d1c85c5f5f51f0ad27d29aaaf0618cb2473c9b13
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/hash.h>
22 #include <linux/list.h>
23 #include <linux/cpu.h>
24 #include <linux/fs.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         int ret;
36
37         ret = trace_seq_printf(s, "# compressed entry header\n");
38         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
39         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
40         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
41         ret = trace_seq_printf(s, "\n");
42         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
43                                RINGBUF_TYPE_PADDING);
44         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
45                                RINGBUF_TYPE_TIME_EXTEND);
46         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
47                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
48
49         return ret;
50 }
51
52 /*
53  * The ring buffer is made up of a list of pages. A separate list of pages is
54  * allocated for each CPU. A writer may only write to a buffer that is
55  * associated with the CPU it is currently executing on.  A reader may read
56  * from any per cpu buffer.
57  *
58  * The reader is special. For each per cpu buffer, the reader has its own
59  * reader page. When a reader has read the entire reader page, this reader
60  * page is swapped with another page in the ring buffer.
61  *
62  * Now, as long as the writer is off the reader page, the reader can do what
63  * ever it wants with that page. The writer will never write to that page
64  * again (as long as it is out of the ring buffer).
65  *
66  * Here's some silly ASCII art.
67  *
68  *   +------+
69  *   |reader|          RING BUFFER
70  *   |page  |
71  *   +------+        +---+   +---+   +---+
72  *                   |   |-->|   |-->|   |
73  *                   +---+   +---+   +---+
74  *                     ^               |
75  *                     |               |
76  *                     +---------------+
77  *
78  *
79  *   +------+
80  *   |reader|          RING BUFFER
81  *   |page  |------------------v
82  *   +------+        +---+   +---+   +---+
83  *                   |   |-->|   |-->|   |
84  *                   +---+   +---+   +---+
85  *                     ^               |
86  *                     |               |
87  *                     +---------------+
88  *
89  *
90  *   +------+
91  *   |reader|          RING BUFFER
92  *   |page  |------------------v
93  *   +------+        +---+   +---+   +---+
94  *      ^            |   |-->|   |-->|   |
95  *      |            +---+   +---+   +---+
96  *      |                              |
97  *      |                              |
98  *      +------------------------------+
99  *
100  *
101  *   +------+
102  *   |buffer|          RING BUFFER
103  *   |page  |------------------v
104  *   +------+        +---+   +---+   +---+
105  *      ^            |   |   |   |-->|   |
106  *      |   New      +---+   +---+   +---+
107  *      |  Reader------^               |
108  *      |   page                       |
109  *      +------------------------------+
110  *
111  *
112  * After we make this swap, the reader can hand this page off to the splice
113  * code and be done with it. It can even allocate a new page if it needs to
114  * and swap that into the ring buffer.
115  *
116  * We will be using cmpxchg soon to make all this lockless.
117  *
118  */
119
120 /*
121  * A fast way to enable or disable all ring buffers is to
122  * call tracing_on or tracing_off. Turning off the ring buffers
123  * prevents all ring buffers from being recorded to.
124  * Turning this switch on, makes it OK to write to the
125  * ring buffer, if the ring buffer is enabled itself.
126  *
127  * There's three layers that must be on in order to write
128  * to the ring buffer.
129  *
130  * 1) This global flag must be set.
131  * 2) The ring buffer must be enabled for recording.
132  * 3) The per cpu buffer must be enabled for recording.
133  *
134  * In case of an anomaly, this global flag has a bit set that
135  * will permantly disable all ring buffers.
136  */
137
138 /*
139  * Global flag to disable all recording to ring buffers
140  *  This has two bits: ON, DISABLED
141  *
142  *  ON   DISABLED
143  * ---- ----------
144  *   0      0        : ring buffers are off
145  *   1      0        : ring buffers are on
146  *   X      1        : ring buffers are permanently disabled
147  */
148
149 enum {
150         RB_BUFFERS_ON_BIT       = 0,
151         RB_BUFFERS_DISABLED_BIT = 1,
152 };
153
154 enum {
155         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
156         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
157 };
158
159 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
160
161 /* Used for individual buffers (after the counter) */
162 #define RB_BUFFER_OFF           (1 << 20)
163
164 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
165
166 /**
167  * tracing_off_permanent - permanently disable ring buffers
168  *
169  * This function, once called, will disable all ring buffers
170  * permanently.
171  */
172 void tracing_off_permanent(void)
173 {
174         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
175 }
176
177 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
178 #define RB_ALIGNMENT            4U
179 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
180 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
181
182 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
183 # define RB_FORCE_8BYTE_ALIGNMENT       0
184 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
185 #else
186 # define RB_FORCE_8BYTE_ALIGNMENT       1
187 # define RB_ARCH_ALIGNMENT              8U
188 #endif
189
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193 enum {
194         RB_LEN_TIME_EXTEND = 8,
195         RB_LEN_TIME_STAMP = 16,
196 };
197
198 #define skip_time_extend(event) \
199         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205
206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208         /* padding has a NULL time_delta */
209         event->type_len = RINGBUF_TYPE_PADDING;
210         event->time_delta = 0;
211 }
212
213 static unsigned
214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216         unsigned length;
217
218         if (event->type_len)
219                 length = event->type_len * RB_ALIGNMENT;
220         else
221                 length = event->array[0];
222         return length + RB_EVNT_HDR_SIZE;
223 }
224
225 /*
226  * Return the length of the given event. Will return
227  * the length of the time extend if the event is a
228  * time extend.
229  */
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event *event)
232 {
233         switch (event->type_len) {
234         case RINGBUF_TYPE_PADDING:
235                 if (rb_null_event(event))
236                         /* undefined */
237                         return -1;
238                 return  event->array[0] + RB_EVNT_HDR_SIZE;
239
240         case RINGBUF_TYPE_TIME_EXTEND:
241                 return RB_LEN_TIME_EXTEND;
242
243         case RINGBUF_TYPE_TIME_STAMP:
244                 return RB_LEN_TIME_STAMP;
245
246         case RINGBUF_TYPE_DATA:
247                 return rb_event_data_length(event);
248         default:
249                 BUG();
250         }
251         /* not hit */
252         return 0;
253 }
254
255 /*
256  * Return total length of time extend and data,
257  *   or just the event length for all other events.
258  */
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262         unsigned len = 0;
263
264         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265                 /* time extends include the data event after it */
266                 len = RB_LEN_TIME_EXTEND;
267                 event = skip_time_extend(event);
268         }
269         return len + rb_event_length(event);
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  *
276  * Returns the size of the data load of a data event.
277  * If the event is something other than a data event, it
278  * returns the size of the event itself. With the exception
279  * of a TIME EXTEND, where it still returns the size of the
280  * data load of the data event after it.
281  */
282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284         unsigned length;
285
286         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287                 event = skip_time_extend(event);
288
289         length = rb_event_length(event);
290         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291                 return length;
292         length -= RB_EVNT_HDR_SIZE;
293         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294                 length -= sizeof(event->array[0]);
295         return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299 /* inline for ring buffer fast paths */
300 static void *
301 rb_event_data(struct ring_buffer_event *event)
302 {
303         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304                 event = skip_time_extend(event);
305         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306         /* If length is in len field, then array[0] has the data */
307         if (event->type_len)
308                 return (void *)&event->array[0];
309         /* Otherwise length is in array[0] and array[1] has the data */
310         return (void *)&event->array[1];
311 }
312
313 /**
314  * ring_buffer_event_data - return the data of the event
315  * @event: the event to get the data from
316  */
317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319         return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323 #define for_each_buffer_cpu(buffer, cpu)                \
324         for_each_cpu(cpu, buffer->cpumask)
325
326 #define TS_SHIFT        27
327 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST   (~TS_MASK)
329
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS        (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED        (1 << 30)
334
335 struct buffer_data_page {
336         u64              time_stamp;    /* page time stamp */
337         local_t          commit;        /* write committed index */
338         unsigned char    data[];        /* data of buffer page */
339 };
340
341 /*
342  * Note, the buffer_page list must be first. The buffer pages
343  * are allocated in cache lines, which means that each buffer
344  * page will be at the beginning of a cache line, and thus
345  * the least significant bits will be zero. We use this to
346  * add flags in the list struct pointers, to make the ring buffer
347  * lockless.
348  */
349 struct buffer_page {
350         struct list_head list;          /* list of buffer pages */
351         local_t          write;         /* index for next write */
352         unsigned         read;          /* index for next read */
353         local_t          entries;       /* entries on this page */
354         unsigned long    real_end;      /* real end of data */
355         struct buffer_data_page *page;  /* Actual data page */
356 };
357
358 /*
359  * The buffer page counters, write and entries, must be reset
360  * atomically when crossing page boundaries. To synchronize this
361  * update, two counters are inserted into the number. One is
362  * the actual counter for the write position or count on the page.
363  *
364  * The other is a counter of updaters. Before an update happens
365  * the update partition of the counter is incremented. This will
366  * allow the updater to update the counter atomically.
367  *
368  * The counter is 20 bits, and the state data is 12.
369  */
370 #define RB_WRITE_MASK           0xfffff
371 #define RB_WRITE_INTCNT         (1 << 20)
372
373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375         local_set(&bpage->commit, 0);
376 }
377
378 /**
379  * ring_buffer_page_len - the size of data on the page.
380  * @page: The page to read
381  *
382  * Returns the amount of data on the page, including buffer page header.
383  */
384 size_t ring_buffer_page_len(void *page)
385 {
386         return local_read(&((struct buffer_data_page *)page)->commit)
387                 + BUF_PAGE_HDR_SIZE;
388 }
389
390 /*
391  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392  * this issue out.
393  */
394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396         free_page((unsigned long)bpage->page);
397         kfree(bpage);
398 }
399
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline int test_time_stamp(u64 delta)
404 {
405         if (delta & TS_DELTA_TEST)
406                 return 1;
407         return 0;
408 }
409
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417         struct buffer_data_page field;
418         int ret;
419
420         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
421                                "offset:0;\tsize:%u;\tsigned:%u;\n",
422                                (unsigned int)sizeof(field.time_stamp),
423                                (unsigned int)is_signed_type(u64));
424
425         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
426                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
427                                (unsigned int)offsetof(typeof(field), commit),
428                                (unsigned int)sizeof(field.commit),
429                                (unsigned int)is_signed_type(long));
430
431         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
432                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
433                                (unsigned int)offsetof(typeof(field), commit),
434                                1,
435                                (unsigned int)is_signed_type(long));
436
437         ret = trace_seq_printf(s, "\tfield: char data;\t"
438                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
439                                (unsigned int)offsetof(typeof(field), data),
440                                (unsigned int)BUF_PAGE_SIZE,
441                                (unsigned int)is_signed_type(char));
442
443         return ret;
444 }
445
446 struct rb_irq_work {
447         struct irq_work                 work;
448         wait_queue_head_t               waiters;
449         bool                            waiters_pending;
450 };
451
452 /*
453  * head_page == tail_page && head == tail then buffer is empty.
454  */
455 struct ring_buffer_per_cpu {
456         int                             cpu;
457         atomic_t                        record_disabled;
458         struct ring_buffer              *buffer;
459         raw_spinlock_t                  reader_lock;    /* serialize readers */
460         arch_spinlock_t                 lock;
461         struct lock_class_key           lock_key;
462         unsigned int                    nr_pages;
463         struct list_head                *pages;
464         struct buffer_page              *head_page;     /* read from head */
465         struct buffer_page              *tail_page;     /* write to tail */
466         struct buffer_page              *commit_page;   /* committed pages */
467         struct buffer_page              *reader_page;
468         unsigned long                   lost_events;
469         unsigned long                   last_overrun;
470         local_t                         entries_bytes;
471         local_t                         entries;
472         local_t                         overrun;
473         local_t                         commit_overrun;
474         local_t                         dropped_events;
475         local_t                         committing;
476         local_t                         commits;
477         unsigned long                   read;
478         unsigned long                   read_bytes;
479         u64                             write_stamp;
480         u64                             read_stamp;
481         /* ring buffer pages to update, > 0 to add, < 0 to remove */
482         int                             nr_pages_to_update;
483         struct list_head                new_pages; /* new pages to add */
484         struct work_struct              update_pages_work;
485         struct completion               update_done;
486
487         struct rb_irq_work              irq_work;
488 };
489
490 struct ring_buffer {
491         unsigned                        flags;
492         int                             cpus;
493         atomic_t                        record_disabled;
494         atomic_t                        resize_disabled;
495         cpumask_var_t                   cpumask;
496
497         struct lock_class_key           *reader_lock_key;
498
499         struct mutex                    mutex;
500
501         struct ring_buffer_per_cpu      **buffers;
502
503 #ifdef CONFIG_HOTPLUG_CPU
504         struct notifier_block           cpu_notify;
505 #endif
506         u64                             (*clock)(void);
507
508         struct rb_irq_work              irq_work;
509 };
510
511 struct ring_buffer_iter {
512         struct ring_buffer_per_cpu      *cpu_buffer;
513         unsigned long                   head;
514         struct buffer_page              *head_page;
515         struct buffer_page              *cache_reader_page;
516         unsigned long                   cache_read;
517         u64                             read_stamp;
518 };
519
520 /*
521  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
522  *
523  * Schedules a delayed work to wake up any task that is blocked on the
524  * ring buffer waiters queue.
525  */
526 static void rb_wake_up_waiters(struct irq_work *work)
527 {
528         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
529
530         wake_up_all(&rbwork->waiters);
531 }
532
533 /**
534  * ring_buffer_wait - wait for input to the ring buffer
535  * @buffer: buffer to wait on
536  * @cpu: the cpu buffer to wait on
537  *
538  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
539  * as data is added to any of the @buffer's cpu buffers. Otherwise
540  * it will wait for data to be added to a specific cpu buffer.
541  */
542 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
543 {
544         struct ring_buffer_per_cpu *cpu_buffer;
545         DEFINE_WAIT(wait);
546         struct rb_irq_work *work;
547
548         /*
549          * Depending on what the caller is waiting for, either any
550          * data in any cpu buffer, or a specific buffer, put the
551          * caller on the appropriate wait queue.
552          */
553         if (cpu == RING_BUFFER_ALL_CPUS)
554                 work = &buffer->irq_work;
555         else {
556                 cpu_buffer = buffer->buffers[cpu];
557                 work = &cpu_buffer->irq_work;
558         }
559
560
561         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
562
563         /*
564          * The events can happen in critical sections where
565          * checking a work queue can cause deadlocks.
566          * After adding a task to the queue, this flag is set
567          * only to notify events to try to wake up the queue
568          * using irq_work.
569          *
570          * We don't clear it even if the buffer is no longer
571          * empty. The flag only causes the next event to run
572          * irq_work to do the work queue wake up. The worse
573          * that can happen if we race with !trace_empty() is that
574          * an event will cause an irq_work to try to wake up
575          * an empty queue.
576          *
577          * There's no reason to protect this flag either, as
578          * the work queue and irq_work logic will do the necessary
579          * synchronization for the wake ups. The only thing
580          * that is necessary is that the wake up happens after
581          * a task has been queued. It's OK for spurious wake ups.
582          */
583         work->waiters_pending = true;
584
585         if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
586             (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
587                 schedule();
588
589         finish_wait(&work->waiters, &wait);
590 }
591
592 /**
593  * ring_buffer_poll_wait - poll on buffer input
594  * @buffer: buffer to wait on
595  * @cpu: the cpu buffer to wait on
596  * @filp: the file descriptor
597  * @poll_table: The poll descriptor
598  *
599  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
600  * as data is added to any of the @buffer's cpu buffers. Otherwise
601  * it will wait for data to be added to a specific cpu buffer.
602  *
603  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
604  * zero otherwise.
605  */
606 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
607                           struct file *filp, poll_table *poll_table)
608 {
609         struct ring_buffer_per_cpu *cpu_buffer;
610         struct rb_irq_work *work;
611
612         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
613             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
614                 return POLLIN | POLLRDNORM;
615
616         if (cpu == RING_BUFFER_ALL_CPUS)
617                 work = &buffer->irq_work;
618         else {
619                 cpu_buffer = buffer->buffers[cpu];
620                 work = &cpu_buffer->irq_work;
621         }
622
623         work->waiters_pending = true;
624         poll_wait(filp, &work->waiters, poll_table);
625
626         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
627             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
628                 return POLLIN | POLLRDNORM;
629         return 0;
630 }
631
632 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
633 #define RB_WARN_ON(b, cond)                                             \
634         ({                                                              \
635                 int _____ret = unlikely(cond);                          \
636                 if (_____ret) {                                         \
637                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
638                                 struct ring_buffer_per_cpu *__b =       \
639                                         (void *)b;                      \
640                                 atomic_inc(&__b->buffer->record_disabled); \
641                         } else                                          \
642                                 atomic_inc(&b->record_disabled);        \
643                         WARN_ON(1);                                     \
644                 }                                                       \
645                 _____ret;                                               \
646         })
647
648 /* Up this if you want to test the TIME_EXTENTS and normalization */
649 #define DEBUG_SHIFT 0
650
651 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
652 {
653         /* shift to debug/test normalization and TIME_EXTENTS */
654         return buffer->clock() << DEBUG_SHIFT;
655 }
656
657 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
658 {
659         u64 time;
660
661         preempt_disable_notrace();
662         time = rb_time_stamp(buffer);
663         preempt_enable_no_resched_notrace();
664
665         return time;
666 }
667 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
668
669 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
670                                       int cpu, u64 *ts)
671 {
672         /* Just stupid testing the normalize function and deltas */
673         *ts >>= DEBUG_SHIFT;
674 }
675 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
676
677 /*
678  * Making the ring buffer lockless makes things tricky.
679  * Although writes only happen on the CPU that they are on,
680  * and they only need to worry about interrupts. Reads can
681  * happen on any CPU.
682  *
683  * The reader page is always off the ring buffer, but when the
684  * reader finishes with a page, it needs to swap its page with
685  * a new one from the buffer. The reader needs to take from
686  * the head (writes go to the tail). But if a writer is in overwrite
687  * mode and wraps, it must push the head page forward.
688  *
689  * Here lies the problem.
690  *
691  * The reader must be careful to replace only the head page, and
692  * not another one. As described at the top of the file in the
693  * ASCII art, the reader sets its old page to point to the next
694  * page after head. It then sets the page after head to point to
695  * the old reader page. But if the writer moves the head page
696  * during this operation, the reader could end up with the tail.
697  *
698  * We use cmpxchg to help prevent this race. We also do something
699  * special with the page before head. We set the LSB to 1.
700  *
701  * When the writer must push the page forward, it will clear the
702  * bit that points to the head page, move the head, and then set
703  * the bit that points to the new head page.
704  *
705  * We also don't want an interrupt coming in and moving the head
706  * page on another writer. Thus we use the second LSB to catch
707  * that too. Thus:
708  *
709  * head->list->prev->next        bit 1          bit 0
710  *                              -------        -------
711  * Normal page                     0              0
712  * Points to head page             0              1
713  * New head page                   1              0
714  *
715  * Note we can not trust the prev pointer of the head page, because:
716  *
717  * +----+       +-----+        +-----+
718  * |    |------>|  T  |---X--->|  N  |
719  * |    |<------|     |        |     |
720  * +----+       +-----+        +-----+
721  *   ^                           ^ |
722  *   |          +-----+          | |
723  *   +----------|  R  |----------+ |
724  *              |     |<-----------+
725  *              +-----+
726  *
727  * Key:  ---X-->  HEAD flag set in pointer
728  *         T      Tail page
729  *         R      Reader page
730  *         N      Next page
731  *
732  * (see __rb_reserve_next() to see where this happens)
733  *
734  *  What the above shows is that the reader just swapped out
735  *  the reader page with a page in the buffer, but before it
736  *  could make the new header point back to the new page added
737  *  it was preempted by a writer. The writer moved forward onto
738  *  the new page added by the reader and is about to move forward
739  *  again.
740  *
741  *  You can see, it is legitimate for the previous pointer of
742  *  the head (or any page) not to point back to itself. But only
743  *  temporarially.
744  */
745
746 #define RB_PAGE_NORMAL          0UL
747 #define RB_PAGE_HEAD            1UL
748 #define RB_PAGE_UPDATE          2UL
749
750
751 #define RB_FLAG_MASK            3UL
752
753 /* PAGE_MOVED is not part of the mask */
754 #define RB_PAGE_MOVED           4UL
755
756 /*
757  * rb_list_head - remove any bit
758  */
759 static struct list_head *rb_list_head(struct list_head *list)
760 {
761         unsigned long val = (unsigned long)list;
762
763         return (struct list_head *)(val & ~RB_FLAG_MASK);
764 }
765
766 /*
767  * rb_is_head_page - test if the given page is the head page
768  *
769  * Because the reader may move the head_page pointer, we can
770  * not trust what the head page is (it may be pointing to
771  * the reader page). But if the next page is a header page,
772  * its flags will be non zero.
773  */
774 static inline int
775 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
776                 struct buffer_page *page, struct list_head *list)
777 {
778         unsigned long val;
779
780         val = (unsigned long)list->next;
781
782         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
783                 return RB_PAGE_MOVED;
784
785         return val & RB_FLAG_MASK;
786 }
787
788 /*
789  * rb_is_reader_page
790  *
791  * The unique thing about the reader page, is that, if the
792  * writer is ever on it, the previous pointer never points
793  * back to the reader page.
794  */
795 static int rb_is_reader_page(struct buffer_page *page)
796 {
797         struct list_head *list = page->list.prev;
798
799         return rb_list_head(list->next) != &page->list;
800 }
801
802 /*
803  * rb_set_list_to_head - set a list_head to be pointing to head.
804  */
805 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
806                                 struct list_head *list)
807 {
808         unsigned long *ptr;
809
810         ptr = (unsigned long *)&list->next;
811         *ptr |= RB_PAGE_HEAD;
812         *ptr &= ~RB_PAGE_UPDATE;
813 }
814
815 /*
816  * rb_head_page_activate - sets up head page
817  */
818 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
819 {
820         struct buffer_page *head;
821
822         head = cpu_buffer->head_page;
823         if (!head)
824                 return;
825
826         /*
827          * Set the previous list pointer to have the HEAD flag.
828          */
829         rb_set_list_to_head(cpu_buffer, head->list.prev);
830 }
831
832 static void rb_list_head_clear(struct list_head *list)
833 {
834         unsigned long *ptr = (unsigned long *)&list->next;
835
836         *ptr &= ~RB_FLAG_MASK;
837 }
838
839 /*
840  * rb_head_page_dactivate - clears head page ptr (for free list)
841  */
842 static void
843 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
844 {
845         struct list_head *hd;
846
847         /* Go through the whole list and clear any pointers found. */
848         rb_list_head_clear(cpu_buffer->pages);
849
850         list_for_each(hd, cpu_buffer->pages)
851                 rb_list_head_clear(hd);
852 }
853
854 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
855                             struct buffer_page *head,
856                             struct buffer_page *prev,
857                             int old_flag, int new_flag)
858 {
859         struct list_head *list;
860         unsigned long val = (unsigned long)&head->list;
861         unsigned long ret;
862
863         list = &prev->list;
864
865         val &= ~RB_FLAG_MASK;
866
867         ret = cmpxchg((unsigned long *)&list->next,
868                       val | old_flag, val | new_flag);
869
870         /* check if the reader took the page */
871         if ((ret & ~RB_FLAG_MASK) != val)
872                 return RB_PAGE_MOVED;
873
874         return ret & RB_FLAG_MASK;
875 }
876
877 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
878                                    struct buffer_page *head,
879                                    struct buffer_page *prev,
880                                    int old_flag)
881 {
882         return rb_head_page_set(cpu_buffer, head, prev,
883                                 old_flag, RB_PAGE_UPDATE);
884 }
885
886 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
887                                  struct buffer_page *head,
888                                  struct buffer_page *prev,
889                                  int old_flag)
890 {
891         return rb_head_page_set(cpu_buffer, head, prev,
892                                 old_flag, RB_PAGE_HEAD);
893 }
894
895 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
896                                    struct buffer_page *head,
897                                    struct buffer_page *prev,
898                                    int old_flag)
899 {
900         return rb_head_page_set(cpu_buffer, head, prev,
901                                 old_flag, RB_PAGE_NORMAL);
902 }
903
904 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
905                                struct buffer_page **bpage)
906 {
907         struct list_head *p = rb_list_head((*bpage)->list.next);
908
909         *bpage = list_entry(p, struct buffer_page, list);
910 }
911
912 static struct buffer_page *
913 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
914 {
915         struct buffer_page *head;
916         struct buffer_page *page;
917         struct list_head *list;
918         int i;
919
920         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
921                 return NULL;
922
923         /* sanity check */
924         list = cpu_buffer->pages;
925         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
926                 return NULL;
927
928         page = head = cpu_buffer->head_page;
929         /*
930          * It is possible that the writer moves the header behind
931          * where we started, and we miss in one loop.
932          * A second loop should grab the header, but we'll do
933          * three loops just because I'm paranoid.
934          */
935         for (i = 0; i < 3; i++) {
936                 do {
937                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
938                                 cpu_buffer->head_page = page;
939                                 return page;
940                         }
941                         rb_inc_page(cpu_buffer, &page);
942                 } while (page != head);
943         }
944
945         RB_WARN_ON(cpu_buffer, 1);
946
947         return NULL;
948 }
949
950 static int rb_head_page_replace(struct buffer_page *old,
951                                 struct buffer_page *new)
952 {
953         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
954         unsigned long val;
955         unsigned long ret;
956
957         val = *ptr & ~RB_FLAG_MASK;
958         val |= RB_PAGE_HEAD;
959
960         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
961
962         return ret == val;
963 }
964
965 /*
966  * rb_tail_page_update - move the tail page forward
967  *
968  * Returns 1 if moved tail page, 0 if someone else did.
969  */
970 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
971                                struct buffer_page *tail_page,
972                                struct buffer_page *next_page)
973 {
974         struct buffer_page *old_tail;
975         unsigned long old_entries;
976         unsigned long old_write;
977         int ret = 0;
978
979         /*
980          * The tail page now needs to be moved forward.
981          *
982          * We need to reset the tail page, but without messing
983          * with possible erasing of data brought in by interrupts
984          * that have moved the tail page and are currently on it.
985          *
986          * We add a counter to the write field to denote this.
987          */
988         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
989         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
990
991         /*
992          * Just make sure we have seen our old_write and synchronize
993          * with any interrupts that come in.
994          */
995         barrier();
996
997         /*
998          * If the tail page is still the same as what we think
999          * it is, then it is up to us to update the tail
1000          * pointer.
1001          */
1002         if (tail_page == cpu_buffer->tail_page) {
1003                 /* Zero the write counter */
1004                 unsigned long val = old_write & ~RB_WRITE_MASK;
1005                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1006
1007                 /*
1008                  * This will only succeed if an interrupt did
1009                  * not come in and change it. In which case, we
1010                  * do not want to modify it.
1011                  *
1012                  * We add (void) to let the compiler know that we do not care
1013                  * about the return value of these functions. We use the
1014                  * cmpxchg to only update if an interrupt did not already
1015                  * do it for us. If the cmpxchg fails, we don't care.
1016                  */
1017                 (void)local_cmpxchg(&next_page->write, old_write, val);
1018                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1019
1020                 /*
1021                  * No need to worry about races with clearing out the commit.
1022                  * it only can increment when a commit takes place. But that
1023                  * only happens in the outer most nested commit.
1024                  */
1025                 local_set(&next_page->page->commit, 0);
1026
1027                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1028                                    tail_page, next_page);
1029
1030                 if (old_tail == tail_page)
1031                         ret = 1;
1032         }
1033
1034         return ret;
1035 }
1036
1037 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1038                           struct buffer_page *bpage)
1039 {
1040         unsigned long val = (unsigned long)bpage;
1041
1042         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1043                 return 1;
1044
1045         return 0;
1046 }
1047
1048 /**
1049  * rb_check_list - make sure a pointer to a list has the last bits zero
1050  */
1051 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1052                          struct list_head *list)
1053 {
1054         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1055                 return 1;
1056         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1057                 return 1;
1058         return 0;
1059 }
1060
1061 /**
1062  * check_pages - integrity check of buffer pages
1063  * @cpu_buffer: CPU buffer with pages to test
1064  *
1065  * As a safety measure we check to make sure the data pages have not
1066  * been corrupted.
1067  */
1068 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1069 {
1070         struct list_head *head = cpu_buffer->pages;
1071         struct buffer_page *bpage, *tmp;
1072
1073         /* Reset the head page if it exists */
1074         if (cpu_buffer->head_page)
1075                 rb_set_head_page(cpu_buffer);
1076
1077         rb_head_page_deactivate(cpu_buffer);
1078
1079         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1080                 return -1;
1081         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1082                 return -1;
1083
1084         if (rb_check_list(cpu_buffer, head))
1085                 return -1;
1086
1087         list_for_each_entry_safe(bpage, tmp, head, list) {
1088                 if (RB_WARN_ON(cpu_buffer,
1089                                bpage->list.next->prev != &bpage->list))
1090                         return -1;
1091                 if (RB_WARN_ON(cpu_buffer,
1092                                bpage->list.prev->next != &bpage->list))
1093                         return -1;
1094                 if (rb_check_list(cpu_buffer, &bpage->list))
1095                         return -1;
1096         }
1097
1098         rb_head_page_activate(cpu_buffer);
1099
1100         return 0;
1101 }
1102
1103 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1104 {
1105         int i;
1106         struct buffer_page *bpage, *tmp;
1107
1108         for (i = 0; i < nr_pages; i++) {
1109                 struct page *page;
1110                 /*
1111                  * __GFP_NORETRY flag makes sure that the allocation fails
1112                  * gracefully without invoking oom-killer and the system is
1113                  * not destabilized.
1114                  */
1115                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1116                                     GFP_KERNEL | __GFP_NORETRY,
1117                                     cpu_to_node(cpu));
1118                 if (!bpage)
1119                         goto free_pages;
1120
1121                 list_add(&bpage->list, pages);
1122
1123                 page = alloc_pages_node(cpu_to_node(cpu),
1124                                         GFP_KERNEL | __GFP_NORETRY, 0);
1125                 if (!page)
1126                         goto free_pages;
1127                 bpage->page = page_address(page);
1128                 rb_init_page(bpage->page);
1129         }
1130
1131         return 0;
1132
1133 free_pages:
1134         list_for_each_entry_safe(bpage, tmp, pages, list) {
1135                 list_del_init(&bpage->list);
1136                 free_buffer_page(bpage);
1137         }
1138
1139         return -ENOMEM;
1140 }
1141
1142 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1143                              unsigned nr_pages)
1144 {
1145         LIST_HEAD(pages);
1146
1147         WARN_ON(!nr_pages);
1148
1149         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1150                 return -ENOMEM;
1151
1152         /*
1153          * The ring buffer page list is a circular list that does not
1154          * start and end with a list head. All page list items point to
1155          * other pages.
1156          */
1157         cpu_buffer->pages = pages.next;
1158         list_del(&pages);
1159
1160         cpu_buffer->nr_pages = nr_pages;
1161
1162         rb_check_pages(cpu_buffer);
1163
1164         return 0;
1165 }
1166
1167 static struct ring_buffer_per_cpu *
1168 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1169 {
1170         struct ring_buffer_per_cpu *cpu_buffer;
1171         struct buffer_page *bpage;
1172         struct page *page;
1173         int ret;
1174
1175         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1176                                   GFP_KERNEL, cpu_to_node(cpu));
1177         if (!cpu_buffer)
1178                 return NULL;
1179
1180         cpu_buffer->cpu = cpu;
1181         cpu_buffer->buffer = buffer;
1182         raw_spin_lock_init(&cpu_buffer->reader_lock);
1183         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1184         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1185         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1186         init_completion(&cpu_buffer->update_done);
1187         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1188         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1189
1190         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1191                             GFP_KERNEL, cpu_to_node(cpu));
1192         if (!bpage)
1193                 goto fail_free_buffer;
1194
1195         rb_check_bpage(cpu_buffer, bpage);
1196
1197         cpu_buffer->reader_page = bpage;
1198         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1199         if (!page)
1200                 goto fail_free_reader;
1201         bpage->page = page_address(page);
1202         rb_init_page(bpage->page);
1203
1204         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1205         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1206
1207         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1208         if (ret < 0)
1209                 goto fail_free_reader;
1210
1211         cpu_buffer->head_page
1212                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1213         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1214
1215         rb_head_page_activate(cpu_buffer);
1216
1217         return cpu_buffer;
1218
1219  fail_free_reader:
1220         free_buffer_page(cpu_buffer->reader_page);
1221
1222  fail_free_buffer:
1223         kfree(cpu_buffer);
1224         return NULL;
1225 }
1226
1227 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1228 {
1229         struct list_head *head = cpu_buffer->pages;
1230         struct buffer_page *bpage, *tmp;
1231
1232         free_buffer_page(cpu_buffer->reader_page);
1233
1234         rb_head_page_deactivate(cpu_buffer);
1235
1236         if (head) {
1237                 list_for_each_entry_safe(bpage, tmp, head, list) {
1238                         list_del_init(&bpage->list);
1239                         free_buffer_page(bpage);
1240                 }
1241                 bpage = list_entry(head, struct buffer_page, list);
1242                 free_buffer_page(bpage);
1243         }
1244
1245         kfree(cpu_buffer);
1246 }
1247
1248 #ifdef CONFIG_HOTPLUG_CPU
1249 static int rb_cpu_notify(struct notifier_block *self,
1250                          unsigned long action, void *hcpu);
1251 #endif
1252
1253 /**
1254  * ring_buffer_alloc - allocate a new ring_buffer
1255  * @size: the size in bytes per cpu that is needed.
1256  * @flags: attributes to set for the ring buffer.
1257  *
1258  * Currently the only flag that is available is the RB_FL_OVERWRITE
1259  * flag. This flag means that the buffer will overwrite old data
1260  * when the buffer wraps. If this flag is not set, the buffer will
1261  * drop data when the tail hits the head.
1262  */
1263 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1264                                         struct lock_class_key *key)
1265 {
1266         struct ring_buffer *buffer;
1267         int bsize;
1268         int cpu, nr_pages;
1269
1270         /* keep it in its own cache line */
1271         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1272                          GFP_KERNEL);
1273         if (!buffer)
1274                 return NULL;
1275
1276         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1277                 goto fail_free_buffer;
1278
1279         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1280         buffer->flags = flags;
1281         buffer->clock = trace_clock_local;
1282         buffer->reader_lock_key = key;
1283
1284         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1285         init_waitqueue_head(&buffer->irq_work.waiters);
1286
1287         /* need at least two pages */
1288         if (nr_pages < 2)
1289                 nr_pages = 2;
1290
1291         /*
1292          * In case of non-hotplug cpu, if the ring-buffer is allocated
1293          * in early initcall, it will not be notified of secondary cpus.
1294          * In that off case, we need to allocate for all possible cpus.
1295          */
1296 #ifdef CONFIG_HOTPLUG_CPU
1297         get_online_cpus();
1298         cpumask_copy(buffer->cpumask, cpu_online_mask);
1299 #else
1300         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1301 #endif
1302         buffer->cpus = nr_cpu_ids;
1303
1304         bsize = sizeof(void *) * nr_cpu_ids;
1305         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1306                                   GFP_KERNEL);
1307         if (!buffer->buffers)
1308                 goto fail_free_cpumask;
1309
1310         for_each_buffer_cpu(buffer, cpu) {
1311                 buffer->buffers[cpu] =
1312                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1313                 if (!buffer->buffers[cpu])
1314                         goto fail_free_buffers;
1315         }
1316
1317 #ifdef CONFIG_HOTPLUG_CPU
1318         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1319         buffer->cpu_notify.priority = 0;
1320         register_cpu_notifier(&buffer->cpu_notify);
1321 #endif
1322
1323         put_online_cpus();
1324         mutex_init(&buffer->mutex);
1325
1326         return buffer;
1327
1328  fail_free_buffers:
1329         for_each_buffer_cpu(buffer, cpu) {
1330                 if (buffer->buffers[cpu])
1331                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1332         }
1333         kfree(buffer->buffers);
1334
1335  fail_free_cpumask:
1336         free_cpumask_var(buffer->cpumask);
1337         put_online_cpus();
1338
1339  fail_free_buffer:
1340         kfree(buffer);
1341         return NULL;
1342 }
1343 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1344
1345 /**
1346  * ring_buffer_free - free a ring buffer.
1347  * @buffer: the buffer to free.
1348  */
1349 void
1350 ring_buffer_free(struct ring_buffer *buffer)
1351 {
1352         int cpu;
1353
1354         get_online_cpus();
1355
1356 #ifdef CONFIG_HOTPLUG_CPU
1357         unregister_cpu_notifier(&buffer->cpu_notify);
1358 #endif
1359
1360         for_each_buffer_cpu(buffer, cpu)
1361                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1362
1363         put_online_cpus();
1364
1365         kfree(buffer->buffers);
1366         free_cpumask_var(buffer->cpumask);
1367
1368         kfree(buffer);
1369 }
1370 EXPORT_SYMBOL_GPL(ring_buffer_free);
1371
1372 void ring_buffer_set_clock(struct ring_buffer *buffer,
1373                            u64 (*clock)(void))
1374 {
1375         buffer->clock = clock;
1376 }
1377
1378 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1379
1380 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1381 {
1382         return local_read(&bpage->entries) & RB_WRITE_MASK;
1383 }
1384
1385 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1386 {
1387         return local_read(&bpage->write) & RB_WRITE_MASK;
1388 }
1389
1390 static int
1391 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1392 {
1393         struct list_head *tail_page, *to_remove, *next_page;
1394         struct buffer_page *to_remove_page, *tmp_iter_page;
1395         struct buffer_page *last_page, *first_page;
1396         unsigned int nr_removed;
1397         unsigned long head_bit;
1398         int page_entries;
1399
1400         head_bit = 0;
1401
1402         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1403         atomic_inc(&cpu_buffer->record_disabled);
1404         /*
1405          * We don't race with the readers since we have acquired the reader
1406          * lock. We also don't race with writers after disabling recording.
1407          * This makes it easy to figure out the first and the last page to be
1408          * removed from the list. We unlink all the pages in between including
1409          * the first and last pages. This is done in a busy loop so that we
1410          * lose the least number of traces.
1411          * The pages are freed after we restart recording and unlock readers.
1412          */
1413         tail_page = &cpu_buffer->tail_page->list;
1414
1415         /*
1416          * tail page might be on reader page, we remove the next page
1417          * from the ring buffer
1418          */
1419         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1420                 tail_page = rb_list_head(tail_page->next);
1421         to_remove = tail_page;
1422
1423         /* start of pages to remove */
1424         first_page = list_entry(rb_list_head(to_remove->next),
1425                                 struct buffer_page, list);
1426
1427         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1428                 to_remove = rb_list_head(to_remove)->next;
1429                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1430         }
1431
1432         next_page = rb_list_head(to_remove)->next;
1433
1434         /*
1435          * Now we remove all pages between tail_page and next_page.
1436          * Make sure that we have head_bit value preserved for the
1437          * next page
1438          */
1439         tail_page->next = (struct list_head *)((unsigned long)next_page |
1440                                                 head_bit);
1441         next_page = rb_list_head(next_page);
1442         next_page->prev = tail_page;
1443
1444         /* make sure pages points to a valid page in the ring buffer */
1445         cpu_buffer->pages = next_page;
1446
1447         /* update head page */
1448         if (head_bit)
1449                 cpu_buffer->head_page = list_entry(next_page,
1450                                                 struct buffer_page, list);
1451
1452         /*
1453          * change read pointer to make sure any read iterators reset
1454          * themselves
1455          */
1456         cpu_buffer->read = 0;
1457
1458         /* pages are removed, resume tracing and then free the pages */
1459         atomic_dec(&cpu_buffer->record_disabled);
1460         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1461
1462         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1463
1464         /* last buffer page to remove */
1465         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1466                                 list);
1467         tmp_iter_page = first_page;
1468
1469         do {
1470                 to_remove_page = tmp_iter_page;
1471                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1472
1473                 /* update the counters */
1474                 page_entries = rb_page_entries(to_remove_page);
1475                 if (page_entries) {
1476                         /*
1477                          * If something was added to this page, it was full
1478                          * since it is not the tail page. So we deduct the
1479                          * bytes consumed in ring buffer from here.
1480                          * Increment overrun to account for the lost events.
1481                          */
1482                         local_add(page_entries, &cpu_buffer->overrun);
1483                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1484                 }
1485
1486                 /*
1487                  * We have already removed references to this list item, just
1488                  * free up the buffer_page and its page
1489                  */
1490                 free_buffer_page(to_remove_page);
1491                 nr_removed--;
1492
1493         } while (to_remove_page != last_page);
1494
1495         RB_WARN_ON(cpu_buffer, nr_removed);
1496
1497         return nr_removed == 0;
1498 }
1499
1500 static int
1501 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502 {
1503         struct list_head *pages = &cpu_buffer->new_pages;
1504         int retries, success;
1505
1506         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1507         /*
1508          * We are holding the reader lock, so the reader page won't be swapped
1509          * in the ring buffer. Now we are racing with the writer trying to
1510          * move head page and the tail page.
1511          * We are going to adapt the reader page update process where:
1512          * 1. We first splice the start and end of list of new pages between
1513          *    the head page and its previous page.
1514          * 2. We cmpxchg the prev_page->next to point from head page to the
1515          *    start of new pages list.
1516          * 3. Finally, we update the head->prev to the end of new list.
1517          *
1518          * We will try this process 10 times, to make sure that we don't keep
1519          * spinning.
1520          */
1521         retries = 10;
1522         success = 0;
1523         while (retries--) {
1524                 struct list_head *head_page, *prev_page, *r;
1525                 struct list_head *last_page, *first_page;
1526                 struct list_head *head_page_with_bit;
1527
1528                 head_page = &rb_set_head_page(cpu_buffer)->list;
1529                 if (!head_page)
1530                         break;
1531                 prev_page = head_page->prev;
1532
1533                 first_page = pages->next;
1534                 last_page  = pages->prev;
1535
1536                 head_page_with_bit = (struct list_head *)
1537                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1538
1539                 last_page->next = head_page_with_bit;
1540                 first_page->prev = prev_page;
1541
1542                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1543
1544                 if (r == head_page_with_bit) {
1545                         /*
1546                          * yay, we replaced the page pointer to our new list,
1547                          * now, we just have to update to head page's prev
1548                          * pointer to point to end of list
1549                          */
1550                         head_page->prev = last_page;
1551                         success = 1;
1552                         break;
1553                 }
1554         }
1555
1556         if (success)
1557                 INIT_LIST_HEAD(pages);
1558         /*
1559          * If we weren't successful in adding in new pages, warn and stop
1560          * tracing
1561          */
1562         RB_WARN_ON(cpu_buffer, !success);
1563         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1564
1565         /* free pages if they weren't inserted */
1566         if (!success) {
1567                 struct buffer_page *bpage, *tmp;
1568                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1569                                          list) {
1570                         list_del_init(&bpage->list);
1571                         free_buffer_page(bpage);
1572                 }
1573         }
1574         return success;
1575 }
1576
1577 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1578 {
1579         int success;
1580
1581         if (cpu_buffer->nr_pages_to_update > 0)
1582                 success = rb_insert_pages(cpu_buffer);
1583         else
1584                 success = rb_remove_pages(cpu_buffer,
1585                                         -cpu_buffer->nr_pages_to_update);
1586
1587         if (success)
1588                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1589 }
1590
1591 static void update_pages_handler(struct work_struct *work)
1592 {
1593         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1594                         struct ring_buffer_per_cpu, update_pages_work);
1595         rb_update_pages(cpu_buffer);
1596         complete(&cpu_buffer->update_done);
1597 }
1598
1599 /**
1600  * ring_buffer_resize - resize the ring buffer
1601  * @buffer: the buffer to resize.
1602  * @size: the new size.
1603  *
1604  * Minimum size is 2 * BUF_PAGE_SIZE.
1605  *
1606  * Returns 0 on success and < 0 on failure.
1607  */
1608 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1609                         int cpu_id)
1610 {
1611         struct ring_buffer_per_cpu *cpu_buffer;
1612         unsigned nr_pages;
1613         int cpu, err = 0;
1614
1615         /*
1616          * Always succeed at resizing a non-existent buffer:
1617          */
1618         if (!buffer)
1619                 return size;
1620
1621         /* Make sure the requested buffer exists */
1622         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1623             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1624                 return size;
1625
1626         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1627         size *= BUF_PAGE_SIZE;
1628
1629         /* we need a minimum of two pages */
1630         if (size < BUF_PAGE_SIZE * 2)
1631                 size = BUF_PAGE_SIZE * 2;
1632
1633         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1634
1635         /*
1636          * Don't succeed if resizing is disabled, as a reader might be
1637          * manipulating the ring buffer and is expecting a sane state while
1638          * this is true.
1639          */
1640         if (atomic_read(&buffer->resize_disabled))
1641                 return -EBUSY;
1642
1643         /* prevent another thread from changing buffer sizes */
1644         mutex_lock(&buffer->mutex);
1645
1646         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1647                 /* calculate the pages to update */
1648                 for_each_buffer_cpu(buffer, cpu) {
1649                         cpu_buffer = buffer->buffers[cpu];
1650
1651                         cpu_buffer->nr_pages_to_update = nr_pages -
1652                                                         cpu_buffer->nr_pages;
1653                         /*
1654                          * nothing more to do for removing pages or no update
1655                          */
1656                         if (cpu_buffer->nr_pages_to_update <= 0)
1657                                 continue;
1658                         /*
1659                          * to add pages, make sure all new pages can be
1660                          * allocated without receiving ENOMEM
1661                          */
1662                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1663                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1664                                                 &cpu_buffer->new_pages, cpu)) {
1665                                 /* not enough memory for new pages */
1666                                 err = -ENOMEM;
1667                                 goto out_err;
1668                         }
1669                 }
1670
1671                 get_online_cpus();
1672                 /*
1673                  * Fire off all the required work handlers
1674                  * We can't schedule on offline CPUs, but it's not necessary
1675                  * since we can change their buffer sizes without any race.
1676                  */
1677                 for_each_buffer_cpu(buffer, cpu) {
1678                         cpu_buffer = buffer->buffers[cpu];
1679                         if (!cpu_buffer->nr_pages_to_update)
1680                                 continue;
1681
1682                         /* The update must run on the CPU that is being updated. */
1683                         preempt_disable();
1684                         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1685                                 rb_update_pages(cpu_buffer);
1686                                 cpu_buffer->nr_pages_to_update = 0;
1687                         } else {
1688                                 /*
1689                                  * Can not disable preemption for schedule_work_on()
1690                                  * on PREEMPT_RT.
1691                                  */
1692                                 preempt_enable();
1693                                 schedule_work_on(cpu,
1694                                                 &cpu_buffer->update_pages_work);
1695                                 preempt_disable();
1696                         }
1697                         preempt_enable();
1698                 }
1699
1700                 /* wait for all the updates to complete */
1701                 for_each_buffer_cpu(buffer, cpu) {
1702                         cpu_buffer = buffer->buffers[cpu];
1703                         if (!cpu_buffer->nr_pages_to_update)
1704                                 continue;
1705
1706                         if (cpu_online(cpu))
1707                                 wait_for_completion(&cpu_buffer->update_done);
1708                         cpu_buffer->nr_pages_to_update = 0;
1709                 }
1710
1711                 put_online_cpus();
1712         } else {
1713                 /* Make sure this CPU has been intitialized */
1714                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1715                         goto out;
1716
1717                 cpu_buffer = buffer->buffers[cpu_id];
1718
1719                 if (nr_pages == cpu_buffer->nr_pages)
1720                         goto out;
1721
1722                 cpu_buffer->nr_pages_to_update = nr_pages -
1723                                                 cpu_buffer->nr_pages;
1724
1725                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1726                 if (cpu_buffer->nr_pages_to_update > 0 &&
1727                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1728                                             &cpu_buffer->new_pages, cpu_id)) {
1729                         err = -ENOMEM;
1730                         goto out_err;
1731                 }
1732
1733                 get_online_cpus();
1734
1735                 preempt_disable();
1736                 /* The update must run on the CPU that is being updated. */
1737                 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1738                         rb_update_pages(cpu_buffer);
1739                 else {
1740                         /*
1741                          * Can not disable preemption for schedule_work_on()
1742                          * on PREEMPT_RT.
1743                          */
1744                         preempt_enable();
1745                         schedule_work_on(cpu_id,
1746                                          &cpu_buffer->update_pages_work);
1747                         wait_for_completion(&cpu_buffer->update_done);
1748                         preempt_disable();
1749                 }
1750                 preempt_enable();
1751
1752                 cpu_buffer->nr_pages_to_update = 0;
1753                 put_online_cpus();
1754         }
1755
1756  out:
1757         /*
1758          * The ring buffer resize can happen with the ring buffer
1759          * enabled, so that the update disturbs the tracing as little
1760          * as possible. But if the buffer is disabled, we do not need
1761          * to worry about that, and we can take the time to verify
1762          * that the buffer is not corrupt.
1763          */
1764         if (atomic_read(&buffer->record_disabled)) {
1765                 atomic_inc(&buffer->record_disabled);
1766                 /*
1767                  * Even though the buffer was disabled, we must make sure
1768                  * that it is truly disabled before calling rb_check_pages.
1769                  * There could have been a race between checking
1770                  * record_disable and incrementing it.
1771                  */
1772                 synchronize_sched();
1773                 for_each_buffer_cpu(buffer, cpu) {
1774                         cpu_buffer = buffer->buffers[cpu];
1775                         rb_check_pages(cpu_buffer);
1776                 }
1777                 atomic_dec(&buffer->record_disabled);
1778         }
1779
1780         mutex_unlock(&buffer->mutex);
1781         return size;
1782
1783  out_err:
1784         for_each_buffer_cpu(buffer, cpu) {
1785                 struct buffer_page *bpage, *tmp;
1786
1787                 cpu_buffer = buffer->buffers[cpu];
1788                 cpu_buffer->nr_pages_to_update = 0;
1789
1790                 if (list_empty(&cpu_buffer->new_pages))
1791                         continue;
1792
1793                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1794                                         list) {
1795                         list_del_init(&bpage->list);
1796                         free_buffer_page(bpage);
1797                 }
1798         }
1799         mutex_unlock(&buffer->mutex);
1800         return err;
1801 }
1802 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1803
1804 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1805 {
1806         mutex_lock(&buffer->mutex);
1807         if (val)
1808                 buffer->flags |= RB_FL_OVERWRITE;
1809         else
1810                 buffer->flags &= ~RB_FL_OVERWRITE;
1811         mutex_unlock(&buffer->mutex);
1812 }
1813 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1814
1815 static inline void *
1816 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1817 {
1818         return bpage->data + index;
1819 }
1820
1821 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1822 {
1823         return bpage->page->data + index;
1824 }
1825
1826 static inline struct ring_buffer_event *
1827 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1828 {
1829         return __rb_page_index(cpu_buffer->reader_page,
1830                                cpu_buffer->reader_page->read);
1831 }
1832
1833 static inline struct ring_buffer_event *
1834 rb_iter_head_event(struct ring_buffer_iter *iter)
1835 {
1836         return __rb_page_index(iter->head_page, iter->head);
1837 }
1838
1839 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1840 {
1841         return local_read(&bpage->page->commit);
1842 }
1843
1844 /* Size is determined by what has been committed */
1845 static inline unsigned rb_page_size(struct buffer_page *bpage)
1846 {
1847         return rb_page_commit(bpage);
1848 }
1849
1850 static inline unsigned
1851 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1852 {
1853         return rb_page_commit(cpu_buffer->commit_page);
1854 }
1855
1856 static inline unsigned
1857 rb_event_index(struct ring_buffer_event *event)
1858 {
1859         unsigned long addr = (unsigned long)event;
1860
1861         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1862 }
1863
1864 static inline int
1865 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1866                    struct ring_buffer_event *event)
1867 {
1868         unsigned long addr = (unsigned long)event;
1869         unsigned long index;
1870
1871         index = rb_event_index(event);
1872         addr &= PAGE_MASK;
1873
1874         return cpu_buffer->commit_page->page == (void *)addr &&
1875                 rb_commit_index(cpu_buffer) == index;
1876 }
1877
1878 static void
1879 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1880 {
1881         unsigned long max_count;
1882
1883         /*
1884          * We only race with interrupts and NMIs on this CPU.
1885          * If we own the commit event, then we can commit
1886          * all others that interrupted us, since the interruptions
1887          * are in stack format (they finish before they come
1888          * back to us). This allows us to do a simple loop to
1889          * assign the commit to the tail.
1890          */
1891  again:
1892         max_count = cpu_buffer->nr_pages * 100;
1893
1894         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1895                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1896                         return;
1897                 if (RB_WARN_ON(cpu_buffer,
1898                                rb_is_reader_page(cpu_buffer->tail_page)))
1899                         return;
1900                 local_set(&cpu_buffer->commit_page->page->commit,
1901                           rb_page_write(cpu_buffer->commit_page));
1902                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1903                 cpu_buffer->write_stamp =
1904                         cpu_buffer->commit_page->page->time_stamp;
1905                 /* add barrier to keep gcc from optimizing too much */
1906                 barrier();
1907         }
1908         while (rb_commit_index(cpu_buffer) !=
1909                rb_page_write(cpu_buffer->commit_page)) {
1910
1911                 local_set(&cpu_buffer->commit_page->page->commit,
1912                           rb_page_write(cpu_buffer->commit_page));
1913                 RB_WARN_ON(cpu_buffer,
1914                            local_read(&cpu_buffer->commit_page->page->commit) &
1915                            ~RB_WRITE_MASK);
1916                 barrier();
1917         }
1918
1919         /* again, keep gcc from optimizing */
1920         barrier();
1921
1922         /*
1923          * If an interrupt came in just after the first while loop
1924          * and pushed the tail page forward, we will be left with
1925          * a dangling commit that will never go forward.
1926          */
1927         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1928                 goto again;
1929 }
1930
1931 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1932 {
1933         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1934         cpu_buffer->reader_page->read = 0;
1935 }
1936
1937 static void rb_inc_iter(struct ring_buffer_iter *iter)
1938 {
1939         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1940
1941         /*
1942          * The iterator could be on the reader page (it starts there).
1943          * But the head could have moved, since the reader was
1944          * found. Check for this case and assign the iterator
1945          * to the head page instead of next.
1946          */
1947         if (iter->head_page == cpu_buffer->reader_page)
1948                 iter->head_page = rb_set_head_page(cpu_buffer);
1949         else
1950                 rb_inc_page(cpu_buffer, &iter->head_page);
1951
1952         iter->read_stamp = iter->head_page->page->time_stamp;
1953         iter->head = 0;
1954 }
1955
1956 /* Slow path, do not inline */
1957 static noinline struct ring_buffer_event *
1958 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1959 {
1960         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1961
1962         /* Not the first event on the page? */
1963         if (rb_event_index(event)) {
1964                 event->time_delta = delta & TS_MASK;
1965                 event->array[0] = delta >> TS_SHIFT;
1966         } else {
1967                 /* nope, just zero it */
1968                 event->time_delta = 0;
1969                 event->array[0] = 0;
1970         }
1971
1972         return skip_time_extend(event);
1973 }
1974
1975 /**
1976  * rb_update_event - update event type and data
1977  * @event: the even to update
1978  * @type: the type of event
1979  * @length: the size of the event field in the ring buffer
1980  *
1981  * Update the type and data fields of the event. The length
1982  * is the actual size that is written to the ring buffer,
1983  * and with this, we can determine what to place into the
1984  * data field.
1985  */
1986 static void
1987 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1988                 struct ring_buffer_event *event, unsigned length,
1989                 int add_timestamp, u64 delta)
1990 {
1991         /* Only a commit updates the timestamp */
1992         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1993                 delta = 0;
1994
1995         /*
1996          * If we need to add a timestamp, then we
1997          * add it to the start of the resevered space.
1998          */
1999         if (unlikely(add_timestamp)) {
2000                 event = rb_add_time_stamp(event, delta);
2001                 length -= RB_LEN_TIME_EXTEND;
2002                 delta = 0;
2003         }
2004
2005         event->time_delta = delta;
2006         length -= RB_EVNT_HDR_SIZE;
2007         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2008                 event->type_len = 0;
2009                 event->array[0] = length;
2010         } else
2011                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2012 }
2013
2014 /*
2015  * rb_handle_head_page - writer hit the head page
2016  *
2017  * Returns: +1 to retry page
2018  *           0 to continue
2019  *          -1 on error
2020  */
2021 static int
2022 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2023                     struct buffer_page *tail_page,
2024                     struct buffer_page *next_page)
2025 {
2026         struct buffer_page *new_head;
2027         int entries;
2028         int type;
2029         int ret;
2030
2031         entries = rb_page_entries(next_page);
2032
2033         /*
2034          * The hard part is here. We need to move the head
2035          * forward, and protect against both readers on
2036          * other CPUs and writers coming in via interrupts.
2037          */
2038         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2039                                        RB_PAGE_HEAD);
2040
2041         /*
2042          * type can be one of four:
2043          *  NORMAL - an interrupt already moved it for us
2044          *  HEAD   - we are the first to get here.
2045          *  UPDATE - we are the interrupt interrupting
2046          *           a current move.
2047          *  MOVED  - a reader on another CPU moved the next
2048          *           pointer to its reader page. Give up
2049          *           and try again.
2050          */
2051
2052         switch (type) {
2053         case RB_PAGE_HEAD:
2054                 /*
2055                  * We changed the head to UPDATE, thus
2056                  * it is our responsibility to update
2057                  * the counters.
2058                  */
2059                 local_add(entries, &cpu_buffer->overrun);
2060                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2061
2062                 /*
2063                  * The entries will be zeroed out when we move the
2064                  * tail page.
2065                  */
2066
2067                 /* still more to do */
2068                 break;
2069
2070         case RB_PAGE_UPDATE:
2071                 /*
2072                  * This is an interrupt that interrupt the
2073                  * previous update. Still more to do.
2074                  */
2075                 break;
2076         case RB_PAGE_NORMAL:
2077                 /*
2078                  * An interrupt came in before the update
2079                  * and processed this for us.
2080                  * Nothing left to do.
2081                  */
2082                 return 1;
2083         case RB_PAGE_MOVED:
2084                 /*
2085                  * The reader is on another CPU and just did
2086                  * a swap with our next_page.
2087                  * Try again.
2088                  */
2089                 return 1;
2090         default:
2091                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2092                 return -1;
2093         }
2094
2095         /*
2096          * Now that we are here, the old head pointer is
2097          * set to UPDATE. This will keep the reader from
2098          * swapping the head page with the reader page.
2099          * The reader (on another CPU) will spin till
2100          * we are finished.
2101          *
2102          * We just need to protect against interrupts
2103          * doing the job. We will set the next pointer
2104          * to HEAD. After that, we set the old pointer
2105          * to NORMAL, but only if it was HEAD before.
2106          * otherwise we are an interrupt, and only
2107          * want the outer most commit to reset it.
2108          */
2109         new_head = next_page;
2110         rb_inc_page(cpu_buffer, &new_head);
2111
2112         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2113                                     RB_PAGE_NORMAL);
2114
2115         /*
2116          * Valid returns are:
2117          *  HEAD   - an interrupt came in and already set it.
2118          *  NORMAL - One of two things:
2119          *            1) We really set it.
2120          *            2) A bunch of interrupts came in and moved
2121          *               the page forward again.
2122          */
2123         switch (ret) {
2124         case RB_PAGE_HEAD:
2125         case RB_PAGE_NORMAL:
2126                 /* OK */
2127                 break;
2128         default:
2129                 RB_WARN_ON(cpu_buffer, 1);
2130                 return -1;
2131         }
2132
2133         /*
2134          * It is possible that an interrupt came in,
2135          * set the head up, then more interrupts came in
2136          * and moved it again. When we get back here,
2137          * the page would have been set to NORMAL but we
2138          * just set it back to HEAD.
2139          *
2140          * How do you detect this? Well, if that happened
2141          * the tail page would have moved.
2142          */
2143         if (ret == RB_PAGE_NORMAL) {
2144                 /*
2145                  * If the tail had moved passed next, then we need
2146                  * to reset the pointer.
2147                  */
2148                 if (cpu_buffer->tail_page != tail_page &&
2149                     cpu_buffer->tail_page != next_page)
2150                         rb_head_page_set_normal(cpu_buffer, new_head,
2151                                                 next_page,
2152                                                 RB_PAGE_HEAD);
2153         }
2154
2155         /*
2156          * If this was the outer most commit (the one that
2157          * changed the original pointer from HEAD to UPDATE),
2158          * then it is up to us to reset it to NORMAL.
2159          */
2160         if (type == RB_PAGE_HEAD) {
2161                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2162                                               tail_page,
2163                                               RB_PAGE_UPDATE);
2164                 if (RB_WARN_ON(cpu_buffer,
2165                                ret != RB_PAGE_UPDATE))
2166                         return -1;
2167         }
2168
2169         return 0;
2170 }
2171
2172 static unsigned rb_calculate_event_length(unsigned length)
2173 {
2174         struct ring_buffer_event event; /* Used only for sizeof array */
2175
2176         /* zero length can cause confusions */
2177         if (!length)
2178                 length = 1;
2179
2180         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2181                 length += sizeof(event.array[0]);
2182
2183         length += RB_EVNT_HDR_SIZE;
2184         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2185
2186         return length;
2187 }
2188
2189 static inline void
2190 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2191               struct buffer_page *tail_page,
2192               unsigned long tail, unsigned long length)
2193 {
2194         struct ring_buffer_event *event;
2195
2196         /*
2197          * Only the event that crossed the page boundary
2198          * must fill the old tail_page with padding.
2199          */
2200         if (tail >= BUF_PAGE_SIZE) {
2201                 /*
2202                  * If the page was filled, then we still need
2203                  * to update the real_end. Reset it to zero
2204                  * and the reader will ignore it.
2205                  */
2206                 if (tail == BUF_PAGE_SIZE)
2207                         tail_page->real_end = 0;
2208
2209                 local_sub(length, &tail_page->write);
2210                 return;
2211         }
2212
2213         event = __rb_page_index(tail_page, tail);
2214         kmemcheck_annotate_bitfield(event, bitfield);
2215
2216         /* account for padding bytes */
2217         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2218
2219         /*
2220          * Save the original length to the meta data.
2221          * This will be used by the reader to add lost event
2222          * counter.
2223          */
2224         tail_page->real_end = tail;
2225
2226         /*
2227          * If this event is bigger than the minimum size, then
2228          * we need to be careful that we don't subtract the
2229          * write counter enough to allow another writer to slip
2230          * in on this page.
2231          * We put in a discarded commit instead, to make sure
2232          * that this space is not used again.
2233          *
2234          * If we are less than the minimum size, we don't need to
2235          * worry about it.
2236          */
2237         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2238                 /* No room for any events */
2239
2240                 /* Mark the rest of the page with padding */
2241                 rb_event_set_padding(event);
2242
2243                 /* Set the write back to the previous setting */
2244                 local_sub(length, &tail_page->write);
2245                 return;
2246         }
2247
2248         /* Put in a discarded event */
2249         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2250         event->type_len = RINGBUF_TYPE_PADDING;
2251         /* time delta must be non zero */
2252         event->time_delta = 1;
2253
2254         /* Set write to end of buffer */
2255         length = (tail + length) - BUF_PAGE_SIZE;
2256         local_sub(length, &tail_page->write);
2257 }
2258
2259 /*
2260  * This is the slow path, force gcc not to inline it.
2261  */
2262 static noinline struct ring_buffer_event *
2263 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2264              unsigned long length, unsigned long tail,
2265              struct buffer_page *tail_page, u64 ts)
2266 {
2267         struct buffer_page *commit_page = cpu_buffer->commit_page;
2268         struct ring_buffer *buffer = cpu_buffer->buffer;
2269         struct buffer_page *next_page;
2270         int ret;
2271
2272         next_page = tail_page;
2273
2274         rb_inc_page(cpu_buffer, &next_page);
2275
2276         /*
2277          * If for some reason, we had an interrupt storm that made
2278          * it all the way around the buffer, bail, and warn
2279          * about it.
2280          */
2281         if (unlikely(next_page == commit_page)) {
2282                 local_inc(&cpu_buffer->commit_overrun);
2283                 goto out_reset;
2284         }
2285
2286         /*
2287          * This is where the fun begins!
2288          *
2289          * We are fighting against races between a reader that
2290          * could be on another CPU trying to swap its reader
2291          * page with the buffer head.
2292          *
2293          * We are also fighting against interrupts coming in and
2294          * moving the head or tail on us as well.
2295          *
2296          * If the next page is the head page then we have filled
2297          * the buffer, unless the commit page is still on the
2298          * reader page.
2299          */
2300         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2301
2302                 /*
2303                  * If the commit is not on the reader page, then
2304                  * move the header page.
2305                  */
2306                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2307                         /*
2308                          * If we are not in overwrite mode,
2309                          * this is easy, just stop here.
2310                          */
2311                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2312                                 local_inc(&cpu_buffer->dropped_events);
2313                                 goto out_reset;
2314                         }
2315
2316                         ret = rb_handle_head_page(cpu_buffer,
2317                                                   tail_page,
2318                                                   next_page);
2319                         if (ret < 0)
2320                                 goto out_reset;
2321                         if (ret)
2322                                 goto out_again;
2323                 } else {
2324                         /*
2325                          * We need to be careful here too. The
2326                          * commit page could still be on the reader
2327                          * page. We could have a small buffer, and
2328                          * have filled up the buffer with events
2329                          * from interrupts and such, and wrapped.
2330                          *
2331                          * Note, if the tail page is also the on the
2332                          * reader_page, we let it move out.
2333                          */
2334                         if (unlikely((cpu_buffer->commit_page !=
2335                                       cpu_buffer->tail_page) &&
2336                                      (cpu_buffer->commit_page ==
2337                                       cpu_buffer->reader_page))) {
2338                                 local_inc(&cpu_buffer->commit_overrun);
2339                                 goto out_reset;
2340                         }
2341                 }
2342         }
2343
2344         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2345         if (ret) {
2346                 /*
2347                  * Nested commits always have zero deltas, so
2348                  * just reread the time stamp
2349                  */
2350                 ts = rb_time_stamp(buffer);
2351                 next_page->page->time_stamp = ts;
2352         }
2353
2354  out_again:
2355
2356         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2357
2358         /* fail and let the caller try again */
2359         return ERR_PTR(-EAGAIN);
2360
2361  out_reset:
2362         /* reset write */
2363         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2364
2365         return NULL;
2366 }
2367
2368 static struct ring_buffer_event *
2369 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2370                   unsigned long length, u64 ts,
2371                   u64 delta, int add_timestamp)
2372 {
2373         struct buffer_page *tail_page;
2374         struct ring_buffer_event *event;
2375         unsigned long tail, write;
2376
2377         /*
2378          * If the time delta since the last event is too big to
2379          * hold in the time field of the event, then we append a
2380          * TIME EXTEND event ahead of the data event.
2381          */
2382         if (unlikely(add_timestamp))
2383                 length += RB_LEN_TIME_EXTEND;
2384
2385         tail_page = cpu_buffer->tail_page;
2386         write = local_add_return(length, &tail_page->write);
2387
2388         /* set write to only the index of the write */
2389         write &= RB_WRITE_MASK;
2390         tail = write - length;
2391
2392         /* See if we shot pass the end of this buffer page */
2393         if (unlikely(write > BUF_PAGE_SIZE))
2394                 return rb_move_tail(cpu_buffer, length, tail,
2395                                     tail_page, ts);
2396
2397         /* We reserved something on the buffer */
2398
2399         event = __rb_page_index(tail_page, tail);
2400         kmemcheck_annotate_bitfield(event, bitfield);
2401         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2402
2403         local_inc(&tail_page->entries);
2404
2405         /*
2406          * If this is the first commit on the page, then update
2407          * its timestamp.
2408          */
2409         if (!tail)
2410                 tail_page->page->time_stamp = ts;
2411
2412         /* account for these added bytes */
2413         local_add(length, &cpu_buffer->entries_bytes);
2414
2415         return event;
2416 }
2417
2418 static inline int
2419 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2420                   struct ring_buffer_event *event)
2421 {
2422         unsigned long new_index, old_index;
2423         struct buffer_page *bpage;
2424         unsigned long index;
2425         unsigned long addr;
2426
2427         new_index = rb_event_index(event);
2428         old_index = new_index + rb_event_ts_length(event);
2429         addr = (unsigned long)event;
2430         addr &= PAGE_MASK;
2431
2432         bpage = cpu_buffer->tail_page;
2433
2434         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2435                 unsigned long write_mask =
2436                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2437                 unsigned long event_length = rb_event_length(event);
2438                 /*
2439                  * This is on the tail page. It is possible that
2440                  * a write could come in and move the tail page
2441                  * and write to the next page. That is fine
2442                  * because we just shorten what is on this page.
2443                  */
2444                 old_index += write_mask;
2445                 new_index += write_mask;
2446                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2447                 if (index == old_index) {
2448                         /* update counters */
2449                         local_sub(event_length, &cpu_buffer->entries_bytes);
2450                         return 1;
2451                 }
2452         }
2453
2454         /* could not discard */
2455         return 0;
2456 }
2457
2458 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2459 {
2460         local_inc(&cpu_buffer->committing);
2461         local_inc(&cpu_buffer->commits);
2462 }
2463
2464 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2465 {
2466         unsigned long commits;
2467
2468         if (RB_WARN_ON(cpu_buffer,
2469                        !local_read(&cpu_buffer->committing)))
2470                 return;
2471
2472  again:
2473         commits = local_read(&cpu_buffer->commits);
2474         /* synchronize with interrupts */
2475         barrier();
2476         if (local_read(&cpu_buffer->committing) == 1)
2477                 rb_set_commit_to_write(cpu_buffer);
2478
2479         local_dec(&cpu_buffer->committing);
2480
2481         /* synchronize with interrupts */
2482         barrier();
2483
2484         /*
2485          * Need to account for interrupts coming in between the
2486          * updating of the commit page and the clearing of the
2487          * committing counter.
2488          */
2489         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2490             !local_read(&cpu_buffer->committing)) {
2491                 local_inc(&cpu_buffer->committing);
2492                 goto again;
2493         }
2494 }
2495
2496 static struct ring_buffer_event *
2497 rb_reserve_next_event(struct ring_buffer *buffer,
2498                       struct ring_buffer_per_cpu *cpu_buffer,
2499                       unsigned long length)
2500 {
2501         struct ring_buffer_event *event;
2502         u64 ts, delta;
2503         int nr_loops = 0;
2504         int add_timestamp;
2505         u64 diff;
2506
2507         rb_start_commit(cpu_buffer);
2508
2509 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2510         /*
2511          * Due to the ability to swap a cpu buffer from a buffer
2512          * it is possible it was swapped before we committed.
2513          * (committing stops a swap). We check for it here and
2514          * if it happened, we have to fail the write.
2515          */
2516         barrier();
2517         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2518                 local_dec(&cpu_buffer->committing);
2519                 local_dec(&cpu_buffer->commits);
2520                 return NULL;
2521         }
2522 #endif
2523
2524         length = rb_calculate_event_length(length);
2525  again:
2526         add_timestamp = 0;
2527         delta = 0;
2528
2529         /*
2530          * We allow for interrupts to reenter here and do a trace.
2531          * If one does, it will cause this original code to loop
2532          * back here. Even with heavy interrupts happening, this
2533          * should only happen a few times in a row. If this happens
2534          * 1000 times in a row, there must be either an interrupt
2535          * storm or we have something buggy.
2536          * Bail!
2537          */
2538         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2539                 goto out_fail;
2540
2541         ts = rb_time_stamp(cpu_buffer->buffer);
2542         diff = ts - cpu_buffer->write_stamp;
2543
2544         /* make sure this diff is calculated here */
2545         barrier();
2546
2547         /* Did the write stamp get updated already? */
2548         if (likely(ts >= cpu_buffer->write_stamp)) {
2549                 delta = diff;
2550                 if (unlikely(test_time_stamp(delta))) {
2551                         int local_clock_stable = 1;
2552 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2553                         local_clock_stable = sched_clock_stable;
2554 #endif
2555                         WARN_ONCE(delta > (1ULL << 59),
2556                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2557                                   (unsigned long long)delta,
2558                                   (unsigned long long)ts,
2559                                   (unsigned long long)cpu_buffer->write_stamp,
2560                                   local_clock_stable ? "" :
2561                                   "If you just came from a suspend/resume,\n"
2562                                   "please switch to the trace global clock:\n"
2563                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2564                         add_timestamp = 1;
2565                 }
2566         }
2567
2568         event = __rb_reserve_next(cpu_buffer, length, ts,
2569                                   delta, add_timestamp);
2570         if (unlikely(PTR_ERR(event) == -EAGAIN))
2571                 goto again;
2572
2573         if (!event)
2574                 goto out_fail;
2575
2576         return event;
2577
2578  out_fail:
2579         rb_end_commit(cpu_buffer);
2580         return NULL;
2581 }
2582
2583 #ifdef CONFIG_TRACING
2584
2585 /*
2586  * The lock and unlock are done within a preempt disable section.
2587  * The current_context per_cpu variable can only be modified
2588  * by the current task between lock and unlock. But it can
2589  * be modified more than once via an interrupt. To pass this
2590  * information from the lock to the unlock without having to
2591  * access the 'in_interrupt()' functions again (which do show
2592  * a bit of overhead in something as critical as function tracing,
2593  * we use a bitmask trick.
2594  *
2595  *  bit 0 =  NMI context
2596  *  bit 1 =  IRQ context
2597  *  bit 2 =  SoftIRQ context
2598  *  bit 3 =  normal context.
2599  *
2600  * This works because this is the order of contexts that can
2601  * preempt other contexts. A SoftIRQ never preempts an IRQ
2602  * context.
2603  *
2604  * When the context is determined, the corresponding bit is
2605  * checked and set (if it was set, then a recursion of that context
2606  * happened).
2607  *
2608  * On unlock, we need to clear this bit. To do so, just subtract
2609  * 1 from the current_context and AND it to itself.
2610  *
2611  * (binary)
2612  *  101 - 1 = 100
2613  *  101 & 100 = 100 (clearing bit zero)
2614  *
2615  *  1010 - 1 = 1001
2616  *  1010 & 1001 = 1000 (clearing bit 1)
2617  *
2618  * The least significant bit can be cleared this way, and it
2619  * just so happens that it is the same bit corresponding to
2620  * the current context.
2621  */
2622 static DEFINE_PER_CPU(unsigned int, current_context);
2623
2624 static __always_inline int trace_recursive_lock(void)
2625 {
2626         unsigned int val = this_cpu_read(current_context);
2627         int bit;
2628
2629         if (in_interrupt()) {
2630                 if (in_nmi())
2631                         bit = 0;
2632                 else if (in_irq())
2633                         bit = 1;
2634                 else
2635                         bit = 2;
2636         } else
2637                 bit = 3;
2638
2639         if (unlikely(val & (1 << bit)))
2640                 return 1;
2641
2642         val |= (1 << bit);
2643         this_cpu_write(current_context, val);
2644
2645         return 0;
2646 }
2647
2648 static __always_inline void trace_recursive_unlock(void)
2649 {
2650         unsigned int val = this_cpu_read(current_context);
2651
2652         val--;
2653         val &= this_cpu_read(current_context);
2654         this_cpu_write(current_context, val);
2655 }
2656
2657 #else
2658
2659 #define trace_recursive_lock()          (0)
2660 #define trace_recursive_unlock()        do { } while (0)
2661
2662 #endif
2663
2664 /**
2665  * ring_buffer_lock_reserve - reserve a part of the buffer
2666  * @buffer: the ring buffer to reserve from
2667  * @length: the length of the data to reserve (excluding event header)
2668  *
2669  * Returns a reseverd event on the ring buffer to copy directly to.
2670  * The user of this interface will need to get the body to write into
2671  * and can use the ring_buffer_event_data() interface.
2672  *
2673  * The length is the length of the data needed, not the event length
2674  * which also includes the event header.
2675  *
2676  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2677  * If NULL is returned, then nothing has been allocated or locked.
2678  */
2679 struct ring_buffer_event *
2680 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2681 {
2682         struct ring_buffer_per_cpu *cpu_buffer;
2683         struct ring_buffer_event *event;
2684         int cpu;
2685
2686         if (ring_buffer_flags != RB_BUFFERS_ON)
2687                 return NULL;
2688
2689         /* If we are tracing schedule, we don't want to recurse */
2690         preempt_disable_notrace();
2691
2692         if (atomic_read(&buffer->record_disabled))
2693                 goto out_nocheck;
2694
2695         if (trace_recursive_lock())
2696                 goto out_nocheck;
2697
2698         cpu = raw_smp_processor_id();
2699
2700         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2701                 goto out;
2702
2703         cpu_buffer = buffer->buffers[cpu];
2704
2705         if (atomic_read(&cpu_buffer->record_disabled))
2706                 goto out;
2707
2708         if (length > BUF_MAX_DATA_SIZE)
2709                 goto out;
2710
2711         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2712         if (!event)
2713                 goto out;
2714
2715         return event;
2716
2717  out:
2718         trace_recursive_unlock();
2719
2720  out_nocheck:
2721         preempt_enable_notrace();
2722         return NULL;
2723 }
2724 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2725
2726 static void
2727 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2728                       struct ring_buffer_event *event)
2729 {
2730         u64 delta;
2731
2732         /*
2733          * The event first in the commit queue updates the
2734          * time stamp.
2735          */
2736         if (rb_event_is_commit(cpu_buffer, event)) {
2737                 /*
2738                  * A commit event that is first on a page
2739                  * updates the write timestamp with the page stamp
2740                  */
2741                 if (!rb_event_index(event))
2742                         cpu_buffer->write_stamp =
2743                                 cpu_buffer->commit_page->page->time_stamp;
2744                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2745                         delta = event->array[0];
2746                         delta <<= TS_SHIFT;
2747                         delta += event->time_delta;
2748                         cpu_buffer->write_stamp += delta;
2749                 } else
2750                         cpu_buffer->write_stamp += event->time_delta;
2751         }
2752 }
2753
2754 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2755                       struct ring_buffer_event *event)
2756 {
2757         local_inc(&cpu_buffer->entries);
2758         rb_update_write_stamp(cpu_buffer, event);
2759         rb_end_commit(cpu_buffer);
2760 }
2761
2762 static __always_inline void
2763 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2764 {
2765         if (buffer->irq_work.waiters_pending) {
2766                 buffer->irq_work.waiters_pending = false;
2767                 /* irq_work_queue() supplies it's own memory barriers */
2768                 irq_work_queue(&buffer->irq_work.work);
2769         }
2770
2771         if (cpu_buffer->irq_work.waiters_pending) {
2772                 cpu_buffer->irq_work.waiters_pending = false;
2773                 /* irq_work_queue() supplies it's own memory barriers */
2774                 irq_work_queue(&cpu_buffer->irq_work.work);
2775         }
2776 }
2777
2778 /**
2779  * ring_buffer_unlock_commit - commit a reserved
2780  * @buffer: The buffer to commit to
2781  * @event: The event pointer to commit.
2782  *
2783  * This commits the data to the ring buffer, and releases any locks held.
2784  *
2785  * Must be paired with ring_buffer_lock_reserve.
2786  */
2787 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2788                               struct ring_buffer_event *event)
2789 {
2790         struct ring_buffer_per_cpu *cpu_buffer;
2791         int cpu = raw_smp_processor_id();
2792
2793         cpu_buffer = buffer->buffers[cpu];
2794
2795         rb_commit(cpu_buffer, event);
2796
2797         rb_wakeups(buffer, cpu_buffer);
2798
2799         trace_recursive_unlock();
2800
2801         preempt_enable_notrace();
2802
2803         return 0;
2804 }
2805 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2806
2807 static inline void rb_event_discard(struct ring_buffer_event *event)
2808 {
2809         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2810                 event = skip_time_extend(event);
2811
2812         /* array[0] holds the actual length for the discarded event */
2813         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2814         event->type_len = RINGBUF_TYPE_PADDING;
2815         /* time delta must be non zero */
2816         if (!event->time_delta)
2817                 event->time_delta = 1;
2818 }
2819
2820 /*
2821  * Decrement the entries to the page that an event is on.
2822  * The event does not even need to exist, only the pointer
2823  * to the page it is on. This may only be called before the commit
2824  * takes place.
2825  */
2826 static inline void
2827 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2828                    struct ring_buffer_event *event)
2829 {
2830         unsigned long addr = (unsigned long)event;
2831         struct buffer_page *bpage = cpu_buffer->commit_page;
2832         struct buffer_page *start;
2833
2834         addr &= PAGE_MASK;
2835
2836         /* Do the likely case first */
2837         if (likely(bpage->page == (void *)addr)) {
2838                 local_dec(&bpage->entries);
2839                 return;
2840         }
2841
2842         /*
2843          * Because the commit page may be on the reader page we
2844          * start with the next page and check the end loop there.
2845          */
2846         rb_inc_page(cpu_buffer, &bpage);
2847         start = bpage;
2848         do {
2849                 if (bpage->page == (void *)addr) {
2850                         local_dec(&bpage->entries);
2851                         return;
2852                 }
2853                 rb_inc_page(cpu_buffer, &bpage);
2854         } while (bpage != start);
2855
2856         /* commit not part of this buffer?? */
2857         RB_WARN_ON(cpu_buffer, 1);
2858 }
2859
2860 /**
2861  * ring_buffer_commit_discard - discard an event that has not been committed
2862  * @buffer: the ring buffer
2863  * @event: non committed event to discard
2864  *
2865  * Sometimes an event that is in the ring buffer needs to be ignored.
2866  * This function lets the user discard an event in the ring buffer
2867  * and then that event will not be read later.
2868  *
2869  * This function only works if it is called before the the item has been
2870  * committed. It will try to free the event from the ring buffer
2871  * if another event has not been added behind it.
2872  *
2873  * If another event has been added behind it, it will set the event
2874  * up as discarded, and perform the commit.
2875  *
2876  * If this function is called, do not call ring_buffer_unlock_commit on
2877  * the event.
2878  */
2879 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2880                                 struct ring_buffer_event *event)
2881 {
2882         struct ring_buffer_per_cpu *cpu_buffer;
2883         int cpu;
2884
2885         /* The event is discarded regardless */
2886         rb_event_discard(event);
2887
2888         cpu = smp_processor_id();
2889         cpu_buffer = buffer->buffers[cpu];
2890
2891         /*
2892          * This must only be called if the event has not been
2893          * committed yet. Thus we can assume that preemption
2894          * is still disabled.
2895          */
2896         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2897
2898         rb_decrement_entry(cpu_buffer, event);
2899         if (rb_try_to_discard(cpu_buffer, event))
2900                 goto out;
2901
2902         /*
2903          * The commit is still visible by the reader, so we
2904          * must still update the timestamp.
2905          */
2906         rb_update_write_stamp(cpu_buffer, event);
2907  out:
2908         rb_end_commit(cpu_buffer);
2909
2910         trace_recursive_unlock();
2911
2912         preempt_enable_notrace();
2913
2914 }
2915 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2916
2917 /**
2918  * ring_buffer_write - write data to the buffer without reserving
2919  * @buffer: The ring buffer to write to.
2920  * @length: The length of the data being written (excluding the event header)
2921  * @data: The data to write to the buffer.
2922  *
2923  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2924  * one function. If you already have the data to write to the buffer, it
2925  * may be easier to simply call this function.
2926  *
2927  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2928  * and not the length of the event which would hold the header.
2929  */
2930 int ring_buffer_write(struct ring_buffer *buffer,
2931                       unsigned long length,
2932                       void *data)
2933 {
2934         struct ring_buffer_per_cpu *cpu_buffer;
2935         struct ring_buffer_event *event;
2936         void *body;
2937         int ret = -EBUSY;
2938         int cpu;
2939
2940         if (ring_buffer_flags != RB_BUFFERS_ON)
2941                 return -EBUSY;
2942
2943         preempt_disable_notrace();
2944
2945         if (atomic_read(&buffer->record_disabled))
2946                 goto out;
2947
2948         cpu = raw_smp_processor_id();
2949
2950         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2951                 goto out;
2952
2953         cpu_buffer = buffer->buffers[cpu];
2954
2955         if (atomic_read(&cpu_buffer->record_disabled))
2956                 goto out;
2957
2958         if (length > BUF_MAX_DATA_SIZE)
2959                 goto out;
2960
2961         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2962         if (!event)
2963                 goto out;
2964
2965         body = rb_event_data(event);
2966
2967         memcpy(body, data, length);
2968
2969         rb_commit(cpu_buffer, event);
2970
2971         rb_wakeups(buffer, cpu_buffer);
2972
2973         ret = 0;
2974  out:
2975         preempt_enable_notrace();
2976
2977         return ret;
2978 }
2979 EXPORT_SYMBOL_GPL(ring_buffer_write);
2980
2981 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2982 {
2983         struct buffer_page *reader = cpu_buffer->reader_page;
2984         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2985         struct buffer_page *commit = cpu_buffer->commit_page;
2986
2987         /* In case of error, head will be NULL */
2988         if (unlikely(!head))
2989                 return 1;
2990
2991         return reader->read == rb_page_commit(reader) &&
2992                 (commit == reader ||
2993                  (commit == head &&
2994                   head->read == rb_page_commit(commit)));
2995 }
2996
2997 /**
2998  * ring_buffer_record_disable - stop all writes into the buffer
2999  * @buffer: The ring buffer to stop writes to.
3000  *
3001  * This prevents all writes to the buffer. Any attempt to write
3002  * to the buffer after this will fail and return NULL.
3003  *
3004  * The caller should call synchronize_sched() after this.
3005  */
3006 void ring_buffer_record_disable(struct ring_buffer *buffer)
3007 {
3008         atomic_inc(&buffer->record_disabled);
3009 }
3010 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3011
3012 /**
3013  * ring_buffer_record_enable - enable writes to the buffer
3014  * @buffer: The ring buffer to enable writes
3015  *
3016  * Note, multiple disables will need the same number of enables
3017  * to truly enable the writing (much like preempt_disable).
3018  */
3019 void ring_buffer_record_enable(struct ring_buffer *buffer)
3020 {
3021         atomic_dec(&buffer->record_disabled);
3022 }
3023 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3024
3025 /**
3026  * ring_buffer_record_off - stop all writes into the buffer
3027  * @buffer: The ring buffer to stop writes to.
3028  *
3029  * This prevents all writes to the buffer. Any attempt to write
3030  * to the buffer after this will fail and return NULL.
3031  *
3032  * This is different than ring_buffer_record_disable() as
3033  * it works like an on/off switch, where as the disable() version
3034  * must be paired with a enable().
3035  */
3036 void ring_buffer_record_off(struct ring_buffer *buffer)
3037 {
3038         unsigned int rd;
3039         unsigned int new_rd;
3040
3041         do {
3042                 rd = atomic_read(&buffer->record_disabled);
3043                 new_rd = rd | RB_BUFFER_OFF;
3044         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3045 }
3046 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3047
3048 /**
3049  * ring_buffer_record_on - restart writes into the buffer
3050  * @buffer: The ring buffer to start writes to.
3051  *
3052  * This enables all writes to the buffer that was disabled by
3053  * ring_buffer_record_off().
3054  *
3055  * This is different than ring_buffer_record_enable() as
3056  * it works like an on/off switch, where as the enable() version
3057  * must be paired with a disable().
3058  */
3059 void ring_buffer_record_on(struct ring_buffer *buffer)
3060 {
3061         unsigned int rd;
3062         unsigned int new_rd;
3063
3064         do {
3065                 rd = atomic_read(&buffer->record_disabled);
3066                 new_rd = rd & ~RB_BUFFER_OFF;
3067         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3068 }
3069 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3070
3071 /**
3072  * ring_buffer_record_is_on - return true if the ring buffer can write
3073  * @buffer: The ring buffer to see if write is enabled
3074  *
3075  * Returns true if the ring buffer is in a state that it accepts writes.
3076  */
3077 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3078 {
3079         return !atomic_read(&buffer->record_disabled);
3080 }
3081
3082 /**
3083  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3084  * @buffer: The ring buffer to stop writes to.
3085  * @cpu: The CPU buffer to stop
3086  *
3087  * This prevents all writes to the buffer. Any attempt to write
3088  * to the buffer after this will fail and return NULL.
3089  *
3090  * The caller should call synchronize_sched() after this.
3091  */
3092 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3093 {
3094         struct ring_buffer_per_cpu *cpu_buffer;
3095
3096         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3097                 return;
3098
3099         cpu_buffer = buffer->buffers[cpu];
3100         atomic_inc(&cpu_buffer->record_disabled);
3101 }
3102 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3103
3104 /**
3105  * ring_buffer_record_enable_cpu - enable writes to the buffer
3106  * @buffer: The ring buffer to enable writes
3107  * @cpu: The CPU to enable.
3108  *
3109  * Note, multiple disables will need the same number of enables
3110  * to truly enable the writing (much like preempt_disable).
3111  */
3112 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3113 {
3114         struct ring_buffer_per_cpu *cpu_buffer;
3115
3116         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3117                 return;
3118
3119         cpu_buffer = buffer->buffers[cpu];
3120         atomic_dec(&cpu_buffer->record_disabled);
3121 }
3122 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3123
3124 /*
3125  * The total entries in the ring buffer is the running counter
3126  * of entries entered into the ring buffer, minus the sum of
3127  * the entries read from the ring buffer and the number of
3128  * entries that were overwritten.
3129  */
3130 static inline unsigned long
3131 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3132 {
3133         return local_read(&cpu_buffer->entries) -
3134                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3135 }
3136
3137 /**
3138  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3139  * @buffer: The ring buffer
3140  * @cpu: The per CPU buffer to read from.
3141  */
3142 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3143 {
3144         unsigned long flags;
3145         struct ring_buffer_per_cpu *cpu_buffer;
3146         struct buffer_page *bpage;
3147         u64 ret = 0;
3148
3149         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3150                 return 0;
3151
3152         cpu_buffer = buffer->buffers[cpu];
3153         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3154         /*
3155          * if the tail is on reader_page, oldest time stamp is on the reader
3156          * page
3157          */
3158         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3159                 bpage = cpu_buffer->reader_page;
3160         else
3161                 bpage = rb_set_head_page(cpu_buffer);
3162         if (bpage)
3163                 ret = bpage->page->time_stamp;
3164         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3165
3166         return ret;
3167 }
3168 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3169
3170 /**
3171  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3172  * @buffer: The ring buffer
3173  * @cpu: The per CPU buffer to read from.
3174  */
3175 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3176 {
3177         struct ring_buffer_per_cpu *cpu_buffer;
3178         unsigned long ret;
3179
3180         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3181                 return 0;
3182
3183         cpu_buffer = buffer->buffers[cpu];
3184         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3185
3186         return ret;
3187 }
3188 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3189
3190 /**
3191  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3192  * @buffer: The ring buffer
3193  * @cpu: The per CPU buffer to get the entries from.
3194  */
3195 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3196 {
3197         struct ring_buffer_per_cpu *cpu_buffer;
3198
3199         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3200                 return 0;
3201
3202         cpu_buffer = buffer->buffers[cpu];
3203
3204         return rb_num_of_entries(cpu_buffer);
3205 }
3206 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3207
3208 /**
3209  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3210  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3211  * @buffer: The ring buffer
3212  * @cpu: The per CPU buffer to get the number of overruns from
3213  */
3214 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3215 {
3216         struct ring_buffer_per_cpu *cpu_buffer;
3217         unsigned long ret;
3218
3219         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3220                 return 0;
3221
3222         cpu_buffer = buffer->buffers[cpu];
3223         ret = local_read(&cpu_buffer->overrun);
3224
3225         return ret;
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3228
3229 /**
3230  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3231  * commits failing due to the buffer wrapping around while there are uncommitted
3232  * events, such as during an interrupt storm.
3233  * @buffer: The ring buffer
3234  * @cpu: The per CPU buffer to get the number of overruns from
3235  */
3236 unsigned long
3237 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3238 {
3239         struct ring_buffer_per_cpu *cpu_buffer;
3240         unsigned long ret;
3241
3242         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243                 return 0;
3244
3245         cpu_buffer = buffer->buffers[cpu];
3246         ret = local_read(&cpu_buffer->commit_overrun);
3247
3248         return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3251
3252 /**
3253  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3254  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3255  * @buffer: The ring buffer
3256  * @cpu: The per CPU buffer to get the number of overruns from
3257  */
3258 unsigned long
3259 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3260 {
3261         struct ring_buffer_per_cpu *cpu_buffer;
3262         unsigned long ret;
3263
3264         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3265                 return 0;
3266
3267         cpu_buffer = buffer->buffers[cpu];
3268         ret = local_read(&cpu_buffer->dropped_events);
3269
3270         return ret;
3271 }
3272 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3273
3274 /**
3275  * ring_buffer_read_events_cpu - get the number of events successfully read
3276  * @buffer: The ring buffer
3277  * @cpu: The per CPU buffer to get the number of events read
3278  */
3279 unsigned long
3280 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3281 {
3282         struct ring_buffer_per_cpu *cpu_buffer;
3283
3284         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3285                 return 0;
3286
3287         cpu_buffer = buffer->buffers[cpu];
3288         return cpu_buffer->read;
3289 }
3290 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3291
3292 /**
3293  * ring_buffer_entries - get the number of entries in a buffer
3294  * @buffer: The ring buffer
3295  *
3296  * Returns the total number of entries in the ring buffer
3297  * (all CPU entries)
3298  */
3299 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3300 {
3301         struct ring_buffer_per_cpu *cpu_buffer;
3302         unsigned long entries = 0;
3303         int cpu;
3304
3305         /* if you care about this being correct, lock the buffer */
3306         for_each_buffer_cpu(buffer, cpu) {
3307                 cpu_buffer = buffer->buffers[cpu];
3308                 entries += rb_num_of_entries(cpu_buffer);
3309         }
3310
3311         return entries;
3312 }
3313 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3314
3315 /**
3316  * ring_buffer_overruns - get the number of overruns in buffer
3317  * @buffer: The ring buffer
3318  *
3319  * Returns the total number of overruns in the ring buffer
3320  * (all CPU entries)
3321  */
3322 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3323 {
3324         struct ring_buffer_per_cpu *cpu_buffer;
3325         unsigned long overruns = 0;
3326         int cpu;
3327
3328         /* if you care about this being correct, lock the buffer */
3329         for_each_buffer_cpu(buffer, cpu) {
3330                 cpu_buffer = buffer->buffers[cpu];
3331                 overruns += local_read(&cpu_buffer->overrun);
3332         }
3333
3334         return overruns;
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3337
3338 static void rb_iter_reset(struct ring_buffer_iter *iter)
3339 {
3340         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3341
3342         /* Iterator usage is expected to have record disabled */
3343         if (list_empty(&cpu_buffer->reader_page->list)) {
3344                 iter->head_page = rb_set_head_page(cpu_buffer);
3345                 if (unlikely(!iter->head_page))
3346                         return;
3347                 iter->head = iter->head_page->read;
3348         } else {
3349                 iter->head_page = cpu_buffer->reader_page;
3350                 iter->head = cpu_buffer->reader_page->read;
3351         }
3352         if (iter->head)
3353                 iter->read_stamp = cpu_buffer->read_stamp;
3354         else
3355                 iter->read_stamp = iter->head_page->page->time_stamp;
3356         iter->cache_reader_page = cpu_buffer->reader_page;
3357         iter->cache_read = cpu_buffer->read;
3358 }
3359
3360 /**
3361  * ring_buffer_iter_reset - reset an iterator
3362  * @iter: The iterator to reset
3363  *
3364  * Resets the iterator, so that it will start from the beginning
3365  * again.
3366  */
3367 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3368 {
3369         struct ring_buffer_per_cpu *cpu_buffer;
3370         unsigned long flags;
3371
3372         if (!iter)
3373                 return;
3374
3375         cpu_buffer = iter->cpu_buffer;
3376
3377         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3378         rb_iter_reset(iter);
3379         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3380 }
3381 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3382
3383 /**
3384  * ring_buffer_iter_empty - check if an iterator has no more to read
3385  * @iter: The iterator to check
3386  */
3387 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3388 {
3389         struct ring_buffer_per_cpu *cpu_buffer;
3390
3391         cpu_buffer = iter->cpu_buffer;
3392
3393         return iter->head_page == cpu_buffer->commit_page &&
3394                 iter->head == rb_commit_index(cpu_buffer);
3395 }
3396 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3397
3398 static void
3399 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3400                      struct ring_buffer_event *event)
3401 {
3402         u64 delta;
3403
3404         switch (event->type_len) {
3405         case RINGBUF_TYPE_PADDING:
3406                 return;
3407
3408         case RINGBUF_TYPE_TIME_EXTEND:
3409                 delta = event->array[0];
3410                 delta <<= TS_SHIFT;
3411                 delta += event->time_delta;
3412                 cpu_buffer->read_stamp += delta;
3413                 return;
3414
3415         case RINGBUF_TYPE_TIME_STAMP:
3416                 /* FIXME: not implemented */
3417                 return;
3418
3419         case RINGBUF_TYPE_DATA:
3420                 cpu_buffer->read_stamp += event->time_delta;
3421                 return;
3422
3423         default:
3424                 BUG();
3425         }
3426         return;
3427 }
3428
3429 static void
3430 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3431                           struct ring_buffer_event *event)
3432 {
3433         u64 delta;
3434
3435         switch (event->type_len) {
3436         case RINGBUF_TYPE_PADDING:
3437                 return;
3438
3439         case RINGBUF_TYPE_TIME_EXTEND:
3440                 delta = event->array[0];
3441                 delta <<= TS_SHIFT;
3442                 delta += event->time_delta;
3443                 iter->read_stamp += delta;
3444                 return;
3445
3446         case RINGBUF_TYPE_TIME_STAMP:
3447                 /* FIXME: not implemented */
3448                 return;
3449
3450         case RINGBUF_TYPE_DATA:
3451                 iter->read_stamp += event->time_delta;
3452                 return;
3453
3454         default:
3455                 BUG();
3456         }
3457         return;
3458 }
3459
3460 static struct buffer_page *
3461 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3462 {
3463         struct buffer_page *reader = NULL;
3464         unsigned long overwrite;
3465         unsigned long flags;
3466         int nr_loops = 0;
3467         int ret;
3468
3469         local_irq_save(flags);
3470         arch_spin_lock(&cpu_buffer->lock);
3471
3472  again:
3473         /*
3474          * This should normally only loop twice. But because the
3475          * start of the reader inserts an empty page, it causes
3476          * a case where we will loop three times. There should be no
3477          * reason to loop four times (that I know of).
3478          */
3479         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3480                 reader = NULL;
3481                 goto out;
3482         }
3483
3484         reader = cpu_buffer->reader_page;
3485
3486         /* If there's more to read, return this page */
3487         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3488                 goto out;
3489
3490         /* Never should we have an index greater than the size */
3491         if (RB_WARN_ON(cpu_buffer,
3492                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3493                 goto out;
3494
3495         /* check if we caught up to the tail */
3496         reader = NULL;
3497         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3498                 goto out;
3499
3500         /* Don't bother swapping if the ring buffer is empty */
3501         if (rb_num_of_entries(cpu_buffer) == 0)
3502                 goto out;
3503
3504         /*
3505          * Reset the reader page to size zero.
3506          */
3507         local_set(&cpu_buffer->reader_page->write, 0);
3508         local_set(&cpu_buffer->reader_page->entries, 0);
3509         local_set(&cpu_buffer->reader_page->page->commit, 0);
3510         cpu_buffer->reader_page->real_end = 0;
3511
3512  spin:
3513         /*
3514          * Splice the empty reader page into the list around the head.
3515          */
3516         reader = rb_set_head_page(cpu_buffer);
3517         if (!reader)
3518                 goto out;
3519         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3520         cpu_buffer->reader_page->list.prev = reader->list.prev;
3521
3522         /*
3523          * cpu_buffer->pages just needs to point to the buffer, it
3524          *  has no specific buffer page to point to. Lets move it out
3525          *  of our way so we don't accidentally swap it.
3526          */
3527         cpu_buffer->pages = reader->list.prev;
3528
3529         /* The reader page will be pointing to the new head */
3530         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3531
3532         /*
3533          * We want to make sure we read the overruns after we set up our
3534          * pointers to the next object. The writer side does a
3535          * cmpxchg to cross pages which acts as the mb on the writer
3536          * side. Note, the reader will constantly fail the swap
3537          * while the writer is updating the pointers, so this
3538          * guarantees that the overwrite recorded here is the one we
3539          * want to compare with the last_overrun.
3540          */
3541         smp_mb();
3542         overwrite = local_read(&(cpu_buffer->overrun));
3543
3544         /*
3545          * Here's the tricky part.
3546          *
3547          * We need to move the pointer past the header page.
3548          * But we can only do that if a writer is not currently
3549          * moving it. The page before the header page has the
3550          * flag bit '1' set if it is pointing to the page we want.
3551          * but if the writer is in the process of moving it
3552          * than it will be '2' or already moved '0'.
3553          */
3554
3555         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3556
3557         /*
3558          * If we did not convert it, then we must try again.
3559          */
3560         if (!ret)
3561                 goto spin;
3562
3563         /*
3564          * Yeah! We succeeded in replacing the page.
3565          *
3566          * Now make the new head point back to the reader page.
3567          */
3568         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3569         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3570
3571         /* Finally update the reader page to the new head */
3572         cpu_buffer->reader_page = reader;
3573         rb_reset_reader_page(cpu_buffer);
3574
3575         if (overwrite != cpu_buffer->last_overrun) {
3576                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3577                 cpu_buffer->last_overrun = overwrite;
3578         }
3579
3580         goto again;
3581
3582  out:
3583         arch_spin_unlock(&cpu_buffer->lock);
3584         local_irq_restore(flags);
3585
3586         return reader;
3587 }
3588
3589 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3590 {
3591         struct ring_buffer_event *event;
3592         struct buffer_page *reader;
3593         unsigned length;
3594
3595         reader = rb_get_reader_page(cpu_buffer);
3596
3597         /* This function should not be called when buffer is empty */
3598         if (RB_WARN_ON(cpu_buffer, !reader))
3599                 return;
3600
3601         event = rb_reader_event(cpu_buffer);
3602
3603         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3604                 cpu_buffer->read++;
3605
3606         rb_update_read_stamp(cpu_buffer, event);
3607
3608         length = rb_event_length(event);
3609         cpu_buffer->reader_page->read += length;
3610 }
3611
3612 static void rb_advance_iter(struct ring_buffer_iter *iter)
3613 {
3614         struct ring_buffer_per_cpu *cpu_buffer;
3615         struct ring_buffer_event *event;
3616         unsigned length;
3617
3618         cpu_buffer = iter->cpu_buffer;
3619
3620         /*
3621          * Check if we are at the end of the buffer.
3622          */
3623         if (iter->head >= rb_page_size(iter->head_page)) {
3624                 /* discarded commits can make the page empty */
3625                 if (iter->head_page == cpu_buffer->commit_page)
3626                         return;
3627                 rb_inc_iter(iter);
3628                 return;
3629         }
3630
3631         event = rb_iter_head_event(iter);
3632
3633         length = rb_event_length(event);
3634
3635         /*
3636          * This should not be called to advance the header if we are
3637          * at the tail of the buffer.
3638          */
3639         if (RB_WARN_ON(cpu_buffer,
3640                        (iter->head_page == cpu_buffer->commit_page) &&
3641                        (iter->head + length > rb_commit_index(cpu_buffer))))
3642                 return;
3643
3644         rb_update_iter_read_stamp(iter, event);
3645
3646         iter->head += length;
3647
3648         /* check for end of page padding */
3649         if ((iter->head >= rb_page_size(iter->head_page)) &&
3650             (iter->head_page != cpu_buffer->commit_page))
3651                 rb_inc_iter(iter);
3652 }
3653
3654 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3655 {
3656         return cpu_buffer->lost_events;
3657 }
3658
3659 static struct ring_buffer_event *
3660 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3661                unsigned long *lost_events)
3662 {
3663         struct ring_buffer_event *event;
3664         struct buffer_page *reader;
3665         int nr_loops = 0;
3666
3667  again:
3668         /*
3669          * We repeat when a time extend is encountered.
3670          * Since the time extend is always attached to a data event,
3671          * we should never loop more than once.
3672          * (We never hit the following condition more than twice).
3673          */
3674         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3675                 return NULL;
3676
3677         reader = rb_get_reader_page(cpu_buffer);
3678         if (!reader)
3679                 return NULL;
3680
3681         event = rb_reader_event(cpu_buffer);
3682
3683         switch (event->type_len) {
3684         case RINGBUF_TYPE_PADDING:
3685                 if (rb_null_event(event))
3686                         RB_WARN_ON(cpu_buffer, 1);
3687                 /*
3688                  * Because the writer could be discarding every
3689                  * event it creates (which would probably be bad)
3690                  * if we were to go back to "again" then we may never
3691                  * catch up, and will trigger the warn on, or lock
3692                  * the box. Return the padding, and we will release
3693                  * the current locks, and try again.
3694                  */
3695                 return event;
3696
3697         case RINGBUF_TYPE_TIME_EXTEND:
3698                 /* Internal data, OK to advance */
3699                 rb_advance_reader(cpu_buffer);
3700                 goto again;
3701
3702         case RINGBUF_TYPE_TIME_STAMP:
3703                 /* FIXME: not implemented */
3704                 rb_advance_reader(cpu_buffer);
3705                 goto again;
3706
3707         case RINGBUF_TYPE_DATA:
3708                 if (ts) {
3709                         *ts = cpu_buffer->read_stamp + event->time_delta;
3710                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3711                                                          cpu_buffer->cpu, ts);
3712                 }
3713                 if (lost_events)
3714                         *lost_events = rb_lost_events(cpu_buffer);
3715                 return event;
3716
3717         default:
3718                 BUG();
3719         }
3720
3721         return NULL;
3722 }
3723 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3724
3725 static struct ring_buffer_event *
3726 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3727 {
3728         struct ring_buffer *buffer;
3729         struct ring_buffer_per_cpu *cpu_buffer;
3730         struct ring_buffer_event *event;
3731         int nr_loops = 0;
3732
3733         cpu_buffer = iter->cpu_buffer;
3734         buffer = cpu_buffer->buffer;
3735
3736         /*
3737          * Check if someone performed a consuming read to
3738          * the buffer. A consuming read invalidates the iterator
3739          * and we need to reset the iterator in this case.
3740          */
3741         if (unlikely(iter->cache_read != cpu_buffer->read ||
3742                      iter->cache_reader_page != cpu_buffer->reader_page))
3743                 rb_iter_reset(iter);
3744
3745  again:
3746         if (ring_buffer_iter_empty(iter))
3747                 return NULL;
3748
3749         /*
3750          * We repeat when a time extend is encountered.
3751          * Since the time extend is always attached to a data event,
3752          * we should never loop more than once.
3753          * (We never hit the following condition more than twice).
3754          */
3755         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3756                 return NULL;
3757
3758         if (rb_per_cpu_empty(cpu_buffer))
3759                 return NULL;
3760
3761         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3762                 rb_inc_iter(iter);
3763                 goto again;
3764         }
3765
3766         event = rb_iter_head_event(iter);
3767
3768         switch (event->type_len) {
3769         case RINGBUF_TYPE_PADDING:
3770                 if (rb_null_event(event)) {
3771                         rb_inc_iter(iter);
3772                         goto again;
3773                 }
3774                 rb_advance_iter(iter);
3775                 return event;
3776
3777         case RINGBUF_TYPE_TIME_EXTEND:
3778                 /* Internal data, OK to advance */
3779                 rb_advance_iter(iter);
3780                 goto again;
3781
3782         case RINGBUF_TYPE_TIME_STAMP:
3783                 /* FIXME: not implemented */
3784                 rb_advance_iter(iter);
3785                 goto again;
3786
3787         case RINGBUF_TYPE_DATA:
3788                 if (ts) {
3789                         *ts = iter->read_stamp + event->time_delta;
3790                         ring_buffer_normalize_time_stamp(buffer,
3791                                                          cpu_buffer->cpu, ts);
3792                 }
3793                 return event;
3794
3795         default:
3796                 BUG();
3797         }
3798
3799         return NULL;
3800 }
3801 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3802
3803 static inline int rb_ok_to_lock(void)
3804 {
3805         /*
3806          * If an NMI die dumps out the content of the ring buffer
3807          * do not grab locks. We also permanently disable the ring
3808          * buffer too. A one time deal is all you get from reading
3809          * the ring buffer from an NMI.
3810          */
3811         if (likely(!in_nmi()))
3812                 return 1;
3813
3814         tracing_off_permanent();
3815         return 0;
3816 }
3817
3818 /**
3819  * ring_buffer_peek - peek at the next event to be read
3820  * @buffer: The ring buffer to read
3821  * @cpu: The cpu to peak at
3822  * @ts: The timestamp counter of this event.
3823  * @lost_events: a variable to store if events were lost (may be NULL)
3824  *
3825  * This will return the event that will be read next, but does
3826  * not consume the data.
3827  */
3828 struct ring_buffer_event *
3829 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3830                  unsigned long *lost_events)
3831 {
3832         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3833         struct ring_buffer_event *event;
3834         unsigned long flags;
3835         int dolock;
3836
3837         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3838                 return NULL;
3839
3840         dolock = rb_ok_to_lock();
3841  again:
3842         local_irq_save(flags);
3843         if (dolock)
3844                 raw_spin_lock(&cpu_buffer->reader_lock);
3845         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3846         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3847                 rb_advance_reader(cpu_buffer);
3848         if (dolock)
3849                 raw_spin_unlock(&cpu_buffer->reader_lock);
3850         local_irq_restore(flags);
3851
3852         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3853                 goto again;
3854
3855         return event;
3856 }
3857
3858 /**
3859  * ring_buffer_iter_peek - peek at the next event to be read
3860  * @iter: The ring buffer iterator
3861  * @ts: The timestamp counter of this event.
3862  *
3863  * This will return the event that will be read next, but does
3864  * not increment the iterator.
3865  */
3866 struct ring_buffer_event *
3867 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3868 {
3869         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3870         struct ring_buffer_event *event;
3871         unsigned long flags;
3872
3873  again:
3874         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3875         event = rb_iter_peek(iter, ts);
3876         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3877
3878         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3879                 goto again;
3880
3881         return event;
3882 }
3883
3884 /**
3885  * ring_buffer_consume - return an event and consume it
3886  * @buffer: The ring buffer to get the next event from
3887  * @cpu: the cpu to read the buffer from
3888  * @ts: a variable to store the timestamp (may be NULL)
3889  * @lost_events: a variable to store if events were lost (may be NULL)
3890  *
3891  * Returns the next event in the ring buffer, and that event is consumed.
3892  * Meaning, that sequential reads will keep returning a different event,
3893  * and eventually empty the ring buffer if the producer is slower.
3894  */
3895 struct ring_buffer_event *
3896 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3897                     unsigned long *lost_events)
3898 {
3899         struct ring_buffer_per_cpu *cpu_buffer;
3900         struct ring_buffer_event *event = NULL;
3901         unsigned long flags;
3902         int dolock;
3903
3904         dolock = rb_ok_to_lock();
3905
3906  again:
3907         /* might be called in atomic */
3908         preempt_disable();
3909
3910         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3911                 goto out;
3912
3913         cpu_buffer = buffer->buffers[cpu];
3914         local_irq_save(flags);
3915         if (dolock)
3916                 raw_spin_lock(&cpu_buffer->reader_lock);
3917
3918         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3919         if (event) {
3920                 cpu_buffer->lost_events = 0;
3921                 rb_advance_reader(cpu_buffer);
3922         }
3923
3924         if (dolock)
3925                 raw_spin_unlock(&cpu_buffer->reader_lock);
3926         local_irq_restore(flags);
3927
3928  out:
3929         preempt_enable();
3930
3931         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3932                 goto again;
3933
3934         return event;
3935 }
3936 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3937
3938 /**
3939  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3940  * @buffer: The ring buffer to read from
3941  * @cpu: The cpu buffer to iterate over
3942  *
3943  * This performs the initial preparations necessary to iterate
3944  * through the buffer.  Memory is allocated, buffer recording
3945  * is disabled, and the iterator pointer is returned to the caller.
3946  *
3947  * Disabling buffer recordng prevents the reading from being
3948  * corrupted. This is not a consuming read, so a producer is not
3949  * expected.
3950  *
3951  * After a sequence of ring_buffer_read_prepare calls, the user is
3952  * expected to make at least one call to ring_buffer_prepare_sync.
3953  * Afterwards, ring_buffer_read_start is invoked to get things going
3954  * for real.
3955  *
3956  * This overall must be paired with ring_buffer_finish.
3957  */
3958 struct ring_buffer_iter *
3959 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3960 {
3961         struct ring_buffer_per_cpu *cpu_buffer;
3962         struct ring_buffer_iter *iter;
3963
3964         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3965                 return NULL;
3966
3967         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3968         if (!iter)
3969                 return NULL;
3970
3971         cpu_buffer = buffer->buffers[cpu];
3972
3973         iter->cpu_buffer = cpu_buffer;
3974
3975         atomic_inc(&buffer->resize_disabled);
3976         atomic_inc(&cpu_buffer->record_disabled);
3977
3978         return iter;
3979 }
3980 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3981
3982 /**
3983  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3984  *
3985  * All previously invoked ring_buffer_read_prepare calls to prepare
3986  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3987  * calls on those iterators are allowed.
3988  */
3989 void
3990 ring_buffer_read_prepare_sync(void)
3991 {
3992         synchronize_sched();
3993 }
3994 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3995
3996 /**
3997  * ring_buffer_read_start - start a non consuming read of the buffer
3998  * @iter: The iterator returned by ring_buffer_read_prepare
3999  *
4000  * This finalizes the startup of an iteration through the buffer.
4001  * The iterator comes from a call to ring_buffer_read_prepare and
4002  * an intervening ring_buffer_read_prepare_sync must have been
4003  * performed.
4004  *
4005  * Must be paired with ring_buffer_finish.
4006  */
4007 void
4008 ring_buffer_read_start(struct ring_buffer_iter *iter)
4009 {
4010         struct ring_buffer_per_cpu *cpu_buffer;
4011         unsigned long flags;
4012
4013         if (!iter)
4014                 return;
4015
4016         cpu_buffer = iter->cpu_buffer;
4017
4018         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4019         arch_spin_lock(&cpu_buffer->lock);
4020         rb_iter_reset(iter);
4021         arch_spin_unlock(&cpu_buffer->lock);
4022         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4023 }
4024 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4025
4026 /**
4027  * ring_buffer_finish - finish reading the iterator of the buffer
4028  * @iter: The iterator retrieved by ring_buffer_start
4029  *
4030  * This re-enables the recording to the buffer, and frees the
4031  * iterator.
4032  */
4033 void
4034 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4035 {
4036         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4037         unsigned long flags;
4038
4039         /*
4040          * Ring buffer is disabled from recording, here's a good place
4041          * to check the integrity of the ring buffer.
4042          * Must prevent readers from trying to read, as the check
4043          * clears the HEAD page and readers require it.
4044          */
4045         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4046         rb_check_pages(cpu_buffer);
4047         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4048
4049         atomic_dec(&cpu_buffer->record_disabled);
4050         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4051         kfree(iter);
4052 }
4053 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4054
4055 /**
4056  * ring_buffer_read - read the next item in the ring buffer by the iterator
4057  * @iter: The ring buffer iterator
4058  * @ts: The time stamp of the event read.
4059  *
4060  * This reads the next event in the ring buffer and increments the iterator.
4061  */
4062 struct ring_buffer_event *
4063 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4064 {
4065         struct ring_buffer_event *event;
4066         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4067         unsigned long flags;
4068
4069         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4070  again:
4071         event = rb_iter_peek(iter, ts);
4072         if (!event)
4073                 goto out;
4074
4075         if (event->type_len == RINGBUF_TYPE_PADDING)
4076                 goto again;
4077
4078         rb_advance_iter(iter);
4079  out:
4080         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4081
4082         return event;
4083 }
4084 EXPORT_SYMBOL_GPL(ring_buffer_read);
4085
4086 /**
4087  * ring_buffer_size - return the size of the ring buffer (in bytes)
4088  * @buffer: The ring buffer.
4089  */
4090 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4091 {
4092         /*
4093          * Earlier, this method returned
4094          *      BUF_PAGE_SIZE * buffer->nr_pages
4095          * Since the nr_pages field is now removed, we have converted this to
4096          * return the per cpu buffer value.
4097          */
4098         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4099                 return 0;
4100
4101         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4102 }
4103 EXPORT_SYMBOL_GPL(ring_buffer_size);
4104
4105 static void
4106 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4107 {
4108         rb_head_page_deactivate(cpu_buffer);
4109
4110         cpu_buffer->head_page
4111                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4112         local_set(&cpu_buffer->head_page->write, 0);
4113         local_set(&cpu_buffer->head_page->entries, 0);
4114         local_set(&cpu_buffer->head_page->page->commit, 0);
4115
4116         cpu_buffer->head_page->read = 0;
4117
4118         cpu_buffer->tail_page = cpu_buffer->head_page;
4119         cpu_buffer->commit_page = cpu_buffer->head_page;
4120
4121         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4122         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4123         local_set(&cpu_buffer->reader_page->write, 0);
4124         local_set(&cpu_buffer->reader_page->entries, 0);
4125         local_set(&cpu_buffer->reader_page->page->commit, 0);
4126         cpu_buffer->reader_page->read = 0;
4127
4128         local_set(&cpu_buffer->entries_bytes, 0);
4129         local_set(&cpu_buffer->overrun, 0);
4130         local_set(&cpu_buffer->commit_overrun, 0);
4131         local_set(&cpu_buffer->dropped_events, 0);
4132         local_set(&cpu_buffer->entries, 0);
4133         local_set(&cpu_buffer->committing, 0);
4134         local_set(&cpu_buffer->commits, 0);
4135         cpu_buffer->read = 0;
4136         cpu_buffer->read_bytes = 0;
4137
4138         cpu_buffer->write_stamp = 0;
4139         cpu_buffer->read_stamp = 0;
4140
4141         cpu_buffer->lost_events = 0;
4142         cpu_buffer->last_overrun = 0;
4143
4144         rb_head_page_activate(cpu_buffer);
4145 }
4146
4147 /**
4148  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4149  * @buffer: The ring buffer to reset a per cpu buffer of
4150  * @cpu: The CPU buffer to be reset
4151  */
4152 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4153 {
4154         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4155         unsigned long flags;
4156
4157         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4158                 return;
4159
4160         atomic_inc(&buffer->resize_disabled);
4161         atomic_inc(&cpu_buffer->record_disabled);
4162
4163         /* Make sure all commits have finished */
4164         synchronize_sched();
4165
4166         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4167
4168         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4169                 goto out;
4170
4171         arch_spin_lock(&cpu_buffer->lock);
4172
4173         rb_reset_cpu(cpu_buffer);
4174
4175         arch_spin_unlock(&cpu_buffer->lock);
4176
4177  out:
4178         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4179
4180         atomic_dec(&cpu_buffer->record_disabled);
4181         atomic_dec(&buffer->resize_disabled);
4182 }
4183 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4184
4185 /**
4186  * ring_buffer_reset - reset a ring buffer
4187  * @buffer: The ring buffer to reset all cpu buffers
4188  */
4189 void ring_buffer_reset(struct ring_buffer *buffer)
4190 {
4191         int cpu;
4192
4193         for_each_buffer_cpu(buffer, cpu)
4194                 ring_buffer_reset_cpu(buffer, cpu);
4195 }
4196 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4197
4198 /**
4199  * rind_buffer_empty - is the ring buffer empty?
4200  * @buffer: The ring buffer to test
4201  */
4202 int ring_buffer_empty(struct ring_buffer *buffer)
4203 {
4204         struct ring_buffer_per_cpu *cpu_buffer;
4205         unsigned long flags;
4206         int dolock;
4207         int cpu;
4208         int ret;
4209
4210         dolock = rb_ok_to_lock();
4211
4212         /* yes this is racy, but if you don't like the race, lock the buffer */
4213         for_each_buffer_cpu(buffer, cpu) {
4214                 cpu_buffer = buffer->buffers[cpu];
4215                 local_irq_save(flags);
4216                 if (dolock)
4217                         raw_spin_lock(&cpu_buffer->reader_lock);
4218                 ret = rb_per_cpu_empty(cpu_buffer);
4219                 if (dolock)
4220                         raw_spin_unlock(&cpu_buffer->reader_lock);
4221                 local_irq_restore(flags);
4222
4223                 if (!ret)
4224                         return 0;
4225         }
4226
4227         return 1;
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4230
4231 /**
4232  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4233  * @buffer: The ring buffer
4234  * @cpu: The CPU buffer to test
4235  */
4236 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4237 {
4238         struct ring_buffer_per_cpu *cpu_buffer;
4239         unsigned long flags;
4240         int dolock;
4241         int ret;
4242
4243         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4244                 return 1;
4245
4246         dolock = rb_ok_to_lock();
4247
4248         cpu_buffer = buffer->buffers[cpu];
4249         local_irq_save(flags);
4250         if (dolock)
4251                 raw_spin_lock(&cpu_buffer->reader_lock);
4252         ret = rb_per_cpu_empty(cpu_buffer);
4253         if (dolock)
4254                 raw_spin_unlock(&cpu_buffer->reader_lock);
4255         local_irq_restore(flags);
4256
4257         return ret;
4258 }
4259 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4260
4261 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4262 /**
4263  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4264  * @buffer_a: One buffer to swap with
4265  * @buffer_b: The other buffer to swap with
4266  *
4267  * This function is useful for tracers that want to take a "snapshot"
4268  * of a CPU buffer and has another back up buffer lying around.
4269  * it is expected that the tracer handles the cpu buffer not being
4270  * used at the moment.
4271  */
4272 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4273                          struct ring_buffer *buffer_b, int cpu)
4274 {
4275         struct ring_buffer_per_cpu *cpu_buffer_a;
4276         struct ring_buffer_per_cpu *cpu_buffer_b;
4277         int ret = -EINVAL;
4278
4279         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4280             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4281                 goto out;
4282
4283         cpu_buffer_a = buffer_a->buffers[cpu];
4284         cpu_buffer_b = buffer_b->buffers[cpu];
4285
4286         /* At least make sure the two buffers are somewhat the same */
4287         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4288                 goto out;
4289
4290         ret = -EAGAIN;
4291
4292         if (ring_buffer_flags != RB_BUFFERS_ON)
4293                 goto out;
4294
4295         if (atomic_read(&buffer_a->record_disabled))
4296                 goto out;
4297
4298         if (atomic_read(&buffer_b->record_disabled))
4299                 goto out;
4300
4301         if (atomic_read(&cpu_buffer_a->record_disabled))
4302                 goto out;
4303
4304         if (atomic_read(&cpu_buffer_b->record_disabled))
4305                 goto out;
4306
4307         /*
4308          * We can't do a synchronize_sched here because this
4309          * function can be called in atomic context.
4310          * Normally this will be called from the same CPU as cpu.
4311          * If not it's up to the caller to protect this.
4312          */
4313         atomic_inc(&cpu_buffer_a->record_disabled);
4314         atomic_inc(&cpu_buffer_b->record_disabled);
4315
4316         ret = -EBUSY;
4317         if (local_read(&cpu_buffer_a->committing))
4318                 goto out_dec;
4319         if (local_read(&cpu_buffer_b->committing))
4320                 goto out_dec;
4321
4322         buffer_a->buffers[cpu] = cpu_buffer_b;
4323         buffer_b->buffers[cpu] = cpu_buffer_a;
4324
4325         cpu_buffer_b->buffer = buffer_a;
4326         cpu_buffer_a->buffer = buffer_b;
4327
4328         ret = 0;
4329
4330 out_dec:
4331         atomic_dec(&cpu_buffer_a->record_disabled);
4332         atomic_dec(&cpu_buffer_b->record_disabled);
4333 out:
4334         return ret;
4335 }
4336 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4337 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4338
4339 /**
4340  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4341  * @buffer: the buffer to allocate for.
4342  *
4343  * This function is used in conjunction with ring_buffer_read_page.
4344  * When reading a full page from the ring buffer, these functions
4345  * can be used to speed up the process. The calling function should
4346  * allocate a few pages first with this function. Then when it
4347  * needs to get pages from the ring buffer, it passes the result
4348  * of this function into ring_buffer_read_page, which will swap
4349  * the page that was allocated, with the read page of the buffer.
4350  *
4351  * Returns:
4352  *  The page allocated, or NULL on error.
4353  */
4354 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4355 {
4356         struct buffer_data_page *bpage;
4357         struct page *page;
4358
4359         page = alloc_pages_node(cpu_to_node(cpu),
4360                                 GFP_KERNEL | __GFP_NORETRY, 0);
4361         if (!page)
4362                 return NULL;
4363
4364         bpage = page_address(page);
4365
4366         rb_init_page(bpage);
4367
4368         return bpage;
4369 }
4370 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4371
4372 /**
4373  * ring_buffer_free_read_page - free an allocated read page
4374  * @buffer: the buffer the page was allocate for
4375  * @data: the page to free
4376  *
4377  * Free a page allocated from ring_buffer_alloc_read_page.
4378  */
4379 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4380 {
4381         free_page((unsigned long)data);
4382 }
4383 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4384
4385 /**
4386  * ring_buffer_read_page - extract a page from the ring buffer
4387  * @buffer: buffer to extract from
4388  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4389  * @len: amount to extract
4390  * @cpu: the cpu of the buffer to extract
4391  * @full: should the extraction only happen when the page is full.
4392  *
4393  * This function will pull out a page from the ring buffer and consume it.
4394  * @data_page must be the address of the variable that was returned
4395  * from ring_buffer_alloc_read_page. This is because the page might be used
4396  * to swap with a page in the ring buffer.
4397  *
4398  * for example:
4399  *      rpage = ring_buffer_alloc_read_page(buffer);
4400  *      if (!rpage)
4401  *              return error;
4402  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4403  *      if (ret >= 0)
4404  *              process_page(rpage, ret);
4405  *
4406  * When @full is set, the function will not return true unless
4407  * the writer is off the reader page.
4408  *
4409  * Note: it is up to the calling functions to handle sleeps and wakeups.
4410  *  The ring buffer can be used anywhere in the kernel and can not
4411  *  blindly call wake_up. The layer that uses the ring buffer must be
4412  *  responsible for that.
4413  *
4414  * Returns:
4415  *  >=0 if data has been transferred, returns the offset of consumed data.
4416  *  <0 if no data has been transferred.
4417  */
4418 int ring_buffer_read_page(struct ring_buffer *buffer,
4419                           void **data_page, size_t len, int cpu, int full)
4420 {
4421         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4422         struct ring_buffer_event *event;
4423         struct buffer_data_page *bpage;
4424         struct buffer_page *reader;
4425         unsigned long missed_events;
4426         unsigned long flags;
4427         unsigned int commit;
4428         unsigned int read;
4429         u64 save_timestamp;
4430         int ret = -1;
4431
4432         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4433                 goto out;
4434
4435         /*
4436          * If len is not big enough to hold the page header, then
4437          * we can not copy anything.
4438          */
4439         if (len <= BUF_PAGE_HDR_SIZE)
4440                 goto out;
4441
4442         len -= BUF_PAGE_HDR_SIZE;
4443
4444         if (!data_page)
4445                 goto out;
4446
4447         bpage = *data_page;
4448         if (!bpage)
4449                 goto out;
4450
4451         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4452
4453         reader = rb_get_reader_page(cpu_buffer);
4454         if (!reader)
4455                 goto out_unlock;
4456
4457         event = rb_reader_event(cpu_buffer);
4458
4459         read = reader->read;
4460         commit = rb_page_commit(reader);
4461
4462         /* Check if any events were dropped */
4463         missed_events = cpu_buffer->lost_events;
4464
4465         /*
4466          * If this page has been partially read or
4467          * if len is not big enough to read the rest of the page or
4468          * a writer is still on the page, then
4469          * we must copy the data from the page to the buffer.
4470          * Otherwise, we can simply swap the page with the one passed in.
4471          */
4472         if (read || (len < (commit - read)) ||
4473             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4474                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4475                 unsigned int rpos = read;
4476                 unsigned int pos = 0;
4477                 unsigned int size;
4478
4479                 if (full)
4480                         goto out_unlock;
4481
4482                 if (len > (commit - read))
4483                         len = (commit - read);
4484
4485                 /* Always keep the time extend and data together */
4486                 size = rb_event_ts_length(event);
4487
4488                 if (len < size)
4489                         goto out_unlock;
4490
4491                 /* save the current timestamp, since the user will need it */
4492                 save_timestamp = cpu_buffer->read_stamp;
4493
4494                 /* Need to copy one event at a time */
4495                 do {
4496                         /* We need the size of one event, because
4497                          * rb_advance_reader only advances by one event,
4498                          * whereas rb_event_ts_length may include the size of
4499                          * one or two events.
4500                          * We have already ensured there's enough space if this
4501                          * is a time extend. */
4502                         size = rb_event_length(event);
4503                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4504
4505                         len -= size;
4506
4507                         rb_advance_reader(cpu_buffer);
4508                         rpos = reader->read;
4509                         pos += size;
4510
4511                         if (rpos >= commit)
4512                                 break;
4513
4514                         event = rb_reader_event(cpu_buffer);
4515                         /* Always keep the time extend and data together */
4516                         size = rb_event_ts_length(event);
4517                 } while (len >= size);
4518
4519                 /* update bpage */
4520                 local_set(&bpage->commit, pos);
4521                 bpage->time_stamp = save_timestamp;
4522
4523                 /* we copied everything to the beginning */
4524                 read = 0;
4525         } else {
4526                 /* update the entry counter */
4527                 cpu_buffer->read += rb_page_entries(reader);
4528                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4529
4530                 /* swap the pages */
4531                 rb_init_page(bpage);
4532                 bpage = reader->page;
4533                 reader->page = *data_page;
4534                 local_set(&reader->write, 0);
4535                 local_set(&reader->entries, 0);
4536                 reader->read = 0;
4537                 *data_page = bpage;
4538
4539                 /*
4540                  * Use the real_end for the data size,
4541                  * This gives us a chance to store the lost events
4542                  * on the page.
4543                  */
4544                 if (reader->real_end)
4545                         local_set(&bpage->commit, reader->real_end);
4546         }
4547         ret = read;
4548
4549         cpu_buffer->lost_events = 0;
4550
4551         commit = local_read(&bpage->commit);
4552         /*
4553          * Set a flag in the commit field if we lost events
4554          */
4555         if (missed_events) {
4556                 /* If there is room at the end of the page to save the
4557                  * missed events, then record it there.
4558                  */
4559                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4560                         memcpy(&bpage->data[commit], &missed_events,
4561                                sizeof(missed_events));
4562                         local_add(RB_MISSED_STORED, &bpage->commit);
4563                         commit += sizeof(missed_events);
4564                 }
4565                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4566         }
4567
4568         /*
4569          * This page may be off to user land. Zero it out here.
4570          */
4571         if (commit < BUF_PAGE_SIZE)
4572                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4573
4574  out_unlock:
4575         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4576
4577  out:
4578         return ret;
4579 }
4580 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4581
4582 #ifdef CONFIG_HOTPLUG_CPU
4583 static int rb_cpu_notify(struct notifier_block *self,
4584                          unsigned long action, void *hcpu)
4585 {
4586         struct ring_buffer *buffer =
4587                 container_of(self, struct ring_buffer, cpu_notify);
4588         long cpu = (long)hcpu;
4589         int cpu_i, nr_pages_same;
4590         unsigned int nr_pages;
4591
4592         switch (action) {
4593         case CPU_UP_PREPARE:
4594         case CPU_UP_PREPARE_FROZEN:
4595                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4596                         return NOTIFY_OK;
4597
4598                 nr_pages = 0;
4599                 nr_pages_same = 1;
4600                 /* check if all cpu sizes are same */
4601                 for_each_buffer_cpu(buffer, cpu_i) {
4602                         /* fill in the size from first enabled cpu */
4603                         if (nr_pages == 0)
4604                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4605                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4606                                 nr_pages_same = 0;
4607                                 break;
4608                         }
4609                 }
4610                 /* allocate minimum pages, user can later expand it */
4611                 if (!nr_pages_same)
4612                         nr_pages = 2;
4613                 buffer->buffers[cpu] =
4614                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4615                 if (!buffer->buffers[cpu]) {
4616                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4617                              cpu);
4618                         return NOTIFY_OK;
4619                 }
4620                 smp_wmb();
4621                 cpumask_set_cpu(cpu, buffer->cpumask);
4622                 break;
4623         case CPU_DOWN_PREPARE:
4624         case CPU_DOWN_PREPARE_FROZEN:
4625                 /*
4626                  * Do nothing.
4627                  *  If we were to free the buffer, then the user would
4628                  *  lose any trace that was in the buffer.
4629                  */
4630                 break;
4631         default:
4632                 break;
4633         }
4634         return NOTIFY_OK;
4635 }
4636 #endif