Merge tag 'for-v6.1-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[platform/kernel/linux-starfive.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline int rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 /*
358  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
359  * this issue out.
360  */
361 static void free_buffer_page(struct buffer_page *bpage)
362 {
363         free_page((unsigned long)bpage->page);
364         kfree(bpage);
365 }
366
367 /*
368  * We need to fit the time_stamp delta into 27 bits.
369  */
370 static inline int test_time_stamp(u64 delta)
371 {
372         if (delta & TS_DELTA_TEST)
373                 return 1;
374         return 0;
375 }
376
377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
378
379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
381
382 int ring_buffer_print_page_header(struct trace_seq *s)
383 {
384         struct buffer_data_page field;
385
386         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
387                          "offset:0;\tsize:%u;\tsigned:%u;\n",
388                          (unsigned int)sizeof(field.time_stamp),
389                          (unsigned int)is_signed_type(u64));
390
391         trace_seq_printf(s, "\tfield: local_t commit;\t"
392                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
393                          (unsigned int)offsetof(typeof(field), commit),
394                          (unsigned int)sizeof(field.commit),
395                          (unsigned int)is_signed_type(long));
396
397         trace_seq_printf(s, "\tfield: int overwrite;\t"
398                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
399                          (unsigned int)offsetof(typeof(field), commit),
400                          1,
401                          (unsigned int)is_signed_type(long));
402
403         trace_seq_printf(s, "\tfield: char data;\t"
404                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
405                          (unsigned int)offsetof(typeof(field), data),
406                          (unsigned int)BUF_PAGE_SIZE,
407                          (unsigned int)is_signed_type(char));
408
409         return !trace_seq_has_overflowed(s);
410 }
411
412 struct rb_irq_work {
413         struct irq_work                 work;
414         wait_queue_head_t               waiters;
415         wait_queue_head_t               full_waiters;
416         long                            wait_index;
417         bool                            waiters_pending;
418         bool                            full_waiters_pending;
419         bool                            wakeup_full;
420 };
421
422 /*
423  * Structure to hold event state and handle nested events.
424  */
425 struct rb_event_info {
426         u64                     ts;
427         u64                     delta;
428         u64                     before;
429         u64                     after;
430         unsigned long           length;
431         struct buffer_page      *tail_page;
432         int                     add_timestamp;
433 };
434
435 /*
436  * Used for the add_timestamp
437  *  NONE
438  *  EXTEND - wants a time extend
439  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
440  *  FORCE - force a full time stamp.
441  */
442 enum {
443         RB_ADD_STAMP_NONE               = 0,
444         RB_ADD_STAMP_EXTEND             = BIT(1),
445         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
446         RB_ADD_STAMP_FORCE              = BIT(3)
447 };
448 /*
449  * Used for which event context the event is in.
450  *  TRANSITION = 0
451  *  NMI     = 1
452  *  IRQ     = 2
453  *  SOFTIRQ = 3
454  *  NORMAL  = 4
455  *
456  * See trace_recursive_lock() comment below for more details.
457  */
458 enum {
459         RB_CTX_TRANSITION,
460         RB_CTX_NMI,
461         RB_CTX_IRQ,
462         RB_CTX_SOFTIRQ,
463         RB_CTX_NORMAL,
464         RB_CTX_MAX
465 };
466
467 #if BITS_PER_LONG == 32
468 #define RB_TIME_32
469 #endif
470
471 /* To test on 64 bit machines */
472 //#define RB_TIME_32
473
474 #ifdef RB_TIME_32
475
476 struct rb_time_struct {
477         local_t         cnt;
478         local_t         top;
479         local_t         bottom;
480         local_t         msb;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485         local64_t       time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489
490 #define MAX_NEST        5
491
492 /*
493  * head_page == tail_page && head == tail then buffer is empty.
494  */
495 struct ring_buffer_per_cpu {
496         int                             cpu;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         struct trace_buffer     *buffer;
500         raw_spinlock_t                  reader_lock;    /* serialize readers */
501         arch_spinlock_t                 lock;
502         struct lock_class_key           lock_key;
503         struct buffer_data_page         *free_page;
504         unsigned long                   nr_pages;
505         unsigned int                    current_context;
506         struct list_head                *pages;
507         struct buffer_page              *head_page;     /* read from head */
508         struct buffer_page              *tail_page;     /* write to tail */
509         struct buffer_page              *commit_page;   /* committed pages */
510         struct buffer_page              *reader_page;
511         unsigned long                   lost_events;
512         unsigned long                   last_overrun;
513         unsigned long                   nest;
514         local_t                         entries_bytes;
515         local_t                         entries;
516         local_t                         overrun;
517         local_t                         commit_overrun;
518         local_t                         dropped_events;
519         local_t                         committing;
520         local_t                         commits;
521         local_t                         pages_touched;
522         local_t                         pages_lost;
523         local_t                         pages_read;
524         long                            last_pages_touch;
525         size_t                          shortest_full;
526         unsigned long                   read;
527         unsigned long                   read_bytes;
528         rb_time_t                       write_stamp;
529         rb_time_t                       before_stamp;
530         u64                             event_stamp[MAX_NEST];
531         u64                             read_stamp;
532         /* ring buffer pages to update, > 0 to add, < 0 to remove */
533         long                            nr_pages_to_update;
534         struct list_head                new_pages; /* new pages to add */
535         struct work_struct              update_pages_work;
536         struct completion               update_done;
537
538         struct rb_irq_work              irq_work;
539 };
540
541 struct trace_buffer {
542         unsigned                        flags;
543         int                             cpus;
544         atomic_t                        record_disabled;
545         cpumask_var_t                   cpumask;
546
547         struct lock_class_key           *reader_lock_key;
548
549         struct mutex                    mutex;
550
551         struct ring_buffer_per_cpu      **buffers;
552
553         struct hlist_node               node;
554         u64                             (*clock)(void);
555
556         struct rb_irq_work              irq_work;
557         bool                            time_stamp_abs;
558 };
559
560 struct ring_buffer_iter {
561         struct ring_buffer_per_cpu      *cpu_buffer;
562         unsigned long                   head;
563         unsigned long                   next_event;
564         struct buffer_page              *head_page;
565         struct buffer_page              *cache_reader_page;
566         unsigned long                   cache_read;
567         u64                             read_stamp;
568         u64                             page_stamp;
569         struct ring_buffer_event        *event;
570         int                             missed_events;
571 };
572
573 #ifdef RB_TIME_32
574
575 /*
576  * On 32 bit machines, local64_t is very expensive. As the ring
577  * buffer doesn't need all the features of a true 64 bit atomic,
578  * on 32 bit, it uses these functions (64 still uses local64_t).
579  *
580  * For the ring buffer, 64 bit required operations for the time is
581  * the following:
582  *
583  *  - Reads may fail if it interrupted a modification of the time stamp.
584  *      It will succeed if it did not interrupt another write even if
585  *      the read itself is interrupted by a write.
586  *      It returns whether it was successful or not.
587  *
588  *  - Writes always succeed and will overwrite other writes and writes
589  *      that were done by events interrupting the current write.
590  *
591  *  - A write followed by a read of the same time stamp will always succeed,
592  *      but may not contain the same value.
593  *
594  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
595  *      Other than that, it acts like a normal cmpxchg.
596  *
597  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
598  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
599  *
600  * The two most significant bits of each half holds a 2 bit counter (0-3).
601  * Each update will increment this counter by one.
602  * When reading the top and bottom, if the two counter bits match then the
603  *  top and bottom together make a valid 60 bit number.
604  */
605 #define RB_TIME_SHIFT   30
606 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
607 #define RB_TIME_MSB_SHIFT        60
608
609 static inline int rb_time_cnt(unsigned long val)
610 {
611         return (val >> RB_TIME_SHIFT) & 3;
612 }
613
614 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
615 {
616         u64 val;
617
618         val = top & RB_TIME_VAL_MASK;
619         val <<= RB_TIME_SHIFT;
620         val |= bottom & RB_TIME_VAL_MASK;
621
622         return val;
623 }
624
625 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
626 {
627         unsigned long top, bottom, msb;
628         unsigned long c;
629
630         /*
631          * If the read is interrupted by a write, then the cnt will
632          * be different. Loop until both top and bottom have been read
633          * without interruption.
634          */
635         do {
636                 c = local_read(&t->cnt);
637                 top = local_read(&t->top);
638                 bottom = local_read(&t->bottom);
639                 msb = local_read(&t->msb);
640         } while (c != local_read(&t->cnt));
641
642         *cnt = rb_time_cnt(top);
643
644         /* If top and bottom counts don't match, this interrupted a write */
645         if (*cnt != rb_time_cnt(bottom))
646                 return false;
647
648         /* The shift to msb will lose its cnt bits */
649         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
650         return true;
651 }
652
653 static bool rb_time_read(rb_time_t *t, u64 *ret)
654 {
655         unsigned long cnt;
656
657         return __rb_time_read(t, ret, &cnt);
658 }
659
660 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
661 {
662         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
663 }
664
665 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
666                                  unsigned long *msb)
667 {
668         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
669         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
670         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
671 }
672
673 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
674 {
675         val = rb_time_val_cnt(val, cnt);
676         local_set(t, val);
677 }
678
679 static void rb_time_set(rb_time_t *t, u64 val)
680 {
681         unsigned long cnt, top, bottom, msb;
682
683         rb_time_split(val, &top, &bottom, &msb);
684
685         /* Writes always succeed with a valid number even if it gets interrupted. */
686         do {
687                 cnt = local_inc_return(&t->cnt);
688                 rb_time_val_set(&t->top, top, cnt);
689                 rb_time_val_set(&t->bottom, bottom, cnt);
690                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
691         } while (cnt != local_read(&t->cnt));
692 }
693
694 static inline bool
695 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
696 {
697         unsigned long ret;
698
699         ret = local_cmpxchg(l, expect, set);
700         return ret == expect;
701 }
702
703 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
704 {
705         unsigned long cnt, top, bottom, msb;
706         unsigned long cnt2, top2, bottom2, msb2;
707         u64 val;
708
709         /* The cmpxchg always fails if it interrupted an update */
710          if (!__rb_time_read(t, &val, &cnt2))
711                  return false;
712
713          if (val != expect)
714                  return false;
715
716          cnt = local_read(&t->cnt);
717          if ((cnt & 3) != cnt2)
718                  return false;
719
720          cnt2 = cnt + 1;
721
722          rb_time_split(val, &top, &bottom, &msb);
723          top = rb_time_val_cnt(top, cnt);
724          bottom = rb_time_val_cnt(bottom, cnt);
725
726          rb_time_split(set, &top2, &bottom2, &msb2);
727          top2 = rb_time_val_cnt(top2, cnt2);
728          bottom2 = rb_time_val_cnt(bottom2, cnt2);
729
730         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
731                 return false;
732         if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
733                 return false;
734         if (!rb_time_read_cmpxchg(&t->top, top, top2))
735                 return false;
736         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
737                 return false;
738         return true;
739 }
740
741 #else /* 64 bits */
742
743 /* local64_t always succeeds */
744
745 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
746 {
747         *ret = local64_read(&t->time);
748         return true;
749 }
750 static void rb_time_set(rb_time_t *t, u64 val)
751 {
752         local64_set(&t->time, val);
753 }
754
755 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
756 {
757         u64 val;
758         val = local64_cmpxchg(&t->time, expect, set);
759         return val == expect;
760 }
761 #endif
762
763 /*
764  * Enable this to make sure that the event passed to
765  * ring_buffer_event_time_stamp() is not committed and also
766  * is on the buffer that it passed in.
767  */
768 //#define RB_VERIFY_EVENT
769 #ifdef RB_VERIFY_EVENT
770 static struct list_head *rb_list_head(struct list_head *list);
771 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
772                          void *event)
773 {
774         struct buffer_page *page = cpu_buffer->commit_page;
775         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
776         struct list_head *next;
777         long commit, write;
778         unsigned long addr = (unsigned long)event;
779         bool done = false;
780         int stop = 0;
781
782         /* Make sure the event exists and is not committed yet */
783         do {
784                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
785                         done = true;
786                 commit = local_read(&page->page->commit);
787                 write = local_read(&page->write);
788                 if (addr >= (unsigned long)&page->page->data[commit] &&
789                     addr < (unsigned long)&page->page->data[write])
790                         return;
791
792                 next = rb_list_head(page->list.next);
793                 page = list_entry(next, struct buffer_page, list);
794         } while (!done);
795         WARN_ON_ONCE(1);
796 }
797 #else
798 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
799                          void *event)
800 {
801 }
802 #endif
803
804 /*
805  * The absolute time stamp drops the 5 MSBs and some clocks may
806  * require them. The rb_fix_abs_ts() will take a previous full
807  * time stamp, and add the 5 MSB of that time stamp on to the
808  * saved absolute time stamp. Then they are compared in case of
809  * the unlikely event that the latest time stamp incremented
810  * the 5 MSB.
811  */
812 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
813 {
814         if (save_ts & TS_MSB) {
815                 abs |= save_ts & TS_MSB;
816                 /* Check for overflow */
817                 if (unlikely(abs < save_ts))
818                         abs += 1ULL << 59;
819         }
820         return abs;
821 }
822
823 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
824
825 /**
826  * ring_buffer_event_time_stamp - return the event's current time stamp
827  * @buffer: The buffer that the event is on
828  * @event: the event to get the time stamp of
829  *
830  * Note, this must be called after @event is reserved, and before it is
831  * committed to the ring buffer. And must be called from the same
832  * context where the event was reserved (normal, softirq, irq, etc).
833  *
834  * Returns the time stamp associated with the current event.
835  * If the event has an extended time stamp, then that is used as
836  * the time stamp to return.
837  * In the highly unlikely case that the event was nested more than
838  * the max nesting, then the write_stamp of the buffer is returned,
839  * otherwise  current time is returned, but that really neither of
840  * the last two cases should ever happen.
841  */
842 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
843                                  struct ring_buffer_event *event)
844 {
845         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
846         unsigned int nest;
847         u64 ts;
848
849         /* If the event includes an absolute time, then just use that */
850         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
851                 ts = rb_event_time_stamp(event);
852                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
853         }
854
855         nest = local_read(&cpu_buffer->committing);
856         verify_event(cpu_buffer, event);
857         if (WARN_ON_ONCE(!nest))
858                 goto fail;
859
860         /* Read the current saved nesting level time stamp */
861         if (likely(--nest < MAX_NEST))
862                 return cpu_buffer->event_stamp[nest];
863
864         /* Shouldn't happen, warn if it does */
865         WARN_ONCE(1, "nest (%d) greater than max", nest);
866
867  fail:
868         /* Can only fail on 32 bit */
869         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
870                 /* Screw it, just read the current time */
871                 ts = rb_time_stamp(cpu_buffer->buffer);
872
873         return ts;
874 }
875
876 /**
877  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
878  * @buffer: The ring_buffer to get the number of pages from
879  * @cpu: The cpu of the ring_buffer to get the number of pages from
880  *
881  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
882  */
883 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
884 {
885         return buffer->buffers[cpu]->nr_pages;
886 }
887
888 /**
889  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
890  * @buffer: The ring_buffer to get the number of pages from
891  * @cpu: The cpu of the ring_buffer to get the number of pages from
892  *
893  * Returns the number of pages that have content in the ring buffer.
894  */
895 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
896 {
897         size_t read;
898         size_t lost;
899         size_t cnt;
900
901         read = local_read(&buffer->buffers[cpu]->pages_read);
902         lost = local_read(&buffer->buffers[cpu]->pages_lost);
903         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
904
905         if (WARN_ON_ONCE(cnt < lost))
906                 return 0;
907
908         cnt -= lost;
909
910         /* The reader can read an empty page, but not more than that */
911         if (cnt < read) {
912                 WARN_ON_ONCE(read > cnt + 1);
913                 return 0;
914         }
915
916         return cnt - read;
917 }
918
919 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
920 {
921         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
922         size_t nr_pages;
923         size_t dirty;
924
925         nr_pages = cpu_buffer->nr_pages;
926         if (!nr_pages || !full)
927                 return true;
928
929         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
930
931         return (dirty * 100) > (full * nr_pages);
932 }
933
934 /*
935  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
936  *
937  * Schedules a delayed work to wake up any task that is blocked on the
938  * ring buffer waiters queue.
939  */
940 static void rb_wake_up_waiters(struct irq_work *work)
941 {
942         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
943
944         wake_up_all(&rbwork->waiters);
945         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
946                 rbwork->wakeup_full = false;
947                 rbwork->full_waiters_pending = false;
948                 wake_up_all(&rbwork->full_waiters);
949         }
950 }
951
952 /**
953  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
954  * @buffer: The ring buffer to wake waiters on
955  *
956  * In the case of a file that represents a ring buffer is closing,
957  * it is prudent to wake up any waiters that are on this.
958  */
959 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
960 {
961         struct ring_buffer_per_cpu *cpu_buffer;
962         struct rb_irq_work *rbwork;
963
964         if (!buffer)
965                 return;
966
967         if (cpu == RING_BUFFER_ALL_CPUS) {
968
969                 /* Wake up individual ones too. One level recursion */
970                 for_each_buffer_cpu(buffer, cpu)
971                         ring_buffer_wake_waiters(buffer, cpu);
972
973                 rbwork = &buffer->irq_work;
974         } else {
975                 if (WARN_ON_ONCE(!buffer->buffers))
976                         return;
977                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
978                         return;
979
980                 cpu_buffer = buffer->buffers[cpu];
981                 /* The CPU buffer may not have been initialized yet */
982                 if (!cpu_buffer)
983                         return;
984                 rbwork = &cpu_buffer->irq_work;
985         }
986
987         rbwork->wait_index++;
988         /* make sure the waiters see the new index */
989         smp_wmb();
990
991         rb_wake_up_waiters(&rbwork->work);
992 }
993
994 /**
995  * ring_buffer_wait - wait for input to the ring buffer
996  * @buffer: buffer to wait on
997  * @cpu: the cpu buffer to wait on
998  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
999  *
1000  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1001  * as data is added to any of the @buffer's cpu buffers. Otherwise
1002  * it will wait for data to be added to a specific cpu buffer.
1003  */
1004 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1005 {
1006         struct ring_buffer_per_cpu *cpu_buffer;
1007         DEFINE_WAIT(wait);
1008         struct rb_irq_work *work;
1009         long wait_index;
1010         int ret = 0;
1011
1012         /*
1013          * Depending on what the caller is waiting for, either any
1014          * data in any cpu buffer, or a specific buffer, put the
1015          * caller on the appropriate wait queue.
1016          */
1017         if (cpu == RING_BUFFER_ALL_CPUS) {
1018                 work = &buffer->irq_work;
1019                 /* Full only makes sense on per cpu reads */
1020                 full = 0;
1021         } else {
1022                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1023                         return -ENODEV;
1024                 cpu_buffer = buffer->buffers[cpu];
1025                 work = &cpu_buffer->irq_work;
1026         }
1027
1028         wait_index = READ_ONCE(work->wait_index);
1029
1030         while (true) {
1031                 if (full)
1032                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1033                 else
1034                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1035
1036                 /*
1037                  * The events can happen in critical sections where
1038                  * checking a work queue can cause deadlocks.
1039                  * After adding a task to the queue, this flag is set
1040                  * only to notify events to try to wake up the queue
1041                  * using irq_work.
1042                  *
1043                  * We don't clear it even if the buffer is no longer
1044                  * empty. The flag only causes the next event to run
1045                  * irq_work to do the work queue wake up. The worse
1046                  * that can happen if we race with !trace_empty() is that
1047                  * an event will cause an irq_work to try to wake up
1048                  * an empty queue.
1049                  *
1050                  * There's no reason to protect this flag either, as
1051                  * the work queue and irq_work logic will do the necessary
1052                  * synchronization for the wake ups. The only thing
1053                  * that is necessary is that the wake up happens after
1054                  * a task has been queued. It's OK for spurious wake ups.
1055                  */
1056                 if (full)
1057                         work->full_waiters_pending = true;
1058                 else
1059                         work->waiters_pending = true;
1060
1061                 if (signal_pending(current)) {
1062                         ret = -EINTR;
1063                         break;
1064                 }
1065
1066                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1067                         break;
1068
1069                 if (cpu != RING_BUFFER_ALL_CPUS &&
1070                     !ring_buffer_empty_cpu(buffer, cpu)) {
1071                         unsigned long flags;
1072                         bool pagebusy;
1073                         bool done;
1074
1075                         if (!full)
1076                                 break;
1077
1078                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1079                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1080                         done = !pagebusy && full_hit(buffer, cpu, full);
1081
1082                         if (!cpu_buffer->shortest_full ||
1083                             cpu_buffer->shortest_full > full)
1084                                 cpu_buffer->shortest_full = full;
1085                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1086                         if (done)
1087                                 break;
1088                 }
1089
1090                 schedule();
1091
1092                 /* Make sure to see the new wait index */
1093                 smp_rmb();
1094                 if (wait_index != work->wait_index)
1095                         break;
1096         }
1097
1098         if (full)
1099                 finish_wait(&work->full_waiters, &wait);
1100         else
1101                 finish_wait(&work->waiters, &wait);
1102
1103         return ret;
1104 }
1105
1106 /**
1107  * ring_buffer_poll_wait - poll on buffer input
1108  * @buffer: buffer to wait on
1109  * @cpu: the cpu buffer to wait on
1110  * @filp: the file descriptor
1111  * @poll_table: The poll descriptor
1112  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1113  *
1114  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1115  * as data is added to any of the @buffer's cpu buffers. Otherwise
1116  * it will wait for data to be added to a specific cpu buffer.
1117  *
1118  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1119  * zero otherwise.
1120  */
1121 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1122                           struct file *filp, poll_table *poll_table, int full)
1123 {
1124         struct ring_buffer_per_cpu *cpu_buffer;
1125         struct rb_irq_work *work;
1126
1127         if (cpu == RING_BUFFER_ALL_CPUS) {
1128                 work = &buffer->irq_work;
1129                 full = 0;
1130         } else {
1131                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1132                         return -EINVAL;
1133
1134                 cpu_buffer = buffer->buffers[cpu];
1135                 work = &cpu_buffer->irq_work;
1136         }
1137
1138         if (full) {
1139                 poll_wait(filp, &work->full_waiters, poll_table);
1140                 work->full_waiters_pending = true;
1141         } else {
1142                 poll_wait(filp, &work->waiters, poll_table);
1143                 work->waiters_pending = true;
1144         }
1145
1146         /*
1147          * There's a tight race between setting the waiters_pending and
1148          * checking if the ring buffer is empty.  Once the waiters_pending bit
1149          * is set, the next event will wake the task up, but we can get stuck
1150          * if there's only a single event in.
1151          *
1152          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1153          * but adding a memory barrier to all events will cause too much of a
1154          * performance hit in the fast path.  We only need a memory barrier when
1155          * the buffer goes from empty to having content.  But as this race is
1156          * extremely small, and it's not a problem if another event comes in, we
1157          * will fix it later.
1158          */
1159         smp_mb();
1160
1161         if (full)
1162                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1163
1164         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1165             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1166                 return EPOLLIN | EPOLLRDNORM;
1167         return 0;
1168 }
1169
1170 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1171 #define RB_WARN_ON(b, cond)                                             \
1172         ({                                                              \
1173                 int _____ret = unlikely(cond);                          \
1174                 if (_____ret) {                                         \
1175                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1176                                 struct ring_buffer_per_cpu *__b =       \
1177                                         (void *)b;                      \
1178                                 atomic_inc(&__b->buffer->record_disabled); \
1179                         } else                                          \
1180                                 atomic_inc(&b->record_disabled);        \
1181                         WARN_ON(1);                                     \
1182                 }                                                       \
1183                 _____ret;                                               \
1184         })
1185
1186 /* Up this if you want to test the TIME_EXTENTS and normalization */
1187 #define DEBUG_SHIFT 0
1188
1189 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1190 {
1191         u64 ts;
1192
1193         /* Skip retpolines :-( */
1194         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1195                 ts = trace_clock_local();
1196         else
1197                 ts = buffer->clock();
1198
1199         /* shift to debug/test normalization and TIME_EXTENTS */
1200         return ts << DEBUG_SHIFT;
1201 }
1202
1203 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1204 {
1205         u64 time;
1206
1207         preempt_disable_notrace();
1208         time = rb_time_stamp(buffer);
1209         preempt_enable_notrace();
1210
1211         return time;
1212 }
1213 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1214
1215 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1216                                       int cpu, u64 *ts)
1217 {
1218         /* Just stupid testing the normalize function and deltas */
1219         *ts >>= DEBUG_SHIFT;
1220 }
1221 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1222
1223 /*
1224  * Making the ring buffer lockless makes things tricky.
1225  * Although writes only happen on the CPU that they are on,
1226  * and they only need to worry about interrupts. Reads can
1227  * happen on any CPU.
1228  *
1229  * The reader page is always off the ring buffer, but when the
1230  * reader finishes with a page, it needs to swap its page with
1231  * a new one from the buffer. The reader needs to take from
1232  * the head (writes go to the tail). But if a writer is in overwrite
1233  * mode and wraps, it must push the head page forward.
1234  *
1235  * Here lies the problem.
1236  *
1237  * The reader must be careful to replace only the head page, and
1238  * not another one. As described at the top of the file in the
1239  * ASCII art, the reader sets its old page to point to the next
1240  * page after head. It then sets the page after head to point to
1241  * the old reader page. But if the writer moves the head page
1242  * during this operation, the reader could end up with the tail.
1243  *
1244  * We use cmpxchg to help prevent this race. We also do something
1245  * special with the page before head. We set the LSB to 1.
1246  *
1247  * When the writer must push the page forward, it will clear the
1248  * bit that points to the head page, move the head, and then set
1249  * the bit that points to the new head page.
1250  *
1251  * We also don't want an interrupt coming in and moving the head
1252  * page on another writer. Thus we use the second LSB to catch
1253  * that too. Thus:
1254  *
1255  * head->list->prev->next        bit 1          bit 0
1256  *                              -------        -------
1257  * Normal page                     0              0
1258  * Points to head page             0              1
1259  * New head page                   1              0
1260  *
1261  * Note we can not trust the prev pointer of the head page, because:
1262  *
1263  * +----+       +-----+        +-----+
1264  * |    |------>|  T  |---X--->|  N  |
1265  * |    |<------|     |        |     |
1266  * +----+       +-----+        +-----+
1267  *   ^                           ^ |
1268  *   |          +-----+          | |
1269  *   +----------|  R  |----------+ |
1270  *              |     |<-----------+
1271  *              +-----+
1272  *
1273  * Key:  ---X-->  HEAD flag set in pointer
1274  *         T      Tail page
1275  *         R      Reader page
1276  *         N      Next page
1277  *
1278  * (see __rb_reserve_next() to see where this happens)
1279  *
1280  *  What the above shows is that the reader just swapped out
1281  *  the reader page with a page in the buffer, but before it
1282  *  could make the new header point back to the new page added
1283  *  it was preempted by a writer. The writer moved forward onto
1284  *  the new page added by the reader and is about to move forward
1285  *  again.
1286  *
1287  *  You can see, it is legitimate for the previous pointer of
1288  *  the head (or any page) not to point back to itself. But only
1289  *  temporarily.
1290  */
1291
1292 #define RB_PAGE_NORMAL          0UL
1293 #define RB_PAGE_HEAD            1UL
1294 #define RB_PAGE_UPDATE          2UL
1295
1296
1297 #define RB_FLAG_MASK            3UL
1298
1299 /* PAGE_MOVED is not part of the mask */
1300 #define RB_PAGE_MOVED           4UL
1301
1302 /*
1303  * rb_list_head - remove any bit
1304  */
1305 static struct list_head *rb_list_head(struct list_head *list)
1306 {
1307         unsigned long val = (unsigned long)list;
1308
1309         return (struct list_head *)(val & ~RB_FLAG_MASK);
1310 }
1311
1312 /*
1313  * rb_is_head_page - test if the given page is the head page
1314  *
1315  * Because the reader may move the head_page pointer, we can
1316  * not trust what the head page is (it may be pointing to
1317  * the reader page). But if the next page is a header page,
1318  * its flags will be non zero.
1319  */
1320 static inline int
1321 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1322 {
1323         unsigned long val;
1324
1325         val = (unsigned long)list->next;
1326
1327         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1328                 return RB_PAGE_MOVED;
1329
1330         return val & RB_FLAG_MASK;
1331 }
1332
1333 /*
1334  * rb_is_reader_page
1335  *
1336  * The unique thing about the reader page, is that, if the
1337  * writer is ever on it, the previous pointer never points
1338  * back to the reader page.
1339  */
1340 static bool rb_is_reader_page(struct buffer_page *page)
1341 {
1342         struct list_head *list = page->list.prev;
1343
1344         return rb_list_head(list->next) != &page->list;
1345 }
1346
1347 /*
1348  * rb_set_list_to_head - set a list_head to be pointing to head.
1349  */
1350 static void rb_set_list_to_head(struct list_head *list)
1351 {
1352         unsigned long *ptr;
1353
1354         ptr = (unsigned long *)&list->next;
1355         *ptr |= RB_PAGE_HEAD;
1356         *ptr &= ~RB_PAGE_UPDATE;
1357 }
1358
1359 /*
1360  * rb_head_page_activate - sets up head page
1361  */
1362 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1363 {
1364         struct buffer_page *head;
1365
1366         head = cpu_buffer->head_page;
1367         if (!head)
1368                 return;
1369
1370         /*
1371          * Set the previous list pointer to have the HEAD flag.
1372          */
1373         rb_set_list_to_head(head->list.prev);
1374 }
1375
1376 static void rb_list_head_clear(struct list_head *list)
1377 {
1378         unsigned long *ptr = (unsigned long *)&list->next;
1379
1380         *ptr &= ~RB_FLAG_MASK;
1381 }
1382
1383 /*
1384  * rb_head_page_deactivate - clears head page ptr (for free list)
1385  */
1386 static void
1387 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1388 {
1389         struct list_head *hd;
1390
1391         /* Go through the whole list and clear any pointers found. */
1392         rb_list_head_clear(cpu_buffer->pages);
1393
1394         list_for_each(hd, cpu_buffer->pages)
1395                 rb_list_head_clear(hd);
1396 }
1397
1398 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1399                             struct buffer_page *head,
1400                             struct buffer_page *prev,
1401                             int old_flag, int new_flag)
1402 {
1403         struct list_head *list;
1404         unsigned long val = (unsigned long)&head->list;
1405         unsigned long ret;
1406
1407         list = &prev->list;
1408
1409         val &= ~RB_FLAG_MASK;
1410
1411         ret = cmpxchg((unsigned long *)&list->next,
1412                       val | old_flag, val | new_flag);
1413
1414         /* check if the reader took the page */
1415         if ((ret & ~RB_FLAG_MASK) != val)
1416                 return RB_PAGE_MOVED;
1417
1418         return ret & RB_FLAG_MASK;
1419 }
1420
1421 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1422                                    struct buffer_page *head,
1423                                    struct buffer_page *prev,
1424                                    int old_flag)
1425 {
1426         return rb_head_page_set(cpu_buffer, head, prev,
1427                                 old_flag, RB_PAGE_UPDATE);
1428 }
1429
1430 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1431                                  struct buffer_page *head,
1432                                  struct buffer_page *prev,
1433                                  int old_flag)
1434 {
1435         return rb_head_page_set(cpu_buffer, head, prev,
1436                                 old_flag, RB_PAGE_HEAD);
1437 }
1438
1439 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1440                                    struct buffer_page *head,
1441                                    struct buffer_page *prev,
1442                                    int old_flag)
1443 {
1444         return rb_head_page_set(cpu_buffer, head, prev,
1445                                 old_flag, RB_PAGE_NORMAL);
1446 }
1447
1448 static inline void rb_inc_page(struct buffer_page **bpage)
1449 {
1450         struct list_head *p = rb_list_head((*bpage)->list.next);
1451
1452         *bpage = list_entry(p, struct buffer_page, list);
1453 }
1454
1455 static struct buffer_page *
1456 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1457 {
1458         struct buffer_page *head;
1459         struct buffer_page *page;
1460         struct list_head *list;
1461         int i;
1462
1463         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1464                 return NULL;
1465
1466         /* sanity check */
1467         list = cpu_buffer->pages;
1468         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1469                 return NULL;
1470
1471         page = head = cpu_buffer->head_page;
1472         /*
1473          * It is possible that the writer moves the header behind
1474          * where we started, and we miss in one loop.
1475          * A second loop should grab the header, but we'll do
1476          * three loops just because I'm paranoid.
1477          */
1478         for (i = 0; i < 3; i++) {
1479                 do {
1480                         if (rb_is_head_page(page, page->list.prev)) {
1481                                 cpu_buffer->head_page = page;
1482                                 return page;
1483                         }
1484                         rb_inc_page(&page);
1485                 } while (page != head);
1486         }
1487
1488         RB_WARN_ON(cpu_buffer, 1);
1489
1490         return NULL;
1491 }
1492
1493 static int rb_head_page_replace(struct buffer_page *old,
1494                                 struct buffer_page *new)
1495 {
1496         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1497         unsigned long val;
1498         unsigned long ret;
1499
1500         val = *ptr & ~RB_FLAG_MASK;
1501         val |= RB_PAGE_HEAD;
1502
1503         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1504
1505         return ret == val;
1506 }
1507
1508 /*
1509  * rb_tail_page_update - move the tail page forward
1510  */
1511 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1512                                struct buffer_page *tail_page,
1513                                struct buffer_page *next_page)
1514 {
1515         unsigned long old_entries;
1516         unsigned long old_write;
1517
1518         /*
1519          * The tail page now needs to be moved forward.
1520          *
1521          * We need to reset the tail page, but without messing
1522          * with possible erasing of data brought in by interrupts
1523          * that have moved the tail page and are currently on it.
1524          *
1525          * We add a counter to the write field to denote this.
1526          */
1527         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1528         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1529
1530         local_inc(&cpu_buffer->pages_touched);
1531         /*
1532          * Just make sure we have seen our old_write and synchronize
1533          * with any interrupts that come in.
1534          */
1535         barrier();
1536
1537         /*
1538          * If the tail page is still the same as what we think
1539          * it is, then it is up to us to update the tail
1540          * pointer.
1541          */
1542         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1543                 /* Zero the write counter */
1544                 unsigned long val = old_write & ~RB_WRITE_MASK;
1545                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1546
1547                 /*
1548                  * This will only succeed if an interrupt did
1549                  * not come in and change it. In which case, we
1550                  * do not want to modify it.
1551                  *
1552                  * We add (void) to let the compiler know that we do not care
1553                  * about the return value of these functions. We use the
1554                  * cmpxchg to only update if an interrupt did not already
1555                  * do it for us. If the cmpxchg fails, we don't care.
1556                  */
1557                 (void)local_cmpxchg(&next_page->write, old_write, val);
1558                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1559
1560                 /*
1561                  * No need to worry about races with clearing out the commit.
1562                  * it only can increment when a commit takes place. But that
1563                  * only happens in the outer most nested commit.
1564                  */
1565                 local_set(&next_page->page->commit, 0);
1566
1567                 /* Again, either we update tail_page or an interrupt does */
1568                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1569         }
1570 }
1571
1572 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1573                           struct buffer_page *bpage)
1574 {
1575         unsigned long val = (unsigned long)bpage;
1576
1577         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1578                 return 1;
1579
1580         return 0;
1581 }
1582
1583 /**
1584  * rb_check_list - make sure a pointer to a list has the last bits zero
1585  */
1586 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1587                          struct list_head *list)
1588 {
1589         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1590                 return 1;
1591         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1592                 return 1;
1593         return 0;
1594 }
1595
1596 /**
1597  * rb_check_pages - integrity check of buffer pages
1598  * @cpu_buffer: CPU buffer with pages to test
1599  *
1600  * As a safety measure we check to make sure the data pages have not
1601  * been corrupted.
1602  */
1603 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1604 {
1605         struct list_head *head = cpu_buffer->pages;
1606         struct buffer_page *bpage, *tmp;
1607
1608         /* Reset the head page if it exists */
1609         if (cpu_buffer->head_page)
1610                 rb_set_head_page(cpu_buffer);
1611
1612         rb_head_page_deactivate(cpu_buffer);
1613
1614         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1615                 return -1;
1616         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1617                 return -1;
1618
1619         if (rb_check_list(cpu_buffer, head))
1620                 return -1;
1621
1622         list_for_each_entry_safe(bpage, tmp, head, list) {
1623                 if (RB_WARN_ON(cpu_buffer,
1624                                bpage->list.next->prev != &bpage->list))
1625                         return -1;
1626                 if (RB_WARN_ON(cpu_buffer,
1627                                bpage->list.prev->next != &bpage->list))
1628                         return -1;
1629                 if (rb_check_list(cpu_buffer, &bpage->list))
1630                         return -1;
1631         }
1632
1633         rb_head_page_activate(cpu_buffer);
1634
1635         return 0;
1636 }
1637
1638 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1639                 long nr_pages, struct list_head *pages)
1640 {
1641         struct buffer_page *bpage, *tmp;
1642         bool user_thread = current->mm != NULL;
1643         gfp_t mflags;
1644         long i;
1645
1646         /*
1647          * Check if the available memory is there first.
1648          * Note, si_mem_available() only gives us a rough estimate of available
1649          * memory. It may not be accurate. But we don't care, we just want
1650          * to prevent doing any allocation when it is obvious that it is
1651          * not going to succeed.
1652          */
1653         i = si_mem_available();
1654         if (i < nr_pages)
1655                 return -ENOMEM;
1656
1657         /*
1658          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1659          * gracefully without invoking oom-killer and the system is not
1660          * destabilized.
1661          */
1662         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1663
1664         /*
1665          * If a user thread allocates too much, and si_mem_available()
1666          * reports there's enough memory, even though there is not.
1667          * Make sure the OOM killer kills this thread. This can happen
1668          * even with RETRY_MAYFAIL because another task may be doing
1669          * an allocation after this task has taken all memory.
1670          * This is the task the OOM killer needs to take out during this
1671          * loop, even if it was triggered by an allocation somewhere else.
1672          */
1673         if (user_thread)
1674                 set_current_oom_origin();
1675         for (i = 0; i < nr_pages; i++) {
1676                 struct page *page;
1677
1678                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1679                                     mflags, cpu_to_node(cpu_buffer->cpu));
1680                 if (!bpage)
1681                         goto free_pages;
1682
1683                 rb_check_bpage(cpu_buffer, bpage);
1684
1685                 list_add(&bpage->list, pages);
1686
1687                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1688                 if (!page)
1689                         goto free_pages;
1690                 bpage->page = page_address(page);
1691                 rb_init_page(bpage->page);
1692
1693                 if (user_thread && fatal_signal_pending(current))
1694                         goto free_pages;
1695         }
1696         if (user_thread)
1697                 clear_current_oom_origin();
1698
1699         return 0;
1700
1701 free_pages:
1702         list_for_each_entry_safe(bpage, tmp, pages, list) {
1703                 list_del_init(&bpage->list);
1704                 free_buffer_page(bpage);
1705         }
1706         if (user_thread)
1707                 clear_current_oom_origin();
1708
1709         return -ENOMEM;
1710 }
1711
1712 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1713                              unsigned long nr_pages)
1714 {
1715         LIST_HEAD(pages);
1716
1717         WARN_ON(!nr_pages);
1718
1719         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1720                 return -ENOMEM;
1721
1722         /*
1723          * The ring buffer page list is a circular list that does not
1724          * start and end with a list head. All page list items point to
1725          * other pages.
1726          */
1727         cpu_buffer->pages = pages.next;
1728         list_del(&pages);
1729
1730         cpu_buffer->nr_pages = nr_pages;
1731
1732         rb_check_pages(cpu_buffer);
1733
1734         return 0;
1735 }
1736
1737 static struct ring_buffer_per_cpu *
1738 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1739 {
1740         struct ring_buffer_per_cpu *cpu_buffer;
1741         struct buffer_page *bpage;
1742         struct page *page;
1743         int ret;
1744
1745         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1746                                   GFP_KERNEL, cpu_to_node(cpu));
1747         if (!cpu_buffer)
1748                 return NULL;
1749
1750         cpu_buffer->cpu = cpu;
1751         cpu_buffer->buffer = buffer;
1752         raw_spin_lock_init(&cpu_buffer->reader_lock);
1753         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1754         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1755         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1756         init_completion(&cpu_buffer->update_done);
1757         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1758         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1759         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1760
1761         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1762                             GFP_KERNEL, cpu_to_node(cpu));
1763         if (!bpage)
1764                 goto fail_free_buffer;
1765
1766         rb_check_bpage(cpu_buffer, bpage);
1767
1768         cpu_buffer->reader_page = bpage;
1769         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1770         if (!page)
1771                 goto fail_free_reader;
1772         bpage->page = page_address(page);
1773         rb_init_page(bpage->page);
1774
1775         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1776         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1777
1778         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1779         if (ret < 0)
1780                 goto fail_free_reader;
1781
1782         cpu_buffer->head_page
1783                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1784         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1785
1786         rb_head_page_activate(cpu_buffer);
1787
1788         return cpu_buffer;
1789
1790  fail_free_reader:
1791         free_buffer_page(cpu_buffer->reader_page);
1792
1793  fail_free_buffer:
1794         kfree(cpu_buffer);
1795         return NULL;
1796 }
1797
1798 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1799 {
1800         struct list_head *head = cpu_buffer->pages;
1801         struct buffer_page *bpage, *tmp;
1802
1803         free_buffer_page(cpu_buffer->reader_page);
1804
1805         if (head) {
1806                 rb_head_page_deactivate(cpu_buffer);
1807
1808                 list_for_each_entry_safe(bpage, tmp, head, list) {
1809                         list_del_init(&bpage->list);
1810                         free_buffer_page(bpage);
1811                 }
1812                 bpage = list_entry(head, struct buffer_page, list);
1813                 free_buffer_page(bpage);
1814         }
1815
1816         kfree(cpu_buffer);
1817 }
1818
1819 /**
1820  * __ring_buffer_alloc - allocate a new ring_buffer
1821  * @size: the size in bytes per cpu that is needed.
1822  * @flags: attributes to set for the ring buffer.
1823  * @key: ring buffer reader_lock_key.
1824  *
1825  * Currently the only flag that is available is the RB_FL_OVERWRITE
1826  * flag. This flag means that the buffer will overwrite old data
1827  * when the buffer wraps. If this flag is not set, the buffer will
1828  * drop data when the tail hits the head.
1829  */
1830 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1831                                         struct lock_class_key *key)
1832 {
1833         struct trace_buffer *buffer;
1834         long nr_pages;
1835         int bsize;
1836         int cpu;
1837         int ret;
1838
1839         /* keep it in its own cache line */
1840         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1841                          GFP_KERNEL);
1842         if (!buffer)
1843                 return NULL;
1844
1845         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1846                 goto fail_free_buffer;
1847
1848         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1849         buffer->flags = flags;
1850         buffer->clock = trace_clock_local;
1851         buffer->reader_lock_key = key;
1852
1853         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1854         init_waitqueue_head(&buffer->irq_work.waiters);
1855
1856         /* need at least two pages */
1857         if (nr_pages < 2)
1858                 nr_pages = 2;
1859
1860         buffer->cpus = nr_cpu_ids;
1861
1862         bsize = sizeof(void *) * nr_cpu_ids;
1863         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1864                                   GFP_KERNEL);
1865         if (!buffer->buffers)
1866                 goto fail_free_cpumask;
1867
1868         cpu = raw_smp_processor_id();
1869         cpumask_set_cpu(cpu, buffer->cpumask);
1870         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1871         if (!buffer->buffers[cpu])
1872                 goto fail_free_buffers;
1873
1874         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1875         if (ret < 0)
1876                 goto fail_free_buffers;
1877
1878         mutex_init(&buffer->mutex);
1879
1880         return buffer;
1881
1882  fail_free_buffers:
1883         for_each_buffer_cpu(buffer, cpu) {
1884                 if (buffer->buffers[cpu])
1885                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1886         }
1887         kfree(buffer->buffers);
1888
1889  fail_free_cpumask:
1890         free_cpumask_var(buffer->cpumask);
1891
1892  fail_free_buffer:
1893         kfree(buffer);
1894         return NULL;
1895 }
1896 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1897
1898 /**
1899  * ring_buffer_free - free a ring buffer.
1900  * @buffer: the buffer to free.
1901  */
1902 void
1903 ring_buffer_free(struct trace_buffer *buffer)
1904 {
1905         int cpu;
1906
1907         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1908
1909         for_each_buffer_cpu(buffer, cpu)
1910                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1911
1912         kfree(buffer->buffers);
1913         free_cpumask_var(buffer->cpumask);
1914
1915         kfree(buffer);
1916 }
1917 EXPORT_SYMBOL_GPL(ring_buffer_free);
1918
1919 void ring_buffer_set_clock(struct trace_buffer *buffer,
1920                            u64 (*clock)(void))
1921 {
1922         buffer->clock = clock;
1923 }
1924
1925 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1926 {
1927         buffer->time_stamp_abs = abs;
1928 }
1929
1930 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1931 {
1932         return buffer->time_stamp_abs;
1933 }
1934
1935 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1936
1937 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1938 {
1939         return local_read(&bpage->entries) & RB_WRITE_MASK;
1940 }
1941
1942 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1943 {
1944         return local_read(&bpage->write) & RB_WRITE_MASK;
1945 }
1946
1947 static int
1948 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1949 {
1950         struct list_head *tail_page, *to_remove, *next_page;
1951         struct buffer_page *to_remove_page, *tmp_iter_page;
1952         struct buffer_page *last_page, *first_page;
1953         unsigned long nr_removed;
1954         unsigned long head_bit;
1955         int page_entries;
1956
1957         head_bit = 0;
1958
1959         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1960         atomic_inc(&cpu_buffer->record_disabled);
1961         /*
1962          * We don't race with the readers since we have acquired the reader
1963          * lock. We also don't race with writers after disabling recording.
1964          * This makes it easy to figure out the first and the last page to be
1965          * removed from the list. We unlink all the pages in between including
1966          * the first and last pages. This is done in a busy loop so that we
1967          * lose the least number of traces.
1968          * The pages are freed after we restart recording and unlock readers.
1969          */
1970         tail_page = &cpu_buffer->tail_page->list;
1971
1972         /*
1973          * tail page might be on reader page, we remove the next page
1974          * from the ring buffer
1975          */
1976         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1977                 tail_page = rb_list_head(tail_page->next);
1978         to_remove = tail_page;
1979
1980         /* start of pages to remove */
1981         first_page = list_entry(rb_list_head(to_remove->next),
1982                                 struct buffer_page, list);
1983
1984         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1985                 to_remove = rb_list_head(to_remove)->next;
1986                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1987         }
1988
1989         next_page = rb_list_head(to_remove)->next;
1990
1991         /*
1992          * Now we remove all pages between tail_page and next_page.
1993          * Make sure that we have head_bit value preserved for the
1994          * next page
1995          */
1996         tail_page->next = (struct list_head *)((unsigned long)next_page |
1997                                                 head_bit);
1998         next_page = rb_list_head(next_page);
1999         next_page->prev = tail_page;
2000
2001         /* make sure pages points to a valid page in the ring buffer */
2002         cpu_buffer->pages = next_page;
2003
2004         /* update head page */
2005         if (head_bit)
2006                 cpu_buffer->head_page = list_entry(next_page,
2007                                                 struct buffer_page, list);
2008
2009         /*
2010          * change read pointer to make sure any read iterators reset
2011          * themselves
2012          */
2013         cpu_buffer->read = 0;
2014
2015         /* pages are removed, resume tracing and then free the pages */
2016         atomic_dec(&cpu_buffer->record_disabled);
2017         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2018
2019         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2020
2021         /* last buffer page to remove */
2022         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2023                                 list);
2024         tmp_iter_page = first_page;
2025
2026         do {
2027                 cond_resched();
2028
2029                 to_remove_page = tmp_iter_page;
2030                 rb_inc_page(&tmp_iter_page);
2031
2032                 /* update the counters */
2033                 page_entries = rb_page_entries(to_remove_page);
2034                 if (page_entries) {
2035                         /*
2036                          * If something was added to this page, it was full
2037                          * since it is not the tail page. So we deduct the
2038                          * bytes consumed in ring buffer from here.
2039                          * Increment overrun to account for the lost events.
2040                          */
2041                         local_add(page_entries, &cpu_buffer->overrun);
2042                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2043                         local_inc(&cpu_buffer->pages_lost);
2044                 }
2045
2046                 /*
2047                  * We have already removed references to this list item, just
2048                  * free up the buffer_page and its page
2049                  */
2050                 free_buffer_page(to_remove_page);
2051                 nr_removed--;
2052
2053         } while (to_remove_page != last_page);
2054
2055         RB_WARN_ON(cpu_buffer, nr_removed);
2056
2057         return nr_removed == 0;
2058 }
2059
2060 static int
2061 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2062 {
2063         struct list_head *pages = &cpu_buffer->new_pages;
2064         int retries, success;
2065
2066         raw_spin_lock_irq(&cpu_buffer->reader_lock);
2067         /*
2068          * We are holding the reader lock, so the reader page won't be swapped
2069          * in the ring buffer. Now we are racing with the writer trying to
2070          * move head page and the tail page.
2071          * We are going to adapt the reader page update process where:
2072          * 1. We first splice the start and end of list of new pages between
2073          *    the head page and its previous page.
2074          * 2. We cmpxchg the prev_page->next to point from head page to the
2075          *    start of new pages list.
2076          * 3. Finally, we update the head->prev to the end of new list.
2077          *
2078          * We will try this process 10 times, to make sure that we don't keep
2079          * spinning.
2080          */
2081         retries = 10;
2082         success = 0;
2083         while (retries--) {
2084                 struct list_head *head_page, *prev_page, *r;
2085                 struct list_head *last_page, *first_page;
2086                 struct list_head *head_page_with_bit;
2087
2088                 head_page = &rb_set_head_page(cpu_buffer)->list;
2089                 if (!head_page)
2090                         break;
2091                 prev_page = head_page->prev;
2092
2093                 first_page = pages->next;
2094                 last_page  = pages->prev;
2095
2096                 head_page_with_bit = (struct list_head *)
2097                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2098
2099                 last_page->next = head_page_with_bit;
2100                 first_page->prev = prev_page;
2101
2102                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2103
2104                 if (r == head_page_with_bit) {
2105                         /*
2106                          * yay, we replaced the page pointer to our new list,
2107                          * now, we just have to update to head page's prev
2108                          * pointer to point to end of list
2109                          */
2110                         head_page->prev = last_page;
2111                         success = 1;
2112                         break;
2113                 }
2114         }
2115
2116         if (success)
2117                 INIT_LIST_HEAD(pages);
2118         /*
2119          * If we weren't successful in adding in new pages, warn and stop
2120          * tracing
2121          */
2122         RB_WARN_ON(cpu_buffer, !success);
2123         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2124
2125         /* free pages if they weren't inserted */
2126         if (!success) {
2127                 struct buffer_page *bpage, *tmp;
2128                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2129                                          list) {
2130                         list_del_init(&bpage->list);
2131                         free_buffer_page(bpage);
2132                 }
2133         }
2134         return success;
2135 }
2136
2137 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2138 {
2139         int success;
2140
2141         if (cpu_buffer->nr_pages_to_update > 0)
2142                 success = rb_insert_pages(cpu_buffer);
2143         else
2144                 success = rb_remove_pages(cpu_buffer,
2145                                         -cpu_buffer->nr_pages_to_update);
2146
2147         if (success)
2148                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2149 }
2150
2151 static void update_pages_handler(struct work_struct *work)
2152 {
2153         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2154                         struct ring_buffer_per_cpu, update_pages_work);
2155         rb_update_pages(cpu_buffer);
2156         complete(&cpu_buffer->update_done);
2157 }
2158
2159 /**
2160  * ring_buffer_resize - resize the ring buffer
2161  * @buffer: the buffer to resize.
2162  * @size: the new size.
2163  * @cpu_id: the cpu buffer to resize
2164  *
2165  * Minimum size is 2 * BUF_PAGE_SIZE.
2166  *
2167  * Returns 0 on success and < 0 on failure.
2168  */
2169 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2170                         int cpu_id)
2171 {
2172         struct ring_buffer_per_cpu *cpu_buffer;
2173         unsigned long nr_pages;
2174         int cpu, err;
2175
2176         /*
2177          * Always succeed at resizing a non-existent buffer:
2178          */
2179         if (!buffer)
2180                 return 0;
2181
2182         /* Make sure the requested buffer exists */
2183         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2184             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2185                 return 0;
2186
2187         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2188
2189         /* we need a minimum of two pages */
2190         if (nr_pages < 2)
2191                 nr_pages = 2;
2192
2193         /* prevent another thread from changing buffer sizes */
2194         mutex_lock(&buffer->mutex);
2195
2196
2197         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2198                 /*
2199                  * Don't succeed if resizing is disabled, as a reader might be
2200                  * manipulating the ring buffer and is expecting a sane state while
2201                  * this is true.
2202                  */
2203                 for_each_buffer_cpu(buffer, cpu) {
2204                         cpu_buffer = buffer->buffers[cpu];
2205                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2206                                 err = -EBUSY;
2207                                 goto out_err_unlock;
2208                         }
2209                 }
2210
2211                 /* calculate the pages to update */
2212                 for_each_buffer_cpu(buffer, cpu) {
2213                         cpu_buffer = buffer->buffers[cpu];
2214
2215                         cpu_buffer->nr_pages_to_update = nr_pages -
2216                                                         cpu_buffer->nr_pages;
2217                         /*
2218                          * nothing more to do for removing pages or no update
2219                          */
2220                         if (cpu_buffer->nr_pages_to_update <= 0)
2221                                 continue;
2222                         /*
2223                          * to add pages, make sure all new pages can be
2224                          * allocated without receiving ENOMEM
2225                          */
2226                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2227                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2228                                                 &cpu_buffer->new_pages)) {
2229                                 /* not enough memory for new pages */
2230                                 err = -ENOMEM;
2231                                 goto out_err;
2232                         }
2233                 }
2234
2235                 cpus_read_lock();
2236                 /*
2237                  * Fire off all the required work handlers
2238                  * We can't schedule on offline CPUs, but it's not necessary
2239                  * since we can change their buffer sizes without any race.
2240                  */
2241                 for_each_buffer_cpu(buffer, cpu) {
2242                         cpu_buffer = buffer->buffers[cpu];
2243                         if (!cpu_buffer->nr_pages_to_update)
2244                                 continue;
2245
2246                         /* Can't run something on an offline CPU. */
2247                         if (!cpu_online(cpu)) {
2248                                 rb_update_pages(cpu_buffer);
2249                                 cpu_buffer->nr_pages_to_update = 0;
2250                         } else {
2251                                 schedule_work_on(cpu,
2252                                                 &cpu_buffer->update_pages_work);
2253                         }
2254                 }
2255
2256                 /* wait for all the updates to complete */
2257                 for_each_buffer_cpu(buffer, cpu) {
2258                         cpu_buffer = buffer->buffers[cpu];
2259                         if (!cpu_buffer->nr_pages_to_update)
2260                                 continue;
2261
2262                         if (cpu_online(cpu))
2263                                 wait_for_completion(&cpu_buffer->update_done);
2264                         cpu_buffer->nr_pages_to_update = 0;
2265                 }
2266
2267                 cpus_read_unlock();
2268         } else {
2269                 cpu_buffer = buffer->buffers[cpu_id];
2270
2271                 if (nr_pages == cpu_buffer->nr_pages)
2272                         goto out;
2273
2274                 /*
2275                  * Don't succeed if resizing is disabled, as a reader might be
2276                  * manipulating the ring buffer and is expecting a sane state while
2277                  * this is true.
2278                  */
2279                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2280                         err = -EBUSY;
2281                         goto out_err_unlock;
2282                 }
2283
2284                 cpu_buffer->nr_pages_to_update = nr_pages -
2285                                                 cpu_buffer->nr_pages;
2286
2287                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2288                 if (cpu_buffer->nr_pages_to_update > 0 &&
2289                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2290                                             &cpu_buffer->new_pages)) {
2291                         err = -ENOMEM;
2292                         goto out_err;
2293                 }
2294
2295                 cpus_read_lock();
2296
2297                 /* Can't run something on an offline CPU. */
2298                 if (!cpu_online(cpu_id))
2299                         rb_update_pages(cpu_buffer);
2300                 else {
2301                         schedule_work_on(cpu_id,
2302                                          &cpu_buffer->update_pages_work);
2303                         wait_for_completion(&cpu_buffer->update_done);
2304                 }
2305
2306                 cpu_buffer->nr_pages_to_update = 0;
2307                 cpus_read_unlock();
2308         }
2309
2310  out:
2311         /*
2312          * The ring buffer resize can happen with the ring buffer
2313          * enabled, so that the update disturbs the tracing as little
2314          * as possible. But if the buffer is disabled, we do not need
2315          * to worry about that, and we can take the time to verify
2316          * that the buffer is not corrupt.
2317          */
2318         if (atomic_read(&buffer->record_disabled)) {
2319                 atomic_inc(&buffer->record_disabled);
2320                 /*
2321                  * Even though the buffer was disabled, we must make sure
2322                  * that it is truly disabled before calling rb_check_pages.
2323                  * There could have been a race between checking
2324                  * record_disable and incrementing it.
2325                  */
2326                 synchronize_rcu();
2327                 for_each_buffer_cpu(buffer, cpu) {
2328                         cpu_buffer = buffer->buffers[cpu];
2329                         rb_check_pages(cpu_buffer);
2330                 }
2331                 atomic_dec(&buffer->record_disabled);
2332         }
2333
2334         mutex_unlock(&buffer->mutex);
2335         return 0;
2336
2337  out_err:
2338         for_each_buffer_cpu(buffer, cpu) {
2339                 struct buffer_page *bpage, *tmp;
2340
2341                 cpu_buffer = buffer->buffers[cpu];
2342                 cpu_buffer->nr_pages_to_update = 0;
2343
2344                 if (list_empty(&cpu_buffer->new_pages))
2345                         continue;
2346
2347                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2348                                         list) {
2349                         list_del_init(&bpage->list);
2350                         free_buffer_page(bpage);
2351                 }
2352         }
2353  out_err_unlock:
2354         mutex_unlock(&buffer->mutex);
2355         return err;
2356 }
2357 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2358
2359 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2360 {
2361         mutex_lock(&buffer->mutex);
2362         if (val)
2363                 buffer->flags |= RB_FL_OVERWRITE;
2364         else
2365                 buffer->flags &= ~RB_FL_OVERWRITE;
2366         mutex_unlock(&buffer->mutex);
2367 }
2368 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2369
2370 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2371 {
2372         return bpage->page->data + index;
2373 }
2374
2375 static __always_inline struct ring_buffer_event *
2376 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2377 {
2378         return __rb_page_index(cpu_buffer->reader_page,
2379                                cpu_buffer->reader_page->read);
2380 }
2381
2382 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2383 {
2384         return local_read(&bpage->page->commit);
2385 }
2386
2387 static struct ring_buffer_event *
2388 rb_iter_head_event(struct ring_buffer_iter *iter)
2389 {
2390         struct ring_buffer_event *event;
2391         struct buffer_page *iter_head_page = iter->head_page;
2392         unsigned long commit;
2393         unsigned length;
2394
2395         if (iter->head != iter->next_event)
2396                 return iter->event;
2397
2398         /*
2399          * When the writer goes across pages, it issues a cmpxchg which
2400          * is a mb(), which will synchronize with the rmb here.
2401          * (see rb_tail_page_update() and __rb_reserve_next())
2402          */
2403         commit = rb_page_commit(iter_head_page);
2404         smp_rmb();
2405         event = __rb_page_index(iter_head_page, iter->head);
2406         length = rb_event_length(event);
2407
2408         /*
2409          * READ_ONCE() doesn't work on functions and we don't want the
2410          * compiler doing any crazy optimizations with length.
2411          */
2412         barrier();
2413
2414         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2415                 /* Writer corrupted the read? */
2416                 goto reset;
2417
2418         memcpy(iter->event, event, length);
2419         /*
2420          * If the page stamp is still the same after this rmb() then the
2421          * event was safely copied without the writer entering the page.
2422          */
2423         smp_rmb();
2424
2425         /* Make sure the page didn't change since we read this */
2426         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2427             commit > rb_page_commit(iter_head_page))
2428                 goto reset;
2429
2430         iter->next_event = iter->head + length;
2431         return iter->event;
2432  reset:
2433         /* Reset to the beginning */
2434         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2435         iter->head = 0;
2436         iter->next_event = 0;
2437         iter->missed_events = 1;
2438         return NULL;
2439 }
2440
2441 /* Size is determined by what has been committed */
2442 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2443 {
2444         return rb_page_commit(bpage);
2445 }
2446
2447 static __always_inline unsigned
2448 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2449 {
2450         return rb_page_commit(cpu_buffer->commit_page);
2451 }
2452
2453 static __always_inline unsigned
2454 rb_event_index(struct ring_buffer_event *event)
2455 {
2456         unsigned long addr = (unsigned long)event;
2457
2458         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2459 }
2460
2461 static void rb_inc_iter(struct ring_buffer_iter *iter)
2462 {
2463         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2464
2465         /*
2466          * The iterator could be on the reader page (it starts there).
2467          * But the head could have moved, since the reader was
2468          * found. Check for this case and assign the iterator
2469          * to the head page instead of next.
2470          */
2471         if (iter->head_page == cpu_buffer->reader_page)
2472                 iter->head_page = rb_set_head_page(cpu_buffer);
2473         else
2474                 rb_inc_page(&iter->head_page);
2475
2476         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2477         iter->head = 0;
2478         iter->next_event = 0;
2479 }
2480
2481 /*
2482  * rb_handle_head_page - writer hit the head page
2483  *
2484  * Returns: +1 to retry page
2485  *           0 to continue
2486  *          -1 on error
2487  */
2488 static int
2489 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2490                     struct buffer_page *tail_page,
2491                     struct buffer_page *next_page)
2492 {
2493         struct buffer_page *new_head;
2494         int entries;
2495         int type;
2496         int ret;
2497
2498         entries = rb_page_entries(next_page);
2499
2500         /*
2501          * The hard part is here. We need to move the head
2502          * forward, and protect against both readers on
2503          * other CPUs and writers coming in via interrupts.
2504          */
2505         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2506                                        RB_PAGE_HEAD);
2507
2508         /*
2509          * type can be one of four:
2510          *  NORMAL - an interrupt already moved it for us
2511          *  HEAD   - we are the first to get here.
2512          *  UPDATE - we are the interrupt interrupting
2513          *           a current move.
2514          *  MOVED  - a reader on another CPU moved the next
2515          *           pointer to its reader page. Give up
2516          *           and try again.
2517          */
2518
2519         switch (type) {
2520         case RB_PAGE_HEAD:
2521                 /*
2522                  * We changed the head to UPDATE, thus
2523                  * it is our responsibility to update
2524                  * the counters.
2525                  */
2526                 local_add(entries, &cpu_buffer->overrun);
2527                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2528                 local_inc(&cpu_buffer->pages_lost);
2529
2530                 /*
2531                  * The entries will be zeroed out when we move the
2532                  * tail page.
2533                  */
2534
2535                 /* still more to do */
2536                 break;
2537
2538         case RB_PAGE_UPDATE:
2539                 /*
2540                  * This is an interrupt that interrupt the
2541                  * previous update. Still more to do.
2542                  */
2543                 break;
2544         case RB_PAGE_NORMAL:
2545                 /*
2546                  * An interrupt came in before the update
2547                  * and processed this for us.
2548                  * Nothing left to do.
2549                  */
2550                 return 1;
2551         case RB_PAGE_MOVED:
2552                 /*
2553                  * The reader is on another CPU and just did
2554                  * a swap with our next_page.
2555                  * Try again.
2556                  */
2557                 return 1;
2558         default:
2559                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2560                 return -1;
2561         }
2562
2563         /*
2564          * Now that we are here, the old head pointer is
2565          * set to UPDATE. This will keep the reader from
2566          * swapping the head page with the reader page.
2567          * The reader (on another CPU) will spin till
2568          * we are finished.
2569          *
2570          * We just need to protect against interrupts
2571          * doing the job. We will set the next pointer
2572          * to HEAD. After that, we set the old pointer
2573          * to NORMAL, but only if it was HEAD before.
2574          * otherwise we are an interrupt, and only
2575          * want the outer most commit to reset it.
2576          */
2577         new_head = next_page;
2578         rb_inc_page(&new_head);
2579
2580         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2581                                     RB_PAGE_NORMAL);
2582
2583         /*
2584          * Valid returns are:
2585          *  HEAD   - an interrupt came in and already set it.
2586          *  NORMAL - One of two things:
2587          *            1) We really set it.
2588          *            2) A bunch of interrupts came in and moved
2589          *               the page forward again.
2590          */
2591         switch (ret) {
2592         case RB_PAGE_HEAD:
2593         case RB_PAGE_NORMAL:
2594                 /* OK */
2595                 break;
2596         default:
2597                 RB_WARN_ON(cpu_buffer, 1);
2598                 return -1;
2599         }
2600
2601         /*
2602          * It is possible that an interrupt came in,
2603          * set the head up, then more interrupts came in
2604          * and moved it again. When we get back here,
2605          * the page would have been set to NORMAL but we
2606          * just set it back to HEAD.
2607          *
2608          * How do you detect this? Well, if that happened
2609          * the tail page would have moved.
2610          */
2611         if (ret == RB_PAGE_NORMAL) {
2612                 struct buffer_page *buffer_tail_page;
2613
2614                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2615                 /*
2616                  * If the tail had moved passed next, then we need
2617                  * to reset the pointer.
2618                  */
2619                 if (buffer_tail_page != tail_page &&
2620                     buffer_tail_page != next_page)
2621                         rb_head_page_set_normal(cpu_buffer, new_head,
2622                                                 next_page,
2623                                                 RB_PAGE_HEAD);
2624         }
2625
2626         /*
2627          * If this was the outer most commit (the one that
2628          * changed the original pointer from HEAD to UPDATE),
2629          * then it is up to us to reset it to NORMAL.
2630          */
2631         if (type == RB_PAGE_HEAD) {
2632                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2633                                               tail_page,
2634                                               RB_PAGE_UPDATE);
2635                 if (RB_WARN_ON(cpu_buffer,
2636                                ret != RB_PAGE_UPDATE))
2637                         return -1;
2638         }
2639
2640         return 0;
2641 }
2642
2643 static inline void
2644 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2645               unsigned long tail, struct rb_event_info *info)
2646 {
2647         struct buffer_page *tail_page = info->tail_page;
2648         struct ring_buffer_event *event;
2649         unsigned long length = info->length;
2650
2651         /*
2652          * Only the event that crossed the page boundary
2653          * must fill the old tail_page with padding.
2654          */
2655         if (tail >= BUF_PAGE_SIZE) {
2656                 /*
2657                  * If the page was filled, then we still need
2658                  * to update the real_end. Reset it to zero
2659                  * and the reader will ignore it.
2660                  */
2661                 if (tail == BUF_PAGE_SIZE)
2662                         tail_page->real_end = 0;
2663
2664                 local_sub(length, &tail_page->write);
2665                 return;
2666         }
2667
2668         event = __rb_page_index(tail_page, tail);
2669
2670         /* account for padding bytes */
2671         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2672
2673         /*
2674          * Save the original length to the meta data.
2675          * This will be used by the reader to add lost event
2676          * counter.
2677          */
2678         tail_page->real_end = tail;
2679
2680         /*
2681          * If this event is bigger than the minimum size, then
2682          * we need to be careful that we don't subtract the
2683          * write counter enough to allow another writer to slip
2684          * in on this page.
2685          * We put in a discarded commit instead, to make sure
2686          * that this space is not used again.
2687          *
2688          * If we are less than the minimum size, we don't need to
2689          * worry about it.
2690          */
2691         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2692                 /* No room for any events */
2693
2694                 /* Mark the rest of the page with padding */
2695                 rb_event_set_padding(event);
2696
2697                 /* Make sure the padding is visible before the write update */
2698                 smp_wmb();
2699
2700                 /* Set the write back to the previous setting */
2701                 local_sub(length, &tail_page->write);
2702                 return;
2703         }
2704
2705         /* Put in a discarded event */
2706         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2707         event->type_len = RINGBUF_TYPE_PADDING;
2708         /* time delta must be non zero */
2709         event->time_delta = 1;
2710
2711         /* Make sure the padding is visible before the tail_page->write update */
2712         smp_wmb();
2713
2714         /* Set write to end of buffer */
2715         length = (tail + length) - BUF_PAGE_SIZE;
2716         local_sub(length, &tail_page->write);
2717 }
2718
2719 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2720
2721 /*
2722  * This is the slow path, force gcc not to inline it.
2723  */
2724 static noinline struct ring_buffer_event *
2725 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2726              unsigned long tail, struct rb_event_info *info)
2727 {
2728         struct buffer_page *tail_page = info->tail_page;
2729         struct buffer_page *commit_page = cpu_buffer->commit_page;
2730         struct trace_buffer *buffer = cpu_buffer->buffer;
2731         struct buffer_page *next_page;
2732         int ret;
2733
2734         next_page = tail_page;
2735
2736         rb_inc_page(&next_page);
2737
2738         /*
2739          * If for some reason, we had an interrupt storm that made
2740          * it all the way around the buffer, bail, and warn
2741          * about it.
2742          */
2743         if (unlikely(next_page == commit_page)) {
2744                 local_inc(&cpu_buffer->commit_overrun);
2745                 goto out_reset;
2746         }
2747
2748         /*
2749          * This is where the fun begins!
2750          *
2751          * We are fighting against races between a reader that
2752          * could be on another CPU trying to swap its reader
2753          * page with the buffer head.
2754          *
2755          * We are also fighting against interrupts coming in and
2756          * moving the head or tail on us as well.
2757          *
2758          * If the next page is the head page then we have filled
2759          * the buffer, unless the commit page is still on the
2760          * reader page.
2761          */
2762         if (rb_is_head_page(next_page, &tail_page->list)) {
2763
2764                 /*
2765                  * If the commit is not on the reader page, then
2766                  * move the header page.
2767                  */
2768                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2769                         /*
2770                          * If we are not in overwrite mode,
2771                          * this is easy, just stop here.
2772                          */
2773                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2774                                 local_inc(&cpu_buffer->dropped_events);
2775                                 goto out_reset;
2776                         }
2777
2778                         ret = rb_handle_head_page(cpu_buffer,
2779                                                   tail_page,
2780                                                   next_page);
2781                         if (ret < 0)
2782                                 goto out_reset;
2783                         if (ret)
2784                                 goto out_again;
2785                 } else {
2786                         /*
2787                          * We need to be careful here too. The
2788                          * commit page could still be on the reader
2789                          * page. We could have a small buffer, and
2790                          * have filled up the buffer with events
2791                          * from interrupts and such, and wrapped.
2792                          *
2793                          * Note, if the tail page is also on the
2794                          * reader_page, we let it move out.
2795                          */
2796                         if (unlikely((cpu_buffer->commit_page !=
2797                                       cpu_buffer->tail_page) &&
2798                                      (cpu_buffer->commit_page ==
2799                                       cpu_buffer->reader_page))) {
2800                                 local_inc(&cpu_buffer->commit_overrun);
2801                                 goto out_reset;
2802                         }
2803                 }
2804         }
2805
2806         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2807
2808  out_again:
2809
2810         rb_reset_tail(cpu_buffer, tail, info);
2811
2812         /* Commit what we have for now. */
2813         rb_end_commit(cpu_buffer);
2814         /* rb_end_commit() decs committing */
2815         local_inc(&cpu_buffer->committing);
2816
2817         /* fail and let the caller try again */
2818         return ERR_PTR(-EAGAIN);
2819
2820  out_reset:
2821         /* reset write */
2822         rb_reset_tail(cpu_buffer, tail, info);
2823
2824         return NULL;
2825 }
2826
2827 /* Slow path */
2828 static struct ring_buffer_event *
2829 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2830 {
2831         if (abs)
2832                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2833         else
2834                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2835
2836         /* Not the first event on the page, or not delta? */
2837         if (abs || rb_event_index(event)) {
2838                 event->time_delta = delta & TS_MASK;
2839                 event->array[0] = delta >> TS_SHIFT;
2840         } else {
2841                 /* nope, just zero it */
2842                 event->time_delta = 0;
2843                 event->array[0] = 0;
2844         }
2845
2846         return skip_time_extend(event);
2847 }
2848
2849 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2850 static inline bool sched_clock_stable(void)
2851 {
2852         return true;
2853 }
2854 #endif
2855
2856 static void
2857 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2858                    struct rb_event_info *info)
2859 {
2860         u64 write_stamp;
2861
2862         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2863                   (unsigned long long)info->delta,
2864                   (unsigned long long)info->ts,
2865                   (unsigned long long)info->before,
2866                   (unsigned long long)info->after,
2867                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2868                   sched_clock_stable() ? "" :
2869                   "If you just came from a suspend/resume,\n"
2870                   "please switch to the trace global clock:\n"
2871                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2872                   "or add trace_clock=global to the kernel command line\n");
2873 }
2874
2875 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2876                                       struct ring_buffer_event **event,
2877                                       struct rb_event_info *info,
2878                                       u64 *delta,
2879                                       unsigned int *length)
2880 {
2881         bool abs = info->add_timestamp &
2882                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2883
2884         if (unlikely(info->delta > (1ULL << 59))) {
2885                 /*
2886                  * Some timers can use more than 59 bits, and when a timestamp
2887                  * is added to the buffer, it will lose those bits.
2888                  */
2889                 if (abs && (info->ts & TS_MSB)) {
2890                         info->delta &= ABS_TS_MASK;
2891
2892                 /* did the clock go backwards */
2893                 } else if (info->before == info->after && info->before > info->ts) {
2894                         /* not interrupted */
2895                         static int once;
2896
2897                         /*
2898                          * This is possible with a recalibrating of the TSC.
2899                          * Do not produce a call stack, but just report it.
2900                          */
2901                         if (!once) {
2902                                 once++;
2903                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2904                                         info->before, info->ts);
2905                         }
2906                 } else
2907                         rb_check_timestamp(cpu_buffer, info);
2908                 if (!abs)
2909                         info->delta = 0;
2910         }
2911         *event = rb_add_time_stamp(*event, info->delta, abs);
2912         *length -= RB_LEN_TIME_EXTEND;
2913         *delta = 0;
2914 }
2915
2916 /**
2917  * rb_update_event - update event type and data
2918  * @cpu_buffer: The per cpu buffer of the @event
2919  * @event: the event to update
2920  * @info: The info to update the @event with (contains length and delta)
2921  *
2922  * Update the type and data fields of the @event. The length
2923  * is the actual size that is written to the ring buffer,
2924  * and with this, we can determine what to place into the
2925  * data field.
2926  */
2927 static void
2928 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2929                 struct ring_buffer_event *event,
2930                 struct rb_event_info *info)
2931 {
2932         unsigned length = info->length;
2933         u64 delta = info->delta;
2934         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2935
2936         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2937                 cpu_buffer->event_stamp[nest] = info->ts;
2938
2939         /*
2940          * If we need to add a timestamp, then we
2941          * add it to the start of the reserved space.
2942          */
2943         if (unlikely(info->add_timestamp))
2944                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2945
2946         event->time_delta = delta;
2947         length -= RB_EVNT_HDR_SIZE;
2948         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2949                 event->type_len = 0;
2950                 event->array[0] = length;
2951         } else
2952                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2953 }
2954
2955 static unsigned rb_calculate_event_length(unsigned length)
2956 {
2957         struct ring_buffer_event event; /* Used only for sizeof array */
2958
2959         /* zero length can cause confusions */
2960         if (!length)
2961                 length++;
2962
2963         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2964                 length += sizeof(event.array[0]);
2965
2966         length += RB_EVNT_HDR_SIZE;
2967         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2968
2969         /*
2970          * In case the time delta is larger than the 27 bits for it
2971          * in the header, we need to add a timestamp. If another
2972          * event comes in when trying to discard this one to increase
2973          * the length, then the timestamp will be added in the allocated
2974          * space of this event. If length is bigger than the size needed
2975          * for the TIME_EXTEND, then padding has to be used. The events
2976          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2977          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2978          * As length is a multiple of 4, we only need to worry if it
2979          * is 12 (RB_LEN_TIME_EXTEND + 4).
2980          */
2981         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2982                 length += RB_ALIGNMENT;
2983
2984         return length;
2985 }
2986
2987 static u64 rb_time_delta(struct ring_buffer_event *event)
2988 {
2989         switch (event->type_len) {
2990         case RINGBUF_TYPE_PADDING:
2991                 return 0;
2992
2993         case RINGBUF_TYPE_TIME_EXTEND:
2994                 return rb_event_time_stamp(event);
2995
2996         case RINGBUF_TYPE_TIME_STAMP:
2997                 return 0;
2998
2999         case RINGBUF_TYPE_DATA:
3000                 return event->time_delta;
3001         default:
3002                 return 0;
3003         }
3004 }
3005
3006 static inline int
3007 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3008                   struct ring_buffer_event *event)
3009 {
3010         unsigned long new_index, old_index;
3011         struct buffer_page *bpage;
3012         unsigned long index;
3013         unsigned long addr;
3014         u64 write_stamp;
3015         u64 delta;
3016
3017         new_index = rb_event_index(event);
3018         old_index = new_index + rb_event_ts_length(event);
3019         addr = (unsigned long)event;
3020         addr &= PAGE_MASK;
3021
3022         bpage = READ_ONCE(cpu_buffer->tail_page);
3023
3024         delta = rb_time_delta(event);
3025
3026         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3027                 return 0;
3028
3029         /* Make sure the write stamp is read before testing the location */
3030         barrier();
3031
3032         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3033                 unsigned long write_mask =
3034                         local_read(&bpage->write) & ~RB_WRITE_MASK;
3035                 unsigned long event_length = rb_event_length(event);
3036
3037                 /* Something came in, can't discard */
3038                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3039                                        write_stamp, write_stamp - delta))
3040                         return 0;
3041
3042                 /*
3043                  * It's possible that the event time delta is zero
3044                  * (has the same time stamp as the previous event)
3045                  * in which case write_stamp and before_stamp could
3046                  * be the same. In such a case, force before_stamp
3047                  * to be different than write_stamp. It doesn't
3048                  * matter what it is, as long as its different.
3049                  */
3050                 if (!delta)
3051                         rb_time_set(&cpu_buffer->before_stamp, 0);
3052
3053                 /*
3054                  * If an event were to come in now, it would see that the
3055                  * write_stamp and the before_stamp are different, and assume
3056                  * that this event just added itself before updating
3057                  * the write stamp. The interrupting event will fix the
3058                  * write stamp for us, and use the before stamp as its delta.
3059                  */
3060
3061                 /*
3062                  * This is on the tail page. It is possible that
3063                  * a write could come in and move the tail page
3064                  * and write to the next page. That is fine
3065                  * because we just shorten what is on this page.
3066                  */
3067                 old_index += write_mask;
3068                 new_index += write_mask;
3069                 index = local_cmpxchg(&bpage->write, old_index, new_index);
3070                 if (index == old_index) {
3071                         /* update counters */
3072                         local_sub(event_length, &cpu_buffer->entries_bytes);
3073                         return 1;
3074                 }
3075         }
3076
3077         /* could not discard */
3078         return 0;
3079 }
3080
3081 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3082 {
3083         local_inc(&cpu_buffer->committing);
3084         local_inc(&cpu_buffer->commits);
3085 }
3086
3087 static __always_inline void
3088 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3089 {
3090         unsigned long max_count;
3091
3092         /*
3093          * We only race with interrupts and NMIs on this CPU.
3094          * If we own the commit event, then we can commit
3095          * all others that interrupted us, since the interruptions
3096          * are in stack format (they finish before they come
3097          * back to us). This allows us to do a simple loop to
3098          * assign the commit to the tail.
3099          */
3100  again:
3101         max_count = cpu_buffer->nr_pages * 100;
3102
3103         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3104                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3105                         return;
3106                 if (RB_WARN_ON(cpu_buffer,
3107                                rb_is_reader_page(cpu_buffer->tail_page)))
3108                         return;
3109                 local_set(&cpu_buffer->commit_page->page->commit,
3110                           rb_page_write(cpu_buffer->commit_page));
3111                 rb_inc_page(&cpu_buffer->commit_page);
3112                 /* add barrier to keep gcc from optimizing too much */
3113                 barrier();
3114         }
3115         while (rb_commit_index(cpu_buffer) !=
3116                rb_page_write(cpu_buffer->commit_page)) {
3117
3118                 local_set(&cpu_buffer->commit_page->page->commit,
3119                           rb_page_write(cpu_buffer->commit_page));
3120                 RB_WARN_ON(cpu_buffer,
3121                            local_read(&cpu_buffer->commit_page->page->commit) &
3122                            ~RB_WRITE_MASK);
3123                 barrier();
3124         }
3125
3126         /* again, keep gcc from optimizing */
3127         barrier();
3128
3129         /*
3130          * If an interrupt came in just after the first while loop
3131          * and pushed the tail page forward, we will be left with
3132          * a dangling commit that will never go forward.
3133          */
3134         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3135                 goto again;
3136 }
3137
3138 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3139 {
3140         unsigned long commits;
3141
3142         if (RB_WARN_ON(cpu_buffer,
3143                        !local_read(&cpu_buffer->committing)))
3144                 return;
3145
3146  again:
3147         commits = local_read(&cpu_buffer->commits);
3148         /* synchronize with interrupts */
3149         barrier();
3150         if (local_read(&cpu_buffer->committing) == 1)
3151                 rb_set_commit_to_write(cpu_buffer);
3152
3153         local_dec(&cpu_buffer->committing);
3154
3155         /* synchronize with interrupts */
3156         barrier();
3157
3158         /*
3159          * Need to account for interrupts coming in between the
3160          * updating of the commit page and the clearing of the
3161          * committing counter.
3162          */
3163         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3164             !local_read(&cpu_buffer->committing)) {
3165                 local_inc(&cpu_buffer->committing);
3166                 goto again;
3167         }
3168 }
3169
3170 static inline void rb_event_discard(struct ring_buffer_event *event)
3171 {
3172         if (extended_time(event))
3173                 event = skip_time_extend(event);
3174
3175         /* array[0] holds the actual length for the discarded event */
3176         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3177         event->type_len = RINGBUF_TYPE_PADDING;
3178         /* time delta must be non zero */
3179         if (!event->time_delta)
3180                 event->time_delta = 1;
3181 }
3182
3183 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3184                       struct ring_buffer_event *event)
3185 {
3186         local_inc(&cpu_buffer->entries);
3187         rb_end_commit(cpu_buffer);
3188 }
3189
3190 static __always_inline void
3191 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3192 {
3193         if (buffer->irq_work.waiters_pending) {
3194                 buffer->irq_work.waiters_pending = false;
3195                 /* irq_work_queue() supplies it's own memory barriers */
3196                 irq_work_queue(&buffer->irq_work.work);
3197         }
3198
3199         if (cpu_buffer->irq_work.waiters_pending) {
3200                 cpu_buffer->irq_work.waiters_pending = false;
3201                 /* irq_work_queue() supplies it's own memory barriers */
3202                 irq_work_queue(&cpu_buffer->irq_work.work);
3203         }
3204
3205         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3206                 return;
3207
3208         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3209                 return;
3210
3211         if (!cpu_buffer->irq_work.full_waiters_pending)
3212                 return;
3213
3214         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3215
3216         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3217                 return;
3218
3219         cpu_buffer->irq_work.wakeup_full = true;
3220         cpu_buffer->irq_work.full_waiters_pending = false;
3221         /* irq_work_queue() supplies it's own memory barriers */
3222         irq_work_queue(&cpu_buffer->irq_work.work);
3223 }
3224
3225 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3226 # define do_ring_buffer_record_recursion()      \
3227         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3228 #else
3229 # define do_ring_buffer_record_recursion() do { } while (0)
3230 #endif
3231
3232 /*
3233  * The lock and unlock are done within a preempt disable section.
3234  * The current_context per_cpu variable can only be modified
3235  * by the current task between lock and unlock. But it can
3236  * be modified more than once via an interrupt. To pass this
3237  * information from the lock to the unlock without having to
3238  * access the 'in_interrupt()' functions again (which do show
3239  * a bit of overhead in something as critical as function tracing,
3240  * we use a bitmask trick.
3241  *
3242  *  bit 1 =  NMI context
3243  *  bit 2 =  IRQ context
3244  *  bit 3 =  SoftIRQ context
3245  *  bit 4 =  normal context.
3246  *
3247  * This works because this is the order of contexts that can
3248  * preempt other contexts. A SoftIRQ never preempts an IRQ
3249  * context.
3250  *
3251  * When the context is determined, the corresponding bit is
3252  * checked and set (if it was set, then a recursion of that context
3253  * happened).
3254  *
3255  * On unlock, we need to clear this bit. To do so, just subtract
3256  * 1 from the current_context and AND it to itself.
3257  *
3258  * (binary)
3259  *  101 - 1 = 100
3260  *  101 & 100 = 100 (clearing bit zero)
3261  *
3262  *  1010 - 1 = 1001
3263  *  1010 & 1001 = 1000 (clearing bit 1)
3264  *
3265  * The least significant bit can be cleared this way, and it
3266  * just so happens that it is the same bit corresponding to
3267  * the current context.
3268  *
3269  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3270  * is set when a recursion is detected at the current context, and if
3271  * the TRANSITION bit is already set, it will fail the recursion.
3272  * This is needed because there's a lag between the changing of
3273  * interrupt context and updating the preempt count. In this case,
3274  * a false positive will be found. To handle this, one extra recursion
3275  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3276  * bit is already set, then it is considered a recursion and the function
3277  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3278  *
3279  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3280  * to be cleared. Even if it wasn't the context that set it. That is,
3281  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3282  * is called before preempt_count() is updated, since the check will
3283  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3284  * NMI then comes in, it will set the NMI bit, but when the NMI code
3285  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3286  * and leave the NMI bit set. But this is fine, because the interrupt
3287  * code that set the TRANSITION bit will then clear the NMI bit when it
3288  * calls trace_recursive_unlock(). If another NMI comes in, it will
3289  * set the TRANSITION bit and continue.
3290  *
3291  * Note: The TRANSITION bit only handles a single transition between context.
3292  */
3293
3294 static __always_inline int
3295 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3296 {
3297         unsigned int val = cpu_buffer->current_context;
3298         int bit = interrupt_context_level();
3299
3300         bit = RB_CTX_NORMAL - bit;
3301
3302         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3303                 /*
3304                  * It is possible that this was called by transitioning
3305                  * between interrupt context, and preempt_count() has not
3306                  * been updated yet. In this case, use the TRANSITION bit.
3307                  */
3308                 bit = RB_CTX_TRANSITION;
3309                 if (val & (1 << (bit + cpu_buffer->nest))) {
3310                         do_ring_buffer_record_recursion();
3311                         return 1;
3312                 }
3313         }
3314
3315         val |= (1 << (bit + cpu_buffer->nest));
3316         cpu_buffer->current_context = val;
3317
3318         return 0;
3319 }
3320
3321 static __always_inline void
3322 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3323 {
3324         cpu_buffer->current_context &=
3325                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3326 }
3327
3328 /* The recursive locking above uses 5 bits */
3329 #define NESTED_BITS 5
3330
3331 /**
3332  * ring_buffer_nest_start - Allow to trace while nested
3333  * @buffer: The ring buffer to modify
3334  *
3335  * The ring buffer has a safety mechanism to prevent recursion.
3336  * But there may be a case where a trace needs to be done while
3337  * tracing something else. In this case, calling this function
3338  * will allow this function to nest within a currently active
3339  * ring_buffer_lock_reserve().
3340  *
3341  * Call this function before calling another ring_buffer_lock_reserve() and
3342  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3343  */
3344 void ring_buffer_nest_start(struct trace_buffer *buffer)
3345 {
3346         struct ring_buffer_per_cpu *cpu_buffer;
3347         int cpu;
3348
3349         /* Enabled by ring_buffer_nest_end() */
3350         preempt_disable_notrace();
3351         cpu = raw_smp_processor_id();
3352         cpu_buffer = buffer->buffers[cpu];
3353         /* This is the shift value for the above recursive locking */
3354         cpu_buffer->nest += NESTED_BITS;
3355 }
3356
3357 /**
3358  * ring_buffer_nest_end - Allow to trace while nested
3359  * @buffer: The ring buffer to modify
3360  *
3361  * Must be called after ring_buffer_nest_start() and after the
3362  * ring_buffer_unlock_commit().
3363  */
3364 void ring_buffer_nest_end(struct trace_buffer *buffer)
3365 {
3366         struct ring_buffer_per_cpu *cpu_buffer;
3367         int cpu;
3368
3369         /* disabled by ring_buffer_nest_start() */
3370         cpu = raw_smp_processor_id();
3371         cpu_buffer = buffer->buffers[cpu];
3372         /* This is the shift value for the above recursive locking */
3373         cpu_buffer->nest -= NESTED_BITS;
3374         preempt_enable_notrace();
3375 }
3376
3377 /**
3378  * ring_buffer_unlock_commit - commit a reserved
3379  * @buffer: The buffer to commit to
3380  * @event: The event pointer to commit.
3381  *
3382  * This commits the data to the ring buffer, and releases any locks held.
3383  *
3384  * Must be paired with ring_buffer_lock_reserve.
3385  */
3386 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3387                               struct ring_buffer_event *event)
3388 {
3389         struct ring_buffer_per_cpu *cpu_buffer;
3390         int cpu = raw_smp_processor_id();
3391
3392         cpu_buffer = buffer->buffers[cpu];
3393
3394         rb_commit(cpu_buffer, event);
3395
3396         rb_wakeups(buffer, cpu_buffer);
3397
3398         trace_recursive_unlock(cpu_buffer);
3399
3400         preempt_enable_notrace();
3401
3402         return 0;
3403 }
3404 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3405
3406 /* Special value to validate all deltas on a page. */
3407 #define CHECK_FULL_PAGE         1L
3408
3409 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3410 static void dump_buffer_page(struct buffer_data_page *bpage,
3411                              struct rb_event_info *info,
3412                              unsigned long tail)
3413 {
3414         struct ring_buffer_event *event;
3415         u64 ts, delta;
3416         int e;
3417
3418         ts = bpage->time_stamp;
3419         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3420
3421         for (e = 0; e < tail; e += rb_event_length(event)) {
3422
3423                 event = (struct ring_buffer_event *)(bpage->data + e);
3424
3425                 switch (event->type_len) {
3426
3427                 case RINGBUF_TYPE_TIME_EXTEND:
3428                         delta = rb_event_time_stamp(event);
3429                         ts += delta;
3430                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3431                         break;
3432
3433                 case RINGBUF_TYPE_TIME_STAMP:
3434                         delta = rb_event_time_stamp(event);
3435                         ts = rb_fix_abs_ts(delta, ts);
3436                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3437                         break;
3438
3439                 case RINGBUF_TYPE_PADDING:
3440                         ts += event->time_delta;
3441                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3442                         break;
3443
3444                 case RINGBUF_TYPE_DATA:
3445                         ts += event->time_delta;
3446                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3447                         break;
3448
3449                 default:
3450                         break;
3451                 }
3452         }
3453 }
3454
3455 static DEFINE_PER_CPU(atomic_t, checking);
3456 static atomic_t ts_dump;
3457
3458 /*
3459  * Check if the current event time stamp matches the deltas on
3460  * the buffer page.
3461  */
3462 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3463                          struct rb_event_info *info,
3464                          unsigned long tail)
3465 {
3466         struct ring_buffer_event *event;
3467         struct buffer_data_page *bpage;
3468         u64 ts, delta;
3469         bool full = false;
3470         int e;
3471
3472         bpage = info->tail_page->page;
3473
3474         if (tail == CHECK_FULL_PAGE) {
3475                 full = true;
3476                 tail = local_read(&bpage->commit);
3477         } else if (info->add_timestamp &
3478                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3479                 /* Ignore events with absolute time stamps */
3480                 return;
3481         }
3482
3483         /*
3484          * Do not check the first event (skip possible extends too).
3485          * Also do not check if previous events have not been committed.
3486          */
3487         if (tail <= 8 || tail > local_read(&bpage->commit))
3488                 return;
3489
3490         /*
3491          * If this interrupted another event, 
3492          */
3493         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3494                 goto out;
3495
3496         ts = bpage->time_stamp;
3497
3498         for (e = 0; e < tail; e += rb_event_length(event)) {
3499
3500                 event = (struct ring_buffer_event *)(bpage->data + e);
3501
3502                 switch (event->type_len) {
3503
3504                 case RINGBUF_TYPE_TIME_EXTEND:
3505                         delta = rb_event_time_stamp(event);
3506                         ts += delta;
3507                         break;
3508
3509                 case RINGBUF_TYPE_TIME_STAMP:
3510                         delta = rb_event_time_stamp(event);
3511                         ts = rb_fix_abs_ts(delta, ts);
3512                         break;
3513
3514                 case RINGBUF_TYPE_PADDING:
3515                         if (event->time_delta == 1)
3516                                 break;
3517                         fallthrough;
3518                 case RINGBUF_TYPE_DATA:
3519                         ts += event->time_delta;
3520                         break;
3521
3522                 default:
3523                         RB_WARN_ON(cpu_buffer, 1);
3524                 }
3525         }
3526         if ((full && ts > info->ts) ||
3527             (!full && ts + info->delta != info->ts)) {
3528                 /* If another report is happening, ignore this one */
3529                 if (atomic_inc_return(&ts_dump) != 1) {
3530                         atomic_dec(&ts_dump);
3531                         goto out;
3532                 }
3533                 atomic_inc(&cpu_buffer->record_disabled);
3534                 /* There's some cases in boot up that this can happen */
3535                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3536                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3537                         cpu_buffer->cpu,
3538                         ts + info->delta, info->ts, info->delta,
3539                         info->before, info->after,
3540                         full ? " (full)" : "");
3541                 dump_buffer_page(bpage, info, tail);
3542                 atomic_dec(&ts_dump);
3543                 /* Do not re-enable checking */
3544                 return;
3545         }
3546 out:
3547         atomic_dec(this_cpu_ptr(&checking));
3548 }
3549 #else
3550 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3551                          struct rb_event_info *info,
3552                          unsigned long tail)
3553 {
3554 }
3555 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3556
3557 static struct ring_buffer_event *
3558 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3559                   struct rb_event_info *info)
3560 {
3561         struct ring_buffer_event *event;
3562         struct buffer_page *tail_page;
3563         unsigned long tail, write, w;
3564         bool a_ok;
3565         bool b_ok;
3566
3567         /* Don't let the compiler play games with cpu_buffer->tail_page */
3568         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3569
3570  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3571         barrier();
3572         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3573         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3574         barrier();
3575         info->ts = rb_time_stamp(cpu_buffer->buffer);
3576
3577         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3578                 info->delta = info->ts;
3579         } else {
3580                 /*
3581                  * If interrupting an event time update, we may need an
3582                  * absolute timestamp.
3583                  * Don't bother if this is the start of a new page (w == 0).
3584                  */
3585                 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3586                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3587                         info->length += RB_LEN_TIME_EXTEND;
3588                 } else {
3589                         info->delta = info->ts - info->after;
3590                         if (unlikely(test_time_stamp(info->delta))) {
3591                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3592                                 info->length += RB_LEN_TIME_EXTEND;
3593                         }
3594                 }
3595         }
3596
3597  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3598
3599  /*C*/  write = local_add_return(info->length, &tail_page->write);
3600
3601         /* set write to only the index of the write */
3602         write &= RB_WRITE_MASK;
3603
3604         tail = write - info->length;
3605
3606         /* See if we shot pass the end of this buffer page */
3607         if (unlikely(write > BUF_PAGE_SIZE)) {
3608                 /* before and after may now different, fix it up*/
3609                 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3610                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3611                 if (a_ok && b_ok && info->before != info->after)
3612                         (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3613                                               info->before, info->after);
3614                 if (a_ok && b_ok)
3615                         check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3616                 return rb_move_tail(cpu_buffer, tail, info);
3617         }
3618
3619         if (likely(tail == w)) {
3620                 u64 save_before;
3621                 bool s_ok;
3622
3623                 /* Nothing interrupted us between A and C */
3624  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3625                 barrier();
3626  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3627                 RB_WARN_ON(cpu_buffer, !s_ok);
3628                 if (likely(!(info->add_timestamp &
3629                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3630                         /* This did not interrupt any time update */
3631                         info->delta = info->ts - info->after;
3632                 else
3633                         /* Just use full timestamp for interrupting event */
3634                         info->delta = info->ts;
3635                 barrier();
3636                 check_buffer(cpu_buffer, info, tail);
3637                 if (unlikely(info->ts != save_before)) {
3638                         /* SLOW PATH - Interrupted between C and E */
3639
3640                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3641                         RB_WARN_ON(cpu_buffer, !a_ok);
3642
3643                         /* Write stamp must only go forward */
3644                         if (save_before > info->after) {
3645                                 /*
3646                                  * We do not care about the result, only that
3647                                  * it gets updated atomically.
3648                                  */
3649                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3650                                                       info->after, save_before);
3651                         }
3652                 }
3653         } else {
3654                 u64 ts;
3655                 /* SLOW PATH - Interrupted between A and C */
3656                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3657                 /* Was interrupted before here, write_stamp must be valid */
3658                 RB_WARN_ON(cpu_buffer, !a_ok);
3659                 ts = rb_time_stamp(cpu_buffer->buffer);
3660                 barrier();
3661  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3662                     info->after < ts &&
3663                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3664                                     info->after, ts)) {
3665                         /* Nothing came after this event between C and E */
3666                         info->delta = ts - info->after;
3667                 } else {
3668                         /*
3669                          * Interrupted between C and E:
3670                          * Lost the previous events time stamp. Just set the
3671                          * delta to zero, and this will be the same time as
3672                          * the event this event interrupted. And the events that
3673                          * came after this will still be correct (as they would
3674                          * have built their delta on the previous event.
3675                          */
3676                         info->delta = 0;
3677                 }
3678                 info->ts = ts;
3679                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3680         }
3681
3682         /*
3683          * If this is the first commit on the page, then it has the same
3684          * timestamp as the page itself.
3685          */
3686         if (unlikely(!tail && !(info->add_timestamp &
3687                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3688                 info->delta = 0;
3689
3690         /* We reserved something on the buffer */
3691
3692         event = __rb_page_index(tail_page, tail);
3693         rb_update_event(cpu_buffer, event, info);
3694
3695         local_inc(&tail_page->entries);
3696
3697         /*
3698          * If this is the first commit on the page, then update
3699          * its timestamp.
3700          */
3701         if (unlikely(!tail))
3702                 tail_page->page->time_stamp = info->ts;
3703
3704         /* account for these added bytes */
3705         local_add(info->length, &cpu_buffer->entries_bytes);
3706
3707         return event;
3708 }
3709
3710 static __always_inline struct ring_buffer_event *
3711 rb_reserve_next_event(struct trace_buffer *buffer,
3712                       struct ring_buffer_per_cpu *cpu_buffer,
3713                       unsigned long length)
3714 {
3715         struct ring_buffer_event *event;
3716         struct rb_event_info info;
3717         int nr_loops = 0;
3718         int add_ts_default;
3719
3720         rb_start_commit(cpu_buffer);
3721         /* The commit page can not change after this */
3722
3723 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3724         /*
3725          * Due to the ability to swap a cpu buffer from a buffer
3726          * it is possible it was swapped before we committed.
3727          * (committing stops a swap). We check for it here and
3728          * if it happened, we have to fail the write.
3729          */
3730         barrier();
3731         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3732                 local_dec(&cpu_buffer->committing);
3733                 local_dec(&cpu_buffer->commits);
3734                 return NULL;
3735         }
3736 #endif
3737
3738         info.length = rb_calculate_event_length(length);
3739
3740         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3741                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3742                 info.length += RB_LEN_TIME_EXTEND;
3743         } else {
3744                 add_ts_default = RB_ADD_STAMP_NONE;
3745         }
3746
3747  again:
3748         info.add_timestamp = add_ts_default;
3749         info.delta = 0;
3750
3751         /*
3752          * We allow for interrupts to reenter here and do a trace.
3753          * If one does, it will cause this original code to loop
3754          * back here. Even with heavy interrupts happening, this
3755          * should only happen a few times in a row. If this happens
3756          * 1000 times in a row, there must be either an interrupt
3757          * storm or we have something buggy.
3758          * Bail!
3759          */
3760         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3761                 goto out_fail;
3762
3763         event = __rb_reserve_next(cpu_buffer, &info);
3764
3765         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3766                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3767                         info.length -= RB_LEN_TIME_EXTEND;
3768                 goto again;
3769         }
3770
3771         if (likely(event))
3772                 return event;
3773  out_fail:
3774         rb_end_commit(cpu_buffer);
3775         return NULL;
3776 }
3777
3778 /**
3779  * ring_buffer_lock_reserve - reserve a part of the buffer
3780  * @buffer: the ring buffer to reserve from
3781  * @length: the length of the data to reserve (excluding event header)
3782  *
3783  * Returns a reserved event on the ring buffer to copy directly to.
3784  * The user of this interface will need to get the body to write into
3785  * and can use the ring_buffer_event_data() interface.
3786  *
3787  * The length is the length of the data needed, not the event length
3788  * which also includes the event header.
3789  *
3790  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3791  * If NULL is returned, then nothing has been allocated or locked.
3792  */
3793 struct ring_buffer_event *
3794 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3795 {
3796         struct ring_buffer_per_cpu *cpu_buffer;
3797         struct ring_buffer_event *event;
3798         int cpu;
3799
3800         /* If we are tracing schedule, we don't want to recurse */
3801         preempt_disable_notrace();
3802
3803         if (unlikely(atomic_read(&buffer->record_disabled)))
3804                 goto out;
3805
3806         cpu = raw_smp_processor_id();
3807
3808         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3809                 goto out;
3810
3811         cpu_buffer = buffer->buffers[cpu];
3812
3813         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3814                 goto out;
3815
3816         if (unlikely(length > BUF_MAX_DATA_SIZE))
3817                 goto out;
3818
3819         if (unlikely(trace_recursive_lock(cpu_buffer)))
3820                 goto out;
3821
3822         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3823         if (!event)
3824                 goto out_unlock;
3825
3826         return event;
3827
3828  out_unlock:
3829         trace_recursive_unlock(cpu_buffer);
3830  out:
3831         preempt_enable_notrace();
3832         return NULL;
3833 }
3834 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3835
3836 /*
3837  * Decrement the entries to the page that an event is on.
3838  * The event does not even need to exist, only the pointer
3839  * to the page it is on. This may only be called before the commit
3840  * takes place.
3841  */
3842 static inline void
3843 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3844                    struct ring_buffer_event *event)
3845 {
3846         unsigned long addr = (unsigned long)event;
3847         struct buffer_page *bpage = cpu_buffer->commit_page;
3848         struct buffer_page *start;
3849
3850         addr &= PAGE_MASK;
3851
3852         /* Do the likely case first */
3853         if (likely(bpage->page == (void *)addr)) {
3854                 local_dec(&bpage->entries);
3855                 return;
3856         }
3857
3858         /*
3859          * Because the commit page may be on the reader page we
3860          * start with the next page and check the end loop there.
3861          */
3862         rb_inc_page(&bpage);
3863         start = bpage;
3864         do {
3865                 if (bpage->page == (void *)addr) {
3866                         local_dec(&bpage->entries);
3867                         return;
3868                 }
3869                 rb_inc_page(&bpage);
3870         } while (bpage != start);
3871
3872         /* commit not part of this buffer?? */
3873         RB_WARN_ON(cpu_buffer, 1);
3874 }
3875
3876 /**
3877  * ring_buffer_discard_commit - discard an event that has not been committed
3878  * @buffer: the ring buffer
3879  * @event: non committed event to discard
3880  *
3881  * Sometimes an event that is in the ring buffer needs to be ignored.
3882  * This function lets the user discard an event in the ring buffer
3883  * and then that event will not be read later.
3884  *
3885  * This function only works if it is called before the item has been
3886  * committed. It will try to free the event from the ring buffer
3887  * if another event has not been added behind it.
3888  *
3889  * If another event has been added behind it, it will set the event
3890  * up as discarded, and perform the commit.
3891  *
3892  * If this function is called, do not call ring_buffer_unlock_commit on
3893  * the event.
3894  */
3895 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3896                                 struct ring_buffer_event *event)
3897 {
3898         struct ring_buffer_per_cpu *cpu_buffer;
3899         int cpu;
3900
3901         /* The event is discarded regardless */
3902         rb_event_discard(event);
3903
3904         cpu = smp_processor_id();
3905         cpu_buffer = buffer->buffers[cpu];
3906
3907         /*
3908          * This must only be called if the event has not been
3909          * committed yet. Thus we can assume that preemption
3910          * is still disabled.
3911          */
3912         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3913
3914         rb_decrement_entry(cpu_buffer, event);
3915         if (rb_try_to_discard(cpu_buffer, event))
3916                 goto out;
3917
3918  out:
3919         rb_end_commit(cpu_buffer);
3920
3921         trace_recursive_unlock(cpu_buffer);
3922
3923         preempt_enable_notrace();
3924
3925 }
3926 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3927
3928 /**
3929  * ring_buffer_write - write data to the buffer without reserving
3930  * @buffer: The ring buffer to write to.
3931  * @length: The length of the data being written (excluding the event header)
3932  * @data: The data to write to the buffer.
3933  *
3934  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3935  * one function. If you already have the data to write to the buffer, it
3936  * may be easier to simply call this function.
3937  *
3938  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3939  * and not the length of the event which would hold the header.
3940  */
3941 int ring_buffer_write(struct trace_buffer *buffer,
3942                       unsigned long length,
3943                       void *data)
3944 {
3945         struct ring_buffer_per_cpu *cpu_buffer;
3946         struct ring_buffer_event *event;
3947         void *body;
3948         int ret = -EBUSY;
3949         int cpu;
3950
3951         preempt_disable_notrace();
3952
3953         if (atomic_read(&buffer->record_disabled))
3954                 goto out;
3955
3956         cpu = raw_smp_processor_id();
3957
3958         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3959                 goto out;
3960
3961         cpu_buffer = buffer->buffers[cpu];
3962
3963         if (atomic_read(&cpu_buffer->record_disabled))
3964                 goto out;
3965
3966         if (length > BUF_MAX_DATA_SIZE)
3967                 goto out;
3968
3969         if (unlikely(trace_recursive_lock(cpu_buffer)))
3970                 goto out;
3971
3972         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3973         if (!event)
3974                 goto out_unlock;
3975
3976         body = rb_event_data(event);
3977
3978         memcpy(body, data, length);
3979
3980         rb_commit(cpu_buffer, event);
3981
3982         rb_wakeups(buffer, cpu_buffer);
3983
3984         ret = 0;
3985
3986  out_unlock:
3987         trace_recursive_unlock(cpu_buffer);
3988
3989  out:
3990         preempt_enable_notrace();
3991
3992         return ret;
3993 }
3994 EXPORT_SYMBOL_GPL(ring_buffer_write);
3995
3996 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3997 {
3998         struct buffer_page *reader = cpu_buffer->reader_page;
3999         struct buffer_page *head = rb_set_head_page(cpu_buffer);
4000         struct buffer_page *commit = cpu_buffer->commit_page;
4001
4002         /* In case of error, head will be NULL */
4003         if (unlikely(!head))
4004                 return true;
4005
4006         /* Reader should exhaust content in reader page */
4007         if (reader->read != rb_page_commit(reader))
4008                 return false;
4009
4010         /*
4011          * If writers are committing on the reader page, knowing all
4012          * committed content has been read, the ring buffer is empty.
4013          */
4014         if (commit == reader)
4015                 return true;
4016
4017         /*
4018          * If writers are committing on a page other than reader page
4019          * and head page, there should always be content to read.
4020          */
4021         if (commit != head)
4022                 return false;
4023
4024         /*
4025          * Writers are committing on the head page, we just need
4026          * to care about there're committed data, and the reader will
4027          * swap reader page with head page when it is to read data.
4028          */
4029         return rb_page_commit(commit) == 0;
4030 }
4031
4032 /**
4033  * ring_buffer_record_disable - stop all writes into the buffer
4034  * @buffer: The ring buffer to stop writes to.
4035  *
4036  * This prevents all writes to the buffer. Any attempt to write
4037  * to the buffer after this will fail and return NULL.
4038  *
4039  * The caller should call synchronize_rcu() after this.
4040  */
4041 void ring_buffer_record_disable(struct trace_buffer *buffer)
4042 {
4043         atomic_inc(&buffer->record_disabled);
4044 }
4045 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4046
4047 /**
4048  * ring_buffer_record_enable - enable writes to the buffer
4049  * @buffer: The ring buffer to enable writes
4050  *
4051  * Note, multiple disables will need the same number of enables
4052  * to truly enable the writing (much like preempt_disable).
4053  */
4054 void ring_buffer_record_enable(struct trace_buffer *buffer)
4055 {
4056         atomic_dec(&buffer->record_disabled);
4057 }
4058 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4059
4060 /**
4061  * ring_buffer_record_off - stop all writes into the buffer
4062  * @buffer: The ring buffer to stop writes to.
4063  *
4064  * This prevents all writes to the buffer. Any attempt to write
4065  * to the buffer after this will fail and return NULL.
4066  *
4067  * This is different than ring_buffer_record_disable() as
4068  * it works like an on/off switch, where as the disable() version
4069  * must be paired with a enable().
4070  */
4071 void ring_buffer_record_off(struct trace_buffer *buffer)
4072 {
4073         unsigned int rd;
4074         unsigned int new_rd;
4075
4076         do {
4077                 rd = atomic_read(&buffer->record_disabled);
4078                 new_rd = rd | RB_BUFFER_OFF;
4079         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4080 }
4081 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4082
4083 /**
4084  * ring_buffer_record_on - restart writes into the buffer
4085  * @buffer: The ring buffer to start writes to.
4086  *
4087  * This enables all writes to the buffer that was disabled by
4088  * ring_buffer_record_off().
4089  *
4090  * This is different than ring_buffer_record_enable() as
4091  * it works like an on/off switch, where as the enable() version
4092  * must be paired with a disable().
4093  */
4094 void ring_buffer_record_on(struct trace_buffer *buffer)
4095 {
4096         unsigned int rd;
4097         unsigned int new_rd;
4098
4099         do {
4100                 rd = atomic_read(&buffer->record_disabled);
4101                 new_rd = rd & ~RB_BUFFER_OFF;
4102         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4103 }
4104 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4105
4106 /**
4107  * ring_buffer_record_is_on - return true if the ring buffer can write
4108  * @buffer: The ring buffer to see if write is enabled
4109  *
4110  * Returns true if the ring buffer is in a state that it accepts writes.
4111  */
4112 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4113 {
4114         return !atomic_read(&buffer->record_disabled);
4115 }
4116
4117 /**
4118  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4119  * @buffer: The ring buffer to see if write is set enabled
4120  *
4121  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4122  * Note that this does NOT mean it is in a writable state.
4123  *
4124  * It may return true when the ring buffer has been disabled by
4125  * ring_buffer_record_disable(), as that is a temporary disabling of
4126  * the ring buffer.
4127  */
4128 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4129 {
4130         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4131 }
4132
4133 /**
4134  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4135  * @buffer: The ring buffer to stop writes to.
4136  * @cpu: The CPU buffer to stop
4137  *
4138  * This prevents all writes to the buffer. Any attempt to write
4139  * to the buffer after this will fail and return NULL.
4140  *
4141  * The caller should call synchronize_rcu() after this.
4142  */
4143 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4144 {
4145         struct ring_buffer_per_cpu *cpu_buffer;
4146
4147         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4148                 return;
4149
4150         cpu_buffer = buffer->buffers[cpu];
4151         atomic_inc(&cpu_buffer->record_disabled);
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4154
4155 /**
4156  * ring_buffer_record_enable_cpu - enable writes to the buffer
4157  * @buffer: The ring buffer to enable writes
4158  * @cpu: The CPU to enable.
4159  *
4160  * Note, multiple disables will need the same number of enables
4161  * to truly enable the writing (much like preempt_disable).
4162  */
4163 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4164 {
4165         struct ring_buffer_per_cpu *cpu_buffer;
4166
4167         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168                 return;
4169
4170         cpu_buffer = buffer->buffers[cpu];
4171         atomic_dec(&cpu_buffer->record_disabled);
4172 }
4173 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4174
4175 /*
4176  * The total entries in the ring buffer is the running counter
4177  * of entries entered into the ring buffer, minus the sum of
4178  * the entries read from the ring buffer and the number of
4179  * entries that were overwritten.
4180  */
4181 static inline unsigned long
4182 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4183 {
4184         return local_read(&cpu_buffer->entries) -
4185                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4186 }
4187
4188 /**
4189  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4190  * @buffer: The ring buffer
4191  * @cpu: The per CPU buffer to read from.
4192  */
4193 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4194 {
4195         unsigned long flags;
4196         struct ring_buffer_per_cpu *cpu_buffer;
4197         struct buffer_page *bpage;
4198         u64 ret = 0;
4199
4200         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4201                 return 0;
4202
4203         cpu_buffer = buffer->buffers[cpu];
4204         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4205         /*
4206          * if the tail is on reader_page, oldest time stamp is on the reader
4207          * page
4208          */
4209         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4210                 bpage = cpu_buffer->reader_page;
4211         else
4212                 bpage = rb_set_head_page(cpu_buffer);
4213         if (bpage)
4214                 ret = bpage->page->time_stamp;
4215         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4216
4217         return ret;
4218 }
4219 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4220
4221 /**
4222  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4223  * @buffer: The ring buffer
4224  * @cpu: The per CPU buffer to read from.
4225  */
4226 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4227 {
4228         struct ring_buffer_per_cpu *cpu_buffer;
4229         unsigned long ret;
4230
4231         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4232                 return 0;
4233
4234         cpu_buffer = buffer->buffers[cpu];
4235         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4236
4237         return ret;
4238 }
4239 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4240
4241 /**
4242  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4243  * @buffer: The ring buffer
4244  * @cpu: The per CPU buffer to get the entries from.
4245  */
4246 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4247 {
4248         struct ring_buffer_per_cpu *cpu_buffer;
4249
4250         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4251                 return 0;
4252
4253         cpu_buffer = buffer->buffers[cpu];
4254
4255         return rb_num_of_entries(cpu_buffer);
4256 }
4257 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4258
4259 /**
4260  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4261  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4262  * @buffer: The ring buffer
4263  * @cpu: The per CPU buffer to get the number of overruns from
4264  */
4265 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4266 {
4267         struct ring_buffer_per_cpu *cpu_buffer;
4268         unsigned long ret;
4269
4270         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4271                 return 0;
4272
4273         cpu_buffer = buffer->buffers[cpu];
4274         ret = local_read(&cpu_buffer->overrun);
4275
4276         return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4279
4280 /**
4281  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4282  * commits failing due to the buffer wrapping around while there are uncommitted
4283  * events, such as during an interrupt storm.
4284  * @buffer: The ring buffer
4285  * @cpu: The per CPU buffer to get the number of overruns from
4286  */
4287 unsigned long
4288 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4289 {
4290         struct ring_buffer_per_cpu *cpu_buffer;
4291         unsigned long ret;
4292
4293         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4294                 return 0;
4295
4296         cpu_buffer = buffer->buffers[cpu];
4297         ret = local_read(&cpu_buffer->commit_overrun);
4298
4299         return ret;
4300 }
4301 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4302
4303 /**
4304  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4305  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4306  * @buffer: The ring buffer
4307  * @cpu: The per CPU buffer to get the number of overruns from
4308  */
4309 unsigned long
4310 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4311 {
4312         struct ring_buffer_per_cpu *cpu_buffer;
4313         unsigned long ret;
4314
4315         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4316                 return 0;
4317
4318         cpu_buffer = buffer->buffers[cpu];
4319         ret = local_read(&cpu_buffer->dropped_events);
4320
4321         return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4324
4325 /**
4326  * ring_buffer_read_events_cpu - get the number of events successfully read
4327  * @buffer: The ring buffer
4328  * @cpu: The per CPU buffer to get the number of events read
4329  */
4330 unsigned long
4331 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4332 {
4333         struct ring_buffer_per_cpu *cpu_buffer;
4334
4335         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4336                 return 0;
4337
4338         cpu_buffer = buffer->buffers[cpu];
4339         return cpu_buffer->read;
4340 }
4341 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4342
4343 /**
4344  * ring_buffer_entries - get the number of entries in a buffer
4345  * @buffer: The ring buffer
4346  *
4347  * Returns the total number of entries in the ring buffer
4348  * (all CPU entries)
4349  */
4350 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4351 {
4352         struct ring_buffer_per_cpu *cpu_buffer;
4353         unsigned long entries = 0;
4354         int cpu;
4355
4356         /* if you care about this being correct, lock the buffer */
4357         for_each_buffer_cpu(buffer, cpu) {
4358                 cpu_buffer = buffer->buffers[cpu];
4359                 entries += rb_num_of_entries(cpu_buffer);
4360         }
4361
4362         return entries;
4363 }
4364 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4365
4366 /**
4367  * ring_buffer_overruns - get the number of overruns in buffer
4368  * @buffer: The ring buffer
4369  *
4370  * Returns the total number of overruns in the ring buffer
4371  * (all CPU entries)
4372  */
4373 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4374 {
4375         struct ring_buffer_per_cpu *cpu_buffer;
4376         unsigned long overruns = 0;
4377         int cpu;
4378
4379         /* if you care about this being correct, lock the buffer */
4380         for_each_buffer_cpu(buffer, cpu) {
4381                 cpu_buffer = buffer->buffers[cpu];
4382                 overruns += local_read(&cpu_buffer->overrun);
4383         }
4384
4385         return overruns;
4386 }
4387 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4388
4389 static void rb_iter_reset(struct ring_buffer_iter *iter)
4390 {
4391         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4392
4393         /* Iterator usage is expected to have record disabled */
4394         iter->head_page = cpu_buffer->reader_page;
4395         iter->head = cpu_buffer->reader_page->read;
4396         iter->next_event = iter->head;
4397
4398         iter->cache_reader_page = iter->head_page;
4399         iter->cache_read = cpu_buffer->read;
4400
4401         if (iter->head) {
4402                 iter->read_stamp = cpu_buffer->read_stamp;
4403                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4404         } else {
4405                 iter->read_stamp = iter->head_page->page->time_stamp;
4406                 iter->page_stamp = iter->read_stamp;
4407         }
4408 }
4409
4410 /**
4411  * ring_buffer_iter_reset - reset an iterator
4412  * @iter: The iterator to reset
4413  *
4414  * Resets the iterator, so that it will start from the beginning
4415  * again.
4416  */
4417 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4418 {
4419         struct ring_buffer_per_cpu *cpu_buffer;
4420         unsigned long flags;
4421
4422         if (!iter)
4423                 return;
4424
4425         cpu_buffer = iter->cpu_buffer;
4426
4427         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4428         rb_iter_reset(iter);
4429         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4430 }
4431 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4432
4433 /**
4434  * ring_buffer_iter_empty - check if an iterator has no more to read
4435  * @iter: The iterator to check
4436  */
4437 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4438 {
4439         struct ring_buffer_per_cpu *cpu_buffer;
4440         struct buffer_page *reader;
4441         struct buffer_page *head_page;
4442         struct buffer_page *commit_page;
4443         struct buffer_page *curr_commit_page;
4444         unsigned commit;
4445         u64 curr_commit_ts;
4446         u64 commit_ts;
4447
4448         cpu_buffer = iter->cpu_buffer;
4449         reader = cpu_buffer->reader_page;
4450         head_page = cpu_buffer->head_page;
4451         commit_page = cpu_buffer->commit_page;
4452         commit_ts = commit_page->page->time_stamp;
4453
4454         /*
4455          * When the writer goes across pages, it issues a cmpxchg which
4456          * is a mb(), which will synchronize with the rmb here.
4457          * (see rb_tail_page_update())
4458          */
4459         smp_rmb();
4460         commit = rb_page_commit(commit_page);
4461         /* We want to make sure that the commit page doesn't change */
4462         smp_rmb();
4463
4464         /* Make sure commit page didn't change */
4465         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4466         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4467
4468         /* If the commit page changed, then there's more data */
4469         if (curr_commit_page != commit_page ||
4470             curr_commit_ts != commit_ts)
4471                 return 0;
4472
4473         /* Still racy, as it may return a false positive, but that's OK */
4474         return ((iter->head_page == commit_page && iter->head >= commit) ||
4475                 (iter->head_page == reader && commit_page == head_page &&
4476                  head_page->read == commit &&
4477                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4478 }
4479 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4480
4481 static void
4482 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4483                      struct ring_buffer_event *event)
4484 {
4485         u64 delta;
4486
4487         switch (event->type_len) {
4488         case RINGBUF_TYPE_PADDING:
4489                 return;
4490
4491         case RINGBUF_TYPE_TIME_EXTEND:
4492                 delta = rb_event_time_stamp(event);
4493                 cpu_buffer->read_stamp += delta;
4494                 return;
4495
4496         case RINGBUF_TYPE_TIME_STAMP:
4497                 delta = rb_event_time_stamp(event);
4498                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4499                 cpu_buffer->read_stamp = delta;
4500                 return;
4501
4502         case RINGBUF_TYPE_DATA:
4503                 cpu_buffer->read_stamp += event->time_delta;
4504                 return;
4505
4506         default:
4507                 RB_WARN_ON(cpu_buffer, 1);
4508         }
4509         return;
4510 }
4511
4512 static void
4513 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4514                           struct ring_buffer_event *event)
4515 {
4516         u64 delta;
4517
4518         switch (event->type_len) {
4519         case RINGBUF_TYPE_PADDING:
4520                 return;
4521
4522         case RINGBUF_TYPE_TIME_EXTEND:
4523                 delta = rb_event_time_stamp(event);
4524                 iter->read_stamp += delta;
4525                 return;
4526
4527         case RINGBUF_TYPE_TIME_STAMP:
4528                 delta = rb_event_time_stamp(event);
4529                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4530                 iter->read_stamp = delta;
4531                 return;
4532
4533         case RINGBUF_TYPE_DATA:
4534                 iter->read_stamp += event->time_delta;
4535                 return;
4536
4537         default:
4538                 RB_WARN_ON(iter->cpu_buffer, 1);
4539         }
4540         return;
4541 }
4542
4543 static struct buffer_page *
4544 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4545 {
4546         struct buffer_page *reader = NULL;
4547         unsigned long overwrite;
4548         unsigned long flags;
4549         int nr_loops = 0;
4550         int ret;
4551
4552         local_irq_save(flags);
4553         arch_spin_lock(&cpu_buffer->lock);
4554
4555  again:
4556         /*
4557          * This should normally only loop twice. But because the
4558          * start of the reader inserts an empty page, it causes
4559          * a case where we will loop three times. There should be no
4560          * reason to loop four times (that I know of).
4561          */
4562         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4563                 reader = NULL;
4564                 goto out;
4565         }
4566
4567         reader = cpu_buffer->reader_page;
4568
4569         /* If there's more to read, return this page */
4570         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4571                 goto out;
4572
4573         /* Never should we have an index greater than the size */
4574         if (RB_WARN_ON(cpu_buffer,
4575                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4576                 goto out;
4577
4578         /* check if we caught up to the tail */
4579         reader = NULL;
4580         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4581                 goto out;
4582
4583         /* Don't bother swapping if the ring buffer is empty */
4584         if (rb_num_of_entries(cpu_buffer) == 0)
4585                 goto out;
4586
4587         /*
4588          * Reset the reader page to size zero.
4589          */
4590         local_set(&cpu_buffer->reader_page->write, 0);
4591         local_set(&cpu_buffer->reader_page->entries, 0);
4592         local_set(&cpu_buffer->reader_page->page->commit, 0);
4593         cpu_buffer->reader_page->real_end = 0;
4594
4595  spin:
4596         /*
4597          * Splice the empty reader page into the list around the head.
4598          */
4599         reader = rb_set_head_page(cpu_buffer);
4600         if (!reader)
4601                 goto out;
4602         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4603         cpu_buffer->reader_page->list.prev = reader->list.prev;
4604
4605         /*
4606          * cpu_buffer->pages just needs to point to the buffer, it
4607          *  has no specific buffer page to point to. Lets move it out
4608          *  of our way so we don't accidentally swap it.
4609          */
4610         cpu_buffer->pages = reader->list.prev;
4611
4612         /* The reader page will be pointing to the new head */
4613         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4614
4615         /*
4616          * We want to make sure we read the overruns after we set up our
4617          * pointers to the next object. The writer side does a
4618          * cmpxchg to cross pages which acts as the mb on the writer
4619          * side. Note, the reader will constantly fail the swap
4620          * while the writer is updating the pointers, so this
4621          * guarantees that the overwrite recorded here is the one we
4622          * want to compare with the last_overrun.
4623          */
4624         smp_mb();
4625         overwrite = local_read(&(cpu_buffer->overrun));
4626
4627         /*
4628          * Here's the tricky part.
4629          *
4630          * We need to move the pointer past the header page.
4631          * But we can only do that if a writer is not currently
4632          * moving it. The page before the header page has the
4633          * flag bit '1' set if it is pointing to the page we want.
4634          * but if the writer is in the process of moving it
4635          * than it will be '2' or already moved '0'.
4636          */
4637
4638         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4639
4640         /*
4641          * If we did not convert it, then we must try again.
4642          */
4643         if (!ret)
4644                 goto spin;
4645
4646         /*
4647          * Yay! We succeeded in replacing the page.
4648          *
4649          * Now make the new head point back to the reader page.
4650          */
4651         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4652         rb_inc_page(&cpu_buffer->head_page);
4653
4654         local_inc(&cpu_buffer->pages_read);
4655
4656         /* Finally update the reader page to the new head */
4657         cpu_buffer->reader_page = reader;
4658         cpu_buffer->reader_page->read = 0;
4659
4660         if (overwrite != cpu_buffer->last_overrun) {
4661                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4662                 cpu_buffer->last_overrun = overwrite;
4663         }
4664
4665         goto again;
4666
4667  out:
4668         /* Update the read_stamp on the first event */
4669         if (reader && reader->read == 0)
4670                 cpu_buffer->read_stamp = reader->page->time_stamp;
4671
4672         arch_spin_unlock(&cpu_buffer->lock);
4673         local_irq_restore(flags);
4674
4675         /*
4676          * The writer has preempt disable, wait for it. But not forever
4677          * Although, 1 second is pretty much "forever"
4678          */
4679 #define USECS_WAIT      1000000
4680         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4681                 /* If the write is past the end of page, a writer is still updating it */
4682                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4683                         break;
4684
4685                 udelay(1);
4686
4687                 /* Get the latest version of the reader write value */
4688                 smp_rmb();
4689         }
4690
4691         /* The writer is not moving forward? Something is wrong */
4692         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4693                 reader = NULL;
4694
4695         /*
4696          * Make sure we see any padding after the write update
4697          * (see rb_reset_tail())
4698          */
4699         smp_rmb();
4700
4701
4702         return reader;
4703 }
4704
4705 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4706 {
4707         struct ring_buffer_event *event;
4708         struct buffer_page *reader;
4709         unsigned length;
4710
4711         reader = rb_get_reader_page(cpu_buffer);
4712
4713         /* This function should not be called when buffer is empty */
4714         if (RB_WARN_ON(cpu_buffer, !reader))
4715                 return;
4716
4717         event = rb_reader_event(cpu_buffer);
4718
4719         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4720                 cpu_buffer->read++;
4721
4722         rb_update_read_stamp(cpu_buffer, event);
4723
4724         length = rb_event_length(event);
4725         cpu_buffer->reader_page->read += length;
4726 }
4727
4728 static void rb_advance_iter(struct ring_buffer_iter *iter)
4729 {
4730         struct ring_buffer_per_cpu *cpu_buffer;
4731
4732         cpu_buffer = iter->cpu_buffer;
4733
4734         /* If head == next_event then we need to jump to the next event */
4735         if (iter->head == iter->next_event) {
4736                 /* If the event gets overwritten again, there's nothing to do */
4737                 if (rb_iter_head_event(iter) == NULL)
4738                         return;
4739         }
4740
4741         iter->head = iter->next_event;
4742
4743         /*
4744          * Check if we are at the end of the buffer.
4745          */
4746         if (iter->next_event >= rb_page_size(iter->head_page)) {
4747                 /* discarded commits can make the page empty */
4748                 if (iter->head_page == cpu_buffer->commit_page)
4749                         return;
4750                 rb_inc_iter(iter);
4751                 return;
4752         }
4753
4754         rb_update_iter_read_stamp(iter, iter->event);
4755 }
4756
4757 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4758 {
4759         return cpu_buffer->lost_events;
4760 }
4761
4762 static struct ring_buffer_event *
4763 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4764                unsigned long *lost_events)
4765 {
4766         struct ring_buffer_event *event;
4767         struct buffer_page *reader;
4768         int nr_loops = 0;
4769
4770         if (ts)
4771                 *ts = 0;
4772  again:
4773         /*
4774          * We repeat when a time extend is encountered.
4775          * Since the time extend is always attached to a data event,
4776          * we should never loop more than once.
4777          * (We never hit the following condition more than twice).
4778          */
4779         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4780                 return NULL;
4781
4782         reader = rb_get_reader_page(cpu_buffer);
4783         if (!reader)
4784                 return NULL;
4785
4786         event = rb_reader_event(cpu_buffer);
4787
4788         switch (event->type_len) {
4789         case RINGBUF_TYPE_PADDING:
4790                 if (rb_null_event(event))
4791                         RB_WARN_ON(cpu_buffer, 1);
4792                 /*
4793                  * Because the writer could be discarding every
4794                  * event it creates (which would probably be bad)
4795                  * if we were to go back to "again" then we may never
4796                  * catch up, and will trigger the warn on, or lock
4797                  * the box. Return the padding, and we will release
4798                  * the current locks, and try again.
4799                  */
4800                 return event;
4801
4802         case RINGBUF_TYPE_TIME_EXTEND:
4803                 /* Internal data, OK to advance */
4804                 rb_advance_reader(cpu_buffer);
4805                 goto again;
4806
4807         case RINGBUF_TYPE_TIME_STAMP:
4808                 if (ts) {
4809                         *ts = rb_event_time_stamp(event);
4810                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4811                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4812                                                          cpu_buffer->cpu, ts);
4813                 }
4814                 /* Internal data, OK to advance */
4815                 rb_advance_reader(cpu_buffer);
4816                 goto again;
4817
4818         case RINGBUF_TYPE_DATA:
4819                 if (ts && !(*ts)) {
4820                         *ts = cpu_buffer->read_stamp + event->time_delta;
4821                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4822                                                          cpu_buffer->cpu, ts);
4823                 }
4824                 if (lost_events)
4825                         *lost_events = rb_lost_events(cpu_buffer);
4826                 return event;
4827
4828         default:
4829                 RB_WARN_ON(cpu_buffer, 1);
4830         }
4831
4832         return NULL;
4833 }
4834 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4835
4836 static struct ring_buffer_event *
4837 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4838 {
4839         struct trace_buffer *buffer;
4840         struct ring_buffer_per_cpu *cpu_buffer;
4841         struct ring_buffer_event *event;
4842         int nr_loops = 0;
4843
4844         if (ts)
4845                 *ts = 0;
4846
4847         cpu_buffer = iter->cpu_buffer;
4848         buffer = cpu_buffer->buffer;
4849
4850         /*
4851          * Check if someone performed a consuming read to
4852          * the buffer. A consuming read invalidates the iterator
4853          * and we need to reset the iterator in this case.
4854          */
4855         if (unlikely(iter->cache_read != cpu_buffer->read ||
4856                      iter->cache_reader_page != cpu_buffer->reader_page))
4857                 rb_iter_reset(iter);
4858
4859  again:
4860         if (ring_buffer_iter_empty(iter))
4861                 return NULL;
4862
4863         /*
4864          * As the writer can mess with what the iterator is trying
4865          * to read, just give up if we fail to get an event after
4866          * three tries. The iterator is not as reliable when reading
4867          * the ring buffer with an active write as the consumer is.
4868          * Do not warn if the three failures is reached.
4869          */
4870         if (++nr_loops > 3)
4871                 return NULL;
4872
4873         if (rb_per_cpu_empty(cpu_buffer))
4874                 return NULL;
4875
4876         if (iter->head >= rb_page_size(iter->head_page)) {
4877                 rb_inc_iter(iter);
4878                 goto again;
4879         }
4880
4881         event = rb_iter_head_event(iter);
4882         if (!event)
4883                 goto again;
4884
4885         switch (event->type_len) {
4886         case RINGBUF_TYPE_PADDING:
4887                 if (rb_null_event(event)) {
4888                         rb_inc_iter(iter);
4889                         goto again;
4890                 }
4891                 rb_advance_iter(iter);
4892                 return event;
4893
4894         case RINGBUF_TYPE_TIME_EXTEND:
4895                 /* Internal data, OK to advance */
4896                 rb_advance_iter(iter);
4897                 goto again;
4898
4899         case RINGBUF_TYPE_TIME_STAMP:
4900                 if (ts) {
4901                         *ts = rb_event_time_stamp(event);
4902                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4903                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4904                                                          cpu_buffer->cpu, ts);
4905                 }
4906                 /* Internal data, OK to advance */
4907                 rb_advance_iter(iter);
4908                 goto again;
4909
4910         case RINGBUF_TYPE_DATA:
4911                 if (ts && !(*ts)) {
4912                         *ts = iter->read_stamp + event->time_delta;
4913                         ring_buffer_normalize_time_stamp(buffer,
4914                                                          cpu_buffer->cpu, ts);
4915                 }
4916                 return event;
4917
4918         default:
4919                 RB_WARN_ON(cpu_buffer, 1);
4920         }
4921
4922         return NULL;
4923 }
4924 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4925
4926 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4927 {
4928         if (likely(!in_nmi())) {
4929                 raw_spin_lock(&cpu_buffer->reader_lock);
4930                 return true;
4931         }
4932
4933         /*
4934          * If an NMI die dumps out the content of the ring buffer
4935          * trylock must be used to prevent a deadlock if the NMI
4936          * preempted a task that holds the ring buffer locks. If
4937          * we get the lock then all is fine, if not, then continue
4938          * to do the read, but this can corrupt the ring buffer,
4939          * so it must be permanently disabled from future writes.
4940          * Reading from NMI is a oneshot deal.
4941          */
4942         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4943                 return true;
4944
4945         /* Continue without locking, but disable the ring buffer */
4946         atomic_inc(&cpu_buffer->record_disabled);
4947         return false;
4948 }
4949
4950 static inline void
4951 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4952 {
4953         if (likely(locked))
4954                 raw_spin_unlock(&cpu_buffer->reader_lock);
4955         return;
4956 }
4957
4958 /**
4959  * ring_buffer_peek - peek at the next event to be read
4960  * @buffer: The ring buffer to read
4961  * @cpu: The cpu to peak at
4962  * @ts: The timestamp counter of this event.
4963  * @lost_events: a variable to store if events were lost (may be NULL)
4964  *
4965  * This will return the event that will be read next, but does
4966  * not consume the data.
4967  */
4968 struct ring_buffer_event *
4969 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4970                  unsigned long *lost_events)
4971 {
4972         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4973         struct ring_buffer_event *event;
4974         unsigned long flags;
4975         bool dolock;
4976
4977         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4978                 return NULL;
4979
4980  again:
4981         local_irq_save(flags);
4982         dolock = rb_reader_lock(cpu_buffer);
4983         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4984         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4985                 rb_advance_reader(cpu_buffer);
4986         rb_reader_unlock(cpu_buffer, dolock);
4987         local_irq_restore(flags);
4988
4989         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4990                 goto again;
4991
4992         return event;
4993 }
4994
4995 /** ring_buffer_iter_dropped - report if there are dropped events
4996  * @iter: The ring buffer iterator
4997  *
4998  * Returns true if there was dropped events since the last peek.
4999  */
5000 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5001 {
5002         bool ret = iter->missed_events != 0;
5003
5004         iter->missed_events = 0;
5005         return ret;
5006 }
5007 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5008
5009 /**
5010  * ring_buffer_iter_peek - peek at the next event to be read
5011  * @iter: The ring buffer iterator
5012  * @ts: The timestamp counter of this event.
5013  *
5014  * This will return the event that will be read next, but does
5015  * not increment the iterator.
5016  */
5017 struct ring_buffer_event *
5018 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5019 {
5020         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5021         struct ring_buffer_event *event;
5022         unsigned long flags;
5023
5024  again:
5025         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5026         event = rb_iter_peek(iter, ts);
5027         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5028
5029         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5030                 goto again;
5031
5032         return event;
5033 }
5034
5035 /**
5036  * ring_buffer_consume - return an event and consume it
5037  * @buffer: The ring buffer to get the next event from
5038  * @cpu: the cpu to read the buffer from
5039  * @ts: a variable to store the timestamp (may be NULL)
5040  * @lost_events: a variable to store if events were lost (may be NULL)
5041  *
5042  * Returns the next event in the ring buffer, and that event is consumed.
5043  * Meaning, that sequential reads will keep returning a different event,
5044  * and eventually empty the ring buffer if the producer is slower.
5045  */
5046 struct ring_buffer_event *
5047 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5048                     unsigned long *lost_events)
5049 {
5050         struct ring_buffer_per_cpu *cpu_buffer;
5051         struct ring_buffer_event *event = NULL;
5052         unsigned long flags;
5053         bool dolock;
5054
5055  again:
5056         /* might be called in atomic */
5057         preempt_disable();
5058
5059         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5060                 goto out;
5061
5062         cpu_buffer = buffer->buffers[cpu];
5063         local_irq_save(flags);
5064         dolock = rb_reader_lock(cpu_buffer);
5065
5066         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5067         if (event) {
5068                 cpu_buffer->lost_events = 0;
5069                 rb_advance_reader(cpu_buffer);
5070         }
5071
5072         rb_reader_unlock(cpu_buffer, dolock);
5073         local_irq_restore(flags);
5074
5075  out:
5076         preempt_enable();
5077
5078         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5079                 goto again;
5080
5081         return event;
5082 }
5083 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5084
5085 /**
5086  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5087  * @buffer: The ring buffer to read from
5088  * @cpu: The cpu buffer to iterate over
5089  * @flags: gfp flags to use for memory allocation
5090  *
5091  * This performs the initial preparations necessary to iterate
5092  * through the buffer.  Memory is allocated, buffer recording
5093  * is disabled, and the iterator pointer is returned to the caller.
5094  *
5095  * Disabling buffer recording prevents the reading from being
5096  * corrupted. This is not a consuming read, so a producer is not
5097  * expected.
5098  *
5099  * After a sequence of ring_buffer_read_prepare calls, the user is
5100  * expected to make at least one call to ring_buffer_read_prepare_sync.
5101  * Afterwards, ring_buffer_read_start is invoked to get things going
5102  * for real.
5103  *
5104  * This overall must be paired with ring_buffer_read_finish.
5105  */
5106 struct ring_buffer_iter *
5107 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5108 {
5109         struct ring_buffer_per_cpu *cpu_buffer;
5110         struct ring_buffer_iter *iter;
5111
5112         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5113                 return NULL;
5114
5115         iter = kzalloc(sizeof(*iter), flags);
5116         if (!iter)
5117                 return NULL;
5118
5119         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5120         if (!iter->event) {
5121                 kfree(iter);
5122                 return NULL;
5123         }
5124
5125         cpu_buffer = buffer->buffers[cpu];
5126
5127         iter->cpu_buffer = cpu_buffer;
5128
5129         atomic_inc(&cpu_buffer->resize_disabled);
5130
5131         return iter;
5132 }
5133 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5134
5135 /**
5136  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5137  *
5138  * All previously invoked ring_buffer_read_prepare calls to prepare
5139  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5140  * calls on those iterators are allowed.
5141  */
5142 void
5143 ring_buffer_read_prepare_sync(void)
5144 {
5145         synchronize_rcu();
5146 }
5147 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5148
5149 /**
5150  * ring_buffer_read_start - start a non consuming read of the buffer
5151  * @iter: The iterator returned by ring_buffer_read_prepare
5152  *
5153  * This finalizes the startup of an iteration through the buffer.
5154  * The iterator comes from a call to ring_buffer_read_prepare and
5155  * an intervening ring_buffer_read_prepare_sync must have been
5156  * performed.
5157  *
5158  * Must be paired with ring_buffer_read_finish.
5159  */
5160 void
5161 ring_buffer_read_start(struct ring_buffer_iter *iter)
5162 {
5163         struct ring_buffer_per_cpu *cpu_buffer;
5164         unsigned long flags;
5165
5166         if (!iter)
5167                 return;
5168
5169         cpu_buffer = iter->cpu_buffer;
5170
5171         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5172         arch_spin_lock(&cpu_buffer->lock);
5173         rb_iter_reset(iter);
5174         arch_spin_unlock(&cpu_buffer->lock);
5175         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5176 }
5177 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5178
5179 /**
5180  * ring_buffer_read_finish - finish reading the iterator of the buffer
5181  * @iter: The iterator retrieved by ring_buffer_start
5182  *
5183  * This re-enables the recording to the buffer, and frees the
5184  * iterator.
5185  */
5186 void
5187 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5188 {
5189         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5190         unsigned long flags;
5191
5192         /*
5193          * Ring buffer is disabled from recording, here's a good place
5194          * to check the integrity of the ring buffer.
5195          * Must prevent readers from trying to read, as the check
5196          * clears the HEAD page and readers require it.
5197          */
5198         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5199         rb_check_pages(cpu_buffer);
5200         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5201
5202         atomic_dec(&cpu_buffer->resize_disabled);
5203         kfree(iter->event);
5204         kfree(iter);
5205 }
5206 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5207
5208 /**
5209  * ring_buffer_iter_advance - advance the iterator to the next location
5210  * @iter: The ring buffer iterator
5211  *
5212  * Move the location of the iterator such that the next read will
5213  * be the next location of the iterator.
5214  */
5215 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5216 {
5217         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5218         unsigned long flags;
5219
5220         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5221
5222         rb_advance_iter(iter);
5223
5224         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5225 }
5226 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5227
5228 /**
5229  * ring_buffer_size - return the size of the ring buffer (in bytes)
5230  * @buffer: The ring buffer.
5231  * @cpu: The CPU to get ring buffer size from.
5232  */
5233 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5234 {
5235         /*
5236          * Earlier, this method returned
5237          *      BUF_PAGE_SIZE * buffer->nr_pages
5238          * Since the nr_pages field is now removed, we have converted this to
5239          * return the per cpu buffer value.
5240          */
5241         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5242                 return 0;
5243
5244         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5245 }
5246 EXPORT_SYMBOL_GPL(ring_buffer_size);
5247
5248 static void
5249 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5250 {
5251         rb_head_page_deactivate(cpu_buffer);
5252
5253         cpu_buffer->head_page
5254                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5255         local_set(&cpu_buffer->head_page->write, 0);
5256         local_set(&cpu_buffer->head_page->entries, 0);
5257         local_set(&cpu_buffer->head_page->page->commit, 0);
5258
5259         cpu_buffer->head_page->read = 0;
5260
5261         cpu_buffer->tail_page = cpu_buffer->head_page;
5262         cpu_buffer->commit_page = cpu_buffer->head_page;
5263
5264         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5265         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5266         local_set(&cpu_buffer->reader_page->write, 0);
5267         local_set(&cpu_buffer->reader_page->entries, 0);
5268         local_set(&cpu_buffer->reader_page->page->commit, 0);
5269         cpu_buffer->reader_page->read = 0;
5270
5271         local_set(&cpu_buffer->entries_bytes, 0);
5272         local_set(&cpu_buffer->overrun, 0);
5273         local_set(&cpu_buffer->commit_overrun, 0);
5274         local_set(&cpu_buffer->dropped_events, 0);
5275         local_set(&cpu_buffer->entries, 0);
5276         local_set(&cpu_buffer->committing, 0);
5277         local_set(&cpu_buffer->commits, 0);
5278         local_set(&cpu_buffer->pages_touched, 0);
5279         local_set(&cpu_buffer->pages_lost, 0);
5280         local_set(&cpu_buffer->pages_read, 0);
5281         cpu_buffer->last_pages_touch = 0;
5282         cpu_buffer->shortest_full = 0;
5283         cpu_buffer->read = 0;
5284         cpu_buffer->read_bytes = 0;
5285
5286         rb_time_set(&cpu_buffer->write_stamp, 0);
5287         rb_time_set(&cpu_buffer->before_stamp, 0);
5288
5289         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5290
5291         cpu_buffer->lost_events = 0;
5292         cpu_buffer->last_overrun = 0;
5293
5294         rb_head_page_activate(cpu_buffer);
5295 }
5296
5297 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5298 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5299 {
5300         unsigned long flags;
5301
5302         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5303
5304         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5305                 goto out;
5306
5307         arch_spin_lock(&cpu_buffer->lock);
5308
5309         rb_reset_cpu(cpu_buffer);
5310
5311         arch_spin_unlock(&cpu_buffer->lock);
5312
5313  out:
5314         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5315 }
5316
5317 /**
5318  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5319  * @buffer: The ring buffer to reset a per cpu buffer of
5320  * @cpu: The CPU buffer to be reset
5321  */
5322 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5323 {
5324         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5325
5326         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5327                 return;
5328
5329         /* prevent another thread from changing buffer sizes */
5330         mutex_lock(&buffer->mutex);
5331
5332         atomic_inc(&cpu_buffer->resize_disabled);
5333         atomic_inc(&cpu_buffer->record_disabled);
5334
5335         /* Make sure all commits have finished */
5336         synchronize_rcu();
5337
5338         reset_disabled_cpu_buffer(cpu_buffer);
5339
5340         atomic_dec(&cpu_buffer->record_disabled);
5341         atomic_dec(&cpu_buffer->resize_disabled);
5342
5343         mutex_unlock(&buffer->mutex);
5344 }
5345 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5346
5347 /**
5348  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5349  * @buffer: The ring buffer to reset a per cpu buffer of
5350  * @cpu: The CPU buffer to be reset
5351  */
5352 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5353 {
5354         struct ring_buffer_per_cpu *cpu_buffer;
5355         int cpu;
5356
5357         /* prevent another thread from changing buffer sizes */
5358         mutex_lock(&buffer->mutex);
5359
5360         for_each_online_buffer_cpu(buffer, cpu) {
5361                 cpu_buffer = buffer->buffers[cpu];
5362
5363                 atomic_inc(&cpu_buffer->resize_disabled);
5364                 atomic_inc(&cpu_buffer->record_disabled);
5365         }
5366
5367         /* Make sure all commits have finished */
5368         synchronize_rcu();
5369
5370         for_each_online_buffer_cpu(buffer, cpu) {
5371                 cpu_buffer = buffer->buffers[cpu];
5372
5373                 reset_disabled_cpu_buffer(cpu_buffer);
5374
5375                 atomic_dec(&cpu_buffer->record_disabled);
5376                 atomic_dec(&cpu_buffer->resize_disabled);
5377         }
5378
5379         mutex_unlock(&buffer->mutex);
5380 }
5381
5382 /**
5383  * ring_buffer_reset - reset a ring buffer
5384  * @buffer: The ring buffer to reset all cpu buffers
5385  */
5386 void ring_buffer_reset(struct trace_buffer *buffer)
5387 {
5388         struct ring_buffer_per_cpu *cpu_buffer;
5389         int cpu;
5390
5391         /* prevent another thread from changing buffer sizes */
5392         mutex_lock(&buffer->mutex);
5393
5394         for_each_buffer_cpu(buffer, cpu) {
5395                 cpu_buffer = buffer->buffers[cpu];
5396
5397                 atomic_inc(&cpu_buffer->resize_disabled);
5398                 atomic_inc(&cpu_buffer->record_disabled);
5399         }
5400
5401         /* Make sure all commits have finished */
5402         synchronize_rcu();
5403
5404         for_each_buffer_cpu(buffer, cpu) {
5405                 cpu_buffer = buffer->buffers[cpu];
5406
5407                 reset_disabled_cpu_buffer(cpu_buffer);
5408
5409                 atomic_dec(&cpu_buffer->record_disabled);
5410                 atomic_dec(&cpu_buffer->resize_disabled);
5411         }
5412
5413         mutex_unlock(&buffer->mutex);
5414 }
5415 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5416
5417 /**
5418  * ring_buffer_empty - is the ring buffer empty?
5419  * @buffer: The ring buffer to test
5420  */
5421 bool ring_buffer_empty(struct trace_buffer *buffer)
5422 {
5423         struct ring_buffer_per_cpu *cpu_buffer;
5424         unsigned long flags;
5425         bool dolock;
5426         int cpu;
5427         int ret;
5428
5429         /* yes this is racy, but if you don't like the race, lock the buffer */
5430         for_each_buffer_cpu(buffer, cpu) {
5431                 cpu_buffer = buffer->buffers[cpu];
5432                 local_irq_save(flags);
5433                 dolock = rb_reader_lock(cpu_buffer);
5434                 ret = rb_per_cpu_empty(cpu_buffer);
5435                 rb_reader_unlock(cpu_buffer, dolock);
5436                 local_irq_restore(flags);
5437
5438                 if (!ret)
5439                         return false;
5440         }
5441
5442         return true;
5443 }
5444 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5445
5446 /**
5447  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5448  * @buffer: The ring buffer
5449  * @cpu: The CPU buffer to test
5450  */
5451 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5452 {
5453         struct ring_buffer_per_cpu *cpu_buffer;
5454         unsigned long flags;
5455         bool dolock;
5456         int ret;
5457
5458         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5459                 return true;
5460
5461         cpu_buffer = buffer->buffers[cpu];
5462         local_irq_save(flags);
5463         dolock = rb_reader_lock(cpu_buffer);
5464         ret = rb_per_cpu_empty(cpu_buffer);
5465         rb_reader_unlock(cpu_buffer, dolock);
5466         local_irq_restore(flags);
5467
5468         return ret;
5469 }
5470 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5471
5472 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5473 /**
5474  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5475  * @buffer_a: One buffer to swap with
5476  * @buffer_b: The other buffer to swap with
5477  * @cpu: the CPU of the buffers to swap
5478  *
5479  * This function is useful for tracers that want to take a "snapshot"
5480  * of a CPU buffer and has another back up buffer lying around.
5481  * it is expected that the tracer handles the cpu buffer not being
5482  * used at the moment.
5483  */
5484 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5485                          struct trace_buffer *buffer_b, int cpu)
5486 {
5487         struct ring_buffer_per_cpu *cpu_buffer_a;
5488         struct ring_buffer_per_cpu *cpu_buffer_b;
5489         int ret = -EINVAL;
5490
5491         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5492             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5493                 goto out;
5494
5495         cpu_buffer_a = buffer_a->buffers[cpu];
5496         cpu_buffer_b = buffer_b->buffers[cpu];
5497
5498         /* At least make sure the two buffers are somewhat the same */
5499         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5500                 goto out;
5501
5502         ret = -EAGAIN;
5503
5504         if (atomic_read(&buffer_a->record_disabled))
5505                 goto out;
5506
5507         if (atomic_read(&buffer_b->record_disabled))
5508                 goto out;
5509
5510         if (atomic_read(&cpu_buffer_a->record_disabled))
5511                 goto out;
5512
5513         if (atomic_read(&cpu_buffer_b->record_disabled))
5514                 goto out;
5515
5516         /*
5517          * We can't do a synchronize_rcu here because this
5518          * function can be called in atomic context.
5519          * Normally this will be called from the same CPU as cpu.
5520          * If not it's up to the caller to protect this.
5521          */
5522         atomic_inc(&cpu_buffer_a->record_disabled);
5523         atomic_inc(&cpu_buffer_b->record_disabled);
5524
5525         ret = -EBUSY;
5526         if (local_read(&cpu_buffer_a->committing))
5527                 goto out_dec;
5528         if (local_read(&cpu_buffer_b->committing))
5529                 goto out_dec;
5530
5531         buffer_a->buffers[cpu] = cpu_buffer_b;
5532         buffer_b->buffers[cpu] = cpu_buffer_a;
5533
5534         cpu_buffer_b->buffer = buffer_a;
5535         cpu_buffer_a->buffer = buffer_b;
5536
5537         ret = 0;
5538
5539 out_dec:
5540         atomic_dec(&cpu_buffer_a->record_disabled);
5541         atomic_dec(&cpu_buffer_b->record_disabled);
5542 out:
5543         return ret;
5544 }
5545 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5546 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5547
5548 /**
5549  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5550  * @buffer: the buffer to allocate for.
5551  * @cpu: the cpu buffer to allocate.
5552  *
5553  * This function is used in conjunction with ring_buffer_read_page.
5554  * When reading a full page from the ring buffer, these functions
5555  * can be used to speed up the process. The calling function should
5556  * allocate a few pages first with this function. Then when it
5557  * needs to get pages from the ring buffer, it passes the result
5558  * of this function into ring_buffer_read_page, which will swap
5559  * the page that was allocated, with the read page of the buffer.
5560  *
5561  * Returns:
5562  *  The page allocated, or ERR_PTR
5563  */
5564 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5565 {
5566         struct ring_buffer_per_cpu *cpu_buffer;
5567         struct buffer_data_page *bpage = NULL;
5568         unsigned long flags;
5569         struct page *page;
5570
5571         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5572                 return ERR_PTR(-ENODEV);
5573
5574         cpu_buffer = buffer->buffers[cpu];
5575         local_irq_save(flags);
5576         arch_spin_lock(&cpu_buffer->lock);
5577
5578         if (cpu_buffer->free_page) {
5579                 bpage = cpu_buffer->free_page;
5580                 cpu_buffer->free_page = NULL;
5581         }
5582
5583         arch_spin_unlock(&cpu_buffer->lock);
5584         local_irq_restore(flags);
5585
5586         if (bpage)
5587                 goto out;
5588
5589         page = alloc_pages_node(cpu_to_node(cpu),
5590                                 GFP_KERNEL | __GFP_NORETRY, 0);
5591         if (!page)
5592                 return ERR_PTR(-ENOMEM);
5593
5594         bpage = page_address(page);
5595
5596  out:
5597         rb_init_page(bpage);
5598
5599         return bpage;
5600 }
5601 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5602
5603 /**
5604  * ring_buffer_free_read_page - free an allocated read page
5605  * @buffer: the buffer the page was allocate for
5606  * @cpu: the cpu buffer the page came from
5607  * @data: the page to free
5608  *
5609  * Free a page allocated from ring_buffer_alloc_read_page.
5610  */
5611 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5612 {
5613         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5614         struct buffer_data_page *bpage = data;
5615         struct page *page = virt_to_page(bpage);
5616         unsigned long flags;
5617
5618         /* If the page is still in use someplace else, we can't reuse it */
5619         if (page_ref_count(page) > 1)
5620                 goto out;
5621
5622         local_irq_save(flags);
5623         arch_spin_lock(&cpu_buffer->lock);
5624
5625         if (!cpu_buffer->free_page) {
5626                 cpu_buffer->free_page = bpage;
5627                 bpage = NULL;
5628         }
5629
5630         arch_spin_unlock(&cpu_buffer->lock);
5631         local_irq_restore(flags);
5632
5633  out:
5634         free_page((unsigned long)bpage);
5635 }
5636 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5637
5638 /**
5639  * ring_buffer_read_page - extract a page from the ring buffer
5640  * @buffer: buffer to extract from
5641  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5642  * @len: amount to extract
5643  * @cpu: the cpu of the buffer to extract
5644  * @full: should the extraction only happen when the page is full.
5645  *
5646  * This function will pull out a page from the ring buffer and consume it.
5647  * @data_page must be the address of the variable that was returned
5648  * from ring_buffer_alloc_read_page. This is because the page might be used
5649  * to swap with a page in the ring buffer.
5650  *
5651  * for example:
5652  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5653  *      if (IS_ERR(rpage))
5654  *              return PTR_ERR(rpage);
5655  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5656  *      if (ret >= 0)
5657  *              process_page(rpage, ret);
5658  *
5659  * When @full is set, the function will not return true unless
5660  * the writer is off the reader page.
5661  *
5662  * Note: it is up to the calling functions to handle sleeps and wakeups.
5663  *  The ring buffer can be used anywhere in the kernel and can not
5664  *  blindly call wake_up. The layer that uses the ring buffer must be
5665  *  responsible for that.
5666  *
5667  * Returns:
5668  *  >=0 if data has been transferred, returns the offset of consumed data.
5669  *  <0 if no data has been transferred.
5670  */
5671 int ring_buffer_read_page(struct trace_buffer *buffer,
5672                           void **data_page, size_t len, int cpu, int full)
5673 {
5674         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5675         struct ring_buffer_event *event;
5676         struct buffer_data_page *bpage;
5677         struct buffer_page *reader;
5678         unsigned long missed_events;
5679         unsigned long flags;
5680         unsigned int commit;
5681         unsigned int read;
5682         u64 save_timestamp;
5683         int ret = -1;
5684
5685         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5686                 goto out;
5687
5688         /*
5689          * If len is not big enough to hold the page header, then
5690          * we can not copy anything.
5691          */
5692         if (len <= BUF_PAGE_HDR_SIZE)
5693                 goto out;
5694
5695         len -= BUF_PAGE_HDR_SIZE;
5696
5697         if (!data_page)
5698                 goto out;
5699
5700         bpage = *data_page;
5701         if (!bpage)
5702                 goto out;
5703
5704         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5705
5706         reader = rb_get_reader_page(cpu_buffer);
5707         if (!reader)
5708                 goto out_unlock;
5709
5710         event = rb_reader_event(cpu_buffer);
5711
5712         read = reader->read;
5713         commit = rb_page_commit(reader);
5714
5715         /* Check if any events were dropped */
5716         missed_events = cpu_buffer->lost_events;
5717
5718         /*
5719          * If this page has been partially read or
5720          * if len is not big enough to read the rest of the page or
5721          * a writer is still on the page, then
5722          * we must copy the data from the page to the buffer.
5723          * Otherwise, we can simply swap the page with the one passed in.
5724          */
5725         if (read || (len < (commit - read)) ||
5726             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5727                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5728                 unsigned int rpos = read;
5729                 unsigned int pos = 0;
5730                 unsigned int size;
5731
5732                 /*
5733                  * If a full page is expected, this can still be returned
5734                  * if there's been a previous partial read and the
5735                  * rest of the page can be read and the commit page is off
5736                  * the reader page.
5737                  */
5738                 if (full &&
5739                     (!read || (len < (commit - read)) ||
5740                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5741                         goto out_unlock;
5742
5743                 if (len > (commit - read))
5744                         len = (commit - read);
5745
5746                 /* Always keep the time extend and data together */
5747                 size = rb_event_ts_length(event);
5748
5749                 if (len < size)
5750                         goto out_unlock;
5751
5752                 /* save the current timestamp, since the user will need it */
5753                 save_timestamp = cpu_buffer->read_stamp;
5754
5755                 /* Need to copy one event at a time */
5756                 do {
5757                         /* We need the size of one event, because
5758                          * rb_advance_reader only advances by one event,
5759                          * whereas rb_event_ts_length may include the size of
5760                          * one or two events.
5761                          * We have already ensured there's enough space if this
5762                          * is a time extend. */
5763                         size = rb_event_length(event);
5764                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5765
5766                         len -= size;
5767
5768                         rb_advance_reader(cpu_buffer);
5769                         rpos = reader->read;
5770                         pos += size;
5771
5772                         if (rpos >= commit)
5773                                 break;
5774
5775                         event = rb_reader_event(cpu_buffer);
5776                         /* Always keep the time extend and data together */
5777                         size = rb_event_ts_length(event);
5778                 } while (len >= size);
5779
5780                 /* update bpage */
5781                 local_set(&bpage->commit, pos);
5782                 bpage->time_stamp = save_timestamp;
5783
5784                 /* we copied everything to the beginning */
5785                 read = 0;
5786         } else {
5787                 /* update the entry counter */
5788                 cpu_buffer->read += rb_page_entries(reader);
5789                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5790
5791                 /* swap the pages */
5792                 rb_init_page(bpage);
5793                 bpage = reader->page;
5794                 reader->page = *data_page;
5795                 local_set(&reader->write, 0);
5796                 local_set(&reader->entries, 0);
5797                 reader->read = 0;
5798                 *data_page = bpage;
5799
5800                 /*
5801                  * Use the real_end for the data size,
5802                  * This gives us a chance to store the lost events
5803                  * on the page.
5804                  */
5805                 if (reader->real_end)
5806                         local_set(&bpage->commit, reader->real_end);
5807         }
5808         ret = read;
5809
5810         cpu_buffer->lost_events = 0;
5811
5812         commit = local_read(&bpage->commit);
5813         /*
5814          * Set a flag in the commit field if we lost events
5815          */
5816         if (missed_events) {
5817                 /* If there is room at the end of the page to save the
5818                  * missed events, then record it there.
5819                  */
5820                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5821                         memcpy(&bpage->data[commit], &missed_events,
5822                                sizeof(missed_events));
5823                         local_add(RB_MISSED_STORED, &bpage->commit);
5824                         commit += sizeof(missed_events);
5825                 }
5826                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5827         }
5828
5829         /*
5830          * This page may be off to user land. Zero it out here.
5831          */
5832         if (commit < BUF_PAGE_SIZE)
5833                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5834
5835  out_unlock:
5836         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5837
5838  out:
5839         return ret;
5840 }
5841 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5842
5843 /*
5844  * We only allocate new buffers, never free them if the CPU goes down.
5845  * If we were to free the buffer, then the user would lose any trace that was in
5846  * the buffer.
5847  */
5848 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5849 {
5850         struct trace_buffer *buffer;
5851         long nr_pages_same;
5852         int cpu_i;
5853         unsigned long nr_pages;
5854
5855         buffer = container_of(node, struct trace_buffer, node);
5856         if (cpumask_test_cpu(cpu, buffer->cpumask))
5857                 return 0;
5858
5859         nr_pages = 0;
5860         nr_pages_same = 1;
5861         /* check if all cpu sizes are same */
5862         for_each_buffer_cpu(buffer, cpu_i) {
5863                 /* fill in the size from first enabled cpu */
5864                 if (nr_pages == 0)
5865                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5866                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5867                         nr_pages_same = 0;
5868                         break;
5869                 }
5870         }
5871         /* allocate minimum pages, user can later expand it */
5872         if (!nr_pages_same)
5873                 nr_pages = 2;
5874         buffer->buffers[cpu] =
5875                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5876         if (!buffer->buffers[cpu]) {
5877                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5878                      cpu);
5879                 return -ENOMEM;
5880         }
5881         smp_wmb();
5882         cpumask_set_cpu(cpu, buffer->cpumask);
5883         return 0;
5884 }
5885
5886 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5887 /*
5888  * This is a basic integrity check of the ring buffer.
5889  * Late in the boot cycle this test will run when configured in.
5890  * It will kick off a thread per CPU that will go into a loop
5891  * writing to the per cpu ring buffer various sizes of data.
5892  * Some of the data will be large items, some small.
5893  *
5894  * Another thread is created that goes into a spin, sending out
5895  * IPIs to the other CPUs to also write into the ring buffer.
5896  * this is to test the nesting ability of the buffer.
5897  *
5898  * Basic stats are recorded and reported. If something in the
5899  * ring buffer should happen that's not expected, a big warning
5900  * is displayed and all ring buffers are disabled.
5901  */
5902 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5903
5904 struct rb_test_data {
5905         struct trace_buffer *buffer;
5906         unsigned long           events;
5907         unsigned long           bytes_written;
5908         unsigned long           bytes_alloc;
5909         unsigned long           bytes_dropped;
5910         unsigned long           events_nested;
5911         unsigned long           bytes_written_nested;
5912         unsigned long           bytes_alloc_nested;
5913         unsigned long           bytes_dropped_nested;
5914         int                     min_size_nested;
5915         int                     max_size_nested;
5916         int                     max_size;
5917         int                     min_size;
5918         int                     cpu;
5919         int                     cnt;
5920 };
5921
5922 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5923
5924 /* 1 meg per cpu */
5925 #define RB_TEST_BUFFER_SIZE     1048576
5926
5927 static char rb_string[] __initdata =
5928         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5929         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5930         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5931
5932 static bool rb_test_started __initdata;
5933
5934 struct rb_item {
5935         int size;
5936         char str[];
5937 };
5938
5939 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5940 {
5941         struct ring_buffer_event *event;
5942         struct rb_item *item;
5943         bool started;
5944         int event_len;
5945         int size;
5946         int len;
5947         int cnt;
5948
5949         /* Have nested writes different that what is written */
5950         cnt = data->cnt + (nested ? 27 : 0);
5951
5952         /* Multiply cnt by ~e, to make some unique increment */
5953         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5954
5955         len = size + sizeof(struct rb_item);
5956
5957         started = rb_test_started;
5958         /* read rb_test_started before checking buffer enabled */
5959         smp_rmb();
5960
5961         event = ring_buffer_lock_reserve(data->buffer, len);
5962         if (!event) {
5963                 /* Ignore dropped events before test starts. */
5964                 if (started) {
5965                         if (nested)
5966                                 data->bytes_dropped += len;
5967                         else
5968                                 data->bytes_dropped_nested += len;
5969                 }
5970                 return len;
5971         }
5972
5973         event_len = ring_buffer_event_length(event);
5974
5975         if (RB_WARN_ON(data->buffer, event_len < len))
5976                 goto out;
5977
5978         item = ring_buffer_event_data(event);
5979         item->size = size;
5980         memcpy(item->str, rb_string, size);
5981
5982         if (nested) {
5983                 data->bytes_alloc_nested += event_len;
5984                 data->bytes_written_nested += len;
5985                 data->events_nested++;
5986                 if (!data->min_size_nested || len < data->min_size_nested)
5987                         data->min_size_nested = len;
5988                 if (len > data->max_size_nested)
5989                         data->max_size_nested = len;
5990         } else {
5991                 data->bytes_alloc += event_len;
5992                 data->bytes_written += len;
5993                 data->events++;
5994                 if (!data->min_size || len < data->min_size)
5995                         data->max_size = len;
5996                 if (len > data->max_size)
5997                         data->max_size = len;
5998         }
5999
6000  out:
6001         ring_buffer_unlock_commit(data->buffer, event);
6002
6003         return 0;
6004 }
6005
6006 static __init int rb_test(void *arg)
6007 {
6008         struct rb_test_data *data = arg;
6009
6010         while (!kthread_should_stop()) {
6011                 rb_write_something(data, false);
6012                 data->cnt++;
6013
6014                 set_current_state(TASK_INTERRUPTIBLE);
6015                 /* Now sleep between a min of 100-300us and a max of 1ms */
6016                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6017         }
6018
6019         return 0;
6020 }
6021
6022 static __init void rb_ipi(void *ignore)
6023 {
6024         struct rb_test_data *data;
6025         int cpu = smp_processor_id();
6026
6027         data = &rb_data[cpu];
6028         rb_write_something(data, true);
6029 }
6030
6031 static __init int rb_hammer_test(void *arg)
6032 {
6033         while (!kthread_should_stop()) {
6034
6035                 /* Send an IPI to all cpus to write data! */
6036                 smp_call_function(rb_ipi, NULL, 1);
6037                 /* No sleep, but for non preempt, let others run */
6038                 schedule();
6039         }
6040
6041         return 0;
6042 }
6043
6044 static __init int test_ringbuffer(void)
6045 {
6046         struct task_struct *rb_hammer;
6047         struct trace_buffer *buffer;
6048         int cpu;
6049         int ret = 0;
6050
6051         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6052                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6053                 return 0;
6054         }
6055
6056         pr_info("Running ring buffer tests...\n");
6057
6058         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6059         if (WARN_ON(!buffer))
6060                 return 0;
6061
6062         /* Disable buffer so that threads can't write to it yet */
6063         ring_buffer_record_off(buffer);
6064
6065         for_each_online_cpu(cpu) {
6066                 rb_data[cpu].buffer = buffer;
6067                 rb_data[cpu].cpu = cpu;
6068                 rb_data[cpu].cnt = cpu;
6069                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6070                                                      cpu, "rbtester/%u");
6071                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6072                         pr_cont("FAILED\n");
6073                         ret = PTR_ERR(rb_threads[cpu]);
6074                         goto out_free;
6075                 }
6076         }
6077
6078         /* Now create the rb hammer! */
6079         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6080         if (WARN_ON(IS_ERR(rb_hammer))) {
6081                 pr_cont("FAILED\n");
6082                 ret = PTR_ERR(rb_hammer);
6083                 goto out_free;
6084         }
6085
6086         ring_buffer_record_on(buffer);
6087         /*
6088          * Show buffer is enabled before setting rb_test_started.
6089          * Yes there's a small race window where events could be
6090          * dropped and the thread wont catch it. But when a ring
6091          * buffer gets enabled, there will always be some kind of
6092          * delay before other CPUs see it. Thus, we don't care about
6093          * those dropped events. We care about events dropped after
6094          * the threads see that the buffer is active.
6095          */
6096         smp_wmb();
6097         rb_test_started = true;
6098
6099         set_current_state(TASK_INTERRUPTIBLE);
6100         /* Just run for 10 seconds */;
6101         schedule_timeout(10 * HZ);
6102
6103         kthread_stop(rb_hammer);
6104
6105  out_free:
6106         for_each_online_cpu(cpu) {
6107                 if (!rb_threads[cpu])
6108                         break;
6109                 kthread_stop(rb_threads[cpu]);
6110         }
6111         if (ret) {
6112                 ring_buffer_free(buffer);
6113                 return ret;
6114         }
6115
6116         /* Report! */
6117         pr_info("finished\n");
6118         for_each_online_cpu(cpu) {
6119                 struct ring_buffer_event *event;
6120                 struct rb_test_data *data = &rb_data[cpu];
6121                 struct rb_item *item;
6122                 unsigned long total_events;
6123                 unsigned long total_dropped;
6124                 unsigned long total_written;
6125                 unsigned long total_alloc;
6126                 unsigned long total_read = 0;
6127                 unsigned long total_size = 0;
6128                 unsigned long total_len = 0;
6129                 unsigned long total_lost = 0;
6130                 unsigned long lost;
6131                 int big_event_size;
6132                 int small_event_size;
6133
6134                 ret = -1;
6135
6136                 total_events = data->events + data->events_nested;
6137                 total_written = data->bytes_written + data->bytes_written_nested;
6138                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6139                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6140
6141                 big_event_size = data->max_size + data->max_size_nested;
6142                 small_event_size = data->min_size + data->min_size_nested;
6143
6144                 pr_info("CPU %d:\n", cpu);
6145                 pr_info("              events:    %ld\n", total_events);
6146                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6147                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6148                 pr_info("       written bytes:    %ld\n", total_written);
6149                 pr_info("       biggest event:    %d\n", big_event_size);
6150                 pr_info("      smallest event:    %d\n", small_event_size);
6151
6152                 if (RB_WARN_ON(buffer, total_dropped))
6153                         break;
6154
6155                 ret = 0;
6156
6157                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6158                         total_lost += lost;
6159                         item = ring_buffer_event_data(event);
6160                         total_len += ring_buffer_event_length(event);
6161                         total_size += item->size + sizeof(struct rb_item);
6162                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6163                                 pr_info("FAILED!\n");
6164                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6165                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6166                                 RB_WARN_ON(buffer, 1);
6167                                 ret = -1;
6168                                 break;
6169                         }
6170                         total_read++;
6171                 }
6172                 if (ret)
6173                         break;
6174
6175                 ret = -1;
6176
6177                 pr_info("         read events:   %ld\n", total_read);
6178                 pr_info("         lost events:   %ld\n", total_lost);
6179                 pr_info("        total events:   %ld\n", total_lost + total_read);
6180                 pr_info("  recorded len bytes:   %ld\n", total_len);
6181                 pr_info(" recorded size bytes:   %ld\n", total_size);
6182                 if (total_lost) {
6183                         pr_info(" With dropped events, record len and size may not match\n"
6184                                 " alloced and written from above\n");
6185                 } else {
6186                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6187                                        total_size != total_written))
6188                                 break;
6189                 }
6190                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6191                         break;
6192
6193                 ret = 0;
6194         }
6195         if (!ret)
6196                 pr_info("Ring buffer PASSED!\n");
6197
6198         ring_buffer_free(buffer);
6199         return 0;
6200 }
6201
6202 late_initcall(test_ringbuffer);
6203 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */