Merge tag 'trace-v6.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[platform/kernel/linux-starfive.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline int rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 static void free_buffer_page(struct buffer_page *bpage)
358 {
359         free_page((unsigned long)bpage->page);
360         kfree(bpage);
361 }
362
363 /*
364  * We need to fit the time_stamp delta into 27 bits.
365  */
366 static inline int test_time_stamp(u64 delta)
367 {
368         if (delta & TS_DELTA_TEST)
369                 return 1;
370         return 0;
371 }
372
373 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
374
375 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
376 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
377
378 int ring_buffer_print_page_header(struct trace_seq *s)
379 {
380         struct buffer_data_page field;
381
382         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
383                          "offset:0;\tsize:%u;\tsigned:%u;\n",
384                          (unsigned int)sizeof(field.time_stamp),
385                          (unsigned int)is_signed_type(u64));
386
387         trace_seq_printf(s, "\tfield: local_t commit;\t"
388                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
389                          (unsigned int)offsetof(typeof(field), commit),
390                          (unsigned int)sizeof(field.commit),
391                          (unsigned int)is_signed_type(long));
392
393         trace_seq_printf(s, "\tfield: int overwrite;\t"
394                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
395                          (unsigned int)offsetof(typeof(field), commit),
396                          1,
397                          (unsigned int)is_signed_type(long));
398
399         trace_seq_printf(s, "\tfield: char data;\t"
400                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
401                          (unsigned int)offsetof(typeof(field), data),
402                          (unsigned int)BUF_PAGE_SIZE,
403                          (unsigned int)is_signed_type(char));
404
405         return !trace_seq_has_overflowed(s);
406 }
407
408 struct rb_irq_work {
409         struct irq_work                 work;
410         wait_queue_head_t               waiters;
411         wait_queue_head_t               full_waiters;
412         long                            wait_index;
413         bool                            waiters_pending;
414         bool                            full_waiters_pending;
415         bool                            wakeup_full;
416 };
417
418 /*
419  * Structure to hold event state and handle nested events.
420  */
421 struct rb_event_info {
422         u64                     ts;
423         u64                     delta;
424         u64                     before;
425         u64                     after;
426         unsigned long           length;
427         struct buffer_page      *tail_page;
428         int                     add_timestamp;
429 };
430
431 /*
432  * Used for the add_timestamp
433  *  NONE
434  *  EXTEND - wants a time extend
435  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436  *  FORCE - force a full time stamp.
437  */
438 enum {
439         RB_ADD_STAMP_NONE               = 0,
440         RB_ADD_STAMP_EXTEND             = BIT(1),
441         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
442         RB_ADD_STAMP_FORCE              = BIT(3)
443 };
444 /*
445  * Used for which event context the event is in.
446  *  TRANSITION = 0
447  *  NMI     = 1
448  *  IRQ     = 2
449  *  SOFTIRQ = 3
450  *  NORMAL  = 4
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455         RB_CTX_TRANSITION,
456         RB_CTX_NMI,
457         RB_CTX_IRQ,
458         RB_CTX_SOFTIRQ,
459         RB_CTX_NORMAL,
460         RB_CTX_MAX
461 };
462
463 #if BITS_PER_LONG == 32
464 #define RB_TIME_32
465 #endif
466
467 /* To test on 64 bit machines */
468 //#define RB_TIME_32
469
470 #ifdef RB_TIME_32
471
472 struct rb_time_struct {
473         local_t         cnt;
474         local_t         top;
475         local_t         bottom;
476         local_t         msb;
477 };
478 #else
479 #include <asm/local64.h>
480 struct rb_time_struct {
481         local64_t       time;
482 };
483 #endif
484 typedef struct rb_time_struct rb_time_t;
485
486 #define MAX_NEST        5
487
488 /*
489  * head_page == tail_page && head == tail then buffer is empty.
490  */
491 struct ring_buffer_per_cpu {
492         int                             cpu;
493         atomic_t                        record_disabled;
494         atomic_t                        resize_disabled;
495         struct trace_buffer     *buffer;
496         raw_spinlock_t                  reader_lock;    /* serialize readers */
497         arch_spinlock_t                 lock;
498         struct lock_class_key           lock_key;
499         struct buffer_data_page         *free_page;
500         unsigned long                   nr_pages;
501         unsigned int                    current_context;
502         struct list_head                *pages;
503         struct buffer_page              *head_page;     /* read from head */
504         struct buffer_page              *tail_page;     /* write to tail */
505         struct buffer_page              *commit_page;   /* committed pages */
506         struct buffer_page              *reader_page;
507         unsigned long                   lost_events;
508         unsigned long                   last_overrun;
509         unsigned long                   nest;
510         local_t                         entries_bytes;
511         local_t                         entries;
512         local_t                         overrun;
513         local_t                         commit_overrun;
514         local_t                         dropped_events;
515         local_t                         committing;
516         local_t                         commits;
517         local_t                         pages_touched;
518         local_t                         pages_lost;
519         local_t                         pages_read;
520         long                            last_pages_touch;
521         size_t                          shortest_full;
522         unsigned long                   read;
523         unsigned long                   read_bytes;
524         rb_time_t                       write_stamp;
525         rb_time_t                       before_stamp;
526         u64                             event_stamp[MAX_NEST];
527         u64                             read_stamp;
528         /* ring buffer pages to update, > 0 to add, < 0 to remove */
529         long                            nr_pages_to_update;
530         struct list_head                new_pages; /* new pages to add */
531         struct work_struct              update_pages_work;
532         struct completion               update_done;
533
534         struct rb_irq_work              irq_work;
535 };
536
537 struct trace_buffer {
538         unsigned                        flags;
539         int                             cpus;
540         atomic_t                        record_disabled;
541         cpumask_var_t                   cpumask;
542
543         struct lock_class_key           *reader_lock_key;
544
545         struct mutex                    mutex;
546
547         struct ring_buffer_per_cpu      **buffers;
548
549         struct hlist_node               node;
550         u64                             (*clock)(void);
551
552         struct rb_irq_work              irq_work;
553         bool                            time_stamp_abs;
554 };
555
556 struct ring_buffer_iter {
557         struct ring_buffer_per_cpu      *cpu_buffer;
558         unsigned long                   head;
559         unsigned long                   next_event;
560         struct buffer_page              *head_page;
561         struct buffer_page              *cache_reader_page;
562         unsigned long                   cache_read;
563         u64                             read_stamp;
564         u64                             page_stamp;
565         struct ring_buffer_event        *event;
566         int                             missed_events;
567 };
568
569 #ifdef RB_TIME_32
570
571 /*
572  * On 32 bit machines, local64_t is very expensive. As the ring
573  * buffer doesn't need all the features of a true 64 bit atomic,
574  * on 32 bit, it uses these functions (64 still uses local64_t).
575  *
576  * For the ring buffer, 64 bit required operations for the time is
577  * the following:
578  *
579  *  - Reads may fail if it interrupted a modification of the time stamp.
580  *      It will succeed if it did not interrupt another write even if
581  *      the read itself is interrupted by a write.
582  *      It returns whether it was successful or not.
583  *
584  *  - Writes always succeed and will overwrite other writes and writes
585  *      that were done by events interrupting the current write.
586  *
587  *  - A write followed by a read of the same time stamp will always succeed,
588  *      but may not contain the same value.
589  *
590  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
591  *      Other than that, it acts like a normal cmpxchg.
592  *
593  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
594  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
595  *
596  * The two most significant bits of each half holds a 2 bit counter (0-3).
597  * Each update will increment this counter by one.
598  * When reading the top and bottom, if the two counter bits match then the
599  *  top and bottom together make a valid 60 bit number.
600  */
601 #define RB_TIME_SHIFT   30
602 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
603 #define RB_TIME_MSB_SHIFT        60
604
605 static inline int rb_time_cnt(unsigned long val)
606 {
607         return (val >> RB_TIME_SHIFT) & 3;
608 }
609
610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
611 {
612         u64 val;
613
614         val = top & RB_TIME_VAL_MASK;
615         val <<= RB_TIME_SHIFT;
616         val |= bottom & RB_TIME_VAL_MASK;
617
618         return val;
619 }
620
621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
622 {
623         unsigned long top, bottom, msb;
624         unsigned long c;
625
626         /*
627          * If the read is interrupted by a write, then the cnt will
628          * be different. Loop until both top and bottom have been read
629          * without interruption.
630          */
631         do {
632                 c = local_read(&t->cnt);
633                 top = local_read(&t->top);
634                 bottom = local_read(&t->bottom);
635                 msb = local_read(&t->msb);
636         } while (c != local_read(&t->cnt));
637
638         *cnt = rb_time_cnt(top);
639
640         /* If top and bottom counts don't match, this interrupted a write */
641         if (*cnt != rb_time_cnt(bottom))
642                 return false;
643
644         /* The shift to msb will lose its cnt bits */
645         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
646         return true;
647 }
648
649 static bool rb_time_read(rb_time_t *t, u64 *ret)
650 {
651         unsigned long cnt;
652
653         return __rb_time_read(t, ret, &cnt);
654 }
655
656 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
657 {
658         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
659 }
660
661 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
662                                  unsigned long *msb)
663 {
664         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
665         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
666         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
667 }
668
669 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
670 {
671         val = rb_time_val_cnt(val, cnt);
672         local_set(t, val);
673 }
674
675 static void rb_time_set(rb_time_t *t, u64 val)
676 {
677         unsigned long cnt, top, bottom, msb;
678
679         rb_time_split(val, &top, &bottom, &msb);
680
681         /* Writes always succeed with a valid number even if it gets interrupted. */
682         do {
683                 cnt = local_inc_return(&t->cnt);
684                 rb_time_val_set(&t->top, top, cnt);
685                 rb_time_val_set(&t->bottom, bottom, cnt);
686                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
687         } while (cnt != local_read(&t->cnt));
688 }
689
690 static inline bool
691 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
692 {
693         unsigned long ret;
694
695         ret = local_cmpxchg(l, expect, set);
696         return ret == expect;
697 }
698
699 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
700 {
701         unsigned long cnt, top, bottom, msb;
702         unsigned long cnt2, top2, bottom2, msb2;
703         u64 val;
704
705         /* The cmpxchg always fails if it interrupted an update */
706          if (!__rb_time_read(t, &val, &cnt2))
707                  return false;
708
709          if (val != expect)
710                  return false;
711
712          cnt = local_read(&t->cnt);
713          if ((cnt & 3) != cnt2)
714                  return false;
715
716          cnt2 = cnt + 1;
717
718          rb_time_split(val, &top, &bottom, &msb);
719          top = rb_time_val_cnt(top, cnt);
720          bottom = rb_time_val_cnt(bottom, cnt);
721
722          rb_time_split(set, &top2, &bottom2, &msb2);
723          top2 = rb_time_val_cnt(top2, cnt2);
724          bottom2 = rb_time_val_cnt(bottom2, cnt2);
725
726         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
727                 return false;
728         if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
729                 return false;
730         if (!rb_time_read_cmpxchg(&t->top, top, top2))
731                 return false;
732         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
733                 return false;
734         return true;
735 }
736
737 #else /* 64 bits */
738
739 /* local64_t always succeeds */
740
741 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
742 {
743         *ret = local64_read(&t->time);
744         return true;
745 }
746 static void rb_time_set(rb_time_t *t, u64 val)
747 {
748         local64_set(&t->time, val);
749 }
750
751 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
752 {
753         u64 val;
754         val = local64_cmpxchg(&t->time, expect, set);
755         return val == expect;
756 }
757 #endif
758
759 /*
760  * Enable this to make sure that the event passed to
761  * ring_buffer_event_time_stamp() is not committed and also
762  * is on the buffer that it passed in.
763  */
764 //#define RB_VERIFY_EVENT
765 #ifdef RB_VERIFY_EVENT
766 static struct list_head *rb_list_head(struct list_head *list);
767 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
768                          void *event)
769 {
770         struct buffer_page *page = cpu_buffer->commit_page;
771         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
772         struct list_head *next;
773         long commit, write;
774         unsigned long addr = (unsigned long)event;
775         bool done = false;
776         int stop = 0;
777
778         /* Make sure the event exists and is not committed yet */
779         do {
780                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
781                         done = true;
782                 commit = local_read(&page->page->commit);
783                 write = local_read(&page->write);
784                 if (addr >= (unsigned long)&page->page->data[commit] &&
785                     addr < (unsigned long)&page->page->data[write])
786                         return;
787
788                 next = rb_list_head(page->list.next);
789                 page = list_entry(next, struct buffer_page, list);
790         } while (!done);
791         WARN_ON_ONCE(1);
792 }
793 #else
794 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
795                          void *event)
796 {
797 }
798 #endif
799
800 /*
801  * The absolute time stamp drops the 5 MSBs and some clocks may
802  * require them. The rb_fix_abs_ts() will take a previous full
803  * time stamp, and add the 5 MSB of that time stamp on to the
804  * saved absolute time stamp. Then they are compared in case of
805  * the unlikely event that the latest time stamp incremented
806  * the 5 MSB.
807  */
808 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
809 {
810         if (save_ts & TS_MSB) {
811                 abs |= save_ts & TS_MSB;
812                 /* Check for overflow */
813                 if (unlikely(abs < save_ts))
814                         abs += 1ULL << 59;
815         }
816         return abs;
817 }
818
819 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
820
821 /**
822  * ring_buffer_event_time_stamp - return the event's current time stamp
823  * @buffer: The buffer that the event is on
824  * @event: the event to get the time stamp of
825  *
826  * Note, this must be called after @event is reserved, and before it is
827  * committed to the ring buffer. And must be called from the same
828  * context where the event was reserved (normal, softirq, irq, etc).
829  *
830  * Returns the time stamp associated with the current event.
831  * If the event has an extended time stamp, then that is used as
832  * the time stamp to return.
833  * In the highly unlikely case that the event was nested more than
834  * the max nesting, then the write_stamp of the buffer is returned,
835  * otherwise  current time is returned, but that really neither of
836  * the last two cases should ever happen.
837  */
838 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
839                                  struct ring_buffer_event *event)
840 {
841         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
842         unsigned int nest;
843         u64 ts;
844
845         /* If the event includes an absolute time, then just use that */
846         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
847                 ts = rb_event_time_stamp(event);
848                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
849         }
850
851         nest = local_read(&cpu_buffer->committing);
852         verify_event(cpu_buffer, event);
853         if (WARN_ON_ONCE(!nest))
854                 goto fail;
855
856         /* Read the current saved nesting level time stamp */
857         if (likely(--nest < MAX_NEST))
858                 return cpu_buffer->event_stamp[nest];
859
860         /* Shouldn't happen, warn if it does */
861         WARN_ONCE(1, "nest (%d) greater than max", nest);
862
863  fail:
864         /* Can only fail on 32 bit */
865         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
866                 /* Screw it, just read the current time */
867                 ts = rb_time_stamp(cpu_buffer->buffer);
868
869         return ts;
870 }
871
872 /**
873  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
874  * @buffer: The ring_buffer to get the number of pages from
875  * @cpu: The cpu of the ring_buffer to get the number of pages from
876  *
877  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
878  */
879 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
880 {
881         return buffer->buffers[cpu]->nr_pages;
882 }
883
884 /**
885  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
886  * @buffer: The ring_buffer to get the number of pages from
887  * @cpu: The cpu of the ring_buffer to get the number of pages from
888  *
889  * Returns the number of pages that have content in the ring buffer.
890  */
891 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
892 {
893         size_t read;
894         size_t lost;
895         size_t cnt;
896
897         read = local_read(&buffer->buffers[cpu]->pages_read);
898         lost = local_read(&buffer->buffers[cpu]->pages_lost);
899         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
900
901         if (WARN_ON_ONCE(cnt < lost))
902                 return 0;
903
904         cnt -= lost;
905
906         /* The reader can read an empty page, but not more than that */
907         if (cnt < read) {
908                 WARN_ON_ONCE(read > cnt + 1);
909                 return 0;
910         }
911
912         return cnt - read;
913 }
914
915 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
916 {
917         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
918         size_t nr_pages;
919         size_t dirty;
920
921         nr_pages = cpu_buffer->nr_pages;
922         if (!nr_pages || !full)
923                 return true;
924
925         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
926
927         return (dirty * 100) > (full * nr_pages);
928 }
929
930 /*
931  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
932  *
933  * Schedules a delayed work to wake up any task that is blocked on the
934  * ring buffer waiters queue.
935  */
936 static void rb_wake_up_waiters(struct irq_work *work)
937 {
938         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
939
940         wake_up_all(&rbwork->waiters);
941         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
942                 rbwork->wakeup_full = false;
943                 rbwork->full_waiters_pending = false;
944                 wake_up_all(&rbwork->full_waiters);
945         }
946 }
947
948 /**
949  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
950  * @buffer: The ring buffer to wake waiters on
951  *
952  * In the case of a file that represents a ring buffer is closing,
953  * it is prudent to wake up any waiters that are on this.
954  */
955 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
956 {
957         struct ring_buffer_per_cpu *cpu_buffer;
958         struct rb_irq_work *rbwork;
959
960         if (!buffer)
961                 return;
962
963         if (cpu == RING_BUFFER_ALL_CPUS) {
964
965                 /* Wake up individual ones too. One level recursion */
966                 for_each_buffer_cpu(buffer, cpu)
967                         ring_buffer_wake_waiters(buffer, cpu);
968
969                 rbwork = &buffer->irq_work;
970         } else {
971                 if (WARN_ON_ONCE(!buffer->buffers))
972                         return;
973                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
974                         return;
975
976                 cpu_buffer = buffer->buffers[cpu];
977                 /* The CPU buffer may not have been initialized yet */
978                 if (!cpu_buffer)
979                         return;
980                 rbwork = &cpu_buffer->irq_work;
981         }
982
983         rbwork->wait_index++;
984         /* make sure the waiters see the new index */
985         smp_wmb();
986
987         rb_wake_up_waiters(&rbwork->work);
988 }
989
990 /**
991  * ring_buffer_wait - wait for input to the ring buffer
992  * @buffer: buffer to wait on
993  * @cpu: the cpu buffer to wait on
994  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
995  *
996  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
997  * as data is added to any of the @buffer's cpu buffers. Otherwise
998  * it will wait for data to be added to a specific cpu buffer.
999  */
1000 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1001 {
1002         struct ring_buffer_per_cpu *cpu_buffer;
1003         DEFINE_WAIT(wait);
1004         struct rb_irq_work *work;
1005         long wait_index;
1006         int ret = 0;
1007
1008         /*
1009          * Depending on what the caller is waiting for, either any
1010          * data in any cpu buffer, or a specific buffer, put the
1011          * caller on the appropriate wait queue.
1012          */
1013         if (cpu == RING_BUFFER_ALL_CPUS) {
1014                 work = &buffer->irq_work;
1015                 /* Full only makes sense on per cpu reads */
1016                 full = 0;
1017         } else {
1018                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1019                         return -ENODEV;
1020                 cpu_buffer = buffer->buffers[cpu];
1021                 work = &cpu_buffer->irq_work;
1022         }
1023
1024         wait_index = READ_ONCE(work->wait_index);
1025
1026         while (true) {
1027                 if (full)
1028                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1029                 else
1030                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1031
1032                 /*
1033                  * The events can happen in critical sections where
1034                  * checking a work queue can cause deadlocks.
1035                  * After adding a task to the queue, this flag is set
1036                  * only to notify events to try to wake up the queue
1037                  * using irq_work.
1038                  *
1039                  * We don't clear it even if the buffer is no longer
1040                  * empty. The flag only causes the next event to run
1041                  * irq_work to do the work queue wake up. The worse
1042                  * that can happen if we race with !trace_empty() is that
1043                  * an event will cause an irq_work to try to wake up
1044                  * an empty queue.
1045                  *
1046                  * There's no reason to protect this flag either, as
1047                  * the work queue and irq_work logic will do the necessary
1048                  * synchronization for the wake ups. The only thing
1049                  * that is necessary is that the wake up happens after
1050                  * a task has been queued. It's OK for spurious wake ups.
1051                  */
1052                 if (full)
1053                         work->full_waiters_pending = true;
1054                 else
1055                         work->waiters_pending = true;
1056
1057                 if (signal_pending(current)) {
1058                         ret = -EINTR;
1059                         break;
1060                 }
1061
1062                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1063                         break;
1064
1065                 if (cpu != RING_BUFFER_ALL_CPUS &&
1066                     !ring_buffer_empty_cpu(buffer, cpu)) {
1067                         unsigned long flags;
1068                         bool pagebusy;
1069                         bool done;
1070
1071                         if (!full)
1072                                 break;
1073
1074                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1075                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1076                         done = !pagebusy && full_hit(buffer, cpu, full);
1077
1078                         if (!cpu_buffer->shortest_full ||
1079                             cpu_buffer->shortest_full > full)
1080                                 cpu_buffer->shortest_full = full;
1081                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1082                         if (done)
1083                                 break;
1084                 }
1085
1086                 schedule();
1087
1088                 /* Make sure to see the new wait index */
1089                 smp_rmb();
1090                 if (wait_index != work->wait_index)
1091                         break;
1092         }
1093
1094         if (full)
1095                 finish_wait(&work->full_waiters, &wait);
1096         else
1097                 finish_wait(&work->waiters, &wait);
1098
1099         return ret;
1100 }
1101
1102 /**
1103  * ring_buffer_poll_wait - poll on buffer input
1104  * @buffer: buffer to wait on
1105  * @cpu: the cpu buffer to wait on
1106  * @filp: the file descriptor
1107  * @poll_table: The poll descriptor
1108  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1109  *
1110  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1111  * as data is added to any of the @buffer's cpu buffers. Otherwise
1112  * it will wait for data to be added to a specific cpu buffer.
1113  *
1114  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1115  * zero otherwise.
1116  */
1117 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1118                           struct file *filp, poll_table *poll_table, int full)
1119 {
1120         struct ring_buffer_per_cpu *cpu_buffer;
1121         struct rb_irq_work *work;
1122
1123         if (cpu == RING_BUFFER_ALL_CPUS) {
1124                 work = &buffer->irq_work;
1125                 full = 0;
1126         } else {
1127                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1128                         return -EINVAL;
1129
1130                 cpu_buffer = buffer->buffers[cpu];
1131                 work = &cpu_buffer->irq_work;
1132         }
1133
1134         if (full) {
1135                 poll_wait(filp, &work->full_waiters, poll_table);
1136                 work->full_waiters_pending = true;
1137         } else {
1138                 poll_wait(filp, &work->waiters, poll_table);
1139                 work->waiters_pending = true;
1140         }
1141
1142         /*
1143          * There's a tight race between setting the waiters_pending and
1144          * checking if the ring buffer is empty.  Once the waiters_pending bit
1145          * is set, the next event will wake the task up, but we can get stuck
1146          * if there's only a single event in.
1147          *
1148          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1149          * but adding a memory barrier to all events will cause too much of a
1150          * performance hit in the fast path.  We only need a memory barrier when
1151          * the buffer goes from empty to having content.  But as this race is
1152          * extremely small, and it's not a problem if another event comes in, we
1153          * will fix it later.
1154          */
1155         smp_mb();
1156
1157         if (full)
1158                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1159
1160         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1161             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1162                 return EPOLLIN | EPOLLRDNORM;
1163         return 0;
1164 }
1165
1166 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1167 #define RB_WARN_ON(b, cond)                                             \
1168         ({                                                              \
1169                 int _____ret = unlikely(cond);                          \
1170                 if (_____ret) {                                         \
1171                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1172                                 struct ring_buffer_per_cpu *__b =       \
1173                                         (void *)b;                      \
1174                                 atomic_inc(&__b->buffer->record_disabled); \
1175                         } else                                          \
1176                                 atomic_inc(&b->record_disabled);        \
1177                         WARN_ON(1);                                     \
1178                 }                                                       \
1179                 _____ret;                                               \
1180         })
1181
1182 /* Up this if you want to test the TIME_EXTENTS and normalization */
1183 #define DEBUG_SHIFT 0
1184
1185 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1186 {
1187         u64 ts;
1188
1189         /* Skip retpolines :-( */
1190         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1191                 ts = trace_clock_local();
1192         else
1193                 ts = buffer->clock();
1194
1195         /* shift to debug/test normalization and TIME_EXTENTS */
1196         return ts << DEBUG_SHIFT;
1197 }
1198
1199 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1200 {
1201         u64 time;
1202
1203         preempt_disable_notrace();
1204         time = rb_time_stamp(buffer);
1205         preempt_enable_notrace();
1206
1207         return time;
1208 }
1209 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1210
1211 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1212                                       int cpu, u64 *ts)
1213 {
1214         /* Just stupid testing the normalize function and deltas */
1215         *ts >>= DEBUG_SHIFT;
1216 }
1217 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1218
1219 /*
1220  * Making the ring buffer lockless makes things tricky.
1221  * Although writes only happen on the CPU that they are on,
1222  * and they only need to worry about interrupts. Reads can
1223  * happen on any CPU.
1224  *
1225  * The reader page is always off the ring buffer, but when the
1226  * reader finishes with a page, it needs to swap its page with
1227  * a new one from the buffer. The reader needs to take from
1228  * the head (writes go to the tail). But if a writer is in overwrite
1229  * mode and wraps, it must push the head page forward.
1230  *
1231  * Here lies the problem.
1232  *
1233  * The reader must be careful to replace only the head page, and
1234  * not another one. As described at the top of the file in the
1235  * ASCII art, the reader sets its old page to point to the next
1236  * page after head. It then sets the page after head to point to
1237  * the old reader page. But if the writer moves the head page
1238  * during this operation, the reader could end up with the tail.
1239  *
1240  * We use cmpxchg to help prevent this race. We also do something
1241  * special with the page before head. We set the LSB to 1.
1242  *
1243  * When the writer must push the page forward, it will clear the
1244  * bit that points to the head page, move the head, and then set
1245  * the bit that points to the new head page.
1246  *
1247  * We also don't want an interrupt coming in and moving the head
1248  * page on another writer. Thus we use the second LSB to catch
1249  * that too. Thus:
1250  *
1251  * head->list->prev->next        bit 1          bit 0
1252  *                              -------        -------
1253  * Normal page                     0              0
1254  * Points to head page             0              1
1255  * New head page                   1              0
1256  *
1257  * Note we can not trust the prev pointer of the head page, because:
1258  *
1259  * +----+       +-----+        +-----+
1260  * |    |------>|  T  |---X--->|  N  |
1261  * |    |<------|     |        |     |
1262  * +----+       +-----+        +-----+
1263  *   ^                           ^ |
1264  *   |          +-----+          | |
1265  *   +----------|  R  |----------+ |
1266  *              |     |<-----------+
1267  *              +-----+
1268  *
1269  * Key:  ---X-->  HEAD flag set in pointer
1270  *         T      Tail page
1271  *         R      Reader page
1272  *         N      Next page
1273  *
1274  * (see __rb_reserve_next() to see where this happens)
1275  *
1276  *  What the above shows is that the reader just swapped out
1277  *  the reader page with a page in the buffer, but before it
1278  *  could make the new header point back to the new page added
1279  *  it was preempted by a writer. The writer moved forward onto
1280  *  the new page added by the reader and is about to move forward
1281  *  again.
1282  *
1283  *  You can see, it is legitimate for the previous pointer of
1284  *  the head (or any page) not to point back to itself. But only
1285  *  temporarily.
1286  */
1287
1288 #define RB_PAGE_NORMAL          0UL
1289 #define RB_PAGE_HEAD            1UL
1290 #define RB_PAGE_UPDATE          2UL
1291
1292
1293 #define RB_FLAG_MASK            3UL
1294
1295 /* PAGE_MOVED is not part of the mask */
1296 #define RB_PAGE_MOVED           4UL
1297
1298 /*
1299  * rb_list_head - remove any bit
1300  */
1301 static struct list_head *rb_list_head(struct list_head *list)
1302 {
1303         unsigned long val = (unsigned long)list;
1304
1305         return (struct list_head *)(val & ~RB_FLAG_MASK);
1306 }
1307
1308 /*
1309  * rb_is_head_page - test if the given page is the head page
1310  *
1311  * Because the reader may move the head_page pointer, we can
1312  * not trust what the head page is (it may be pointing to
1313  * the reader page). But if the next page is a header page,
1314  * its flags will be non zero.
1315  */
1316 static inline int
1317 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1318 {
1319         unsigned long val;
1320
1321         val = (unsigned long)list->next;
1322
1323         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1324                 return RB_PAGE_MOVED;
1325
1326         return val & RB_FLAG_MASK;
1327 }
1328
1329 /*
1330  * rb_is_reader_page
1331  *
1332  * The unique thing about the reader page, is that, if the
1333  * writer is ever on it, the previous pointer never points
1334  * back to the reader page.
1335  */
1336 static bool rb_is_reader_page(struct buffer_page *page)
1337 {
1338         struct list_head *list = page->list.prev;
1339
1340         return rb_list_head(list->next) != &page->list;
1341 }
1342
1343 /*
1344  * rb_set_list_to_head - set a list_head to be pointing to head.
1345  */
1346 static void rb_set_list_to_head(struct list_head *list)
1347 {
1348         unsigned long *ptr;
1349
1350         ptr = (unsigned long *)&list->next;
1351         *ptr |= RB_PAGE_HEAD;
1352         *ptr &= ~RB_PAGE_UPDATE;
1353 }
1354
1355 /*
1356  * rb_head_page_activate - sets up head page
1357  */
1358 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1359 {
1360         struct buffer_page *head;
1361
1362         head = cpu_buffer->head_page;
1363         if (!head)
1364                 return;
1365
1366         /*
1367          * Set the previous list pointer to have the HEAD flag.
1368          */
1369         rb_set_list_to_head(head->list.prev);
1370 }
1371
1372 static void rb_list_head_clear(struct list_head *list)
1373 {
1374         unsigned long *ptr = (unsigned long *)&list->next;
1375
1376         *ptr &= ~RB_FLAG_MASK;
1377 }
1378
1379 /*
1380  * rb_head_page_deactivate - clears head page ptr (for free list)
1381  */
1382 static void
1383 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1384 {
1385         struct list_head *hd;
1386
1387         /* Go through the whole list and clear any pointers found. */
1388         rb_list_head_clear(cpu_buffer->pages);
1389
1390         list_for_each(hd, cpu_buffer->pages)
1391                 rb_list_head_clear(hd);
1392 }
1393
1394 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1395                             struct buffer_page *head,
1396                             struct buffer_page *prev,
1397                             int old_flag, int new_flag)
1398 {
1399         struct list_head *list;
1400         unsigned long val = (unsigned long)&head->list;
1401         unsigned long ret;
1402
1403         list = &prev->list;
1404
1405         val &= ~RB_FLAG_MASK;
1406
1407         ret = cmpxchg((unsigned long *)&list->next,
1408                       val | old_flag, val | new_flag);
1409
1410         /* check if the reader took the page */
1411         if ((ret & ~RB_FLAG_MASK) != val)
1412                 return RB_PAGE_MOVED;
1413
1414         return ret & RB_FLAG_MASK;
1415 }
1416
1417 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1418                                    struct buffer_page *head,
1419                                    struct buffer_page *prev,
1420                                    int old_flag)
1421 {
1422         return rb_head_page_set(cpu_buffer, head, prev,
1423                                 old_flag, RB_PAGE_UPDATE);
1424 }
1425
1426 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1427                                  struct buffer_page *head,
1428                                  struct buffer_page *prev,
1429                                  int old_flag)
1430 {
1431         return rb_head_page_set(cpu_buffer, head, prev,
1432                                 old_flag, RB_PAGE_HEAD);
1433 }
1434
1435 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1436                                    struct buffer_page *head,
1437                                    struct buffer_page *prev,
1438                                    int old_flag)
1439 {
1440         return rb_head_page_set(cpu_buffer, head, prev,
1441                                 old_flag, RB_PAGE_NORMAL);
1442 }
1443
1444 static inline void rb_inc_page(struct buffer_page **bpage)
1445 {
1446         struct list_head *p = rb_list_head((*bpage)->list.next);
1447
1448         *bpage = list_entry(p, struct buffer_page, list);
1449 }
1450
1451 static struct buffer_page *
1452 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1453 {
1454         struct buffer_page *head;
1455         struct buffer_page *page;
1456         struct list_head *list;
1457         int i;
1458
1459         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1460                 return NULL;
1461
1462         /* sanity check */
1463         list = cpu_buffer->pages;
1464         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1465                 return NULL;
1466
1467         page = head = cpu_buffer->head_page;
1468         /*
1469          * It is possible that the writer moves the header behind
1470          * where we started, and we miss in one loop.
1471          * A second loop should grab the header, but we'll do
1472          * three loops just because I'm paranoid.
1473          */
1474         for (i = 0; i < 3; i++) {
1475                 do {
1476                         if (rb_is_head_page(page, page->list.prev)) {
1477                                 cpu_buffer->head_page = page;
1478                                 return page;
1479                         }
1480                         rb_inc_page(&page);
1481                 } while (page != head);
1482         }
1483
1484         RB_WARN_ON(cpu_buffer, 1);
1485
1486         return NULL;
1487 }
1488
1489 static int rb_head_page_replace(struct buffer_page *old,
1490                                 struct buffer_page *new)
1491 {
1492         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1493         unsigned long val;
1494         unsigned long ret;
1495
1496         val = *ptr & ~RB_FLAG_MASK;
1497         val |= RB_PAGE_HEAD;
1498
1499         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1500
1501         return ret == val;
1502 }
1503
1504 /*
1505  * rb_tail_page_update - move the tail page forward
1506  */
1507 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1508                                struct buffer_page *tail_page,
1509                                struct buffer_page *next_page)
1510 {
1511         unsigned long old_entries;
1512         unsigned long old_write;
1513
1514         /*
1515          * The tail page now needs to be moved forward.
1516          *
1517          * We need to reset the tail page, but without messing
1518          * with possible erasing of data brought in by interrupts
1519          * that have moved the tail page and are currently on it.
1520          *
1521          * We add a counter to the write field to denote this.
1522          */
1523         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1524         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1525
1526         local_inc(&cpu_buffer->pages_touched);
1527         /*
1528          * Just make sure we have seen our old_write and synchronize
1529          * with any interrupts that come in.
1530          */
1531         barrier();
1532
1533         /*
1534          * If the tail page is still the same as what we think
1535          * it is, then it is up to us to update the tail
1536          * pointer.
1537          */
1538         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1539                 /* Zero the write counter */
1540                 unsigned long val = old_write & ~RB_WRITE_MASK;
1541                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1542
1543                 /*
1544                  * This will only succeed if an interrupt did
1545                  * not come in and change it. In which case, we
1546                  * do not want to modify it.
1547                  *
1548                  * We add (void) to let the compiler know that we do not care
1549                  * about the return value of these functions. We use the
1550                  * cmpxchg to only update if an interrupt did not already
1551                  * do it for us. If the cmpxchg fails, we don't care.
1552                  */
1553                 (void)local_cmpxchg(&next_page->write, old_write, val);
1554                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1555
1556                 /*
1557                  * No need to worry about races with clearing out the commit.
1558                  * it only can increment when a commit takes place. But that
1559                  * only happens in the outer most nested commit.
1560                  */
1561                 local_set(&next_page->page->commit, 0);
1562
1563                 /* Again, either we update tail_page or an interrupt does */
1564                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1565         }
1566 }
1567
1568 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1569                           struct buffer_page *bpage)
1570 {
1571         unsigned long val = (unsigned long)bpage;
1572
1573         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1574                 return 1;
1575
1576         return 0;
1577 }
1578
1579 /**
1580  * rb_check_pages - integrity check of buffer pages
1581  * @cpu_buffer: CPU buffer with pages to test
1582  *
1583  * As a safety measure we check to make sure the data pages have not
1584  * been corrupted.
1585  */
1586 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587 {
1588         struct list_head *head = rb_list_head(cpu_buffer->pages);
1589         struct list_head *tmp;
1590
1591         if (RB_WARN_ON(cpu_buffer,
1592                         rb_list_head(rb_list_head(head->next)->prev) != head))
1593                 return -1;
1594
1595         if (RB_WARN_ON(cpu_buffer,
1596                         rb_list_head(rb_list_head(head->prev)->next) != head))
1597                 return -1;
1598
1599         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1600                 if (RB_WARN_ON(cpu_buffer,
1601                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1602                         return -1;
1603
1604                 if (RB_WARN_ON(cpu_buffer,
1605                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1606                         return -1;
1607         }
1608
1609         return 0;
1610 }
1611
1612 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1613                 long nr_pages, struct list_head *pages)
1614 {
1615         struct buffer_page *bpage, *tmp;
1616         bool user_thread = current->mm != NULL;
1617         gfp_t mflags;
1618         long i;
1619
1620         /*
1621          * Check if the available memory is there first.
1622          * Note, si_mem_available() only gives us a rough estimate of available
1623          * memory. It may not be accurate. But we don't care, we just want
1624          * to prevent doing any allocation when it is obvious that it is
1625          * not going to succeed.
1626          */
1627         i = si_mem_available();
1628         if (i < nr_pages)
1629                 return -ENOMEM;
1630
1631         /*
1632          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1633          * gracefully without invoking oom-killer and the system is not
1634          * destabilized.
1635          */
1636         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1637
1638         /*
1639          * If a user thread allocates too much, and si_mem_available()
1640          * reports there's enough memory, even though there is not.
1641          * Make sure the OOM killer kills this thread. This can happen
1642          * even with RETRY_MAYFAIL because another task may be doing
1643          * an allocation after this task has taken all memory.
1644          * This is the task the OOM killer needs to take out during this
1645          * loop, even if it was triggered by an allocation somewhere else.
1646          */
1647         if (user_thread)
1648                 set_current_oom_origin();
1649         for (i = 0; i < nr_pages; i++) {
1650                 struct page *page;
1651
1652                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1653                                     mflags, cpu_to_node(cpu_buffer->cpu));
1654                 if (!bpage)
1655                         goto free_pages;
1656
1657                 rb_check_bpage(cpu_buffer, bpage);
1658
1659                 list_add(&bpage->list, pages);
1660
1661                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1662                 if (!page)
1663                         goto free_pages;
1664                 bpage->page = page_address(page);
1665                 rb_init_page(bpage->page);
1666
1667                 if (user_thread && fatal_signal_pending(current))
1668                         goto free_pages;
1669         }
1670         if (user_thread)
1671                 clear_current_oom_origin();
1672
1673         return 0;
1674
1675 free_pages:
1676         list_for_each_entry_safe(bpage, tmp, pages, list) {
1677                 list_del_init(&bpage->list);
1678                 free_buffer_page(bpage);
1679         }
1680         if (user_thread)
1681                 clear_current_oom_origin();
1682
1683         return -ENOMEM;
1684 }
1685
1686 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1687                              unsigned long nr_pages)
1688 {
1689         LIST_HEAD(pages);
1690
1691         WARN_ON(!nr_pages);
1692
1693         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1694                 return -ENOMEM;
1695
1696         /*
1697          * The ring buffer page list is a circular list that does not
1698          * start and end with a list head. All page list items point to
1699          * other pages.
1700          */
1701         cpu_buffer->pages = pages.next;
1702         list_del(&pages);
1703
1704         cpu_buffer->nr_pages = nr_pages;
1705
1706         rb_check_pages(cpu_buffer);
1707
1708         return 0;
1709 }
1710
1711 static struct ring_buffer_per_cpu *
1712 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1713 {
1714         struct ring_buffer_per_cpu *cpu_buffer;
1715         struct buffer_page *bpage;
1716         struct page *page;
1717         int ret;
1718
1719         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1720                                   GFP_KERNEL, cpu_to_node(cpu));
1721         if (!cpu_buffer)
1722                 return NULL;
1723
1724         cpu_buffer->cpu = cpu;
1725         cpu_buffer->buffer = buffer;
1726         raw_spin_lock_init(&cpu_buffer->reader_lock);
1727         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1728         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1729         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1730         init_completion(&cpu_buffer->update_done);
1731         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1732         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1733         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1734
1735         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1736                             GFP_KERNEL, cpu_to_node(cpu));
1737         if (!bpage)
1738                 goto fail_free_buffer;
1739
1740         rb_check_bpage(cpu_buffer, bpage);
1741
1742         cpu_buffer->reader_page = bpage;
1743         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1744         if (!page)
1745                 goto fail_free_reader;
1746         bpage->page = page_address(page);
1747         rb_init_page(bpage->page);
1748
1749         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1750         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1751
1752         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1753         if (ret < 0)
1754                 goto fail_free_reader;
1755
1756         cpu_buffer->head_page
1757                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1758         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1759
1760         rb_head_page_activate(cpu_buffer);
1761
1762         return cpu_buffer;
1763
1764  fail_free_reader:
1765         free_buffer_page(cpu_buffer->reader_page);
1766
1767  fail_free_buffer:
1768         kfree(cpu_buffer);
1769         return NULL;
1770 }
1771
1772 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1773 {
1774         struct list_head *head = cpu_buffer->pages;
1775         struct buffer_page *bpage, *tmp;
1776
1777         free_buffer_page(cpu_buffer->reader_page);
1778
1779         if (head) {
1780                 rb_head_page_deactivate(cpu_buffer);
1781
1782                 list_for_each_entry_safe(bpage, tmp, head, list) {
1783                         list_del_init(&bpage->list);
1784                         free_buffer_page(bpage);
1785                 }
1786                 bpage = list_entry(head, struct buffer_page, list);
1787                 free_buffer_page(bpage);
1788         }
1789
1790         kfree(cpu_buffer);
1791 }
1792
1793 /**
1794  * __ring_buffer_alloc - allocate a new ring_buffer
1795  * @size: the size in bytes per cpu that is needed.
1796  * @flags: attributes to set for the ring buffer.
1797  * @key: ring buffer reader_lock_key.
1798  *
1799  * Currently the only flag that is available is the RB_FL_OVERWRITE
1800  * flag. This flag means that the buffer will overwrite old data
1801  * when the buffer wraps. If this flag is not set, the buffer will
1802  * drop data when the tail hits the head.
1803  */
1804 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1805                                         struct lock_class_key *key)
1806 {
1807         struct trace_buffer *buffer;
1808         long nr_pages;
1809         int bsize;
1810         int cpu;
1811         int ret;
1812
1813         /* keep it in its own cache line */
1814         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1815                          GFP_KERNEL);
1816         if (!buffer)
1817                 return NULL;
1818
1819         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1820                 goto fail_free_buffer;
1821
1822         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1823         buffer->flags = flags;
1824         buffer->clock = trace_clock_local;
1825         buffer->reader_lock_key = key;
1826
1827         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1828         init_waitqueue_head(&buffer->irq_work.waiters);
1829
1830         /* need at least two pages */
1831         if (nr_pages < 2)
1832                 nr_pages = 2;
1833
1834         buffer->cpus = nr_cpu_ids;
1835
1836         bsize = sizeof(void *) * nr_cpu_ids;
1837         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1838                                   GFP_KERNEL);
1839         if (!buffer->buffers)
1840                 goto fail_free_cpumask;
1841
1842         cpu = raw_smp_processor_id();
1843         cpumask_set_cpu(cpu, buffer->cpumask);
1844         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1845         if (!buffer->buffers[cpu])
1846                 goto fail_free_buffers;
1847
1848         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1849         if (ret < 0)
1850                 goto fail_free_buffers;
1851
1852         mutex_init(&buffer->mutex);
1853
1854         return buffer;
1855
1856  fail_free_buffers:
1857         for_each_buffer_cpu(buffer, cpu) {
1858                 if (buffer->buffers[cpu])
1859                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1860         }
1861         kfree(buffer->buffers);
1862
1863  fail_free_cpumask:
1864         free_cpumask_var(buffer->cpumask);
1865
1866  fail_free_buffer:
1867         kfree(buffer);
1868         return NULL;
1869 }
1870 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1871
1872 /**
1873  * ring_buffer_free - free a ring buffer.
1874  * @buffer: the buffer to free.
1875  */
1876 void
1877 ring_buffer_free(struct trace_buffer *buffer)
1878 {
1879         int cpu;
1880
1881         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1882
1883         for_each_buffer_cpu(buffer, cpu)
1884                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1885
1886         kfree(buffer->buffers);
1887         free_cpumask_var(buffer->cpumask);
1888
1889         kfree(buffer);
1890 }
1891 EXPORT_SYMBOL_GPL(ring_buffer_free);
1892
1893 void ring_buffer_set_clock(struct trace_buffer *buffer,
1894                            u64 (*clock)(void))
1895 {
1896         buffer->clock = clock;
1897 }
1898
1899 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1900 {
1901         buffer->time_stamp_abs = abs;
1902 }
1903
1904 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1905 {
1906         return buffer->time_stamp_abs;
1907 }
1908
1909 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1910
1911 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1912 {
1913         return local_read(&bpage->entries) & RB_WRITE_MASK;
1914 }
1915
1916 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1917 {
1918         return local_read(&bpage->write) & RB_WRITE_MASK;
1919 }
1920
1921 static int
1922 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1923 {
1924         struct list_head *tail_page, *to_remove, *next_page;
1925         struct buffer_page *to_remove_page, *tmp_iter_page;
1926         struct buffer_page *last_page, *first_page;
1927         unsigned long nr_removed;
1928         unsigned long head_bit;
1929         int page_entries;
1930
1931         head_bit = 0;
1932
1933         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1934         atomic_inc(&cpu_buffer->record_disabled);
1935         /*
1936          * We don't race with the readers since we have acquired the reader
1937          * lock. We also don't race with writers after disabling recording.
1938          * This makes it easy to figure out the first and the last page to be
1939          * removed from the list. We unlink all the pages in between including
1940          * the first and last pages. This is done in a busy loop so that we
1941          * lose the least number of traces.
1942          * The pages are freed after we restart recording and unlock readers.
1943          */
1944         tail_page = &cpu_buffer->tail_page->list;
1945
1946         /*
1947          * tail page might be on reader page, we remove the next page
1948          * from the ring buffer
1949          */
1950         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1951                 tail_page = rb_list_head(tail_page->next);
1952         to_remove = tail_page;
1953
1954         /* start of pages to remove */
1955         first_page = list_entry(rb_list_head(to_remove->next),
1956                                 struct buffer_page, list);
1957
1958         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1959                 to_remove = rb_list_head(to_remove)->next;
1960                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1961         }
1962
1963         next_page = rb_list_head(to_remove)->next;
1964
1965         /*
1966          * Now we remove all pages between tail_page and next_page.
1967          * Make sure that we have head_bit value preserved for the
1968          * next page
1969          */
1970         tail_page->next = (struct list_head *)((unsigned long)next_page |
1971                                                 head_bit);
1972         next_page = rb_list_head(next_page);
1973         next_page->prev = tail_page;
1974
1975         /* make sure pages points to a valid page in the ring buffer */
1976         cpu_buffer->pages = next_page;
1977
1978         /* update head page */
1979         if (head_bit)
1980                 cpu_buffer->head_page = list_entry(next_page,
1981                                                 struct buffer_page, list);
1982
1983         /*
1984          * change read pointer to make sure any read iterators reset
1985          * themselves
1986          */
1987         cpu_buffer->read = 0;
1988
1989         /* pages are removed, resume tracing and then free the pages */
1990         atomic_dec(&cpu_buffer->record_disabled);
1991         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1992
1993         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1994
1995         /* last buffer page to remove */
1996         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1997                                 list);
1998         tmp_iter_page = first_page;
1999
2000         do {
2001                 cond_resched();
2002
2003                 to_remove_page = tmp_iter_page;
2004                 rb_inc_page(&tmp_iter_page);
2005
2006                 /* update the counters */
2007                 page_entries = rb_page_entries(to_remove_page);
2008                 if (page_entries) {
2009                         /*
2010                          * If something was added to this page, it was full
2011                          * since it is not the tail page. So we deduct the
2012                          * bytes consumed in ring buffer from here.
2013                          * Increment overrun to account for the lost events.
2014                          */
2015                         local_add(page_entries, &cpu_buffer->overrun);
2016                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2017                         local_inc(&cpu_buffer->pages_lost);
2018                 }
2019
2020                 /*
2021                  * We have already removed references to this list item, just
2022                  * free up the buffer_page and its page
2023                  */
2024                 free_buffer_page(to_remove_page);
2025                 nr_removed--;
2026
2027         } while (to_remove_page != last_page);
2028
2029         RB_WARN_ON(cpu_buffer, nr_removed);
2030
2031         return nr_removed == 0;
2032 }
2033
2034 static int
2035 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2036 {
2037         struct list_head *pages = &cpu_buffer->new_pages;
2038         int retries, success;
2039         unsigned long flags;
2040
2041         /* Can be called at early boot up, where interrupts must not been enabled */
2042         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2043         /*
2044          * We are holding the reader lock, so the reader page won't be swapped
2045          * in the ring buffer. Now we are racing with the writer trying to
2046          * move head page and the tail page.
2047          * We are going to adapt the reader page update process where:
2048          * 1. We first splice the start and end of list of new pages between
2049          *    the head page and its previous page.
2050          * 2. We cmpxchg the prev_page->next to point from head page to the
2051          *    start of new pages list.
2052          * 3. Finally, we update the head->prev to the end of new list.
2053          *
2054          * We will try this process 10 times, to make sure that we don't keep
2055          * spinning.
2056          */
2057         retries = 10;
2058         success = 0;
2059         while (retries--) {
2060                 struct list_head *head_page, *prev_page, *r;
2061                 struct list_head *last_page, *first_page;
2062                 struct list_head *head_page_with_bit;
2063
2064                 head_page = &rb_set_head_page(cpu_buffer)->list;
2065                 if (!head_page)
2066                         break;
2067                 prev_page = head_page->prev;
2068
2069                 first_page = pages->next;
2070                 last_page  = pages->prev;
2071
2072                 head_page_with_bit = (struct list_head *)
2073                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2074
2075                 last_page->next = head_page_with_bit;
2076                 first_page->prev = prev_page;
2077
2078                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2079
2080                 if (r == head_page_with_bit) {
2081                         /*
2082                          * yay, we replaced the page pointer to our new list,
2083                          * now, we just have to update to head page's prev
2084                          * pointer to point to end of list
2085                          */
2086                         head_page->prev = last_page;
2087                         success = 1;
2088                         break;
2089                 }
2090         }
2091
2092         if (success)
2093                 INIT_LIST_HEAD(pages);
2094         /*
2095          * If we weren't successful in adding in new pages, warn and stop
2096          * tracing
2097          */
2098         RB_WARN_ON(cpu_buffer, !success);
2099         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2100
2101         /* free pages if they weren't inserted */
2102         if (!success) {
2103                 struct buffer_page *bpage, *tmp;
2104                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2105                                          list) {
2106                         list_del_init(&bpage->list);
2107                         free_buffer_page(bpage);
2108                 }
2109         }
2110         return success;
2111 }
2112
2113 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2114 {
2115         int success;
2116
2117         if (cpu_buffer->nr_pages_to_update > 0)
2118                 success = rb_insert_pages(cpu_buffer);
2119         else
2120                 success = rb_remove_pages(cpu_buffer,
2121                                         -cpu_buffer->nr_pages_to_update);
2122
2123         if (success)
2124                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2125 }
2126
2127 static void update_pages_handler(struct work_struct *work)
2128 {
2129         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2130                         struct ring_buffer_per_cpu, update_pages_work);
2131         rb_update_pages(cpu_buffer);
2132         complete(&cpu_buffer->update_done);
2133 }
2134
2135 /**
2136  * ring_buffer_resize - resize the ring buffer
2137  * @buffer: the buffer to resize.
2138  * @size: the new size.
2139  * @cpu_id: the cpu buffer to resize
2140  *
2141  * Minimum size is 2 * BUF_PAGE_SIZE.
2142  *
2143  * Returns 0 on success and < 0 on failure.
2144  */
2145 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2146                         int cpu_id)
2147 {
2148         struct ring_buffer_per_cpu *cpu_buffer;
2149         unsigned long nr_pages;
2150         int cpu, err;
2151
2152         /*
2153          * Always succeed at resizing a non-existent buffer:
2154          */
2155         if (!buffer)
2156                 return 0;
2157
2158         /* Make sure the requested buffer exists */
2159         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2160             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2161                 return 0;
2162
2163         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2164
2165         /* we need a minimum of two pages */
2166         if (nr_pages < 2)
2167                 nr_pages = 2;
2168
2169         /* prevent another thread from changing buffer sizes */
2170         mutex_lock(&buffer->mutex);
2171
2172
2173         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2174                 /*
2175                  * Don't succeed if resizing is disabled, as a reader might be
2176                  * manipulating the ring buffer and is expecting a sane state while
2177                  * this is true.
2178                  */
2179                 for_each_buffer_cpu(buffer, cpu) {
2180                         cpu_buffer = buffer->buffers[cpu];
2181                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2182                                 err = -EBUSY;
2183                                 goto out_err_unlock;
2184                         }
2185                 }
2186
2187                 /* calculate the pages to update */
2188                 for_each_buffer_cpu(buffer, cpu) {
2189                         cpu_buffer = buffer->buffers[cpu];
2190
2191                         cpu_buffer->nr_pages_to_update = nr_pages -
2192                                                         cpu_buffer->nr_pages;
2193                         /*
2194                          * nothing more to do for removing pages or no update
2195                          */
2196                         if (cpu_buffer->nr_pages_to_update <= 0)
2197                                 continue;
2198                         /*
2199                          * to add pages, make sure all new pages can be
2200                          * allocated without receiving ENOMEM
2201                          */
2202                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2203                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2204                                                 &cpu_buffer->new_pages)) {
2205                                 /* not enough memory for new pages */
2206                                 err = -ENOMEM;
2207                                 goto out_err;
2208                         }
2209                 }
2210
2211                 cpus_read_lock();
2212                 /*
2213                  * Fire off all the required work handlers
2214                  * We can't schedule on offline CPUs, but it's not necessary
2215                  * since we can change their buffer sizes without any race.
2216                  */
2217                 for_each_buffer_cpu(buffer, cpu) {
2218                         cpu_buffer = buffer->buffers[cpu];
2219                         if (!cpu_buffer->nr_pages_to_update)
2220                                 continue;
2221
2222                         /* Can't run something on an offline CPU. */
2223                         if (!cpu_online(cpu)) {
2224                                 rb_update_pages(cpu_buffer);
2225                                 cpu_buffer->nr_pages_to_update = 0;
2226                         } else {
2227                                 /* Run directly if possible. */
2228                                 migrate_disable();
2229                                 if (cpu != smp_processor_id()) {
2230                                         migrate_enable();
2231                                         schedule_work_on(cpu,
2232                                                          &cpu_buffer->update_pages_work);
2233                                 } else {
2234                                         update_pages_handler(&cpu_buffer->update_pages_work);
2235                                         migrate_enable();
2236                                 }
2237                         }
2238                 }
2239
2240                 /* wait for all the updates to complete */
2241                 for_each_buffer_cpu(buffer, cpu) {
2242                         cpu_buffer = buffer->buffers[cpu];
2243                         if (!cpu_buffer->nr_pages_to_update)
2244                                 continue;
2245
2246                         if (cpu_online(cpu))
2247                                 wait_for_completion(&cpu_buffer->update_done);
2248                         cpu_buffer->nr_pages_to_update = 0;
2249                 }
2250
2251                 cpus_read_unlock();
2252         } else {
2253                 cpu_buffer = buffer->buffers[cpu_id];
2254
2255                 if (nr_pages == cpu_buffer->nr_pages)
2256                         goto out;
2257
2258                 /*
2259                  * Don't succeed if resizing is disabled, as a reader might be
2260                  * manipulating the ring buffer and is expecting a sane state while
2261                  * this is true.
2262                  */
2263                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2264                         err = -EBUSY;
2265                         goto out_err_unlock;
2266                 }
2267
2268                 cpu_buffer->nr_pages_to_update = nr_pages -
2269                                                 cpu_buffer->nr_pages;
2270
2271                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2272                 if (cpu_buffer->nr_pages_to_update > 0 &&
2273                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2274                                             &cpu_buffer->new_pages)) {
2275                         err = -ENOMEM;
2276                         goto out_err;
2277                 }
2278
2279                 cpus_read_lock();
2280
2281                 /* Can't run something on an offline CPU. */
2282                 if (!cpu_online(cpu_id))
2283                         rb_update_pages(cpu_buffer);
2284                 else {
2285                         /* Run directly if possible. */
2286                         migrate_disable();
2287                         if (cpu_id == smp_processor_id()) {
2288                                 rb_update_pages(cpu_buffer);
2289                                 migrate_enable();
2290                         } else {
2291                                 migrate_enable();
2292                                 schedule_work_on(cpu_id,
2293                                                  &cpu_buffer->update_pages_work);
2294                                 wait_for_completion(&cpu_buffer->update_done);
2295                         }
2296                 }
2297
2298                 cpu_buffer->nr_pages_to_update = 0;
2299                 cpus_read_unlock();
2300         }
2301
2302  out:
2303         /*
2304          * The ring buffer resize can happen with the ring buffer
2305          * enabled, so that the update disturbs the tracing as little
2306          * as possible. But if the buffer is disabled, we do not need
2307          * to worry about that, and we can take the time to verify
2308          * that the buffer is not corrupt.
2309          */
2310         if (atomic_read(&buffer->record_disabled)) {
2311                 atomic_inc(&buffer->record_disabled);
2312                 /*
2313                  * Even though the buffer was disabled, we must make sure
2314                  * that it is truly disabled before calling rb_check_pages.
2315                  * There could have been a race between checking
2316                  * record_disable and incrementing it.
2317                  */
2318                 synchronize_rcu();
2319                 for_each_buffer_cpu(buffer, cpu) {
2320                         cpu_buffer = buffer->buffers[cpu];
2321                         rb_check_pages(cpu_buffer);
2322                 }
2323                 atomic_dec(&buffer->record_disabled);
2324         }
2325
2326         mutex_unlock(&buffer->mutex);
2327         return 0;
2328
2329  out_err:
2330         for_each_buffer_cpu(buffer, cpu) {
2331                 struct buffer_page *bpage, *tmp;
2332
2333                 cpu_buffer = buffer->buffers[cpu];
2334                 cpu_buffer->nr_pages_to_update = 0;
2335
2336                 if (list_empty(&cpu_buffer->new_pages))
2337                         continue;
2338
2339                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2340                                         list) {
2341                         list_del_init(&bpage->list);
2342                         free_buffer_page(bpage);
2343                 }
2344         }
2345  out_err_unlock:
2346         mutex_unlock(&buffer->mutex);
2347         return err;
2348 }
2349 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2350
2351 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2352 {
2353         mutex_lock(&buffer->mutex);
2354         if (val)
2355                 buffer->flags |= RB_FL_OVERWRITE;
2356         else
2357                 buffer->flags &= ~RB_FL_OVERWRITE;
2358         mutex_unlock(&buffer->mutex);
2359 }
2360 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2361
2362 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2363 {
2364         return bpage->page->data + index;
2365 }
2366
2367 static __always_inline struct ring_buffer_event *
2368 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2369 {
2370         return __rb_page_index(cpu_buffer->reader_page,
2371                                cpu_buffer->reader_page->read);
2372 }
2373
2374 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2375 {
2376         return local_read(&bpage->page->commit);
2377 }
2378
2379 static struct ring_buffer_event *
2380 rb_iter_head_event(struct ring_buffer_iter *iter)
2381 {
2382         struct ring_buffer_event *event;
2383         struct buffer_page *iter_head_page = iter->head_page;
2384         unsigned long commit;
2385         unsigned length;
2386
2387         if (iter->head != iter->next_event)
2388                 return iter->event;
2389
2390         /*
2391          * When the writer goes across pages, it issues a cmpxchg which
2392          * is a mb(), which will synchronize with the rmb here.
2393          * (see rb_tail_page_update() and __rb_reserve_next())
2394          */
2395         commit = rb_page_commit(iter_head_page);
2396         smp_rmb();
2397         event = __rb_page_index(iter_head_page, iter->head);
2398         length = rb_event_length(event);
2399
2400         /*
2401          * READ_ONCE() doesn't work on functions and we don't want the
2402          * compiler doing any crazy optimizations with length.
2403          */
2404         barrier();
2405
2406         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2407                 /* Writer corrupted the read? */
2408                 goto reset;
2409
2410         memcpy(iter->event, event, length);
2411         /*
2412          * If the page stamp is still the same after this rmb() then the
2413          * event was safely copied without the writer entering the page.
2414          */
2415         smp_rmb();
2416
2417         /* Make sure the page didn't change since we read this */
2418         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2419             commit > rb_page_commit(iter_head_page))
2420                 goto reset;
2421
2422         iter->next_event = iter->head + length;
2423         return iter->event;
2424  reset:
2425         /* Reset to the beginning */
2426         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2427         iter->head = 0;
2428         iter->next_event = 0;
2429         iter->missed_events = 1;
2430         return NULL;
2431 }
2432
2433 /* Size is determined by what has been committed */
2434 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2435 {
2436         return rb_page_commit(bpage);
2437 }
2438
2439 static __always_inline unsigned
2440 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2441 {
2442         return rb_page_commit(cpu_buffer->commit_page);
2443 }
2444
2445 static __always_inline unsigned
2446 rb_event_index(struct ring_buffer_event *event)
2447 {
2448         unsigned long addr = (unsigned long)event;
2449
2450         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2451 }
2452
2453 static void rb_inc_iter(struct ring_buffer_iter *iter)
2454 {
2455         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2456
2457         /*
2458          * The iterator could be on the reader page (it starts there).
2459          * But the head could have moved, since the reader was
2460          * found. Check for this case and assign the iterator
2461          * to the head page instead of next.
2462          */
2463         if (iter->head_page == cpu_buffer->reader_page)
2464                 iter->head_page = rb_set_head_page(cpu_buffer);
2465         else
2466                 rb_inc_page(&iter->head_page);
2467
2468         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2469         iter->head = 0;
2470         iter->next_event = 0;
2471 }
2472
2473 /*
2474  * rb_handle_head_page - writer hit the head page
2475  *
2476  * Returns: +1 to retry page
2477  *           0 to continue
2478  *          -1 on error
2479  */
2480 static int
2481 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2482                     struct buffer_page *tail_page,
2483                     struct buffer_page *next_page)
2484 {
2485         struct buffer_page *new_head;
2486         int entries;
2487         int type;
2488         int ret;
2489
2490         entries = rb_page_entries(next_page);
2491
2492         /*
2493          * The hard part is here. We need to move the head
2494          * forward, and protect against both readers on
2495          * other CPUs and writers coming in via interrupts.
2496          */
2497         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2498                                        RB_PAGE_HEAD);
2499
2500         /*
2501          * type can be one of four:
2502          *  NORMAL - an interrupt already moved it for us
2503          *  HEAD   - we are the first to get here.
2504          *  UPDATE - we are the interrupt interrupting
2505          *           a current move.
2506          *  MOVED  - a reader on another CPU moved the next
2507          *           pointer to its reader page. Give up
2508          *           and try again.
2509          */
2510
2511         switch (type) {
2512         case RB_PAGE_HEAD:
2513                 /*
2514                  * We changed the head to UPDATE, thus
2515                  * it is our responsibility to update
2516                  * the counters.
2517                  */
2518                 local_add(entries, &cpu_buffer->overrun);
2519                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2520                 local_inc(&cpu_buffer->pages_lost);
2521
2522                 /*
2523                  * The entries will be zeroed out when we move the
2524                  * tail page.
2525                  */
2526
2527                 /* still more to do */
2528                 break;
2529
2530         case RB_PAGE_UPDATE:
2531                 /*
2532                  * This is an interrupt that interrupt the
2533                  * previous update. Still more to do.
2534                  */
2535                 break;
2536         case RB_PAGE_NORMAL:
2537                 /*
2538                  * An interrupt came in before the update
2539                  * and processed this for us.
2540                  * Nothing left to do.
2541                  */
2542                 return 1;
2543         case RB_PAGE_MOVED:
2544                 /*
2545                  * The reader is on another CPU and just did
2546                  * a swap with our next_page.
2547                  * Try again.
2548                  */
2549                 return 1;
2550         default:
2551                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2552                 return -1;
2553         }
2554
2555         /*
2556          * Now that we are here, the old head pointer is
2557          * set to UPDATE. This will keep the reader from
2558          * swapping the head page with the reader page.
2559          * The reader (on another CPU) will spin till
2560          * we are finished.
2561          *
2562          * We just need to protect against interrupts
2563          * doing the job. We will set the next pointer
2564          * to HEAD. After that, we set the old pointer
2565          * to NORMAL, but only if it was HEAD before.
2566          * otherwise we are an interrupt, and only
2567          * want the outer most commit to reset it.
2568          */
2569         new_head = next_page;
2570         rb_inc_page(&new_head);
2571
2572         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2573                                     RB_PAGE_NORMAL);
2574
2575         /*
2576          * Valid returns are:
2577          *  HEAD   - an interrupt came in and already set it.
2578          *  NORMAL - One of two things:
2579          *            1) We really set it.
2580          *            2) A bunch of interrupts came in and moved
2581          *               the page forward again.
2582          */
2583         switch (ret) {
2584         case RB_PAGE_HEAD:
2585         case RB_PAGE_NORMAL:
2586                 /* OK */
2587                 break;
2588         default:
2589                 RB_WARN_ON(cpu_buffer, 1);
2590                 return -1;
2591         }
2592
2593         /*
2594          * It is possible that an interrupt came in,
2595          * set the head up, then more interrupts came in
2596          * and moved it again. When we get back here,
2597          * the page would have been set to NORMAL but we
2598          * just set it back to HEAD.
2599          *
2600          * How do you detect this? Well, if that happened
2601          * the tail page would have moved.
2602          */
2603         if (ret == RB_PAGE_NORMAL) {
2604                 struct buffer_page *buffer_tail_page;
2605
2606                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2607                 /*
2608                  * If the tail had moved passed next, then we need
2609                  * to reset the pointer.
2610                  */
2611                 if (buffer_tail_page != tail_page &&
2612                     buffer_tail_page != next_page)
2613                         rb_head_page_set_normal(cpu_buffer, new_head,
2614                                                 next_page,
2615                                                 RB_PAGE_HEAD);
2616         }
2617
2618         /*
2619          * If this was the outer most commit (the one that
2620          * changed the original pointer from HEAD to UPDATE),
2621          * then it is up to us to reset it to NORMAL.
2622          */
2623         if (type == RB_PAGE_HEAD) {
2624                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2625                                               tail_page,
2626                                               RB_PAGE_UPDATE);
2627                 if (RB_WARN_ON(cpu_buffer,
2628                                ret != RB_PAGE_UPDATE))
2629                         return -1;
2630         }
2631
2632         return 0;
2633 }
2634
2635 static inline void
2636 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2637               unsigned long tail, struct rb_event_info *info)
2638 {
2639         struct buffer_page *tail_page = info->tail_page;
2640         struct ring_buffer_event *event;
2641         unsigned long length = info->length;
2642
2643         /*
2644          * Only the event that crossed the page boundary
2645          * must fill the old tail_page with padding.
2646          */
2647         if (tail >= BUF_PAGE_SIZE) {
2648                 /*
2649                  * If the page was filled, then we still need
2650                  * to update the real_end. Reset it to zero
2651                  * and the reader will ignore it.
2652                  */
2653                 if (tail == BUF_PAGE_SIZE)
2654                         tail_page->real_end = 0;
2655
2656                 local_sub(length, &tail_page->write);
2657                 return;
2658         }
2659
2660         event = __rb_page_index(tail_page, tail);
2661
2662         /* account for padding bytes */
2663         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2664
2665         /*
2666          * Save the original length to the meta data.
2667          * This will be used by the reader to add lost event
2668          * counter.
2669          */
2670         tail_page->real_end = tail;
2671
2672         /*
2673          * If this event is bigger than the minimum size, then
2674          * we need to be careful that we don't subtract the
2675          * write counter enough to allow another writer to slip
2676          * in on this page.
2677          * We put in a discarded commit instead, to make sure
2678          * that this space is not used again.
2679          *
2680          * If we are less than the minimum size, we don't need to
2681          * worry about it.
2682          */
2683         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2684                 /* No room for any events */
2685
2686                 /* Mark the rest of the page with padding */
2687                 rb_event_set_padding(event);
2688
2689                 /* Make sure the padding is visible before the write update */
2690                 smp_wmb();
2691
2692                 /* Set the write back to the previous setting */
2693                 local_sub(length, &tail_page->write);
2694                 return;
2695         }
2696
2697         /* Put in a discarded event */
2698         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2699         event->type_len = RINGBUF_TYPE_PADDING;
2700         /* time delta must be non zero */
2701         event->time_delta = 1;
2702
2703         /* Make sure the padding is visible before the tail_page->write update */
2704         smp_wmb();
2705
2706         /* Set write to end of buffer */
2707         length = (tail + length) - BUF_PAGE_SIZE;
2708         local_sub(length, &tail_page->write);
2709 }
2710
2711 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2712
2713 /*
2714  * This is the slow path, force gcc not to inline it.
2715  */
2716 static noinline struct ring_buffer_event *
2717 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2718              unsigned long tail, struct rb_event_info *info)
2719 {
2720         struct buffer_page *tail_page = info->tail_page;
2721         struct buffer_page *commit_page = cpu_buffer->commit_page;
2722         struct trace_buffer *buffer = cpu_buffer->buffer;
2723         struct buffer_page *next_page;
2724         int ret;
2725
2726         next_page = tail_page;
2727
2728         rb_inc_page(&next_page);
2729
2730         /*
2731          * If for some reason, we had an interrupt storm that made
2732          * it all the way around the buffer, bail, and warn
2733          * about it.
2734          */
2735         if (unlikely(next_page == commit_page)) {
2736                 local_inc(&cpu_buffer->commit_overrun);
2737                 goto out_reset;
2738         }
2739
2740         /*
2741          * This is where the fun begins!
2742          *
2743          * We are fighting against races between a reader that
2744          * could be on another CPU trying to swap its reader
2745          * page with the buffer head.
2746          *
2747          * We are also fighting against interrupts coming in and
2748          * moving the head or tail on us as well.
2749          *
2750          * If the next page is the head page then we have filled
2751          * the buffer, unless the commit page is still on the
2752          * reader page.
2753          */
2754         if (rb_is_head_page(next_page, &tail_page->list)) {
2755
2756                 /*
2757                  * If the commit is not on the reader page, then
2758                  * move the header page.
2759                  */
2760                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2761                         /*
2762                          * If we are not in overwrite mode,
2763                          * this is easy, just stop here.
2764                          */
2765                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2766                                 local_inc(&cpu_buffer->dropped_events);
2767                                 goto out_reset;
2768                         }
2769
2770                         ret = rb_handle_head_page(cpu_buffer,
2771                                                   tail_page,
2772                                                   next_page);
2773                         if (ret < 0)
2774                                 goto out_reset;
2775                         if (ret)
2776                                 goto out_again;
2777                 } else {
2778                         /*
2779                          * We need to be careful here too. The
2780                          * commit page could still be on the reader
2781                          * page. We could have a small buffer, and
2782                          * have filled up the buffer with events
2783                          * from interrupts and such, and wrapped.
2784                          *
2785                          * Note, if the tail page is also on the
2786                          * reader_page, we let it move out.
2787                          */
2788                         if (unlikely((cpu_buffer->commit_page !=
2789                                       cpu_buffer->tail_page) &&
2790                                      (cpu_buffer->commit_page ==
2791                                       cpu_buffer->reader_page))) {
2792                                 local_inc(&cpu_buffer->commit_overrun);
2793                                 goto out_reset;
2794                         }
2795                 }
2796         }
2797
2798         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2799
2800  out_again:
2801
2802         rb_reset_tail(cpu_buffer, tail, info);
2803
2804         /* Commit what we have for now. */
2805         rb_end_commit(cpu_buffer);
2806         /* rb_end_commit() decs committing */
2807         local_inc(&cpu_buffer->committing);
2808
2809         /* fail and let the caller try again */
2810         return ERR_PTR(-EAGAIN);
2811
2812  out_reset:
2813         /* reset write */
2814         rb_reset_tail(cpu_buffer, tail, info);
2815
2816         return NULL;
2817 }
2818
2819 /* Slow path */
2820 static struct ring_buffer_event *
2821 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2822 {
2823         if (abs)
2824                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2825         else
2826                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2827
2828         /* Not the first event on the page, or not delta? */
2829         if (abs || rb_event_index(event)) {
2830                 event->time_delta = delta & TS_MASK;
2831                 event->array[0] = delta >> TS_SHIFT;
2832         } else {
2833                 /* nope, just zero it */
2834                 event->time_delta = 0;
2835                 event->array[0] = 0;
2836         }
2837
2838         return skip_time_extend(event);
2839 }
2840
2841 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2842 static inline bool sched_clock_stable(void)
2843 {
2844         return true;
2845 }
2846 #endif
2847
2848 static void
2849 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2850                    struct rb_event_info *info)
2851 {
2852         u64 write_stamp;
2853
2854         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2855                   (unsigned long long)info->delta,
2856                   (unsigned long long)info->ts,
2857                   (unsigned long long)info->before,
2858                   (unsigned long long)info->after,
2859                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2860                   sched_clock_stable() ? "" :
2861                   "If you just came from a suspend/resume,\n"
2862                   "please switch to the trace global clock:\n"
2863                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2864                   "or add trace_clock=global to the kernel command line\n");
2865 }
2866
2867 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2868                                       struct ring_buffer_event **event,
2869                                       struct rb_event_info *info,
2870                                       u64 *delta,
2871                                       unsigned int *length)
2872 {
2873         bool abs = info->add_timestamp &
2874                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2875
2876         if (unlikely(info->delta > (1ULL << 59))) {
2877                 /*
2878                  * Some timers can use more than 59 bits, and when a timestamp
2879                  * is added to the buffer, it will lose those bits.
2880                  */
2881                 if (abs && (info->ts & TS_MSB)) {
2882                         info->delta &= ABS_TS_MASK;
2883
2884                 /* did the clock go backwards */
2885                 } else if (info->before == info->after && info->before > info->ts) {
2886                         /* not interrupted */
2887                         static int once;
2888
2889                         /*
2890                          * This is possible with a recalibrating of the TSC.
2891                          * Do not produce a call stack, but just report it.
2892                          */
2893                         if (!once) {
2894                                 once++;
2895                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2896                                         info->before, info->ts);
2897                         }
2898                 } else
2899                         rb_check_timestamp(cpu_buffer, info);
2900                 if (!abs)
2901                         info->delta = 0;
2902         }
2903         *event = rb_add_time_stamp(*event, info->delta, abs);
2904         *length -= RB_LEN_TIME_EXTEND;
2905         *delta = 0;
2906 }
2907
2908 /**
2909  * rb_update_event - update event type and data
2910  * @cpu_buffer: The per cpu buffer of the @event
2911  * @event: the event to update
2912  * @info: The info to update the @event with (contains length and delta)
2913  *
2914  * Update the type and data fields of the @event. The length
2915  * is the actual size that is written to the ring buffer,
2916  * and with this, we can determine what to place into the
2917  * data field.
2918  */
2919 static void
2920 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2921                 struct ring_buffer_event *event,
2922                 struct rb_event_info *info)
2923 {
2924         unsigned length = info->length;
2925         u64 delta = info->delta;
2926         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2927
2928         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2929                 cpu_buffer->event_stamp[nest] = info->ts;
2930
2931         /*
2932          * If we need to add a timestamp, then we
2933          * add it to the start of the reserved space.
2934          */
2935         if (unlikely(info->add_timestamp))
2936                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2937
2938         event->time_delta = delta;
2939         length -= RB_EVNT_HDR_SIZE;
2940         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2941                 event->type_len = 0;
2942                 event->array[0] = length;
2943         } else
2944                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2945 }
2946
2947 static unsigned rb_calculate_event_length(unsigned length)
2948 {
2949         struct ring_buffer_event event; /* Used only for sizeof array */
2950
2951         /* zero length can cause confusions */
2952         if (!length)
2953                 length++;
2954
2955         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2956                 length += sizeof(event.array[0]);
2957
2958         length += RB_EVNT_HDR_SIZE;
2959         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2960
2961         /*
2962          * In case the time delta is larger than the 27 bits for it
2963          * in the header, we need to add a timestamp. If another
2964          * event comes in when trying to discard this one to increase
2965          * the length, then the timestamp will be added in the allocated
2966          * space of this event. If length is bigger than the size needed
2967          * for the TIME_EXTEND, then padding has to be used. The events
2968          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2969          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2970          * As length is a multiple of 4, we only need to worry if it
2971          * is 12 (RB_LEN_TIME_EXTEND + 4).
2972          */
2973         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2974                 length += RB_ALIGNMENT;
2975
2976         return length;
2977 }
2978
2979 static u64 rb_time_delta(struct ring_buffer_event *event)
2980 {
2981         switch (event->type_len) {
2982         case RINGBUF_TYPE_PADDING:
2983                 return 0;
2984
2985         case RINGBUF_TYPE_TIME_EXTEND:
2986                 return rb_event_time_stamp(event);
2987
2988         case RINGBUF_TYPE_TIME_STAMP:
2989                 return 0;
2990
2991         case RINGBUF_TYPE_DATA:
2992                 return event->time_delta;
2993         default:
2994                 return 0;
2995         }
2996 }
2997
2998 static inline int
2999 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3000                   struct ring_buffer_event *event)
3001 {
3002         unsigned long new_index, old_index;
3003         struct buffer_page *bpage;
3004         unsigned long index;
3005         unsigned long addr;
3006         u64 write_stamp;
3007         u64 delta;
3008
3009         new_index = rb_event_index(event);
3010         old_index = new_index + rb_event_ts_length(event);
3011         addr = (unsigned long)event;
3012         addr &= PAGE_MASK;
3013
3014         bpage = READ_ONCE(cpu_buffer->tail_page);
3015
3016         delta = rb_time_delta(event);
3017
3018         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3019                 return 0;
3020
3021         /* Make sure the write stamp is read before testing the location */
3022         barrier();
3023
3024         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3025                 unsigned long write_mask =
3026                         local_read(&bpage->write) & ~RB_WRITE_MASK;
3027                 unsigned long event_length = rb_event_length(event);
3028
3029                 /* Something came in, can't discard */
3030                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3031                                        write_stamp, write_stamp - delta))
3032                         return 0;
3033
3034                 /*
3035                  * It's possible that the event time delta is zero
3036                  * (has the same time stamp as the previous event)
3037                  * in which case write_stamp and before_stamp could
3038                  * be the same. In such a case, force before_stamp
3039                  * to be different than write_stamp. It doesn't
3040                  * matter what it is, as long as its different.
3041                  */
3042                 if (!delta)
3043                         rb_time_set(&cpu_buffer->before_stamp, 0);
3044
3045                 /*
3046                  * If an event were to come in now, it would see that the
3047                  * write_stamp and the before_stamp are different, and assume
3048                  * that this event just added itself before updating
3049                  * the write stamp. The interrupting event will fix the
3050                  * write stamp for us, and use the before stamp as its delta.
3051                  */
3052
3053                 /*
3054                  * This is on the tail page. It is possible that
3055                  * a write could come in and move the tail page
3056                  * and write to the next page. That is fine
3057                  * because we just shorten what is on this page.
3058                  */
3059                 old_index += write_mask;
3060                 new_index += write_mask;
3061                 index = local_cmpxchg(&bpage->write, old_index, new_index);
3062                 if (index == old_index) {
3063                         /* update counters */
3064                         local_sub(event_length, &cpu_buffer->entries_bytes);
3065                         return 1;
3066                 }
3067         }
3068
3069         /* could not discard */
3070         return 0;
3071 }
3072
3073 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3074 {
3075         local_inc(&cpu_buffer->committing);
3076         local_inc(&cpu_buffer->commits);
3077 }
3078
3079 static __always_inline void
3080 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3081 {
3082         unsigned long max_count;
3083
3084         /*
3085          * We only race with interrupts and NMIs on this CPU.
3086          * If we own the commit event, then we can commit
3087          * all others that interrupted us, since the interruptions
3088          * are in stack format (they finish before they come
3089          * back to us). This allows us to do a simple loop to
3090          * assign the commit to the tail.
3091          */
3092  again:
3093         max_count = cpu_buffer->nr_pages * 100;
3094
3095         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3096                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3097                         return;
3098                 if (RB_WARN_ON(cpu_buffer,
3099                                rb_is_reader_page(cpu_buffer->tail_page)))
3100                         return;
3101                 local_set(&cpu_buffer->commit_page->page->commit,
3102                           rb_page_write(cpu_buffer->commit_page));
3103                 rb_inc_page(&cpu_buffer->commit_page);
3104                 /* add barrier to keep gcc from optimizing too much */
3105                 barrier();
3106         }
3107         while (rb_commit_index(cpu_buffer) !=
3108                rb_page_write(cpu_buffer->commit_page)) {
3109
3110                 local_set(&cpu_buffer->commit_page->page->commit,
3111                           rb_page_write(cpu_buffer->commit_page));
3112                 RB_WARN_ON(cpu_buffer,
3113                            local_read(&cpu_buffer->commit_page->page->commit) &
3114                            ~RB_WRITE_MASK);
3115                 barrier();
3116         }
3117
3118         /* again, keep gcc from optimizing */
3119         barrier();
3120
3121         /*
3122          * If an interrupt came in just after the first while loop
3123          * and pushed the tail page forward, we will be left with
3124          * a dangling commit that will never go forward.
3125          */
3126         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3127                 goto again;
3128 }
3129
3130 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3131 {
3132         unsigned long commits;
3133
3134         if (RB_WARN_ON(cpu_buffer,
3135                        !local_read(&cpu_buffer->committing)))
3136                 return;
3137
3138  again:
3139         commits = local_read(&cpu_buffer->commits);
3140         /* synchronize with interrupts */
3141         barrier();
3142         if (local_read(&cpu_buffer->committing) == 1)
3143                 rb_set_commit_to_write(cpu_buffer);
3144
3145         local_dec(&cpu_buffer->committing);
3146
3147         /* synchronize with interrupts */
3148         barrier();
3149
3150         /*
3151          * Need to account for interrupts coming in between the
3152          * updating of the commit page and the clearing of the
3153          * committing counter.
3154          */
3155         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3156             !local_read(&cpu_buffer->committing)) {
3157                 local_inc(&cpu_buffer->committing);
3158                 goto again;
3159         }
3160 }
3161
3162 static inline void rb_event_discard(struct ring_buffer_event *event)
3163 {
3164         if (extended_time(event))
3165                 event = skip_time_extend(event);
3166
3167         /* array[0] holds the actual length for the discarded event */
3168         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3169         event->type_len = RINGBUF_TYPE_PADDING;
3170         /* time delta must be non zero */
3171         if (!event->time_delta)
3172                 event->time_delta = 1;
3173 }
3174
3175 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3176 {
3177         local_inc(&cpu_buffer->entries);
3178         rb_end_commit(cpu_buffer);
3179 }
3180
3181 static __always_inline void
3182 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3183 {
3184         if (buffer->irq_work.waiters_pending) {
3185                 buffer->irq_work.waiters_pending = false;
3186                 /* irq_work_queue() supplies it's own memory barriers */
3187                 irq_work_queue(&buffer->irq_work.work);
3188         }
3189
3190         if (cpu_buffer->irq_work.waiters_pending) {
3191                 cpu_buffer->irq_work.waiters_pending = false;
3192                 /* irq_work_queue() supplies it's own memory barriers */
3193                 irq_work_queue(&cpu_buffer->irq_work.work);
3194         }
3195
3196         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3197                 return;
3198
3199         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3200                 return;
3201
3202         if (!cpu_buffer->irq_work.full_waiters_pending)
3203                 return;
3204
3205         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3206
3207         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3208                 return;
3209
3210         cpu_buffer->irq_work.wakeup_full = true;
3211         cpu_buffer->irq_work.full_waiters_pending = false;
3212         /* irq_work_queue() supplies it's own memory barriers */
3213         irq_work_queue(&cpu_buffer->irq_work.work);
3214 }
3215
3216 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3217 # define do_ring_buffer_record_recursion()      \
3218         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3219 #else
3220 # define do_ring_buffer_record_recursion() do { } while (0)
3221 #endif
3222
3223 /*
3224  * The lock and unlock are done within a preempt disable section.
3225  * The current_context per_cpu variable can only be modified
3226  * by the current task between lock and unlock. But it can
3227  * be modified more than once via an interrupt. To pass this
3228  * information from the lock to the unlock without having to
3229  * access the 'in_interrupt()' functions again (which do show
3230  * a bit of overhead in something as critical as function tracing,
3231  * we use a bitmask trick.
3232  *
3233  *  bit 1 =  NMI context
3234  *  bit 2 =  IRQ context
3235  *  bit 3 =  SoftIRQ context
3236  *  bit 4 =  normal context.
3237  *
3238  * This works because this is the order of contexts that can
3239  * preempt other contexts. A SoftIRQ never preempts an IRQ
3240  * context.
3241  *
3242  * When the context is determined, the corresponding bit is
3243  * checked and set (if it was set, then a recursion of that context
3244  * happened).
3245  *
3246  * On unlock, we need to clear this bit. To do so, just subtract
3247  * 1 from the current_context and AND it to itself.
3248  *
3249  * (binary)
3250  *  101 - 1 = 100
3251  *  101 & 100 = 100 (clearing bit zero)
3252  *
3253  *  1010 - 1 = 1001
3254  *  1010 & 1001 = 1000 (clearing bit 1)
3255  *
3256  * The least significant bit can be cleared this way, and it
3257  * just so happens that it is the same bit corresponding to
3258  * the current context.
3259  *
3260  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3261  * is set when a recursion is detected at the current context, and if
3262  * the TRANSITION bit is already set, it will fail the recursion.
3263  * This is needed because there's a lag between the changing of
3264  * interrupt context and updating the preempt count. In this case,
3265  * a false positive will be found. To handle this, one extra recursion
3266  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3267  * bit is already set, then it is considered a recursion and the function
3268  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3269  *
3270  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3271  * to be cleared. Even if it wasn't the context that set it. That is,
3272  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3273  * is called before preempt_count() is updated, since the check will
3274  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3275  * NMI then comes in, it will set the NMI bit, but when the NMI code
3276  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3277  * and leave the NMI bit set. But this is fine, because the interrupt
3278  * code that set the TRANSITION bit will then clear the NMI bit when it
3279  * calls trace_recursive_unlock(). If another NMI comes in, it will
3280  * set the TRANSITION bit and continue.
3281  *
3282  * Note: The TRANSITION bit only handles a single transition between context.
3283  */
3284
3285 static __always_inline int
3286 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3287 {
3288         unsigned int val = cpu_buffer->current_context;
3289         int bit = interrupt_context_level();
3290
3291         bit = RB_CTX_NORMAL - bit;
3292
3293         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3294                 /*
3295                  * It is possible that this was called by transitioning
3296                  * between interrupt context, and preempt_count() has not
3297                  * been updated yet. In this case, use the TRANSITION bit.
3298                  */
3299                 bit = RB_CTX_TRANSITION;
3300                 if (val & (1 << (bit + cpu_buffer->nest))) {
3301                         do_ring_buffer_record_recursion();
3302                         return 1;
3303                 }
3304         }
3305
3306         val |= (1 << (bit + cpu_buffer->nest));
3307         cpu_buffer->current_context = val;
3308
3309         return 0;
3310 }
3311
3312 static __always_inline void
3313 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3314 {
3315         cpu_buffer->current_context &=
3316                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3317 }
3318
3319 /* The recursive locking above uses 5 bits */
3320 #define NESTED_BITS 5
3321
3322 /**
3323  * ring_buffer_nest_start - Allow to trace while nested
3324  * @buffer: The ring buffer to modify
3325  *
3326  * The ring buffer has a safety mechanism to prevent recursion.
3327  * But there may be a case where a trace needs to be done while
3328  * tracing something else. In this case, calling this function
3329  * will allow this function to nest within a currently active
3330  * ring_buffer_lock_reserve().
3331  *
3332  * Call this function before calling another ring_buffer_lock_reserve() and
3333  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3334  */
3335 void ring_buffer_nest_start(struct trace_buffer *buffer)
3336 {
3337         struct ring_buffer_per_cpu *cpu_buffer;
3338         int cpu;
3339
3340         /* Enabled by ring_buffer_nest_end() */
3341         preempt_disable_notrace();
3342         cpu = raw_smp_processor_id();
3343         cpu_buffer = buffer->buffers[cpu];
3344         /* This is the shift value for the above recursive locking */
3345         cpu_buffer->nest += NESTED_BITS;
3346 }
3347
3348 /**
3349  * ring_buffer_nest_end - Allow to trace while nested
3350  * @buffer: The ring buffer to modify
3351  *
3352  * Must be called after ring_buffer_nest_start() and after the
3353  * ring_buffer_unlock_commit().
3354  */
3355 void ring_buffer_nest_end(struct trace_buffer *buffer)
3356 {
3357         struct ring_buffer_per_cpu *cpu_buffer;
3358         int cpu;
3359
3360         /* disabled by ring_buffer_nest_start() */
3361         cpu = raw_smp_processor_id();
3362         cpu_buffer = buffer->buffers[cpu];
3363         /* This is the shift value for the above recursive locking */
3364         cpu_buffer->nest -= NESTED_BITS;
3365         preempt_enable_notrace();
3366 }
3367
3368 /**
3369  * ring_buffer_unlock_commit - commit a reserved
3370  * @buffer: The buffer to commit to
3371  * @event: The event pointer to commit.
3372  *
3373  * This commits the data to the ring buffer, and releases any locks held.
3374  *
3375  * Must be paired with ring_buffer_lock_reserve.
3376  */
3377 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3378 {
3379         struct ring_buffer_per_cpu *cpu_buffer;
3380         int cpu = raw_smp_processor_id();
3381
3382         cpu_buffer = buffer->buffers[cpu];
3383
3384         rb_commit(cpu_buffer);
3385
3386         rb_wakeups(buffer, cpu_buffer);
3387
3388         trace_recursive_unlock(cpu_buffer);
3389
3390         preempt_enable_notrace();
3391
3392         return 0;
3393 }
3394 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3395
3396 /* Special value to validate all deltas on a page. */
3397 #define CHECK_FULL_PAGE         1L
3398
3399 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3400 static void dump_buffer_page(struct buffer_data_page *bpage,
3401                              struct rb_event_info *info,
3402                              unsigned long tail)
3403 {
3404         struct ring_buffer_event *event;
3405         u64 ts, delta;
3406         int e;
3407
3408         ts = bpage->time_stamp;
3409         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3410
3411         for (e = 0; e < tail; e += rb_event_length(event)) {
3412
3413                 event = (struct ring_buffer_event *)(bpage->data + e);
3414
3415                 switch (event->type_len) {
3416
3417                 case RINGBUF_TYPE_TIME_EXTEND:
3418                         delta = rb_event_time_stamp(event);
3419                         ts += delta;
3420                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3421                         break;
3422
3423                 case RINGBUF_TYPE_TIME_STAMP:
3424                         delta = rb_event_time_stamp(event);
3425                         ts = rb_fix_abs_ts(delta, ts);
3426                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3427                         break;
3428
3429                 case RINGBUF_TYPE_PADDING:
3430                         ts += event->time_delta;
3431                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3432                         break;
3433
3434                 case RINGBUF_TYPE_DATA:
3435                         ts += event->time_delta;
3436                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3437                         break;
3438
3439                 default:
3440                         break;
3441                 }
3442         }
3443 }
3444
3445 static DEFINE_PER_CPU(atomic_t, checking);
3446 static atomic_t ts_dump;
3447
3448 /*
3449  * Check if the current event time stamp matches the deltas on
3450  * the buffer page.
3451  */
3452 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3453                          struct rb_event_info *info,
3454                          unsigned long tail)
3455 {
3456         struct ring_buffer_event *event;
3457         struct buffer_data_page *bpage;
3458         u64 ts, delta;
3459         bool full = false;
3460         int e;
3461
3462         bpage = info->tail_page->page;
3463
3464         if (tail == CHECK_FULL_PAGE) {
3465                 full = true;
3466                 tail = local_read(&bpage->commit);
3467         } else if (info->add_timestamp &
3468                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3469                 /* Ignore events with absolute time stamps */
3470                 return;
3471         }
3472
3473         /*
3474          * Do not check the first event (skip possible extends too).
3475          * Also do not check if previous events have not been committed.
3476          */
3477         if (tail <= 8 || tail > local_read(&bpage->commit))
3478                 return;
3479
3480         /*
3481          * If this interrupted another event, 
3482          */
3483         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3484                 goto out;
3485
3486         ts = bpage->time_stamp;
3487
3488         for (e = 0; e < tail; e += rb_event_length(event)) {
3489
3490                 event = (struct ring_buffer_event *)(bpage->data + e);
3491
3492                 switch (event->type_len) {
3493
3494                 case RINGBUF_TYPE_TIME_EXTEND:
3495                         delta = rb_event_time_stamp(event);
3496                         ts += delta;
3497                         break;
3498
3499                 case RINGBUF_TYPE_TIME_STAMP:
3500                         delta = rb_event_time_stamp(event);
3501                         ts = rb_fix_abs_ts(delta, ts);
3502                         break;
3503
3504                 case RINGBUF_TYPE_PADDING:
3505                         if (event->time_delta == 1)
3506                                 break;
3507                         fallthrough;
3508                 case RINGBUF_TYPE_DATA:
3509                         ts += event->time_delta;
3510                         break;
3511
3512                 default:
3513                         RB_WARN_ON(cpu_buffer, 1);
3514                 }
3515         }
3516         if ((full && ts > info->ts) ||
3517             (!full && ts + info->delta != info->ts)) {
3518                 /* If another report is happening, ignore this one */
3519                 if (atomic_inc_return(&ts_dump) != 1) {
3520                         atomic_dec(&ts_dump);
3521                         goto out;
3522                 }
3523                 atomic_inc(&cpu_buffer->record_disabled);
3524                 /* There's some cases in boot up that this can happen */
3525                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3526                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3527                         cpu_buffer->cpu,
3528                         ts + info->delta, info->ts, info->delta,
3529                         info->before, info->after,
3530                         full ? " (full)" : "");
3531                 dump_buffer_page(bpage, info, tail);
3532                 atomic_dec(&ts_dump);
3533                 /* Do not re-enable checking */
3534                 return;
3535         }
3536 out:
3537         atomic_dec(this_cpu_ptr(&checking));
3538 }
3539 #else
3540 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3541                          struct rb_event_info *info,
3542                          unsigned long tail)
3543 {
3544 }
3545 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3546
3547 static struct ring_buffer_event *
3548 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3549                   struct rb_event_info *info)
3550 {
3551         struct ring_buffer_event *event;
3552         struct buffer_page *tail_page;
3553         unsigned long tail, write, w;
3554         bool a_ok;
3555         bool b_ok;
3556
3557         /* Don't let the compiler play games with cpu_buffer->tail_page */
3558         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3559
3560  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3561         barrier();
3562         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3563         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3564         barrier();
3565         info->ts = rb_time_stamp(cpu_buffer->buffer);
3566
3567         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3568                 info->delta = info->ts;
3569         } else {
3570                 /*
3571                  * If interrupting an event time update, we may need an
3572                  * absolute timestamp.
3573                  * Don't bother if this is the start of a new page (w == 0).
3574                  */
3575                 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3576                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3577                         info->length += RB_LEN_TIME_EXTEND;
3578                 } else {
3579                         info->delta = info->ts - info->after;
3580                         if (unlikely(test_time_stamp(info->delta))) {
3581                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3582                                 info->length += RB_LEN_TIME_EXTEND;
3583                         }
3584                 }
3585         }
3586
3587  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3588
3589  /*C*/  write = local_add_return(info->length, &tail_page->write);
3590
3591         /* set write to only the index of the write */
3592         write &= RB_WRITE_MASK;
3593
3594         tail = write - info->length;
3595
3596         /* See if we shot pass the end of this buffer page */
3597         if (unlikely(write > BUF_PAGE_SIZE)) {
3598                 /* before and after may now different, fix it up*/
3599                 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3600                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3601                 if (a_ok && b_ok && info->before != info->after)
3602                         (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3603                                               info->before, info->after);
3604                 if (a_ok && b_ok)
3605                         check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3606                 return rb_move_tail(cpu_buffer, tail, info);
3607         }
3608
3609         if (likely(tail == w)) {
3610                 u64 save_before;
3611                 bool s_ok;
3612
3613                 /* Nothing interrupted us between A and C */
3614  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3615                 barrier();
3616  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3617                 RB_WARN_ON(cpu_buffer, !s_ok);
3618                 if (likely(!(info->add_timestamp &
3619                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3620                         /* This did not interrupt any time update */
3621                         info->delta = info->ts - info->after;
3622                 else
3623                         /* Just use full timestamp for interrupting event */
3624                         info->delta = info->ts;
3625                 barrier();
3626                 check_buffer(cpu_buffer, info, tail);
3627                 if (unlikely(info->ts != save_before)) {
3628                         /* SLOW PATH - Interrupted between C and E */
3629
3630                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3631                         RB_WARN_ON(cpu_buffer, !a_ok);
3632
3633                         /* Write stamp must only go forward */
3634                         if (save_before > info->after) {
3635                                 /*
3636                                  * We do not care about the result, only that
3637                                  * it gets updated atomically.
3638                                  */
3639                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3640                                                       info->after, save_before);
3641                         }
3642                 }
3643         } else {
3644                 u64 ts;
3645                 /* SLOW PATH - Interrupted between A and C */
3646                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3647                 /* Was interrupted before here, write_stamp must be valid */
3648                 RB_WARN_ON(cpu_buffer, !a_ok);
3649                 ts = rb_time_stamp(cpu_buffer->buffer);
3650                 barrier();
3651  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3652                     info->after < ts &&
3653                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3654                                     info->after, ts)) {
3655                         /* Nothing came after this event between C and E */
3656                         info->delta = ts - info->after;
3657                 } else {
3658                         /*
3659                          * Interrupted between C and E:
3660                          * Lost the previous events time stamp. Just set the
3661                          * delta to zero, and this will be the same time as
3662                          * the event this event interrupted. And the events that
3663                          * came after this will still be correct (as they would
3664                          * have built their delta on the previous event.
3665                          */
3666                         info->delta = 0;
3667                 }
3668                 info->ts = ts;
3669                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3670         }
3671
3672         /*
3673          * If this is the first commit on the page, then it has the same
3674          * timestamp as the page itself.
3675          */
3676         if (unlikely(!tail && !(info->add_timestamp &
3677                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3678                 info->delta = 0;
3679
3680         /* We reserved something on the buffer */
3681
3682         event = __rb_page_index(tail_page, tail);
3683         rb_update_event(cpu_buffer, event, info);
3684
3685         local_inc(&tail_page->entries);
3686
3687         /*
3688          * If this is the first commit on the page, then update
3689          * its timestamp.
3690          */
3691         if (unlikely(!tail))
3692                 tail_page->page->time_stamp = info->ts;
3693
3694         /* account for these added bytes */
3695         local_add(info->length, &cpu_buffer->entries_bytes);
3696
3697         return event;
3698 }
3699
3700 static __always_inline struct ring_buffer_event *
3701 rb_reserve_next_event(struct trace_buffer *buffer,
3702                       struct ring_buffer_per_cpu *cpu_buffer,
3703                       unsigned long length)
3704 {
3705         struct ring_buffer_event *event;
3706         struct rb_event_info info;
3707         int nr_loops = 0;
3708         int add_ts_default;
3709
3710         rb_start_commit(cpu_buffer);
3711         /* The commit page can not change after this */
3712
3713 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3714         /*
3715          * Due to the ability to swap a cpu buffer from a buffer
3716          * it is possible it was swapped before we committed.
3717          * (committing stops a swap). We check for it here and
3718          * if it happened, we have to fail the write.
3719          */
3720         barrier();
3721         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3722                 local_dec(&cpu_buffer->committing);
3723                 local_dec(&cpu_buffer->commits);
3724                 return NULL;
3725         }
3726 #endif
3727
3728         info.length = rb_calculate_event_length(length);
3729
3730         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3731                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3732                 info.length += RB_LEN_TIME_EXTEND;
3733         } else {
3734                 add_ts_default = RB_ADD_STAMP_NONE;
3735         }
3736
3737  again:
3738         info.add_timestamp = add_ts_default;
3739         info.delta = 0;
3740
3741         /*
3742          * We allow for interrupts to reenter here and do a trace.
3743          * If one does, it will cause this original code to loop
3744          * back here. Even with heavy interrupts happening, this
3745          * should only happen a few times in a row. If this happens
3746          * 1000 times in a row, there must be either an interrupt
3747          * storm or we have something buggy.
3748          * Bail!
3749          */
3750         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3751                 goto out_fail;
3752
3753         event = __rb_reserve_next(cpu_buffer, &info);
3754
3755         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3756                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3757                         info.length -= RB_LEN_TIME_EXTEND;
3758                 goto again;
3759         }
3760
3761         if (likely(event))
3762                 return event;
3763  out_fail:
3764         rb_end_commit(cpu_buffer);
3765         return NULL;
3766 }
3767
3768 /**
3769  * ring_buffer_lock_reserve - reserve a part of the buffer
3770  * @buffer: the ring buffer to reserve from
3771  * @length: the length of the data to reserve (excluding event header)
3772  *
3773  * Returns a reserved event on the ring buffer to copy directly to.
3774  * The user of this interface will need to get the body to write into
3775  * and can use the ring_buffer_event_data() interface.
3776  *
3777  * The length is the length of the data needed, not the event length
3778  * which also includes the event header.
3779  *
3780  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3781  * If NULL is returned, then nothing has been allocated or locked.
3782  */
3783 struct ring_buffer_event *
3784 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3785 {
3786         struct ring_buffer_per_cpu *cpu_buffer;
3787         struct ring_buffer_event *event;
3788         int cpu;
3789
3790         /* If we are tracing schedule, we don't want to recurse */
3791         preempt_disable_notrace();
3792
3793         if (unlikely(atomic_read(&buffer->record_disabled)))
3794                 goto out;
3795
3796         cpu = raw_smp_processor_id();
3797
3798         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3799                 goto out;
3800
3801         cpu_buffer = buffer->buffers[cpu];
3802
3803         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3804                 goto out;
3805
3806         if (unlikely(length > BUF_MAX_DATA_SIZE))
3807                 goto out;
3808
3809         if (unlikely(trace_recursive_lock(cpu_buffer)))
3810                 goto out;
3811
3812         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3813         if (!event)
3814                 goto out_unlock;
3815
3816         return event;
3817
3818  out_unlock:
3819         trace_recursive_unlock(cpu_buffer);
3820  out:
3821         preempt_enable_notrace();
3822         return NULL;
3823 }
3824 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3825
3826 /*
3827  * Decrement the entries to the page that an event is on.
3828  * The event does not even need to exist, only the pointer
3829  * to the page it is on. This may only be called before the commit
3830  * takes place.
3831  */
3832 static inline void
3833 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3834                    struct ring_buffer_event *event)
3835 {
3836         unsigned long addr = (unsigned long)event;
3837         struct buffer_page *bpage = cpu_buffer->commit_page;
3838         struct buffer_page *start;
3839
3840         addr &= PAGE_MASK;
3841
3842         /* Do the likely case first */
3843         if (likely(bpage->page == (void *)addr)) {
3844                 local_dec(&bpage->entries);
3845                 return;
3846         }
3847
3848         /*
3849          * Because the commit page may be on the reader page we
3850          * start with the next page and check the end loop there.
3851          */
3852         rb_inc_page(&bpage);
3853         start = bpage;
3854         do {
3855                 if (bpage->page == (void *)addr) {
3856                         local_dec(&bpage->entries);
3857                         return;
3858                 }
3859                 rb_inc_page(&bpage);
3860         } while (bpage != start);
3861
3862         /* commit not part of this buffer?? */
3863         RB_WARN_ON(cpu_buffer, 1);
3864 }
3865
3866 /**
3867  * ring_buffer_discard_commit - discard an event that has not been committed
3868  * @buffer: the ring buffer
3869  * @event: non committed event to discard
3870  *
3871  * Sometimes an event that is in the ring buffer needs to be ignored.
3872  * This function lets the user discard an event in the ring buffer
3873  * and then that event will not be read later.
3874  *
3875  * This function only works if it is called before the item has been
3876  * committed. It will try to free the event from the ring buffer
3877  * if another event has not been added behind it.
3878  *
3879  * If another event has been added behind it, it will set the event
3880  * up as discarded, and perform the commit.
3881  *
3882  * If this function is called, do not call ring_buffer_unlock_commit on
3883  * the event.
3884  */
3885 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3886                                 struct ring_buffer_event *event)
3887 {
3888         struct ring_buffer_per_cpu *cpu_buffer;
3889         int cpu;
3890
3891         /* The event is discarded regardless */
3892         rb_event_discard(event);
3893
3894         cpu = smp_processor_id();
3895         cpu_buffer = buffer->buffers[cpu];
3896
3897         /*
3898          * This must only be called if the event has not been
3899          * committed yet. Thus we can assume that preemption
3900          * is still disabled.
3901          */
3902         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3903
3904         rb_decrement_entry(cpu_buffer, event);
3905         if (rb_try_to_discard(cpu_buffer, event))
3906                 goto out;
3907
3908  out:
3909         rb_end_commit(cpu_buffer);
3910
3911         trace_recursive_unlock(cpu_buffer);
3912
3913         preempt_enable_notrace();
3914
3915 }
3916 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3917
3918 /**
3919  * ring_buffer_write - write data to the buffer without reserving
3920  * @buffer: The ring buffer to write to.
3921  * @length: The length of the data being written (excluding the event header)
3922  * @data: The data to write to the buffer.
3923  *
3924  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3925  * one function. If you already have the data to write to the buffer, it
3926  * may be easier to simply call this function.
3927  *
3928  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3929  * and not the length of the event which would hold the header.
3930  */
3931 int ring_buffer_write(struct trace_buffer *buffer,
3932                       unsigned long length,
3933                       void *data)
3934 {
3935         struct ring_buffer_per_cpu *cpu_buffer;
3936         struct ring_buffer_event *event;
3937         void *body;
3938         int ret = -EBUSY;
3939         int cpu;
3940
3941         preempt_disable_notrace();
3942
3943         if (atomic_read(&buffer->record_disabled))
3944                 goto out;
3945
3946         cpu = raw_smp_processor_id();
3947
3948         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3949                 goto out;
3950
3951         cpu_buffer = buffer->buffers[cpu];
3952
3953         if (atomic_read(&cpu_buffer->record_disabled))
3954                 goto out;
3955
3956         if (length > BUF_MAX_DATA_SIZE)
3957                 goto out;
3958
3959         if (unlikely(trace_recursive_lock(cpu_buffer)))
3960                 goto out;
3961
3962         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3963         if (!event)
3964                 goto out_unlock;
3965
3966         body = rb_event_data(event);
3967
3968         memcpy(body, data, length);
3969
3970         rb_commit(cpu_buffer);
3971
3972         rb_wakeups(buffer, cpu_buffer);
3973
3974         ret = 0;
3975
3976  out_unlock:
3977         trace_recursive_unlock(cpu_buffer);
3978
3979  out:
3980         preempt_enable_notrace();
3981
3982         return ret;
3983 }
3984 EXPORT_SYMBOL_GPL(ring_buffer_write);
3985
3986 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3987 {
3988         struct buffer_page *reader = cpu_buffer->reader_page;
3989         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3990         struct buffer_page *commit = cpu_buffer->commit_page;
3991
3992         /* In case of error, head will be NULL */
3993         if (unlikely(!head))
3994                 return true;
3995
3996         /* Reader should exhaust content in reader page */
3997         if (reader->read != rb_page_commit(reader))
3998                 return false;
3999
4000         /*
4001          * If writers are committing on the reader page, knowing all
4002          * committed content has been read, the ring buffer is empty.
4003          */
4004         if (commit == reader)
4005                 return true;
4006
4007         /*
4008          * If writers are committing on a page other than reader page
4009          * and head page, there should always be content to read.
4010          */
4011         if (commit != head)
4012                 return false;
4013
4014         /*
4015          * Writers are committing on the head page, we just need
4016          * to care about there're committed data, and the reader will
4017          * swap reader page with head page when it is to read data.
4018          */
4019         return rb_page_commit(commit) == 0;
4020 }
4021
4022 /**
4023  * ring_buffer_record_disable - stop all writes into the buffer
4024  * @buffer: The ring buffer to stop writes to.
4025  *
4026  * This prevents all writes to the buffer. Any attempt to write
4027  * to the buffer after this will fail and return NULL.
4028  *
4029  * The caller should call synchronize_rcu() after this.
4030  */
4031 void ring_buffer_record_disable(struct trace_buffer *buffer)
4032 {
4033         atomic_inc(&buffer->record_disabled);
4034 }
4035 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4036
4037 /**
4038  * ring_buffer_record_enable - enable writes to the buffer
4039  * @buffer: The ring buffer to enable writes
4040  *
4041  * Note, multiple disables will need the same number of enables
4042  * to truly enable the writing (much like preempt_disable).
4043  */
4044 void ring_buffer_record_enable(struct trace_buffer *buffer)
4045 {
4046         atomic_dec(&buffer->record_disabled);
4047 }
4048 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4049
4050 /**
4051  * ring_buffer_record_off - stop all writes into the buffer
4052  * @buffer: The ring buffer to stop writes to.
4053  *
4054  * This prevents all writes to the buffer. Any attempt to write
4055  * to the buffer after this will fail and return NULL.
4056  *
4057  * This is different than ring_buffer_record_disable() as
4058  * it works like an on/off switch, where as the disable() version
4059  * must be paired with a enable().
4060  */
4061 void ring_buffer_record_off(struct trace_buffer *buffer)
4062 {
4063         unsigned int rd;
4064         unsigned int new_rd;
4065
4066         do {
4067                 rd = atomic_read(&buffer->record_disabled);
4068                 new_rd = rd | RB_BUFFER_OFF;
4069         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4070 }
4071 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4072
4073 /**
4074  * ring_buffer_record_on - restart writes into the buffer
4075  * @buffer: The ring buffer to start writes to.
4076  *
4077  * This enables all writes to the buffer that was disabled by
4078  * ring_buffer_record_off().
4079  *
4080  * This is different than ring_buffer_record_enable() as
4081  * it works like an on/off switch, where as the enable() version
4082  * must be paired with a disable().
4083  */
4084 void ring_buffer_record_on(struct trace_buffer *buffer)
4085 {
4086         unsigned int rd;
4087         unsigned int new_rd;
4088
4089         do {
4090                 rd = atomic_read(&buffer->record_disabled);
4091                 new_rd = rd & ~RB_BUFFER_OFF;
4092         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4093 }
4094 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4095
4096 /**
4097  * ring_buffer_record_is_on - return true if the ring buffer can write
4098  * @buffer: The ring buffer to see if write is enabled
4099  *
4100  * Returns true if the ring buffer is in a state that it accepts writes.
4101  */
4102 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4103 {
4104         return !atomic_read(&buffer->record_disabled);
4105 }
4106
4107 /**
4108  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4109  * @buffer: The ring buffer to see if write is set enabled
4110  *
4111  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4112  * Note that this does NOT mean it is in a writable state.
4113  *
4114  * It may return true when the ring buffer has been disabled by
4115  * ring_buffer_record_disable(), as that is a temporary disabling of
4116  * the ring buffer.
4117  */
4118 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4119 {
4120         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4121 }
4122
4123 /**
4124  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4125  * @buffer: The ring buffer to stop writes to.
4126  * @cpu: The CPU buffer to stop
4127  *
4128  * This prevents all writes to the buffer. Any attempt to write
4129  * to the buffer after this will fail and return NULL.
4130  *
4131  * The caller should call synchronize_rcu() after this.
4132  */
4133 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4134 {
4135         struct ring_buffer_per_cpu *cpu_buffer;
4136
4137         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4138                 return;
4139
4140         cpu_buffer = buffer->buffers[cpu];
4141         atomic_inc(&cpu_buffer->record_disabled);
4142 }
4143 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4144
4145 /**
4146  * ring_buffer_record_enable_cpu - enable writes to the buffer
4147  * @buffer: The ring buffer to enable writes
4148  * @cpu: The CPU to enable.
4149  *
4150  * Note, multiple disables will need the same number of enables
4151  * to truly enable the writing (much like preempt_disable).
4152  */
4153 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4154 {
4155         struct ring_buffer_per_cpu *cpu_buffer;
4156
4157         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4158                 return;
4159
4160         cpu_buffer = buffer->buffers[cpu];
4161         atomic_dec(&cpu_buffer->record_disabled);
4162 }
4163 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4164
4165 /*
4166  * The total entries in the ring buffer is the running counter
4167  * of entries entered into the ring buffer, minus the sum of
4168  * the entries read from the ring buffer and the number of
4169  * entries that were overwritten.
4170  */
4171 static inline unsigned long
4172 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4173 {
4174         return local_read(&cpu_buffer->entries) -
4175                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4176 }
4177
4178 /**
4179  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4180  * @buffer: The ring buffer
4181  * @cpu: The per CPU buffer to read from.
4182  */
4183 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4184 {
4185         unsigned long flags;
4186         struct ring_buffer_per_cpu *cpu_buffer;
4187         struct buffer_page *bpage;
4188         u64 ret = 0;
4189
4190         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4191                 return 0;
4192
4193         cpu_buffer = buffer->buffers[cpu];
4194         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4195         /*
4196          * if the tail is on reader_page, oldest time stamp is on the reader
4197          * page
4198          */
4199         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4200                 bpage = cpu_buffer->reader_page;
4201         else
4202                 bpage = rb_set_head_page(cpu_buffer);
4203         if (bpage)
4204                 ret = bpage->page->time_stamp;
4205         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4206
4207         return ret;
4208 }
4209 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4210
4211 /**
4212  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4213  * @buffer: The ring buffer
4214  * @cpu: The per CPU buffer to read from.
4215  */
4216 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4217 {
4218         struct ring_buffer_per_cpu *cpu_buffer;
4219         unsigned long ret;
4220
4221         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222                 return 0;
4223
4224         cpu_buffer = buffer->buffers[cpu];
4225         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4226
4227         return ret;
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4230
4231 /**
4232  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4233  * @buffer: The ring buffer
4234  * @cpu: The per CPU buffer to get the entries from.
4235  */
4236 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4237 {
4238         struct ring_buffer_per_cpu *cpu_buffer;
4239
4240         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4241                 return 0;
4242
4243         cpu_buffer = buffer->buffers[cpu];
4244
4245         return rb_num_of_entries(cpu_buffer);
4246 }
4247 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4248
4249 /**
4250  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4251  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4252  * @buffer: The ring buffer
4253  * @cpu: The per CPU buffer to get the number of overruns from
4254  */
4255 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4256 {
4257         struct ring_buffer_per_cpu *cpu_buffer;
4258         unsigned long ret;
4259
4260         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4261                 return 0;
4262
4263         cpu_buffer = buffer->buffers[cpu];
4264         ret = local_read(&cpu_buffer->overrun);
4265
4266         return ret;
4267 }
4268 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4269
4270 /**
4271  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4272  * commits failing due to the buffer wrapping around while there are uncommitted
4273  * events, such as during an interrupt storm.
4274  * @buffer: The ring buffer
4275  * @cpu: The per CPU buffer to get the number of overruns from
4276  */
4277 unsigned long
4278 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4279 {
4280         struct ring_buffer_per_cpu *cpu_buffer;
4281         unsigned long ret;
4282
4283         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4284                 return 0;
4285
4286         cpu_buffer = buffer->buffers[cpu];
4287         ret = local_read(&cpu_buffer->commit_overrun);
4288
4289         return ret;
4290 }
4291 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4292
4293 /**
4294  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4295  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4296  * @buffer: The ring buffer
4297  * @cpu: The per CPU buffer to get the number of overruns from
4298  */
4299 unsigned long
4300 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4301 {
4302         struct ring_buffer_per_cpu *cpu_buffer;
4303         unsigned long ret;
4304
4305         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4306                 return 0;
4307
4308         cpu_buffer = buffer->buffers[cpu];
4309         ret = local_read(&cpu_buffer->dropped_events);
4310
4311         return ret;
4312 }
4313 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4314
4315 /**
4316  * ring_buffer_read_events_cpu - get the number of events successfully read
4317  * @buffer: The ring buffer
4318  * @cpu: The per CPU buffer to get the number of events read
4319  */
4320 unsigned long
4321 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4322 {
4323         struct ring_buffer_per_cpu *cpu_buffer;
4324
4325         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4326                 return 0;
4327
4328         cpu_buffer = buffer->buffers[cpu];
4329         return cpu_buffer->read;
4330 }
4331 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4332
4333 /**
4334  * ring_buffer_entries - get the number of entries in a buffer
4335  * @buffer: The ring buffer
4336  *
4337  * Returns the total number of entries in the ring buffer
4338  * (all CPU entries)
4339  */
4340 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4341 {
4342         struct ring_buffer_per_cpu *cpu_buffer;
4343         unsigned long entries = 0;
4344         int cpu;
4345
4346         /* if you care about this being correct, lock the buffer */
4347         for_each_buffer_cpu(buffer, cpu) {
4348                 cpu_buffer = buffer->buffers[cpu];
4349                 entries += rb_num_of_entries(cpu_buffer);
4350         }
4351
4352         return entries;
4353 }
4354 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4355
4356 /**
4357  * ring_buffer_overruns - get the number of overruns in buffer
4358  * @buffer: The ring buffer
4359  *
4360  * Returns the total number of overruns in the ring buffer
4361  * (all CPU entries)
4362  */
4363 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4364 {
4365         struct ring_buffer_per_cpu *cpu_buffer;
4366         unsigned long overruns = 0;
4367         int cpu;
4368
4369         /* if you care about this being correct, lock the buffer */
4370         for_each_buffer_cpu(buffer, cpu) {
4371                 cpu_buffer = buffer->buffers[cpu];
4372                 overruns += local_read(&cpu_buffer->overrun);
4373         }
4374
4375         return overruns;
4376 }
4377 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4378
4379 static void rb_iter_reset(struct ring_buffer_iter *iter)
4380 {
4381         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4382
4383         /* Iterator usage is expected to have record disabled */
4384         iter->head_page = cpu_buffer->reader_page;
4385         iter->head = cpu_buffer->reader_page->read;
4386         iter->next_event = iter->head;
4387
4388         iter->cache_reader_page = iter->head_page;
4389         iter->cache_read = cpu_buffer->read;
4390
4391         if (iter->head) {
4392                 iter->read_stamp = cpu_buffer->read_stamp;
4393                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4394         } else {
4395                 iter->read_stamp = iter->head_page->page->time_stamp;
4396                 iter->page_stamp = iter->read_stamp;
4397         }
4398 }
4399
4400 /**
4401  * ring_buffer_iter_reset - reset an iterator
4402  * @iter: The iterator to reset
4403  *
4404  * Resets the iterator, so that it will start from the beginning
4405  * again.
4406  */
4407 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4408 {
4409         struct ring_buffer_per_cpu *cpu_buffer;
4410         unsigned long flags;
4411
4412         if (!iter)
4413                 return;
4414
4415         cpu_buffer = iter->cpu_buffer;
4416
4417         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4418         rb_iter_reset(iter);
4419         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4420 }
4421 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4422
4423 /**
4424  * ring_buffer_iter_empty - check if an iterator has no more to read
4425  * @iter: The iterator to check
4426  */
4427 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4428 {
4429         struct ring_buffer_per_cpu *cpu_buffer;
4430         struct buffer_page *reader;
4431         struct buffer_page *head_page;
4432         struct buffer_page *commit_page;
4433         struct buffer_page *curr_commit_page;
4434         unsigned commit;
4435         u64 curr_commit_ts;
4436         u64 commit_ts;
4437
4438         cpu_buffer = iter->cpu_buffer;
4439         reader = cpu_buffer->reader_page;
4440         head_page = cpu_buffer->head_page;
4441         commit_page = cpu_buffer->commit_page;
4442         commit_ts = commit_page->page->time_stamp;
4443
4444         /*
4445          * When the writer goes across pages, it issues a cmpxchg which
4446          * is a mb(), which will synchronize with the rmb here.
4447          * (see rb_tail_page_update())
4448          */
4449         smp_rmb();
4450         commit = rb_page_commit(commit_page);
4451         /* We want to make sure that the commit page doesn't change */
4452         smp_rmb();
4453
4454         /* Make sure commit page didn't change */
4455         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4456         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4457
4458         /* If the commit page changed, then there's more data */
4459         if (curr_commit_page != commit_page ||
4460             curr_commit_ts != commit_ts)
4461                 return 0;
4462
4463         /* Still racy, as it may return a false positive, but that's OK */
4464         return ((iter->head_page == commit_page && iter->head >= commit) ||
4465                 (iter->head_page == reader && commit_page == head_page &&
4466                  head_page->read == commit &&
4467                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4468 }
4469 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4470
4471 static void
4472 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4473                      struct ring_buffer_event *event)
4474 {
4475         u64 delta;
4476
4477         switch (event->type_len) {
4478         case RINGBUF_TYPE_PADDING:
4479                 return;
4480
4481         case RINGBUF_TYPE_TIME_EXTEND:
4482                 delta = rb_event_time_stamp(event);
4483                 cpu_buffer->read_stamp += delta;
4484                 return;
4485
4486         case RINGBUF_TYPE_TIME_STAMP:
4487                 delta = rb_event_time_stamp(event);
4488                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4489                 cpu_buffer->read_stamp = delta;
4490                 return;
4491
4492         case RINGBUF_TYPE_DATA:
4493                 cpu_buffer->read_stamp += event->time_delta;
4494                 return;
4495
4496         default:
4497                 RB_WARN_ON(cpu_buffer, 1);
4498         }
4499         return;
4500 }
4501
4502 static void
4503 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4504                           struct ring_buffer_event *event)
4505 {
4506         u64 delta;
4507
4508         switch (event->type_len) {
4509         case RINGBUF_TYPE_PADDING:
4510                 return;
4511
4512         case RINGBUF_TYPE_TIME_EXTEND:
4513                 delta = rb_event_time_stamp(event);
4514                 iter->read_stamp += delta;
4515                 return;
4516
4517         case RINGBUF_TYPE_TIME_STAMP:
4518                 delta = rb_event_time_stamp(event);
4519                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4520                 iter->read_stamp = delta;
4521                 return;
4522
4523         case RINGBUF_TYPE_DATA:
4524                 iter->read_stamp += event->time_delta;
4525                 return;
4526
4527         default:
4528                 RB_WARN_ON(iter->cpu_buffer, 1);
4529         }
4530         return;
4531 }
4532
4533 static struct buffer_page *
4534 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4535 {
4536         struct buffer_page *reader = NULL;
4537         unsigned long overwrite;
4538         unsigned long flags;
4539         int nr_loops = 0;
4540         int ret;
4541
4542         local_irq_save(flags);
4543         arch_spin_lock(&cpu_buffer->lock);
4544
4545  again:
4546         /*
4547          * This should normally only loop twice. But because the
4548          * start of the reader inserts an empty page, it causes
4549          * a case where we will loop three times. There should be no
4550          * reason to loop four times (that I know of).
4551          */
4552         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4553                 reader = NULL;
4554                 goto out;
4555         }
4556
4557         reader = cpu_buffer->reader_page;
4558
4559         /* If there's more to read, return this page */
4560         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4561                 goto out;
4562
4563         /* Never should we have an index greater than the size */
4564         if (RB_WARN_ON(cpu_buffer,
4565                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4566                 goto out;
4567
4568         /* check if we caught up to the tail */
4569         reader = NULL;
4570         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4571                 goto out;
4572
4573         /* Don't bother swapping if the ring buffer is empty */
4574         if (rb_num_of_entries(cpu_buffer) == 0)
4575                 goto out;
4576
4577         /*
4578          * Reset the reader page to size zero.
4579          */
4580         local_set(&cpu_buffer->reader_page->write, 0);
4581         local_set(&cpu_buffer->reader_page->entries, 0);
4582         local_set(&cpu_buffer->reader_page->page->commit, 0);
4583         cpu_buffer->reader_page->real_end = 0;
4584
4585  spin:
4586         /*
4587          * Splice the empty reader page into the list around the head.
4588          */
4589         reader = rb_set_head_page(cpu_buffer);
4590         if (!reader)
4591                 goto out;
4592         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4593         cpu_buffer->reader_page->list.prev = reader->list.prev;
4594
4595         /*
4596          * cpu_buffer->pages just needs to point to the buffer, it
4597          *  has no specific buffer page to point to. Lets move it out
4598          *  of our way so we don't accidentally swap it.
4599          */
4600         cpu_buffer->pages = reader->list.prev;
4601
4602         /* The reader page will be pointing to the new head */
4603         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4604
4605         /*
4606          * We want to make sure we read the overruns after we set up our
4607          * pointers to the next object. The writer side does a
4608          * cmpxchg to cross pages which acts as the mb on the writer
4609          * side. Note, the reader will constantly fail the swap
4610          * while the writer is updating the pointers, so this
4611          * guarantees that the overwrite recorded here is the one we
4612          * want to compare with the last_overrun.
4613          */
4614         smp_mb();
4615         overwrite = local_read(&(cpu_buffer->overrun));
4616
4617         /*
4618          * Here's the tricky part.
4619          *
4620          * We need to move the pointer past the header page.
4621          * But we can only do that if a writer is not currently
4622          * moving it. The page before the header page has the
4623          * flag bit '1' set if it is pointing to the page we want.
4624          * but if the writer is in the process of moving it
4625          * than it will be '2' or already moved '0'.
4626          */
4627
4628         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4629
4630         /*
4631          * If we did not convert it, then we must try again.
4632          */
4633         if (!ret)
4634                 goto spin;
4635
4636         /*
4637          * Yay! We succeeded in replacing the page.
4638          *
4639          * Now make the new head point back to the reader page.
4640          */
4641         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4642         rb_inc_page(&cpu_buffer->head_page);
4643
4644         local_inc(&cpu_buffer->pages_read);
4645
4646         /* Finally update the reader page to the new head */
4647         cpu_buffer->reader_page = reader;
4648         cpu_buffer->reader_page->read = 0;
4649
4650         if (overwrite != cpu_buffer->last_overrun) {
4651                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4652                 cpu_buffer->last_overrun = overwrite;
4653         }
4654
4655         goto again;
4656
4657  out:
4658         /* Update the read_stamp on the first event */
4659         if (reader && reader->read == 0)
4660                 cpu_buffer->read_stamp = reader->page->time_stamp;
4661
4662         arch_spin_unlock(&cpu_buffer->lock);
4663         local_irq_restore(flags);
4664
4665         /*
4666          * The writer has preempt disable, wait for it. But not forever
4667          * Although, 1 second is pretty much "forever"
4668          */
4669 #define USECS_WAIT      1000000
4670         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4671                 /* If the write is past the end of page, a writer is still updating it */
4672                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4673                         break;
4674
4675                 udelay(1);
4676
4677                 /* Get the latest version of the reader write value */
4678                 smp_rmb();
4679         }
4680
4681         /* The writer is not moving forward? Something is wrong */
4682         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4683                 reader = NULL;
4684
4685         /*
4686          * Make sure we see any padding after the write update
4687          * (see rb_reset_tail())
4688          */
4689         smp_rmb();
4690
4691
4692         return reader;
4693 }
4694
4695 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4696 {
4697         struct ring_buffer_event *event;
4698         struct buffer_page *reader;
4699         unsigned length;
4700
4701         reader = rb_get_reader_page(cpu_buffer);
4702
4703         /* This function should not be called when buffer is empty */
4704         if (RB_WARN_ON(cpu_buffer, !reader))
4705                 return;
4706
4707         event = rb_reader_event(cpu_buffer);
4708
4709         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4710                 cpu_buffer->read++;
4711
4712         rb_update_read_stamp(cpu_buffer, event);
4713
4714         length = rb_event_length(event);
4715         cpu_buffer->reader_page->read += length;
4716 }
4717
4718 static void rb_advance_iter(struct ring_buffer_iter *iter)
4719 {
4720         struct ring_buffer_per_cpu *cpu_buffer;
4721
4722         cpu_buffer = iter->cpu_buffer;
4723
4724         /* If head == next_event then we need to jump to the next event */
4725         if (iter->head == iter->next_event) {
4726                 /* If the event gets overwritten again, there's nothing to do */
4727                 if (rb_iter_head_event(iter) == NULL)
4728                         return;
4729         }
4730
4731         iter->head = iter->next_event;
4732
4733         /*
4734          * Check if we are at the end of the buffer.
4735          */
4736         if (iter->next_event >= rb_page_size(iter->head_page)) {
4737                 /* discarded commits can make the page empty */
4738                 if (iter->head_page == cpu_buffer->commit_page)
4739                         return;
4740                 rb_inc_iter(iter);
4741                 return;
4742         }
4743
4744         rb_update_iter_read_stamp(iter, iter->event);
4745 }
4746
4747 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4748 {
4749         return cpu_buffer->lost_events;
4750 }
4751
4752 static struct ring_buffer_event *
4753 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4754                unsigned long *lost_events)
4755 {
4756         struct ring_buffer_event *event;
4757         struct buffer_page *reader;
4758         int nr_loops = 0;
4759
4760         if (ts)
4761                 *ts = 0;
4762  again:
4763         /*
4764          * We repeat when a time extend is encountered.
4765          * Since the time extend is always attached to a data event,
4766          * we should never loop more than once.
4767          * (We never hit the following condition more than twice).
4768          */
4769         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4770                 return NULL;
4771
4772         reader = rb_get_reader_page(cpu_buffer);
4773         if (!reader)
4774                 return NULL;
4775
4776         event = rb_reader_event(cpu_buffer);
4777
4778         switch (event->type_len) {
4779         case RINGBUF_TYPE_PADDING:
4780                 if (rb_null_event(event))
4781                         RB_WARN_ON(cpu_buffer, 1);
4782                 /*
4783                  * Because the writer could be discarding every
4784                  * event it creates (which would probably be bad)
4785                  * if we were to go back to "again" then we may never
4786                  * catch up, and will trigger the warn on, or lock
4787                  * the box. Return the padding, and we will release
4788                  * the current locks, and try again.
4789                  */
4790                 return event;
4791
4792         case RINGBUF_TYPE_TIME_EXTEND:
4793                 /* Internal data, OK to advance */
4794                 rb_advance_reader(cpu_buffer);
4795                 goto again;
4796
4797         case RINGBUF_TYPE_TIME_STAMP:
4798                 if (ts) {
4799                         *ts = rb_event_time_stamp(event);
4800                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4801                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4802                                                          cpu_buffer->cpu, ts);
4803                 }
4804                 /* Internal data, OK to advance */
4805                 rb_advance_reader(cpu_buffer);
4806                 goto again;
4807
4808         case RINGBUF_TYPE_DATA:
4809                 if (ts && !(*ts)) {
4810                         *ts = cpu_buffer->read_stamp + event->time_delta;
4811                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4812                                                          cpu_buffer->cpu, ts);
4813                 }
4814                 if (lost_events)
4815                         *lost_events = rb_lost_events(cpu_buffer);
4816                 return event;
4817
4818         default:
4819                 RB_WARN_ON(cpu_buffer, 1);
4820         }
4821
4822         return NULL;
4823 }
4824 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4825
4826 static struct ring_buffer_event *
4827 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4828 {
4829         struct trace_buffer *buffer;
4830         struct ring_buffer_per_cpu *cpu_buffer;
4831         struct ring_buffer_event *event;
4832         int nr_loops = 0;
4833
4834         if (ts)
4835                 *ts = 0;
4836
4837         cpu_buffer = iter->cpu_buffer;
4838         buffer = cpu_buffer->buffer;
4839
4840         /*
4841          * Check if someone performed a consuming read to
4842          * the buffer. A consuming read invalidates the iterator
4843          * and we need to reset the iterator in this case.
4844          */
4845         if (unlikely(iter->cache_read != cpu_buffer->read ||
4846                      iter->cache_reader_page != cpu_buffer->reader_page))
4847                 rb_iter_reset(iter);
4848
4849  again:
4850         if (ring_buffer_iter_empty(iter))
4851                 return NULL;
4852
4853         /*
4854          * As the writer can mess with what the iterator is trying
4855          * to read, just give up if we fail to get an event after
4856          * three tries. The iterator is not as reliable when reading
4857          * the ring buffer with an active write as the consumer is.
4858          * Do not warn if the three failures is reached.
4859          */
4860         if (++nr_loops > 3)
4861                 return NULL;
4862
4863         if (rb_per_cpu_empty(cpu_buffer))
4864                 return NULL;
4865
4866         if (iter->head >= rb_page_size(iter->head_page)) {
4867                 rb_inc_iter(iter);
4868                 goto again;
4869         }
4870
4871         event = rb_iter_head_event(iter);
4872         if (!event)
4873                 goto again;
4874
4875         switch (event->type_len) {
4876         case RINGBUF_TYPE_PADDING:
4877                 if (rb_null_event(event)) {
4878                         rb_inc_iter(iter);
4879                         goto again;
4880                 }
4881                 rb_advance_iter(iter);
4882                 return event;
4883
4884         case RINGBUF_TYPE_TIME_EXTEND:
4885                 /* Internal data, OK to advance */
4886                 rb_advance_iter(iter);
4887                 goto again;
4888
4889         case RINGBUF_TYPE_TIME_STAMP:
4890                 if (ts) {
4891                         *ts = rb_event_time_stamp(event);
4892                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4893                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4894                                                          cpu_buffer->cpu, ts);
4895                 }
4896                 /* Internal data, OK to advance */
4897                 rb_advance_iter(iter);
4898                 goto again;
4899
4900         case RINGBUF_TYPE_DATA:
4901                 if (ts && !(*ts)) {
4902                         *ts = iter->read_stamp + event->time_delta;
4903                         ring_buffer_normalize_time_stamp(buffer,
4904                                                          cpu_buffer->cpu, ts);
4905                 }
4906                 return event;
4907
4908         default:
4909                 RB_WARN_ON(cpu_buffer, 1);
4910         }
4911
4912         return NULL;
4913 }
4914 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4915
4916 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4917 {
4918         if (likely(!in_nmi())) {
4919                 raw_spin_lock(&cpu_buffer->reader_lock);
4920                 return true;
4921         }
4922
4923         /*
4924          * If an NMI die dumps out the content of the ring buffer
4925          * trylock must be used to prevent a deadlock if the NMI
4926          * preempted a task that holds the ring buffer locks. If
4927          * we get the lock then all is fine, if not, then continue
4928          * to do the read, but this can corrupt the ring buffer,
4929          * so it must be permanently disabled from future writes.
4930          * Reading from NMI is a oneshot deal.
4931          */
4932         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4933                 return true;
4934
4935         /* Continue without locking, but disable the ring buffer */
4936         atomic_inc(&cpu_buffer->record_disabled);
4937         return false;
4938 }
4939
4940 static inline void
4941 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4942 {
4943         if (likely(locked))
4944                 raw_spin_unlock(&cpu_buffer->reader_lock);
4945         return;
4946 }
4947
4948 /**
4949  * ring_buffer_peek - peek at the next event to be read
4950  * @buffer: The ring buffer to read
4951  * @cpu: The cpu to peak at
4952  * @ts: The timestamp counter of this event.
4953  * @lost_events: a variable to store if events were lost (may be NULL)
4954  *
4955  * This will return the event that will be read next, but does
4956  * not consume the data.
4957  */
4958 struct ring_buffer_event *
4959 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4960                  unsigned long *lost_events)
4961 {
4962         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4963         struct ring_buffer_event *event;
4964         unsigned long flags;
4965         bool dolock;
4966
4967         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4968                 return NULL;
4969
4970  again:
4971         local_irq_save(flags);
4972         dolock = rb_reader_lock(cpu_buffer);
4973         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4974         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4975                 rb_advance_reader(cpu_buffer);
4976         rb_reader_unlock(cpu_buffer, dolock);
4977         local_irq_restore(flags);
4978
4979         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4980                 goto again;
4981
4982         return event;
4983 }
4984
4985 /** ring_buffer_iter_dropped - report if there are dropped events
4986  * @iter: The ring buffer iterator
4987  *
4988  * Returns true if there was dropped events since the last peek.
4989  */
4990 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4991 {
4992         bool ret = iter->missed_events != 0;
4993
4994         iter->missed_events = 0;
4995         return ret;
4996 }
4997 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4998
4999 /**
5000  * ring_buffer_iter_peek - peek at the next event to be read
5001  * @iter: The ring buffer iterator
5002  * @ts: The timestamp counter of this event.
5003  *
5004  * This will return the event that will be read next, but does
5005  * not increment the iterator.
5006  */
5007 struct ring_buffer_event *
5008 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5009 {
5010         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5011         struct ring_buffer_event *event;
5012         unsigned long flags;
5013
5014  again:
5015         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5016         event = rb_iter_peek(iter, ts);
5017         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5018
5019         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5020                 goto again;
5021
5022         return event;
5023 }
5024
5025 /**
5026  * ring_buffer_consume - return an event and consume it
5027  * @buffer: The ring buffer to get the next event from
5028  * @cpu: the cpu to read the buffer from
5029  * @ts: a variable to store the timestamp (may be NULL)
5030  * @lost_events: a variable to store if events were lost (may be NULL)
5031  *
5032  * Returns the next event in the ring buffer, and that event is consumed.
5033  * Meaning, that sequential reads will keep returning a different event,
5034  * and eventually empty the ring buffer if the producer is slower.
5035  */
5036 struct ring_buffer_event *
5037 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5038                     unsigned long *lost_events)
5039 {
5040         struct ring_buffer_per_cpu *cpu_buffer;
5041         struct ring_buffer_event *event = NULL;
5042         unsigned long flags;
5043         bool dolock;
5044
5045  again:
5046         /* might be called in atomic */
5047         preempt_disable();
5048
5049         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5050                 goto out;
5051
5052         cpu_buffer = buffer->buffers[cpu];
5053         local_irq_save(flags);
5054         dolock = rb_reader_lock(cpu_buffer);
5055
5056         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5057         if (event) {
5058                 cpu_buffer->lost_events = 0;
5059                 rb_advance_reader(cpu_buffer);
5060         }
5061
5062         rb_reader_unlock(cpu_buffer, dolock);
5063         local_irq_restore(flags);
5064
5065  out:
5066         preempt_enable();
5067
5068         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5069                 goto again;
5070
5071         return event;
5072 }
5073 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5074
5075 /**
5076  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5077  * @buffer: The ring buffer to read from
5078  * @cpu: The cpu buffer to iterate over
5079  * @flags: gfp flags to use for memory allocation
5080  *
5081  * This performs the initial preparations necessary to iterate
5082  * through the buffer.  Memory is allocated, buffer recording
5083  * is disabled, and the iterator pointer is returned to the caller.
5084  *
5085  * Disabling buffer recording prevents the reading from being
5086  * corrupted. This is not a consuming read, so a producer is not
5087  * expected.
5088  *
5089  * After a sequence of ring_buffer_read_prepare calls, the user is
5090  * expected to make at least one call to ring_buffer_read_prepare_sync.
5091  * Afterwards, ring_buffer_read_start is invoked to get things going
5092  * for real.
5093  *
5094  * This overall must be paired with ring_buffer_read_finish.
5095  */
5096 struct ring_buffer_iter *
5097 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5098 {
5099         struct ring_buffer_per_cpu *cpu_buffer;
5100         struct ring_buffer_iter *iter;
5101
5102         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5103                 return NULL;
5104
5105         iter = kzalloc(sizeof(*iter), flags);
5106         if (!iter)
5107                 return NULL;
5108
5109         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5110         if (!iter->event) {
5111                 kfree(iter);
5112                 return NULL;
5113         }
5114
5115         cpu_buffer = buffer->buffers[cpu];
5116
5117         iter->cpu_buffer = cpu_buffer;
5118
5119         atomic_inc(&cpu_buffer->resize_disabled);
5120
5121         return iter;
5122 }
5123 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5124
5125 /**
5126  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5127  *
5128  * All previously invoked ring_buffer_read_prepare calls to prepare
5129  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5130  * calls on those iterators are allowed.
5131  */
5132 void
5133 ring_buffer_read_prepare_sync(void)
5134 {
5135         synchronize_rcu();
5136 }
5137 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5138
5139 /**
5140  * ring_buffer_read_start - start a non consuming read of the buffer
5141  * @iter: The iterator returned by ring_buffer_read_prepare
5142  *
5143  * This finalizes the startup of an iteration through the buffer.
5144  * The iterator comes from a call to ring_buffer_read_prepare and
5145  * an intervening ring_buffer_read_prepare_sync must have been
5146  * performed.
5147  *
5148  * Must be paired with ring_buffer_read_finish.
5149  */
5150 void
5151 ring_buffer_read_start(struct ring_buffer_iter *iter)
5152 {
5153         struct ring_buffer_per_cpu *cpu_buffer;
5154         unsigned long flags;
5155
5156         if (!iter)
5157                 return;
5158
5159         cpu_buffer = iter->cpu_buffer;
5160
5161         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5162         arch_spin_lock(&cpu_buffer->lock);
5163         rb_iter_reset(iter);
5164         arch_spin_unlock(&cpu_buffer->lock);
5165         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5166 }
5167 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5168
5169 /**
5170  * ring_buffer_read_finish - finish reading the iterator of the buffer
5171  * @iter: The iterator retrieved by ring_buffer_start
5172  *
5173  * This re-enables the recording to the buffer, and frees the
5174  * iterator.
5175  */
5176 void
5177 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5178 {
5179         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5180         unsigned long flags;
5181
5182         /*
5183          * Ring buffer is disabled from recording, here's a good place
5184          * to check the integrity of the ring buffer.
5185          * Must prevent readers from trying to read, as the check
5186          * clears the HEAD page and readers require it.
5187          */
5188         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5189         rb_check_pages(cpu_buffer);
5190         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5191
5192         atomic_dec(&cpu_buffer->resize_disabled);
5193         kfree(iter->event);
5194         kfree(iter);
5195 }
5196 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5197
5198 /**
5199  * ring_buffer_iter_advance - advance the iterator to the next location
5200  * @iter: The ring buffer iterator
5201  *
5202  * Move the location of the iterator such that the next read will
5203  * be the next location of the iterator.
5204  */
5205 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5206 {
5207         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5208         unsigned long flags;
5209
5210         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5211
5212         rb_advance_iter(iter);
5213
5214         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5215 }
5216 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5217
5218 /**
5219  * ring_buffer_size - return the size of the ring buffer (in bytes)
5220  * @buffer: The ring buffer.
5221  * @cpu: The CPU to get ring buffer size from.
5222  */
5223 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5224 {
5225         /*
5226          * Earlier, this method returned
5227          *      BUF_PAGE_SIZE * buffer->nr_pages
5228          * Since the nr_pages field is now removed, we have converted this to
5229          * return the per cpu buffer value.
5230          */
5231         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5232                 return 0;
5233
5234         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5235 }
5236 EXPORT_SYMBOL_GPL(ring_buffer_size);
5237
5238 static void
5239 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5240 {
5241         rb_head_page_deactivate(cpu_buffer);
5242
5243         cpu_buffer->head_page
5244                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5245         local_set(&cpu_buffer->head_page->write, 0);
5246         local_set(&cpu_buffer->head_page->entries, 0);
5247         local_set(&cpu_buffer->head_page->page->commit, 0);
5248
5249         cpu_buffer->head_page->read = 0;
5250
5251         cpu_buffer->tail_page = cpu_buffer->head_page;
5252         cpu_buffer->commit_page = cpu_buffer->head_page;
5253
5254         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5255         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5256         local_set(&cpu_buffer->reader_page->write, 0);
5257         local_set(&cpu_buffer->reader_page->entries, 0);
5258         local_set(&cpu_buffer->reader_page->page->commit, 0);
5259         cpu_buffer->reader_page->read = 0;
5260
5261         local_set(&cpu_buffer->entries_bytes, 0);
5262         local_set(&cpu_buffer->overrun, 0);
5263         local_set(&cpu_buffer->commit_overrun, 0);
5264         local_set(&cpu_buffer->dropped_events, 0);
5265         local_set(&cpu_buffer->entries, 0);
5266         local_set(&cpu_buffer->committing, 0);
5267         local_set(&cpu_buffer->commits, 0);
5268         local_set(&cpu_buffer->pages_touched, 0);
5269         local_set(&cpu_buffer->pages_lost, 0);
5270         local_set(&cpu_buffer->pages_read, 0);
5271         cpu_buffer->last_pages_touch = 0;
5272         cpu_buffer->shortest_full = 0;
5273         cpu_buffer->read = 0;
5274         cpu_buffer->read_bytes = 0;
5275
5276         rb_time_set(&cpu_buffer->write_stamp, 0);
5277         rb_time_set(&cpu_buffer->before_stamp, 0);
5278
5279         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5280
5281         cpu_buffer->lost_events = 0;
5282         cpu_buffer->last_overrun = 0;
5283
5284         rb_head_page_activate(cpu_buffer);
5285 }
5286
5287 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5288 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5289 {
5290         unsigned long flags;
5291
5292         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5293
5294         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5295                 goto out;
5296
5297         arch_spin_lock(&cpu_buffer->lock);
5298
5299         rb_reset_cpu(cpu_buffer);
5300
5301         arch_spin_unlock(&cpu_buffer->lock);
5302
5303  out:
5304         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5305 }
5306
5307 /**
5308  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5309  * @buffer: The ring buffer to reset a per cpu buffer of
5310  * @cpu: The CPU buffer to be reset
5311  */
5312 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5313 {
5314         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5315
5316         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5317                 return;
5318
5319         /* prevent another thread from changing buffer sizes */
5320         mutex_lock(&buffer->mutex);
5321
5322         atomic_inc(&cpu_buffer->resize_disabled);
5323         atomic_inc(&cpu_buffer->record_disabled);
5324
5325         /* Make sure all commits have finished */
5326         synchronize_rcu();
5327
5328         reset_disabled_cpu_buffer(cpu_buffer);
5329
5330         atomic_dec(&cpu_buffer->record_disabled);
5331         atomic_dec(&cpu_buffer->resize_disabled);
5332
5333         mutex_unlock(&buffer->mutex);
5334 }
5335 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5336
5337 /**
5338  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5339  * @buffer: The ring buffer to reset a per cpu buffer of
5340  * @cpu: The CPU buffer to be reset
5341  */
5342 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5343 {
5344         struct ring_buffer_per_cpu *cpu_buffer;
5345         int cpu;
5346
5347         /* prevent another thread from changing buffer sizes */
5348         mutex_lock(&buffer->mutex);
5349
5350         for_each_online_buffer_cpu(buffer, cpu) {
5351                 cpu_buffer = buffer->buffers[cpu];
5352
5353                 atomic_inc(&cpu_buffer->resize_disabled);
5354                 atomic_inc(&cpu_buffer->record_disabled);
5355         }
5356
5357         /* Make sure all commits have finished */
5358         synchronize_rcu();
5359
5360         for_each_online_buffer_cpu(buffer, cpu) {
5361                 cpu_buffer = buffer->buffers[cpu];
5362
5363                 reset_disabled_cpu_buffer(cpu_buffer);
5364
5365                 atomic_dec(&cpu_buffer->record_disabled);
5366                 atomic_dec(&cpu_buffer->resize_disabled);
5367         }
5368
5369         mutex_unlock(&buffer->mutex);
5370 }
5371
5372 /**
5373  * ring_buffer_reset - reset a ring buffer
5374  * @buffer: The ring buffer to reset all cpu buffers
5375  */
5376 void ring_buffer_reset(struct trace_buffer *buffer)
5377 {
5378         struct ring_buffer_per_cpu *cpu_buffer;
5379         int cpu;
5380
5381         /* prevent another thread from changing buffer sizes */
5382         mutex_lock(&buffer->mutex);
5383
5384         for_each_buffer_cpu(buffer, cpu) {
5385                 cpu_buffer = buffer->buffers[cpu];
5386
5387                 atomic_inc(&cpu_buffer->resize_disabled);
5388                 atomic_inc(&cpu_buffer->record_disabled);
5389         }
5390
5391         /* Make sure all commits have finished */
5392         synchronize_rcu();
5393
5394         for_each_buffer_cpu(buffer, cpu) {
5395                 cpu_buffer = buffer->buffers[cpu];
5396
5397                 reset_disabled_cpu_buffer(cpu_buffer);
5398
5399                 atomic_dec(&cpu_buffer->record_disabled);
5400                 atomic_dec(&cpu_buffer->resize_disabled);
5401         }
5402
5403         mutex_unlock(&buffer->mutex);
5404 }
5405 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5406
5407 /**
5408  * ring_buffer_empty - is the ring buffer empty?
5409  * @buffer: The ring buffer to test
5410  */
5411 bool ring_buffer_empty(struct trace_buffer *buffer)
5412 {
5413         struct ring_buffer_per_cpu *cpu_buffer;
5414         unsigned long flags;
5415         bool dolock;
5416         int cpu;
5417         int ret;
5418
5419         /* yes this is racy, but if you don't like the race, lock the buffer */
5420         for_each_buffer_cpu(buffer, cpu) {
5421                 cpu_buffer = buffer->buffers[cpu];
5422                 local_irq_save(flags);
5423                 dolock = rb_reader_lock(cpu_buffer);
5424                 ret = rb_per_cpu_empty(cpu_buffer);
5425                 rb_reader_unlock(cpu_buffer, dolock);
5426                 local_irq_restore(flags);
5427
5428                 if (!ret)
5429                         return false;
5430         }
5431
5432         return true;
5433 }
5434 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5435
5436 /**
5437  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5438  * @buffer: The ring buffer
5439  * @cpu: The CPU buffer to test
5440  */
5441 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5442 {
5443         struct ring_buffer_per_cpu *cpu_buffer;
5444         unsigned long flags;
5445         bool dolock;
5446         int ret;
5447
5448         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5449                 return true;
5450
5451         cpu_buffer = buffer->buffers[cpu];
5452         local_irq_save(flags);
5453         dolock = rb_reader_lock(cpu_buffer);
5454         ret = rb_per_cpu_empty(cpu_buffer);
5455         rb_reader_unlock(cpu_buffer, dolock);
5456         local_irq_restore(flags);
5457
5458         return ret;
5459 }
5460 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5461
5462 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5463 /**
5464  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5465  * @buffer_a: One buffer to swap with
5466  * @buffer_b: The other buffer to swap with
5467  * @cpu: the CPU of the buffers to swap
5468  *
5469  * This function is useful for tracers that want to take a "snapshot"
5470  * of a CPU buffer and has another back up buffer lying around.
5471  * it is expected that the tracer handles the cpu buffer not being
5472  * used at the moment.
5473  */
5474 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5475                          struct trace_buffer *buffer_b, int cpu)
5476 {
5477         struct ring_buffer_per_cpu *cpu_buffer_a;
5478         struct ring_buffer_per_cpu *cpu_buffer_b;
5479         int ret = -EINVAL;
5480
5481         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5482             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5483                 goto out;
5484
5485         cpu_buffer_a = buffer_a->buffers[cpu];
5486         cpu_buffer_b = buffer_b->buffers[cpu];
5487
5488         /* At least make sure the two buffers are somewhat the same */
5489         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5490                 goto out;
5491
5492         ret = -EAGAIN;
5493
5494         if (atomic_read(&buffer_a->record_disabled))
5495                 goto out;
5496
5497         if (atomic_read(&buffer_b->record_disabled))
5498                 goto out;
5499
5500         if (atomic_read(&cpu_buffer_a->record_disabled))
5501                 goto out;
5502
5503         if (atomic_read(&cpu_buffer_b->record_disabled))
5504                 goto out;
5505
5506         /*
5507          * We can't do a synchronize_rcu here because this
5508          * function can be called in atomic context.
5509          * Normally this will be called from the same CPU as cpu.
5510          * If not it's up to the caller to protect this.
5511          */
5512         atomic_inc(&cpu_buffer_a->record_disabled);
5513         atomic_inc(&cpu_buffer_b->record_disabled);
5514
5515         ret = -EBUSY;
5516         if (local_read(&cpu_buffer_a->committing))
5517                 goto out_dec;
5518         if (local_read(&cpu_buffer_b->committing))
5519                 goto out_dec;
5520
5521         buffer_a->buffers[cpu] = cpu_buffer_b;
5522         buffer_b->buffers[cpu] = cpu_buffer_a;
5523
5524         cpu_buffer_b->buffer = buffer_a;
5525         cpu_buffer_a->buffer = buffer_b;
5526
5527         ret = 0;
5528
5529 out_dec:
5530         atomic_dec(&cpu_buffer_a->record_disabled);
5531         atomic_dec(&cpu_buffer_b->record_disabled);
5532 out:
5533         return ret;
5534 }
5535 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5536 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5537
5538 /**
5539  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5540  * @buffer: the buffer to allocate for.
5541  * @cpu: the cpu buffer to allocate.
5542  *
5543  * This function is used in conjunction with ring_buffer_read_page.
5544  * When reading a full page from the ring buffer, these functions
5545  * can be used to speed up the process. The calling function should
5546  * allocate a few pages first with this function. Then when it
5547  * needs to get pages from the ring buffer, it passes the result
5548  * of this function into ring_buffer_read_page, which will swap
5549  * the page that was allocated, with the read page of the buffer.
5550  *
5551  * Returns:
5552  *  The page allocated, or ERR_PTR
5553  */
5554 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5555 {
5556         struct ring_buffer_per_cpu *cpu_buffer;
5557         struct buffer_data_page *bpage = NULL;
5558         unsigned long flags;
5559         struct page *page;
5560
5561         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5562                 return ERR_PTR(-ENODEV);
5563
5564         cpu_buffer = buffer->buffers[cpu];
5565         local_irq_save(flags);
5566         arch_spin_lock(&cpu_buffer->lock);
5567
5568         if (cpu_buffer->free_page) {
5569                 bpage = cpu_buffer->free_page;
5570                 cpu_buffer->free_page = NULL;
5571         }
5572
5573         arch_spin_unlock(&cpu_buffer->lock);
5574         local_irq_restore(flags);
5575
5576         if (bpage)
5577                 goto out;
5578
5579         page = alloc_pages_node(cpu_to_node(cpu),
5580                                 GFP_KERNEL | __GFP_NORETRY, 0);
5581         if (!page)
5582                 return ERR_PTR(-ENOMEM);
5583
5584         bpage = page_address(page);
5585
5586  out:
5587         rb_init_page(bpage);
5588
5589         return bpage;
5590 }
5591 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5592
5593 /**
5594  * ring_buffer_free_read_page - free an allocated read page
5595  * @buffer: the buffer the page was allocate for
5596  * @cpu: the cpu buffer the page came from
5597  * @data: the page to free
5598  *
5599  * Free a page allocated from ring_buffer_alloc_read_page.
5600  */
5601 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5602 {
5603         struct ring_buffer_per_cpu *cpu_buffer;
5604         struct buffer_data_page *bpage = data;
5605         struct page *page = virt_to_page(bpage);
5606         unsigned long flags;
5607
5608         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5609                 return;
5610
5611         cpu_buffer = buffer->buffers[cpu];
5612
5613         /* If the page is still in use someplace else, we can't reuse it */
5614         if (page_ref_count(page) > 1)
5615                 goto out;
5616
5617         local_irq_save(flags);
5618         arch_spin_lock(&cpu_buffer->lock);
5619
5620         if (!cpu_buffer->free_page) {
5621                 cpu_buffer->free_page = bpage;
5622                 bpage = NULL;
5623         }
5624
5625         arch_spin_unlock(&cpu_buffer->lock);
5626         local_irq_restore(flags);
5627
5628  out:
5629         free_page((unsigned long)bpage);
5630 }
5631 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5632
5633 /**
5634  * ring_buffer_read_page - extract a page from the ring buffer
5635  * @buffer: buffer to extract from
5636  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5637  * @len: amount to extract
5638  * @cpu: the cpu of the buffer to extract
5639  * @full: should the extraction only happen when the page is full.
5640  *
5641  * This function will pull out a page from the ring buffer and consume it.
5642  * @data_page must be the address of the variable that was returned
5643  * from ring_buffer_alloc_read_page. This is because the page might be used
5644  * to swap with a page in the ring buffer.
5645  *
5646  * for example:
5647  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5648  *      if (IS_ERR(rpage))
5649  *              return PTR_ERR(rpage);
5650  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5651  *      if (ret >= 0)
5652  *              process_page(rpage, ret);
5653  *
5654  * When @full is set, the function will not return true unless
5655  * the writer is off the reader page.
5656  *
5657  * Note: it is up to the calling functions to handle sleeps and wakeups.
5658  *  The ring buffer can be used anywhere in the kernel and can not
5659  *  blindly call wake_up. The layer that uses the ring buffer must be
5660  *  responsible for that.
5661  *
5662  * Returns:
5663  *  >=0 if data has been transferred, returns the offset of consumed data.
5664  *  <0 if no data has been transferred.
5665  */
5666 int ring_buffer_read_page(struct trace_buffer *buffer,
5667                           void **data_page, size_t len, int cpu, int full)
5668 {
5669         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5670         struct ring_buffer_event *event;
5671         struct buffer_data_page *bpage;
5672         struct buffer_page *reader;
5673         unsigned long missed_events;
5674         unsigned long flags;
5675         unsigned int commit;
5676         unsigned int read;
5677         u64 save_timestamp;
5678         int ret = -1;
5679
5680         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5681                 goto out;
5682
5683         /*
5684          * If len is not big enough to hold the page header, then
5685          * we can not copy anything.
5686          */
5687         if (len <= BUF_PAGE_HDR_SIZE)
5688                 goto out;
5689
5690         len -= BUF_PAGE_HDR_SIZE;
5691
5692         if (!data_page)
5693                 goto out;
5694
5695         bpage = *data_page;
5696         if (!bpage)
5697                 goto out;
5698
5699         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5700
5701         reader = rb_get_reader_page(cpu_buffer);
5702         if (!reader)
5703                 goto out_unlock;
5704
5705         event = rb_reader_event(cpu_buffer);
5706
5707         read = reader->read;
5708         commit = rb_page_commit(reader);
5709
5710         /* Check if any events were dropped */
5711         missed_events = cpu_buffer->lost_events;
5712
5713         /*
5714          * If this page has been partially read or
5715          * if len is not big enough to read the rest of the page or
5716          * a writer is still on the page, then
5717          * we must copy the data from the page to the buffer.
5718          * Otherwise, we can simply swap the page with the one passed in.
5719          */
5720         if (read || (len < (commit - read)) ||
5721             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5722                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5723                 unsigned int rpos = read;
5724                 unsigned int pos = 0;
5725                 unsigned int size;
5726
5727                 /*
5728                  * If a full page is expected, this can still be returned
5729                  * if there's been a previous partial read and the
5730                  * rest of the page can be read and the commit page is off
5731                  * the reader page.
5732                  */
5733                 if (full &&
5734                     (!read || (len < (commit - read)) ||
5735                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5736                         goto out_unlock;
5737
5738                 if (len > (commit - read))
5739                         len = (commit - read);
5740
5741                 /* Always keep the time extend and data together */
5742                 size = rb_event_ts_length(event);
5743
5744                 if (len < size)
5745                         goto out_unlock;
5746
5747                 /* save the current timestamp, since the user will need it */
5748                 save_timestamp = cpu_buffer->read_stamp;
5749
5750                 /* Need to copy one event at a time */
5751                 do {
5752                         /* We need the size of one event, because
5753                          * rb_advance_reader only advances by one event,
5754                          * whereas rb_event_ts_length may include the size of
5755                          * one or two events.
5756                          * We have already ensured there's enough space if this
5757                          * is a time extend. */
5758                         size = rb_event_length(event);
5759                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5760
5761                         len -= size;
5762
5763                         rb_advance_reader(cpu_buffer);
5764                         rpos = reader->read;
5765                         pos += size;
5766
5767                         if (rpos >= commit)
5768                                 break;
5769
5770                         event = rb_reader_event(cpu_buffer);
5771                         /* Always keep the time extend and data together */
5772                         size = rb_event_ts_length(event);
5773                 } while (len >= size);
5774
5775                 /* update bpage */
5776                 local_set(&bpage->commit, pos);
5777                 bpage->time_stamp = save_timestamp;
5778
5779                 /* we copied everything to the beginning */
5780                 read = 0;
5781         } else {
5782                 /* update the entry counter */
5783                 cpu_buffer->read += rb_page_entries(reader);
5784                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5785
5786                 /* swap the pages */
5787                 rb_init_page(bpage);
5788                 bpage = reader->page;
5789                 reader->page = *data_page;
5790                 local_set(&reader->write, 0);
5791                 local_set(&reader->entries, 0);
5792                 reader->read = 0;
5793                 *data_page = bpage;
5794
5795                 /*
5796                  * Use the real_end for the data size,
5797                  * This gives us a chance to store the lost events
5798                  * on the page.
5799                  */
5800                 if (reader->real_end)
5801                         local_set(&bpage->commit, reader->real_end);
5802         }
5803         ret = read;
5804
5805         cpu_buffer->lost_events = 0;
5806
5807         commit = local_read(&bpage->commit);
5808         /*
5809          * Set a flag in the commit field if we lost events
5810          */
5811         if (missed_events) {
5812                 /* If there is room at the end of the page to save the
5813                  * missed events, then record it there.
5814                  */
5815                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5816                         memcpy(&bpage->data[commit], &missed_events,
5817                                sizeof(missed_events));
5818                         local_add(RB_MISSED_STORED, &bpage->commit);
5819                         commit += sizeof(missed_events);
5820                 }
5821                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5822         }
5823
5824         /*
5825          * This page may be off to user land. Zero it out here.
5826          */
5827         if (commit < BUF_PAGE_SIZE)
5828                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5829
5830  out_unlock:
5831         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5832
5833  out:
5834         return ret;
5835 }
5836 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5837
5838 /*
5839  * We only allocate new buffers, never free them if the CPU goes down.
5840  * If we were to free the buffer, then the user would lose any trace that was in
5841  * the buffer.
5842  */
5843 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5844 {
5845         struct trace_buffer *buffer;
5846         long nr_pages_same;
5847         int cpu_i;
5848         unsigned long nr_pages;
5849
5850         buffer = container_of(node, struct trace_buffer, node);
5851         if (cpumask_test_cpu(cpu, buffer->cpumask))
5852                 return 0;
5853
5854         nr_pages = 0;
5855         nr_pages_same = 1;
5856         /* check if all cpu sizes are same */
5857         for_each_buffer_cpu(buffer, cpu_i) {
5858                 /* fill in the size from first enabled cpu */
5859                 if (nr_pages == 0)
5860                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5861                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5862                         nr_pages_same = 0;
5863                         break;
5864                 }
5865         }
5866         /* allocate minimum pages, user can later expand it */
5867         if (!nr_pages_same)
5868                 nr_pages = 2;
5869         buffer->buffers[cpu] =
5870                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5871         if (!buffer->buffers[cpu]) {
5872                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5873                      cpu);
5874                 return -ENOMEM;
5875         }
5876         smp_wmb();
5877         cpumask_set_cpu(cpu, buffer->cpumask);
5878         return 0;
5879 }
5880
5881 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5882 /*
5883  * This is a basic integrity check of the ring buffer.
5884  * Late in the boot cycle this test will run when configured in.
5885  * It will kick off a thread per CPU that will go into a loop
5886  * writing to the per cpu ring buffer various sizes of data.
5887  * Some of the data will be large items, some small.
5888  *
5889  * Another thread is created that goes into a spin, sending out
5890  * IPIs to the other CPUs to also write into the ring buffer.
5891  * this is to test the nesting ability of the buffer.
5892  *
5893  * Basic stats are recorded and reported. If something in the
5894  * ring buffer should happen that's not expected, a big warning
5895  * is displayed and all ring buffers are disabled.
5896  */
5897 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5898
5899 struct rb_test_data {
5900         struct trace_buffer *buffer;
5901         unsigned long           events;
5902         unsigned long           bytes_written;
5903         unsigned long           bytes_alloc;
5904         unsigned long           bytes_dropped;
5905         unsigned long           events_nested;
5906         unsigned long           bytes_written_nested;
5907         unsigned long           bytes_alloc_nested;
5908         unsigned long           bytes_dropped_nested;
5909         int                     min_size_nested;
5910         int                     max_size_nested;
5911         int                     max_size;
5912         int                     min_size;
5913         int                     cpu;
5914         int                     cnt;
5915 };
5916
5917 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5918
5919 /* 1 meg per cpu */
5920 #define RB_TEST_BUFFER_SIZE     1048576
5921
5922 static char rb_string[] __initdata =
5923         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5924         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5925         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5926
5927 static bool rb_test_started __initdata;
5928
5929 struct rb_item {
5930         int size;
5931         char str[];
5932 };
5933
5934 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5935 {
5936         struct ring_buffer_event *event;
5937         struct rb_item *item;
5938         bool started;
5939         int event_len;
5940         int size;
5941         int len;
5942         int cnt;
5943
5944         /* Have nested writes different that what is written */
5945         cnt = data->cnt + (nested ? 27 : 0);
5946
5947         /* Multiply cnt by ~e, to make some unique increment */
5948         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5949
5950         len = size + sizeof(struct rb_item);
5951
5952         started = rb_test_started;
5953         /* read rb_test_started before checking buffer enabled */
5954         smp_rmb();
5955
5956         event = ring_buffer_lock_reserve(data->buffer, len);
5957         if (!event) {
5958                 /* Ignore dropped events before test starts. */
5959                 if (started) {
5960                         if (nested)
5961                                 data->bytes_dropped += len;
5962                         else
5963                                 data->bytes_dropped_nested += len;
5964                 }
5965                 return len;
5966         }
5967
5968         event_len = ring_buffer_event_length(event);
5969
5970         if (RB_WARN_ON(data->buffer, event_len < len))
5971                 goto out;
5972
5973         item = ring_buffer_event_data(event);
5974         item->size = size;
5975         memcpy(item->str, rb_string, size);
5976
5977         if (nested) {
5978                 data->bytes_alloc_nested += event_len;
5979                 data->bytes_written_nested += len;
5980                 data->events_nested++;
5981                 if (!data->min_size_nested || len < data->min_size_nested)
5982                         data->min_size_nested = len;
5983                 if (len > data->max_size_nested)
5984                         data->max_size_nested = len;
5985         } else {
5986                 data->bytes_alloc += event_len;
5987                 data->bytes_written += len;
5988                 data->events++;
5989                 if (!data->min_size || len < data->min_size)
5990                         data->max_size = len;
5991                 if (len > data->max_size)
5992                         data->max_size = len;
5993         }
5994
5995  out:
5996         ring_buffer_unlock_commit(data->buffer);
5997
5998         return 0;
5999 }
6000
6001 static __init int rb_test(void *arg)
6002 {
6003         struct rb_test_data *data = arg;
6004
6005         while (!kthread_should_stop()) {
6006                 rb_write_something(data, false);
6007                 data->cnt++;
6008
6009                 set_current_state(TASK_INTERRUPTIBLE);
6010                 /* Now sleep between a min of 100-300us and a max of 1ms */
6011                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6012         }
6013
6014         return 0;
6015 }
6016
6017 static __init void rb_ipi(void *ignore)
6018 {
6019         struct rb_test_data *data;
6020         int cpu = smp_processor_id();
6021
6022         data = &rb_data[cpu];
6023         rb_write_something(data, true);
6024 }
6025
6026 static __init int rb_hammer_test(void *arg)
6027 {
6028         while (!kthread_should_stop()) {
6029
6030                 /* Send an IPI to all cpus to write data! */
6031                 smp_call_function(rb_ipi, NULL, 1);
6032                 /* No sleep, but for non preempt, let others run */
6033                 schedule();
6034         }
6035
6036         return 0;
6037 }
6038
6039 static __init int test_ringbuffer(void)
6040 {
6041         struct task_struct *rb_hammer;
6042         struct trace_buffer *buffer;
6043         int cpu;
6044         int ret = 0;
6045
6046         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6047                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6048                 return 0;
6049         }
6050
6051         pr_info("Running ring buffer tests...\n");
6052
6053         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6054         if (WARN_ON(!buffer))
6055                 return 0;
6056
6057         /* Disable buffer so that threads can't write to it yet */
6058         ring_buffer_record_off(buffer);
6059
6060         for_each_online_cpu(cpu) {
6061                 rb_data[cpu].buffer = buffer;
6062                 rb_data[cpu].cpu = cpu;
6063                 rb_data[cpu].cnt = cpu;
6064                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6065                                                      cpu, "rbtester/%u");
6066                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6067                         pr_cont("FAILED\n");
6068                         ret = PTR_ERR(rb_threads[cpu]);
6069                         goto out_free;
6070                 }
6071         }
6072
6073         /* Now create the rb hammer! */
6074         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6075         if (WARN_ON(IS_ERR(rb_hammer))) {
6076                 pr_cont("FAILED\n");
6077                 ret = PTR_ERR(rb_hammer);
6078                 goto out_free;
6079         }
6080
6081         ring_buffer_record_on(buffer);
6082         /*
6083          * Show buffer is enabled before setting rb_test_started.
6084          * Yes there's a small race window where events could be
6085          * dropped and the thread wont catch it. But when a ring
6086          * buffer gets enabled, there will always be some kind of
6087          * delay before other CPUs see it. Thus, we don't care about
6088          * those dropped events. We care about events dropped after
6089          * the threads see that the buffer is active.
6090          */
6091         smp_wmb();
6092         rb_test_started = true;
6093
6094         set_current_state(TASK_INTERRUPTIBLE);
6095         /* Just run for 10 seconds */;
6096         schedule_timeout(10 * HZ);
6097
6098         kthread_stop(rb_hammer);
6099
6100  out_free:
6101         for_each_online_cpu(cpu) {
6102                 if (!rb_threads[cpu])
6103                         break;
6104                 kthread_stop(rb_threads[cpu]);
6105         }
6106         if (ret) {
6107                 ring_buffer_free(buffer);
6108                 return ret;
6109         }
6110
6111         /* Report! */
6112         pr_info("finished\n");
6113         for_each_online_cpu(cpu) {
6114                 struct ring_buffer_event *event;
6115                 struct rb_test_data *data = &rb_data[cpu];
6116                 struct rb_item *item;
6117                 unsigned long total_events;
6118                 unsigned long total_dropped;
6119                 unsigned long total_written;
6120                 unsigned long total_alloc;
6121                 unsigned long total_read = 0;
6122                 unsigned long total_size = 0;
6123                 unsigned long total_len = 0;
6124                 unsigned long total_lost = 0;
6125                 unsigned long lost;
6126                 int big_event_size;
6127                 int small_event_size;
6128
6129                 ret = -1;
6130
6131                 total_events = data->events + data->events_nested;
6132                 total_written = data->bytes_written + data->bytes_written_nested;
6133                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6134                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6135
6136                 big_event_size = data->max_size + data->max_size_nested;
6137                 small_event_size = data->min_size + data->min_size_nested;
6138
6139                 pr_info("CPU %d:\n", cpu);
6140                 pr_info("              events:    %ld\n", total_events);
6141                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6142                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6143                 pr_info("       written bytes:    %ld\n", total_written);
6144                 pr_info("       biggest event:    %d\n", big_event_size);
6145                 pr_info("      smallest event:    %d\n", small_event_size);
6146
6147                 if (RB_WARN_ON(buffer, total_dropped))
6148                         break;
6149
6150                 ret = 0;
6151
6152                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6153                         total_lost += lost;
6154                         item = ring_buffer_event_data(event);
6155                         total_len += ring_buffer_event_length(event);
6156                         total_size += item->size + sizeof(struct rb_item);
6157                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6158                                 pr_info("FAILED!\n");
6159                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6160                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6161                                 RB_WARN_ON(buffer, 1);
6162                                 ret = -1;
6163                                 break;
6164                         }
6165                         total_read++;
6166                 }
6167                 if (ret)
6168                         break;
6169
6170                 ret = -1;
6171
6172                 pr_info("         read events:   %ld\n", total_read);
6173                 pr_info("         lost events:   %ld\n", total_lost);
6174                 pr_info("        total events:   %ld\n", total_lost + total_read);
6175                 pr_info("  recorded len bytes:   %ld\n", total_len);
6176                 pr_info(" recorded size bytes:   %ld\n", total_size);
6177                 if (total_lost) {
6178                         pr_info(" With dropped events, record len and size may not match\n"
6179                                 " alloced and written from above\n");
6180                 } else {
6181                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6182                                        total_size != total_written))
6183                                 break;
6184                 }
6185                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6186                         break;
6187
6188                 ret = 0;
6189         }
6190         if (!ret)
6191                 pr_info("Ring buffer PASSED!\n");
6192
6193         ring_buffer_free(buffer);
6194         return 0;
6195 }
6196
6197 late_initcall(test_ringbuffer);
6198 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */