 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5106 unsigned long flags;
5108 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5110 rb_advance_iter(iter);
5112 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5114 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5117 * ring_buffer_size - return the size of the ring buffer (in bytes)
5118 * @buffer: The ring buffer.
5119 * @cpu: The CPU to get ring buffer size from.
5121 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5124 * Earlier, this method returned
5125 * BUF_PAGE_SIZE * buffer->nr_pages
5126 * Since the nr_pages field is now removed, we have converted this to
5127 * return the per cpu buffer value.
5129 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5132 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5134 EXPORT_SYMBOL_GPL(ring_buffer_size);
5137 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5139 rb_head_page_deactivate(cpu_buffer);
5141 cpu_buffer->head_page
5142 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5143 local_set(&cpu_buffer->head_page->write, 0);
5144 local_set(&cpu_buffer->head_page->entries, 0);
5145 local_set(&cpu_buffer->head_page->page->commit, 0);
5147 cpu_buffer->head_page->read = 0;
5149 cpu_buffer->tail_page = cpu_buffer->head_page;
5150 cpu_buffer->commit_page = cpu_buffer->head_page;
5152 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5153 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5154 local_set(&cpu_buffer->reader_page->write, 0);
5155 local_set(&cpu_buffer->reader_page->entries, 0);
5156 local_set(&cpu_buffer->reader_page->page->commit, 0);
5157 cpu_buffer->reader_page->read = 0;
5159 local_set(&cpu_buffer->entries_bytes, 0);
5160 local_set(&cpu_buffer->overrun, 0);
5161 local_set(&cpu_buffer->commit_overrun, 0);
5162 local_set(&cpu_buffer->dropped_events, 0);
5163 local_set(&cpu_buffer->entries, 0);
5164 local_set(&cpu_buffer->committing, 0);
5165 local_set(&cpu_buffer->commits, 0);
5166 local_set(&cpu_buffer->pages_touched, 0);
5167 local_set(&cpu_buffer->pages_read, 0);
5168 cpu_buffer->last_pages_touch = 0;
5169 cpu_buffer->shortest_full = 0;
5170 cpu_buffer->read = 0;
5171 cpu_buffer->read_bytes = 0;
5173 rb_time_set(&cpu_buffer->write_stamp, 0);
5174 rb_time_set(&cpu_buffer->before_stamp, 0);
5176 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5178 cpu_buffer->lost_events = 0;
5179 cpu_buffer->last_overrun = 0;
5181 rb_head_page_activate(cpu_buffer);
5184 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5185 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5187 unsigned long flags;
5189 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5191 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5194 arch_spin_lock(&cpu_buffer->lock);
5196 rb_reset_cpu(cpu_buffer);
5198 arch_spin_unlock(&cpu_buffer->lock);
5201 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5205 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5206 * @buffer: The ring buffer to reset a per cpu buffer of
5207 * @cpu: The CPU buffer to be reset
5209 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5211 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5213 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5216 /* prevent another thread from changing buffer sizes */
5217 mutex_lock(&buffer->mutex);
5219 atomic_inc(&cpu_buffer->resize_disabled);
5220 atomic_inc(&cpu_buffer->record_disabled);
5222 /* Make sure all commits have finished */
5225 reset_disabled_cpu_buffer(cpu_buffer);
5227 atomic_dec(&cpu_buffer->record_disabled);
5228 atomic_dec(&cpu_buffer->resize_disabled);
5230 mutex_unlock(&buffer->mutex);
5232 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5235 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5236 * @buffer: The ring buffer to reset a per cpu buffer of
5237 * @cpu: The CPU buffer to be reset
5239 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5241 struct ring_buffer_per_cpu *cpu_buffer;
5244 /* prevent another thread from changing buffer sizes */
5245 mutex_lock(&buffer->mutex);
5247 for_each_online_buffer_cpu(buffer, cpu) {
5248 cpu_buffer = buffer->buffers[cpu];
5250 atomic_inc(&cpu_buffer->resize_disabled);
5251 atomic_inc(&cpu_buffer->record_disabled);
5254 /* Make sure all commits have finished */
5257 for_each_online_buffer_cpu(buffer, cpu) {
5258 cpu_buffer = buffer->buffers[cpu];
5260 reset_disabled_cpu_buffer(cpu_buffer);
5262 atomic_dec(&cpu_buffer->record_disabled);
5263 atomic_dec(&cpu_buffer->resize_disabled);
5266 mutex_unlock(&buffer->mutex);
5270 * ring_buffer_reset - reset a ring buffer
5271 * @buffer: The ring buffer to reset all cpu buffers
5273 void ring_buffer_reset(struct trace_buffer *buffer)
5275 struct ring_buffer_per_cpu *cpu_buffer;
5278 /* prevent another thread from changing buffer sizes */
5279 mutex_lock(&buffer->mutex);
5281 for_each_buffer_cpu(buffer, cpu) {
5282 cpu_buffer = buffer->buffers[cpu];
5284 atomic_inc(&cpu_buffer->resize_disabled);
5285 atomic_inc(&cpu_buffer->record_disabled);
5288 /* Make sure all commits have finished */
5291 for_each_buffer_cpu(buffer, cpu) {
5292 cpu_buffer = buffer->buffers[cpu];
5294 reset_disabled_cpu_buffer(cpu_buffer);
5296 atomic_dec(&cpu_buffer->record_disabled);
5297 atomic_dec(&cpu_buffer->resize_disabled);
5300 mutex_unlock(&buffer->mutex);
5302 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5305 * rind_buffer_empty - is the ring buffer empty?
5306 * @buffer: The ring buffer to test
5308 bool ring_buffer_empty(struct trace_buffer *buffer)
5310 struct ring_buffer_per_cpu *cpu_buffer;
5311 unsigned long flags;
5316 /* yes this is racy, but if you don't like the race, lock the buffer */
5317 for_each_buffer_cpu(buffer, cpu) {
5318 cpu_buffer = buffer->buffers[cpu];
5319 local_irq_save(flags);
5320 dolock = rb_reader_lock(cpu_buffer);
5321 ret = rb_per_cpu_empty(cpu_buffer);
5322 rb_reader_unlock(cpu_buffer, dolock);
5323 local_irq_restore(flags);
5331 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5334 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5335 * @buffer: The ring buffer
5336 * @cpu: The CPU buffer to test
5338 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5340 struct ring_buffer_per_cpu *cpu_buffer;
5341 unsigned long flags;
5345 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5348 cpu_buffer = buffer->buffers[cpu];
5349 local_irq_save(flags);
5350 dolock = rb_reader_lock(cpu_buffer);
5351 ret = rb_per_cpu_empty(cpu_buffer);
5352 rb_reader_unlock(cpu_buffer, dolock);
5353 local_irq_restore(flags);
5357 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5361 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5362 * @buffer_a: One buffer to swap with
5363 * @buffer_b: The other buffer to swap with
5364 * @cpu: the CPU of the buffers to swap
5366 * This function is useful for tracers that want to take a "snapshot"
5367 * of a CPU buffer and has another back up buffer lying around.
5368 * it is expected that the tracer handles the cpu buffer not being
5369 * used at the moment.
5371 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5372 struct trace_buffer *buffer_b, int cpu)
5374 struct ring_buffer_per_cpu *cpu_buffer_a;
5375 struct ring_buffer_per_cpu *cpu_buffer_b;
5378 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5379 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5382 cpu_buffer_a = buffer_a->buffers[cpu];
5383 cpu_buffer_b = buffer_b->buffers[cpu];
5385 /* At least make sure the two buffers are somewhat the same */
5386 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5391 if (atomic_read(&buffer_a->record_disabled))
5394 if (atomic_read(&buffer_b->record_disabled))
5397 if (atomic_read(&cpu_buffer_a->record_disabled))
5400 if (atomic_read(&cpu_buffer_b->record_disabled))
5404 * We can't do a synchronize_rcu here because this
5405 * function can be called in atomic context.
5406 * Normally this will be called from the same CPU as cpu.
5407 * If not it's up to the caller to protect this.
5409 atomic_inc(&cpu_buffer_a->record_disabled);
5410 atomic_inc(&cpu_buffer_b->record_disabled);
5413 if (local_read(&cpu_buffer_a->committing))
5415 if (local_read(&cpu_buffer_b->committing))
5418 buffer_a->buffers[cpu] = cpu_buffer_b;
5419 buffer_b->buffers[cpu] = cpu_buffer_a;
5421 cpu_buffer_b->buffer = buffer_a;
5422 cpu_buffer_a->buffer = buffer_b;
5427 atomic_dec(&cpu_buffer_a->record_disabled);
5428 atomic_dec(&cpu_buffer_b->record_disabled);
5432 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5433 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5436 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5437 * @buffer: the buffer to allocate for.
5438 * @cpu: the cpu buffer to allocate.
5440 * This function is used in conjunction with ring_buffer_read_page.
5441 * When reading a full page from the ring buffer, these functions
5442 * can be used to speed up the process. The calling function should
5443 * allocate a few pages first with this function. Then when it
5444 * needs to get pages from the ring buffer, it passes the result
5445 * of this function into ring_buffer_read_page, which will swap
5446 * the page that was allocated, with the read page of the buffer.
5449 * The page allocated, or ERR_PTR
5451 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5453 struct ring_buffer_per_cpu *cpu_buffer;
5454 struct buffer_data_page *bpage = NULL;
5455 unsigned long flags;
5458 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5459 return ERR_PTR(-ENODEV);
5461 cpu_buffer = buffer->buffers[cpu];
5462 local_irq_save(flags);
5463 arch_spin_lock(&cpu_buffer->lock);
5465 if (cpu_buffer->free_page) {
5466 bpage = cpu_buffer->free_page;
5467 cpu_buffer->free_page = NULL;
5470 arch_spin_unlock(&cpu_buffer->lock);
5471 local_irq_restore(flags);
5476 page = alloc_pages_node(cpu_to_node(cpu),
5477 GFP_KERNEL | __GFP_NORETRY, 0);
5479 return ERR_PTR(-ENOMEM);
5481 bpage = page_address(page);
5484 rb_init_page(bpage);
5488 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5491 * ring_buffer_free_read_page - free an allocated read page
5492 * @buffer: the buffer the page was allocate for
5493 * @cpu: the cpu buffer the page came from
5494 * @data: the page to free
5496 * Free a page allocated from ring_buffer_alloc_read_page.
5498 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5500 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5501 struct buffer_data_page *bpage = data;
5502 struct page *page = virt_to_page(bpage);
5503 unsigned long flags;
5505 /* If the page is still in use someplace else, we can't reuse it */
5506 if (page_ref_count(page) > 1)
5509 local_irq_save(flags);
5510 arch_spin_lock(&cpu_buffer->lock);
5512 if (!cpu_buffer->free_page) {
5513 cpu_buffer->free_page = bpage;
5517 arch_spin_unlock(&cpu_buffer->lock);
5518 local_irq_restore(flags);
5521 free_page((unsigned long)bpage);
5523 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5526 * ring_buffer_read_page - extract a page from the ring buffer
5527 * @buffer: buffer to extract from
5528 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5529 * @len: amount to extract
5530 * @cpu: the cpu of the buffer to extract
5531 * @full: should the extraction only happen when the page is full.
5533 * This function will pull out a page from the ring buffer and consume it.
5534 * @data_page must be the address of the variable that was returned
5535 * from ring_buffer_alloc_read_page. This is because the page might be used
5536 * to swap with a page in the ring buffer.
5539 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5540 * if (IS_ERR(rpage))
5541 * return PTR_ERR(rpage);
5542 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5544 * process_page(rpage, ret);
5546 * When @full is set, the function will not return true unless
5547 * the writer is off the reader page.
5549 * Note: it is up to the calling functions to handle sleeps and wakeups.
5550 * The ring buffer can be used anywhere in the kernel and can not
5551 * blindly call wake_up. The layer that uses the ring buffer must be
5552 * responsible for that.
5555 * >=0 if data has been transferred, returns the offset of consumed data.
5556 * <0 if no data has been transferred.
5558 int ring_buffer_read_page(struct trace_buffer *buffer,
5559 void **data_page, size_t len, int cpu, int full)
5561 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5562 struct ring_buffer_event *event;
5563 struct buffer_data_page *bpage;
5564 struct buffer_page *reader;
5565 unsigned long missed_events;
5566 unsigned long flags;
5567 unsigned int commit;
5572 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5576 * If len is not big enough to hold the page header, then
5577 * we can not copy anything.
5579 if (len <= BUF_PAGE_HDR_SIZE)
5582 len -= BUF_PAGE_HDR_SIZE;
5591 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5593 reader = rb_get_reader_page(cpu_buffer);
5597 event = rb_reader_event(cpu_buffer);
5599 read = reader->read;
5600 commit = rb_page_commit(reader);
5602 /* Check if any events were dropped */
5603 missed_events = cpu_buffer->lost_events;
5606 * If this page has been partially read or
5607 * if len is not big enough to read the rest of the page or
5608 * a writer is still on the page, then
5609 * we must copy the data from the page to the buffer.
5610 * Otherwise, we can simply swap the page with the one passed in.
5612 if (read || (len < (commit - read)) ||
5613 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5614 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5615 unsigned int rpos = read;
5616 unsigned int pos = 0;
5622 if (len > (commit - read))
5623 len = (commit - read);
5625 /* Always keep the time extend and data together */
5626 size = rb_event_ts_length(event);
5631 /* save the current timestamp, since the user will need it */
5632 save_timestamp = cpu_buffer->read_stamp;
5634 /* Need to copy one event at a time */
5636 /* We need the size of one event, because
5637 * rb_advance_reader only advances by one event,
5638 * whereas rb_event_ts_length may include the size of
5639 * one or two events.
5640 * We have already ensured there's enough space if this
5641 * is a time extend. */
5642 size = rb_event_length(event);
5643 memcpy(bpage->data + pos, rpage->data + rpos, size);
5647 rb_advance_reader(cpu_buffer);
5648 rpos = reader->read;
5654 event = rb_reader_event(cpu_buffer);
5655 /* Always keep the time extend and data together */
5656 size = rb_event_ts_length(event);
5657 } while (len >= size);
5660 local_set(&bpage->commit, pos);
5661 bpage->time_stamp = save_timestamp;
5663 /* we copied everything to the beginning */
5666 /* update the entry counter */
5667 cpu_buffer->read += rb_page_entries(reader);
5668 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5670 /* swap the pages */
5671 rb_init_page(bpage);
5672 bpage = reader->page;
5673 reader->page = *data_page;
5674 local_set(&reader->write, 0);
5675 local_set(&reader->entries, 0);
5680 * Use the real_end for the data size,
5681 * This gives us a chance to store the lost events
5684 if (reader->real_end)
5685 local_set(&bpage->commit, reader->real_end);
5689 cpu_buffer->lost_events = 0;
5691 commit = local_read(&bpage->commit);
5693 * Set a flag in the commit field if we lost events
5695 if (missed_events) {
5696 /* If there is room at the end of the page to save the
5697 * missed events, then record it there.
5699 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5700 memcpy(&bpage->data[commit], &missed_events,
5701 sizeof(missed_events));
5702 local_add(RB_MISSED_STORED, &bpage->commit);
5703 commit += sizeof(missed_events);
5705 local_add(RB_MISSED_EVENTS, &bpage->commit);
5709 * This page may be off to user land. Zero it out here.
5711 if (commit < BUF_PAGE_SIZE)
5712 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5715 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5720 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5723 * We only allocate new buffers, never free them if the CPU goes down.
5724 * If we were to free the buffer, then the user would lose any trace that was in
5727 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5729 struct trace_buffer *buffer;
5732 unsigned long nr_pages;
5734 buffer = container_of(node, struct trace_buffer, node);
5735 if (cpumask_test_cpu(cpu, buffer->cpumask))
5740 /* check if all cpu sizes are same */
5741 for_each_buffer_cpu(buffer, cpu_i) {
5742 /* fill in the size from first enabled cpu */
5744 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5745 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5750 /* allocate minimum pages, user can later expand it */
5753 buffer->buffers[cpu] =
5754 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5755 if (!buffer->buffers[cpu]) {
5756 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5761 cpumask_set_cpu(cpu, buffer->cpumask);
5765 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5767 * This is a basic integrity check of the ring buffer.
5768 * Late in the boot cycle this test will run when configured in.
5769 * It will kick off a thread per CPU that will go into a loop
5770 * writing to the per cpu ring buffer various sizes of data.
5771 * Some of the data will be large items, some small.
5773 * Another thread is created that goes into a spin, sending out
5774 * IPIs to the other CPUs to also write into the ring buffer.
5775 * this is to test the nesting ability of the buffer.
5777 * Basic stats are recorded and reported. If something in the
5778 * ring buffer should happen that's not expected, a big warning
5779 * is displayed and all ring buffers are disabled.
5781 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5783 struct rb_test_data {
5784 struct trace_buffer *buffer;
5785 unsigned long events;
5786 unsigned long bytes_written;
5787 unsigned long bytes_alloc;
5788 unsigned long bytes_dropped;
5789 unsigned long events_nested;
5790 unsigned long bytes_written_nested;
5791 unsigned long bytes_alloc_nested;
5792 unsigned long bytes_dropped_nested;
5793 int min_size_nested;
5794 int max_size_nested;
5801 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5804 #define RB_TEST_BUFFER_SIZE 1048576
5806 static char rb_string[] __initdata =
5807 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5808 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5809 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5811 static bool rb_test_started __initdata;
5818 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5820 struct ring_buffer_event *event;
5821 struct rb_item *item;
5828 /* Have nested writes different that what is written */
5829 cnt = data->cnt + (nested ? 27 : 0);
5831 /* Multiply cnt by ~e, to make some unique increment */
5832 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5834 len = size + sizeof(struct rb_item);
5836 started = rb_test_started;
5837 /* read rb_test_started before checking buffer enabled */
5840 event = ring_buffer_lock_reserve(data->buffer, len);
5842 /* Ignore dropped events before test starts. */
5845 data->bytes_dropped += len;
5847 data->bytes_dropped_nested += len;
5852 event_len = ring_buffer_event_length(event);
5854 if (RB_WARN_ON(data->buffer, event_len < len))
5857 item = ring_buffer_event_data(event);
5859 memcpy(item->str, rb_string, size);
5862 data->bytes_alloc_nested += event_len;
5863 data->bytes_written_nested += len;
5864 data->events_nested++;
5865 if (!data->min_size_nested || len < data->min_size_nested)
5866 data->min_size_nested = len;
5867 if (len > data->max_size_nested)
5868 data->max_size_nested = len;
5870 data->bytes_alloc += event_len;
5871 data->bytes_written += len;
5873 if (!data->min_size || len < data->min_size)
5874 data->max_size = len;
5875 if (len > data->max_size)
5876 data->max_size = len;
5880 ring_buffer_unlock_commit(data->buffer, event);
5885 static __init int rb_test(void *arg)
5887 struct rb_test_data *data = arg;
5889 while (!kthread_should_stop()) {
5890 rb_write_something(data, false);
5893 set_current_state(TASK_INTERRUPTIBLE);
5894 /* Now sleep between a min of 100-300us and a max of 1ms */
5895 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5901 static __init void rb_ipi(void *ignore)
5903 struct rb_test_data *data;
5904 int cpu = smp_processor_id();
5906 data = &rb_data[cpu];
5907 rb_write_something(data, true);
5910 static __init int rb_hammer_test(void *arg)
5912 while (!kthread_should_stop()) {
5914 /* Send an IPI to all cpus to write data! */
5915 smp_call_function(rb_ipi, NULL, 1);
5916 /* No sleep, but for non preempt, let others run */
5923 static __init int test_ringbuffer(void)
5925 struct task_struct *rb_hammer;
5926 struct trace_buffer *buffer;
5930 if (security_locked_down(LOCKDOWN_TRACEFS)) {
5931 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5935 pr_info("Running ring buffer tests...\n");
5937 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5938 if (WARN_ON(!buffer))
5941 /* Disable buffer so that threads can't write to it yet */
5942 ring_buffer_record_off(buffer);
5944 for_each_online_cpu(cpu) {
5945 rb_data[cpu].buffer = buffer;
5946 rb_data[cpu].cpu = cpu;
5947 rb_data[cpu].cnt = cpu;
5948 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
5949 cpu, "rbtester/%u");
5950 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5951 pr_cont("FAILED\n");
5952 ret = PTR_ERR(rb_threads[cpu]);
5957 /* Now create the rb hammer! */
5958 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5959 if (WARN_ON(IS_ERR(rb_hammer))) {
5960 pr_cont("FAILED\n");
5961 ret = PTR_ERR(rb_hammer);
5965 ring_buffer_record_on(buffer);
5967 * Show buffer is enabled before setting rb_test_started.
5968 * Yes there's a small race window where events could be
5969 * dropped and the thread wont catch it. But when a ring
5970 * buffer gets enabled, there will always be some kind of
5971 * delay before other CPUs see it. Thus, we don't care about
5972 * those dropped events. We care about events dropped after
5973 * the threads see that the buffer is active.
5976 rb_test_started = true;
5978 set_current_state(TASK_INTERRUPTIBLE);
5979 /* Just run for 10 seconds */;
5980 schedule_timeout(10 * HZ);
5982 kthread_stop(rb_hammer);
5985 for_each_online_cpu(cpu) {
5986 if (!rb_threads[cpu])
5988 kthread_stop(rb_threads[cpu]);
5991 ring_buffer_free(buffer);
5996 pr_info("finished\n");
5997 for_each_online_cpu(cpu) {
5998 struct ring_buffer_event *event;
5999 struct rb_test_data *data = &rb_data[cpu];
6000 struct rb_item *item;
6001 unsigned long total_events;
6002 unsigned long total_dropped;
6003 unsigned long total_written;
6004 unsigned long total_alloc;
6005 unsigned long total_read = 0;
6006 unsigned long total_size = 0;
6007 unsigned long total_len = 0;
6008 unsigned long total_lost = 0;
6011 int small_event_size;
6015 total_events = data->events + data->events_nested;
6016 total_written = data->bytes_written + data->bytes_written_nested;
6017 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6018 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6020 big_event_size = data->max_size + data->max_size_nested;
6021 small_event_size = data->min_size + data->min_size_nested;
6023 pr_info("CPU %d:\n", cpu);
6024 pr_info(" events: %ld\n", total_events);
6025 pr_info(" dropped bytes: %ld\n", total_dropped);
6026 pr_info(" alloced bytes: %ld\n", total_alloc);
6027 pr_info(" written bytes: %ld\n", total_written);
6028 pr_info(" biggest event: %d\n", big_event_size);
6029 pr_info(" smallest event: %d\n", small_event_size);
6031 if (RB_WARN_ON(buffer, total_dropped))
6036 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6038 item = ring_buffer_event_data(event);
6039 total_len += ring_buffer_event_length(event);
6040 total_size += item->size + sizeof(struct rb_item);
6041 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6042 pr_info("FAILED!\n");
6043 pr_info("buffer had: %.*s\n", item->size, item->str);
6044 pr_info("expected: %.*s\n", item->size, rb_string);
6045 RB_WARN_ON(buffer, 1);
6056 pr_info(" read events: %ld\n", total_read);
6057 pr_info(" lost events: %ld\n", total_lost);
6058 pr_info(" total events: %ld\n", total_lost + total_read);
6059 pr_info(" recorded len bytes: %ld\n", total_len);
6060 pr_info(" recorded size bytes: %ld\n", total_size);
6062 pr_info(" With dropped events, record len and size may not match\n"
6063 " alloced and written from above\n");
6065 if (RB_WARN_ON(buffer, total_len != total_alloc ||
6066 total_size != total_written))
6069 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6075 pr_info("Ring buffer PASSED!\n");
6077 ring_buffer_free(buffer);
6081 late_initcall(test_ringbuffer);
6082 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */