1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h> /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
30 #include <asm/local.h>
33 * The "absolute" timestamp in the buffer is only 59 bits.
34 * If a clock has the 5 MSBs set, it needs to be saved and
37 #define TS_MSB (0xf8ULL << 56)
38 #define ABS_TS_MASK (~TS_MSB)
40 static void update_pages_handler(struct work_struct *work);
43 * The ring buffer header is special. We must manually up keep it.
45 int ring_buffer_print_entry_header(struct trace_seq *s)
47 trace_seq_puts(s, "# compressed entry header\n");
48 trace_seq_puts(s, "\ttype_len : 5 bits\n");
49 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
50 trace_seq_puts(s, "\tarray : 32 bits\n");
51 trace_seq_putc(s, '\n');
52 trace_seq_printf(s, "\tpadding : type == %d\n",
53 RINGBUF_TYPE_PADDING);
54 trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 RINGBUF_TYPE_TIME_EXTEND);
56 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 RINGBUF_TYPE_TIME_STAMP);
58 trace_seq_printf(s, "\tdata max type_len == %d\n",
59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
61 return !trace_seq_has_overflowed(s);
65 * The ring buffer is made up of a list of pages. A separate list of pages is
66 * allocated for each CPU. A writer may only write to a buffer that is
67 * associated with the CPU it is currently executing on. A reader may read
68 * from any per cpu buffer.
70 * The reader is special. For each per cpu buffer, the reader has its own
71 * reader page. When a reader has read the entire reader page, this reader
72 * page is swapped with another page in the ring buffer.
74 * Now, as long as the writer is off the reader page, the reader can do what
75 * ever it wants with that page. The writer will never write to that page
76 * again (as long as it is out of the ring buffer).
78 * Here's some silly ASCII art.
81 * |reader| RING BUFFER
83 * +------+ +---+ +---+ +---+
92 * |reader| RING BUFFER
93 * |page |------------------v
94 * +------+ +---+ +---+ +---+
103 * |reader| RING BUFFER
104 * |page |------------------v
105 * +------+ +---+ +---+ +---+
107 * | +---+ +---+ +---+
110 * +------------------------------+
114 * |buffer| RING BUFFER
115 * |page |------------------v
116 * +------+ +---+ +---+ +---+
118 * | New +---+ +---+ +---+
121 * +------------------------------+
124 * After we make this swap, the reader can hand this page off to the splice
125 * code and be done with it. It can even allocate a new page if it needs to
126 * and swap that into the ring buffer.
128 * We will be using cmpxchg soon to make all this lockless.
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF (1 << 20)
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT 4U
139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT 0
144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
146 # define RB_FORCE_8BYTE_ALIGNMENT 1
147 # define RB_ARCH_ALIGNMENT 8U
150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
156 RB_LEN_TIME_EXTEND = 8,
157 RB_LEN_TIME_STAMP = 8,
160 #define skip_time_extend(event) \
161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
163 #define extended_time(event) \
164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
166 static inline bool rb_null_event(struct ring_buffer_event *event)
168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
171 static void rb_event_set_padding(struct ring_buffer_event *event)
173 /* padding has a NULL time_delta */
174 event->type_len = RINGBUF_TYPE_PADDING;
175 event->time_delta = 0;
179 rb_event_data_length(struct ring_buffer_event *event)
184 length = event->type_len * RB_ALIGNMENT;
186 length = event->array[0];
187 return length + RB_EVNT_HDR_SIZE;
191 * Return the length of the given event. Will return
192 * the length of the time extend if the event is a
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
198 switch (event->type_len) {
199 case RINGBUF_TYPE_PADDING:
200 if (rb_null_event(event))
203 return event->array[0] + RB_EVNT_HDR_SIZE;
205 case RINGBUF_TYPE_TIME_EXTEND:
206 return RB_LEN_TIME_EXTEND;
208 case RINGBUF_TYPE_TIME_STAMP:
209 return RB_LEN_TIME_STAMP;
211 case RINGBUF_TYPE_DATA:
212 return rb_event_data_length(event);
221 * Return total length of time extend and data,
222 * or just the event length for all other events.
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
229 if (extended_time(event)) {
230 /* time extends include the data event after it */
231 len = RB_LEN_TIME_EXTEND;
232 event = skip_time_extend(event);
234 return len + rb_event_length(event);
238 * ring_buffer_event_length - return the length of the event
239 * @event: the event to get the length of
241 * Returns the size of the data load of a data event.
242 * If the event is something other than a data event, it
243 * returns the size of the event itself. With the exception
244 * of a TIME EXTEND, where it still returns the size of the
245 * data load of the data event after it.
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
251 if (extended_time(event))
252 event = skip_time_extend(event);
254 length = rb_event_length(event);
255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
257 length -= RB_EVNT_HDR_SIZE;
258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259 length -= sizeof(event->array[0]);
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
268 if (extended_time(event))
269 event = skip_time_extend(event);
270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 /* If length is in len field, then array[0] has the data */
273 return (void *)&event->array[0];
274 /* Otherwise length is in array[0] and array[1] has the data */
275 return (void *)&event->array[1];
279 * ring_buffer_event_data - return the data of the event
280 * @event: the event to get the data from
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
284 return rb_event_data(event);
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
288 #define for_each_buffer_cpu(buffer, cpu) \
289 for_each_cpu(cpu, buffer->cpumask)
291 #define for_each_online_buffer_cpu(buffer, cpu) \
292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
295 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST (~TS_MASK)
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
302 ts = event->array[0];
304 ts += event->time_delta;
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED (1 << 30)
314 struct buffer_data_page {
315 u64 time_stamp; /* page time stamp */
316 local_t commit; /* write committed index */
317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
321 * Note, the buffer_page list must be first. The buffer pages
322 * are allocated in cache lines, which means that each buffer
323 * page will be at the beginning of a cache line, and thus
324 * the least significant bits will be zero. We use this to
325 * add flags in the list struct pointers, to make the ring buffer
329 struct list_head list; /* list of buffer pages */
330 local_t write; /* index for next write */
331 unsigned read; /* index for next read */
332 local_t entries; /* entries on this page */
333 unsigned long real_end; /* real end of data */
334 struct buffer_data_page *page; /* Actual data page */
338 * The buffer page counters, write and entries, must be reset
339 * atomically when crossing page boundaries. To synchronize this
340 * update, two counters are inserted into the number. One is
341 * the actual counter for the write position or count on the page.
343 * The other is a counter of updaters. Before an update happens
344 * the update partition of the counter is incremented. This will
345 * allow the updater to update the counter atomically.
347 * The counter is 20 bits, and the state data is 12.
349 #define RB_WRITE_MASK 0xfffff
350 #define RB_WRITE_INTCNT (1 << 20)
352 static void rb_init_page(struct buffer_data_page *bpage)
354 local_set(&bpage->commit, 0);
357 static void free_buffer_page(struct buffer_page *bpage)
359 free_page((unsigned long)bpage->page);
364 * We need to fit the time_stamp delta into 27 bits.
366 static inline bool test_time_stamp(u64 delta)
368 return !!(delta & TS_DELTA_TEST);
371 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
373 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
374 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
376 int ring_buffer_print_page_header(struct trace_seq *s)
378 struct buffer_data_page field;
380 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
381 "offset:0;\tsize:%u;\tsigned:%u;\n",
382 (unsigned int)sizeof(field.time_stamp),
383 (unsigned int)is_signed_type(u64));
385 trace_seq_printf(s, "\tfield: local_t commit;\t"
386 "offset:%u;\tsize:%u;\tsigned:%u;\n",
387 (unsigned int)offsetof(typeof(field), commit),
388 (unsigned int)sizeof(field.commit),
389 (unsigned int)is_signed_type(long));
391 trace_seq_printf(s, "\tfield: int overwrite;\t"
392 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 (unsigned int)offsetof(typeof(field), commit),
395 (unsigned int)is_signed_type(long));
397 trace_seq_printf(s, "\tfield: char data;\t"
398 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 (unsigned int)offsetof(typeof(field), data),
400 (unsigned int)BUF_PAGE_SIZE,
401 (unsigned int)is_signed_type(char));
403 return !trace_seq_has_overflowed(s);
407 struct irq_work work;
408 wait_queue_head_t waiters;
409 wait_queue_head_t full_waiters;
411 bool waiters_pending;
412 bool full_waiters_pending;
417 * Structure to hold event state and handle nested events.
419 struct rb_event_info {
424 unsigned long length;
425 struct buffer_page *tail_page;
430 * Used for the add_timestamp
432 * EXTEND - wants a time extend
433 * ABSOLUTE - the buffer requests all events to have absolute time stamps
434 * FORCE - force a full time stamp.
437 RB_ADD_STAMP_NONE = 0,
438 RB_ADD_STAMP_EXTEND = BIT(1),
439 RB_ADD_STAMP_ABSOLUTE = BIT(2),
440 RB_ADD_STAMP_FORCE = BIT(3)
443 * Used for which event context the event is in.
450 * See trace_recursive_lock() comment below for more details.
461 #if BITS_PER_LONG == 32
465 /* To test on 64 bit machines */
470 struct rb_time_struct {
477 #include <asm/local64.h>
478 struct rb_time_struct {
482 typedef struct rb_time_struct rb_time_t;
487 * head_page == tail_page && head == tail then buffer is empty.
489 struct ring_buffer_per_cpu {
491 atomic_t record_disabled;
492 atomic_t resize_disabled;
493 struct trace_buffer *buffer;
494 raw_spinlock_t reader_lock; /* serialize readers */
495 arch_spinlock_t lock;
496 struct lock_class_key lock_key;
497 struct buffer_data_page *free_page;
498 unsigned long nr_pages;
499 unsigned int current_context;
500 struct list_head *pages;
501 struct buffer_page *head_page; /* read from head */
502 struct buffer_page *tail_page; /* write to tail */
503 struct buffer_page *commit_page; /* committed pages */
504 struct buffer_page *reader_page;
505 unsigned long lost_events;
506 unsigned long last_overrun;
508 local_t entries_bytes;
511 local_t commit_overrun;
512 local_t dropped_events;
515 local_t pages_touched;
518 long last_pages_touch;
519 size_t shortest_full;
521 unsigned long read_bytes;
522 rb_time_t write_stamp;
523 rb_time_t before_stamp;
524 u64 event_stamp[MAX_NEST];
526 /* pages removed since last reset */
527 unsigned long pages_removed;
528 /* ring buffer pages to update, > 0 to add, < 0 to remove */
529 long nr_pages_to_update;
530 struct list_head new_pages; /* new pages to add */
531 struct work_struct update_pages_work;
532 struct completion update_done;
534 struct rb_irq_work irq_work;
537 struct trace_buffer {
540 atomic_t record_disabled;
542 cpumask_var_t cpumask;
544 struct lock_class_key *reader_lock_key;
548 struct ring_buffer_per_cpu **buffers;
550 struct hlist_node node;
553 struct rb_irq_work irq_work;
557 struct ring_buffer_iter {
558 struct ring_buffer_per_cpu *cpu_buffer;
560 unsigned long next_event;
561 struct buffer_page *head_page;
562 struct buffer_page *cache_reader_page;
563 unsigned long cache_read;
564 unsigned long cache_pages_removed;
567 struct ring_buffer_event *event;
574 * On 32 bit machines, local64_t is very expensive. As the ring
575 * buffer doesn't need all the features of a true 64 bit atomic,
576 * on 32 bit, it uses these functions (64 still uses local64_t).
578 * For the ring buffer, 64 bit required operations for the time is
581 * - Reads may fail if it interrupted a modification of the time stamp.
582 * It will succeed if it did not interrupt another write even if
583 * the read itself is interrupted by a write.
584 * It returns whether it was successful or not.
586 * - Writes always succeed and will overwrite other writes and writes
587 * that were done by events interrupting the current write.
589 * - A write followed by a read of the same time stamp will always succeed,
590 * but may not contain the same value.
592 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
593 * Other than that, it acts like a normal cmpxchg.
595 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
596 * (bottom being the least significant 30 bits of the 60 bit time stamp).
598 * The two most significant bits of each half holds a 2 bit counter (0-3).
599 * Each update will increment this counter by one.
600 * When reading the top and bottom, if the two counter bits match then the
601 * top and bottom together make a valid 60 bit number.
603 #define RB_TIME_SHIFT 30
604 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
605 #define RB_TIME_MSB_SHIFT 60
607 static inline int rb_time_cnt(unsigned long val)
609 return (val >> RB_TIME_SHIFT) & 3;
612 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
616 val = top & RB_TIME_VAL_MASK;
617 val <<= RB_TIME_SHIFT;
618 val |= bottom & RB_TIME_VAL_MASK;
623 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
625 unsigned long top, bottom, msb;
629 * If the read is interrupted by a write, then the cnt will
630 * be different. Loop until both top and bottom have been read
631 * without interruption.
634 c = local_read(&t->cnt);
635 top = local_read(&t->top);
636 bottom = local_read(&t->bottom);
637 msb = local_read(&t->msb);
638 } while (c != local_read(&t->cnt));
640 *cnt = rb_time_cnt(top);
642 /* If top and bottom counts don't match, this interrupted a write */
643 if (*cnt != rb_time_cnt(bottom))
646 /* The shift to msb will lose its cnt bits */
647 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
651 static bool rb_time_read(rb_time_t *t, u64 *ret)
655 return __rb_time_read(t, ret, &cnt);
658 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
660 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
663 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
666 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
667 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
668 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
671 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
673 val = rb_time_val_cnt(val, cnt);
677 static void rb_time_set(rb_time_t *t, u64 val)
679 unsigned long cnt, top, bottom, msb;
681 rb_time_split(val, &top, &bottom, &msb);
683 /* Writes always succeed with a valid number even if it gets interrupted. */
685 cnt = local_inc_return(&t->cnt);
686 rb_time_val_set(&t->top, top, cnt);
687 rb_time_val_set(&t->bottom, bottom, cnt);
688 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
689 } while (cnt != local_read(&t->cnt));
693 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
695 return local_try_cmpxchg(l, &expect, set);
698 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
700 unsigned long cnt, top, bottom, msb;
701 unsigned long cnt2, top2, bottom2, msb2;
704 /* The cmpxchg always fails if it interrupted an update */
705 if (!__rb_time_read(t, &val, &cnt2))
711 cnt = local_read(&t->cnt);
712 if ((cnt & 3) != cnt2)
717 rb_time_split(val, &top, &bottom, &msb);
718 top = rb_time_val_cnt(top, cnt);
719 bottom = rb_time_val_cnt(bottom, cnt);
721 rb_time_split(set, &top2, &bottom2, &msb2);
722 top2 = rb_time_val_cnt(top2, cnt2);
723 bottom2 = rb_time_val_cnt(bottom2, cnt2);
725 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
727 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
729 if (!rb_time_read_cmpxchg(&t->top, top, top2))
731 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
738 /* local64_t always succeeds */
740 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
742 *ret = local64_read(&t->time);
745 static void rb_time_set(rb_time_t *t, u64 val)
747 local64_set(&t->time, val);
750 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
752 return local64_try_cmpxchg(&t->time, &expect, set);
757 * Enable this to make sure that the event passed to
758 * ring_buffer_event_time_stamp() is not committed and also
759 * is on the buffer that it passed in.
761 //#define RB_VERIFY_EVENT
762 #ifdef RB_VERIFY_EVENT
763 static struct list_head *rb_list_head(struct list_head *list);
764 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
767 struct buffer_page *page = cpu_buffer->commit_page;
768 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
769 struct list_head *next;
771 unsigned long addr = (unsigned long)event;
775 /* Make sure the event exists and is not committed yet */
777 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
779 commit = local_read(&page->page->commit);
780 write = local_read(&page->write);
781 if (addr >= (unsigned long)&page->page->data[commit] &&
782 addr < (unsigned long)&page->page->data[write])
785 next = rb_list_head(page->list.next);
786 page = list_entry(next, struct buffer_page, list);
791 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
798 * The absolute time stamp drops the 5 MSBs and some clocks may
799 * require them. The rb_fix_abs_ts() will take a previous full
800 * time stamp, and add the 5 MSB of that time stamp on to the
801 * saved absolute time stamp. Then they are compared in case of
802 * the unlikely event that the latest time stamp incremented
805 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
807 if (save_ts & TS_MSB) {
808 abs |= save_ts & TS_MSB;
809 /* Check for overflow */
810 if (unlikely(abs < save_ts))
816 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
819 * ring_buffer_event_time_stamp - return the event's current time stamp
820 * @buffer: The buffer that the event is on
821 * @event: the event to get the time stamp of
823 * Note, this must be called after @event is reserved, and before it is
824 * committed to the ring buffer. And must be called from the same
825 * context where the event was reserved (normal, softirq, irq, etc).
827 * Returns the time stamp associated with the current event.
828 * If the event has an extended time stamp, then that is used as
829 * the time stamp to return.
830 * In the highly unlikely case that the event was nested more than
831 * the max nesting, then the write_stamp of the buffer is returned,
832 * otherwise current time is returned, but that really neither of
833 * the last two cases should ever happen.
835 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
836 struct ring_buffer_event *event)
838 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
842 /* If the event includes an absolute time, then just use that */
843 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
844 ts = rb_event_time_stamp(event);
845 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
848 nest = local_read(&cpu_buffer->committing);
849 verify_event(cpu_buffer, event);
850 if (WARN_ON_ONCE(!nest))
853 /* Read the current saved nesting level time stamp */
854 if (likely(--nest < MAX_NEST))
855 return cpu_buffer->event_stamp[nest];
857 /* Shouldn't happen, warn if it does */
858 WARN_ONCE(1, "nest (%d) greater than max", nest);
861 /* Can only fail on 32 bit */
862 if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
863 /* Screw it, just read the current time */
864 ts = rb_time_stamp(cpu_buffer->buffer);
870 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
871 * @buffer: The ring_buffer to get the number of pages from
872 * @cpu: The cpu of the ring_buffer to get the number of pages from
874 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
876 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
878 return buffer->buffers[cpu]->nr_pages;
882 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
883 * @buffer: The ring_buffer to get the number of pages from
884 * @cpu: The cpu of the ring_buffer to get the number of pages from
886 * Returns the number of pages that have content in the ring buffer.
888 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
894 read = local_read(&buffer->buffers[cpu]->pages_read);
895 lost = local_read(&buffer->buffers[cpu]->pages_lost);
896 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
898 if (WARN_ON_ONCE(cnt < lost))
903 /* The reader can read an empty page, but not more than that */
905 WARN_ON_ONCE(read > cnt + 1);
912 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
914 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
918 nr_pages = cpu_buffer->nr_pages;
919 if (!nr_pages || !full)
922 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
924 return (dirty * 100) > (full * nr_pages);
928 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
930 * Schedules a delayed work to wake up any task that is blocked on the
931 * ring buffer waiters queue.
933 static void rb_wake_up_waiters(struct irq_work *work)
935 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
937 wake_up_all(&rbwork->waiters);
938 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
939 rbwork->wakeup_full = false;
940 rbwork->full_waiters_pending = false;
941 wake_up_all(&rbwork->full_waiters);
946 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
947 * @buffer: The ring buffer to wake waiters on
948 * @cpu: The CPU buffer to wake waiters on
950 * In the case of a file that represents a ring buffer is closing,
951 * it is prudent to wake up any waiters that are on this.
953 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
955 struct ring_buffer_per_cpu *cpu_buffer;
956 struct rb_irq_work *rbwork;
961 if (cpu == RING_BUFFER_ALL_CPUS) {
963 /* Wake up individual ones too. One level recursion */
964 for_each_buffer_cpu(buffer, cpu)
965 ring_buffer_wake_waiters(buffer, cpu);
967 rbwork = &buffer->irq_work;
969 if (WARN_ON_ONCE(!buffer->buffers))
971 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
974 cpu_buffer = buffer->buffers[cpu];
975 /* The CPU buffer may not have been initialized yet */
978 rbwork = &cpu_buffer->irq_work;
981 rbwork->wait_index++;
982 /* make sure the waiters see the new index */
985 rb_wake_up_waiters(&rbwork->work);
989 * ring_buffer_wait - wait for input to the ring buffer
990 * @buffer: buffer to wait on
991 * @cpu: the cpu buffer to wait on
992 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
994 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
995 * as data is added to any of the @buffer's cpu buffers. Otherwise
996 * it will wait for data to be added to a specific cpu buffer.
998 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1000 struct ring_buffer_per_cpu *cpu_buffer;
1002 struct rb_irq_work *work;
1007 * Depending on what the caller is waiting for, either any
1008 * data in any cpu buffer, or a specific buffer, put the
1009 * caller on the appropriate wait queue.
1011 if (cpu == RING_BUFFER_ALL_CPUS) {
1012 work = &buffer->irq_work;
1013 /* Full only makes sense on per cpu reads */
1016 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1018 cpu_buffer = buffer->buffers[cpu];
1019 work = &cpu_buffer->irq_work;
1022 wait_index = READ_ONCE(work->wait_index);
1026 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1028 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1031 * The events can happen in critical sections where
1032 * checking a work queue can cause deadlocks.
1033 * After adding a task to the queue, this flag is set
1034 * only to notify events to try to wake up the queue
1037 * We don't clear it even if the buffer is no longer
1038 * empty. The flag only causes the next event to run
1039 * irq_work to do the work queue wake up. The worse
1040 * that can happen if we race with !trace_empty() is that
1041 * an event will cause an irq_work to try to wake up
1044 * There's no reason to protect this flag either, as
1045 * the work queue and irq_work logic will do the necessary
1046 * synchronization for the wake ups. The only thing
1047 * that is necessary is that the wake up happens after
1048 * a task has been queued. It's OK for spurious wake ups.
1051 work->full_waiters_pending = true;
1053 work->waiters_pending = true;
1055 if (signal_pending(current)) {
1060 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1063 if (cpu != RING_BUFFER_ALL_CPUS &&
1064 !ring_buffer_empty_cpu(buffer, cpu)) {
1065 unsigned long flags;
1072 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1073 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1074 done = !pagebusy && full_hit(buffer, cpu, full);
1076 if (!cpu_buffer->shortest_full ||
1077 cpu_buffer->shortest_full > full)
1078 cpu_buffer->shortest_full = full;
1079 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1086 /* Make sure to see the new wait index */
1088 if (wait_index != work->wait_index)
1093 finish_wait(&work->full_waiters, &wait);
1095 finish_wait(&work->waiters, &wait);
1101 * ring_buffer_poll_wait - poll on buffer input
1102 * @buffer: buffer to wait on
1103 * @cpu: the cpu buffer to wait on
1104 * @filp: the file descriptor
1105 * @poll_table: The poll descriptor
1106 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1108 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1109 * as data is added to any of the @buffer's cpu buffers. Otherwise
1110 * it will wait for data to be added to a specific cpu buffer.
1112 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1115 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1116 struct file *filp, poll_table *poll_table, int full)
1118 struct ring_buffer_per_cpu *cpu_buffer;
1119 struct rb_irq_work *work;
1121 if (cpu == RING_BUFFER_ALL_CPUS) {
1122 work = &buffer->irq_work;
1125 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1128 cpu_buffer = buffer->buffers[cpu];
1129 work = &cpu_buffer->irq_work;
1133 poll_wait(filp, &work->full_waiters, poll_table);
1134 work->full_waiters_pending = true;
1136 poll_wait(filp, &work->waiters, poll_table);
1137 work->waiters_pending = true;
1141 * There's a tight race between setting the waiters_pending and
1142 * checking if the ring buffer is empty. Once the waiters_pending bit
1143 * is set, the next event will wake the task up, but we can get stuck
1144 * if there's only a single event in.
1146 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1147 * but adding a memory barrier to all events will cause too much of a
1148 * performance hit in the fast path. We only need a memory barrier when
1149 * the buffer goes from empty to having content. But as this race is
1150 * extremely small, and it's not a problem if another event comes in, we
1151 * will fix it later.
1156 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1158 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1159 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1160 return EPOLLIN | EPOLLRDNORM;
1164 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1165 #define RB_WARN_ON(b, cond) \
1167 int _____ret = unlikely(cond); \
1169 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1170 struct ring_buffer_per_cpu *__b = \
1172 atomic_inc(&__b->buffer->record_disabled); \
1174 atomic_inc(&b->record_disabled); \
1180 /* Up this if you want to test the TIME_EXTENTS and normalization */
1181 #define DEBUG_SHIFT 0
1183 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1187 /* Skip retpolines :-( */
1188 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1189 ts = trace_clock_local();
1191 ts = buffer->clock();
1193 /* shift to debug/test normalization and TIME_EXTENTS */
1194 return ts << DEBUG_SHIFT;
1197 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1201 preempt_disable_notrace();
1202 time = rb_time_stamp(buffer);
1203 preempt_enable_notrace();
1207 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1209 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1212 /* Just stupid testing the normalize function and deltas */
1213 *ts >>= DEBUG_SHIFT;
1215 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1218 * Making the ring buffer lockless makes things tricky.
1219 * Although writes only happen on the CPU that they are on,
1220 * and they only need to worry about interrupts. Reads can
1221 * happen on any CPU.
1223 * The reader page is always off the ring buffer, but when the
1224 * reader finishes with a page, it needs to swap its page with
1225 * a new one from the buffer. The reader needs to take from
1226 * the head (writes go to the tail). But if a writer is in overwrite
1227 * mode and wraps, it must push the head page forward.
1229 * Here lies the problem.
1231 * The reader must be careful to replace only the head page, and
1232 * not another one. As described at the top of the file in the
1233 * ASCII art, the reader sets its old page to point to the next
1234 * page after head. It then sets the page after head to point to
1235 * the old reader page. But if the writer moves the head page
1236 * during this operation, the reader could end up with the tail.
1238 * We use cmpxchg to help prevent this race. We also do something
1239 * special with the page before head. We set the LSB to 1.
1241 * When the writer must push the page forward, it will clear the
1242 * bit that points to the head page, move the head, and then set
1243 * the bit that points to the new head page.
1245 * We also don't want an interrupt coming in and moving the head
1246 * page on another writer. Thus we use the second LSB to catch
1249 * head->list->prev->next bit 1 bit 0
1252 * Points to head page 0 1
1255 * Note we can not trust the prev pointer of the head page, because:
1257 * +----+ +-----+ +-----+
1258 * | |------>| T |---X--->| N |
1260 * +----+ +-----+ +-----+
1263 * +----------| R |----------+ |
1267 * Key: ---X--> HEAD flag set in pointer
1272 * (see __rb_reserve_next() to see where this happens)
1274 * What the above shows is that the reader just swapped out
1275 * the reader page with a page in the buffer, but before it
1276 * could make the new header point back to the new page added
1277 * it was preempted by a writer. The writer moved forward onto
1278 * the new page added by the reader and is about to move forward
1281 * You can see, it is legitimate for the previous pointer of
1282 * the head (or any page) not to point back to itself. But only
1286 #define RB_PAGE_NORMAL 0UL
1287 #define RB_PAGE_HEAD 1UL
1288 #define RB_PAGE_UPDATE 2UL
1291 #define RB_FLAG_MASK 3UL
1293 /* PAGE_MOVED is not part of the mask */
1294 #define RB_PAGE_MOVED 4UL
1297 * rb_list_head - remove any bit
1299 static struct list_head *rb_list_head(struct list_head *list)
1301 unsigned long val = (unsigned long)list;
1303 return (struct list_head *)(val & ~RB_FLAG_MASK);
1307 * rb_is_head_page - test if the given page is the head page
1309 * Because the reader may move the head_page pointer, we can
1310 * not trust what the head page is (it may be pointing to
1311 * the reader page). But if the next page is a header page,
1312 * its flags will be non zero.
1315 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1319 val = (unsigned long)list->next;
1321 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1322 return RB_PAGE_MOVED;
1324 return val & RB_FLAG_MASK;
1330 * The unique thing about the reader page, is that, if the
1331 * writer is ever on it, the previous pointer never points
1332 * back to the reader page.
1334 static bool rb_is_reader_page(struct buffer_page *page)
1336 struct list_head *list = page->list.prev;
1338 return rb_list_head(list->next) != &page->list;
1342 * rb_set_list_to_head - set a list_head to be pointing to head.
1344 static void rb_set_list_to_head(struct list_head *list)
1348 ptr = (unsigned long *)&list->next;
1349 *ptr |= RB_PAGE_HEAD;
1350 *ptr &= ~RB_PAGE_UPDATE;
1354 * rb_head_page_activate - sets up head page
1356 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1358 struct buffer_page *head;
1360 head = cpu_buffer->head_page;
1365 * Set the previous list pointer to have the HEAD flag.
1367 rb_set_list_to_head(head->list.prev);
1370 static void rb_list_head_clear(struct list_head *list)
1372 unsigned long *ptr = (unsigned long *)&list->next;
1374 *ptr &= ~RB_FLAG_MASK;
1378 * rb_head_page_deactivate - clears head page ptr (for free list)
1381 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1383 struct list_head *hd;
1385 /* Go through the whole list and clear any pointers found. */
1386 rb_list_head_clear(cpu_buffer->pages);
1388 list_for_each(hd, cpu_buffer->pages)
1389 rb_list_head_clear(hd);
1392 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1393 struct buffer_page *head,
1394 struct buffer_page *prev,
1395 int old_flag, int new_flag)
1397 struct list_head *list;
1398 unsigned long val = (unsigned long)&head->list;
1403 val &= ~RB_FLAG_MASK;
1405 ret = cmpxchg((unsigned long *)&list->next,
1406 val | old_flag, val | new_flag);
1408 /* check if the reader took the page */
1409 if ((ret & ~RB_FLAG_MASK) != val)
1410 return RB_PAGE_MOVED;
1412 return ret & RB_FLAG_MASK;
1415 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1416 struct buffer_page *head,
1417 struct buffer_page *prev,
1420 return rb_head_page_set(cpu_buffer, head, prev,
1421 old_flag, RB_PAGE_UPDATE);
1424 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1425 struct buffer_page *head,
1426 struct buffer_page *prev,
1429 return rb_head_page_set(cpu_buffer, head, prev,
1430 old_flag, RB_PAGE_HEAD);
1433 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1434 struct buffer_page *head,
1435 struct buffer_page *prev,
1438 return rb_head_page_set(cpu_buffer, head, prev,
1439 old_flag, RB_PAGE_NORMAL);
1442 static inline void rb_inc_page(struct buffer_page **bpage)
1444 struct list_head *p = rb_list_head((*bpage)->list.next);
1446 *bpage = list_entry(p, struct buffer_page, list);
1449 static struct buffer_page *
1450 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1452 struct buffer_page *head;
1453 struct buffer_page *page;
1454 struct list_head *list;
1457 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1461 list = cpu_buffer->pages;
1462 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1465 page = head = cpu_buffer->head_page;
1467 * It is possible that the writer moves the header behind
1468 * where we started, and we miss in one loop.
1469 * A second loop should grab the header, but we'll do
1470 * three loops just because I'm paranoid.
1472 for (i = 0; i < 3; i++) {
1474 if (rb_is_head_page(page, page->list.prev)) {
1475 cpu_buffer->head_page = page;
1479 } while (page != head);
1482 RB_WARN_ON(cpu_buffer, 1);
1487 static bool rb_head_page_replace(struct buffer_page *old,
1488 struct buffer_page *new)
1490 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1493 val = *ptr & ~RB_FLAG_MASK;
1494 val |= RB_PAGE_HEAD;
1496 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1500 * rb_tail_page_update - move the tail page forward
1502 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1503 struct buffer_page *tail_page,
1504 struct buffer_page *next_page)
1506 unsigned long old_entries;
1507 unsigned long old_write;
1510 * The tail page now needs to be moved forward.
1512 * We need to reset the tail page, but without messing
1513 * with possible erasing of data brought in by interrupts
1514 * that have moved the tail page and are currently on it.
1516 * We add a counter to the write field to denote this.
1518 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1519 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1521 local_inc(&cpu_buffer->pages_touched);
1523 * Just make sure we have seen our old_write and synchronize
1524 * with any interrupts that come in.
1529 * If the tail page is still the same as what we think
1530 * it is, then it is up to us to update the tail
1533 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1534 /* Zero the write counter */
1535 unsigned long val = old_write & ~RB_WRITE_MASK;
1536 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1539 * This will only succeed if an interrupt did
1540 * not come in and change it. In which case, we
1541 * do not want to modify it.
1543 * We add (void) to let the compiler know that we do not care
1544 * about the return value of these functions. We use the
1545 * cmpxchg to only update if an interrupt did not already
1546 * do it for us. If the cmpxchg fails, we don't care.
1548 (void)local_cmpxchg(&next_page->write, old_write, val);
1549 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1552 * No need to worry about races with clearing out the commit.
1553 * it only can increment when a commit takes place. But that
1554 * only happens in the outer most nested commit.
1556 local_set(&next_page->page->commit, 0);
1558 /* Again, either we update tail_page or an interrupt does */
1559 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1563 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1564 struct buffer_page *bpage)
1566 unsigned long val = (unsigned long)bpage;
1568 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1572 * rb_check_pages - integrity check of buffer pages
1573 * @cpu_buffer: CPU buffer with pages to test
1575 * As a safety measure we check to make sure the data pages have not
1578 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1580 struct list_head *head = rb_list_head(cpu_buffer->pages);
1581 struct list_head *tmp;
1583 if (RB_WARN_ON(cpu_buffer,
1584 rb_list_head(rb_list_head(head->next)->prev) != head))
1587 if (RB_WARN_ON(cpu_buffer,
1588 rb_list_head(rb_list_head(head->prev)->next) != head))
1591 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1592 if (RB_WARN_ON(cpu_buffer,
1593 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1596 if (RB_WARN_ON(cpu_buffer,
1597 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1602 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1603 long nr_pages, struct list_head *pages)
1605 struct buffer_page *bpage, *tmp;
1606 bool user_thread = current->mm != NULL;
1611 * Check if the available memory is there first.
1612 * Note, si_mem_available() only gives us a rough estimate of available
1613 * memory. It may not be accurate. But we don't care, we just want
1614 * to prevent doing any allocation when it is obvious that it is
1615 * not going to succeed.
1617 i = si_mem_available();
1622 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1623 * gracefully without invoking oom-killer and the system is not
1626 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1629 * If a user thread allocates too much, and si_mem_available()
1630 * reports there's enough memory, even though there is not.
1631 * Make sure the OOM killer kills this thread. This can happen
1632 * even with RETRY_MAYFAIL because another task may be doing
1633 * an allocation after this task has taken all memory.
1634 * This is the task the OOM killer needs to take out during this
1635 * loop, even if it was triggered by an allocation somewhere else.
1638 set_current_oom_origin();
1639 for (i = 0; i < nr_pages; i++) {
1642 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1643 mflags, cpu_to_node(cpu_buffer->cpu));
1647 rb_check_bpage(cpu_buffer, bpage);
1649 list_add(&bpage->list, pages);
1651 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1654 bpage->page = page_address(page);
1655 rb_init_page(bpage->page);
1657 if (user_thread && fatal_signal_pending(current))
1661 clear_current_oom_origin();
1666 list_for_each_entry_safe(bpage, tmp, pages, list) {
1667 list_del_init(&bpage->list);
1668 free_buffer_page(bpage);
1671 clear_current_oom_origin();
1676 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1677 unsigned long nr_pages)
1683 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1687 * The ring buffer page list is a circular list that does not
1688 * start and end with a list head. All page list items point to
1691 cpu_buffer->pages = pages.next;
1694 cpu_buffer->nr_pages = nr_pages;
1696 rb_check_pages(cpu_buffer);
1701 static struct ring_buffer_per_cpu *
1702 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1704 struct ring_buffer_per_cpu *cpu_buffer;
1705 struct buffer_page *bpage;
1709 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1710 GFP_KERNEL, cpu_to_node(cpu));
1714 cpu_buffer->cpu = cpu;
1715 cpu_buffer->buffer = buffer;
1716 raw_spin_lock_init(&cpu_buffer->reader_lock);
1717 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1718 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1719 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1720 init_completion(&cpu_buffer->update_done);
1721 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1722 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1723 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1725 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1726 GFP_KERNEL, cpu_to_node(cpu));
1728 goto fail_free_buffer;
1730 rb_check_bpage(cpu_buffer, bpage);
1732 cpu_buffer->reader_page = bpage;
1733 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1735 goto fail_free_reader;
1736 bpage->page = page_address(page);
1737 rb_init_page(bpage->page);
1739 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1740 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1742 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1744 goto fail_free_reader;
1746 cpu_buffer->head_page
1747 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1748 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1750 rb_head_page_activate(cpu_buffer);
1755 free_buffer_page(cpu_buffer->reader_page);
1762 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1764 struct list_head *head = cpu_buffer->pages;
1765 struct buffer_page *bpage, *tmp;
1767 irq_work_sync(&cpu_buffer->irq_work.work);
1769 free_buffer_page(cpu_buffer->reader_page);
1772 rb_head_page_deactivate(cpu_buffer);
1774 list_for_each_entry_safe(bpage, tmp, head, list) {
1775 list_del_init(&bpage->list);
1776 free_buffer_page(bpage);
1778 bpage = list_entry(head, struct buffer_page, list);
1779 free_buffer_page(bpage);
1786 * __ring_buffer_alloc - allocate a new ring_buffer
1787 * @size: the size in bytes per cpu that is needed.
1788 * @flags: attributes to set for the ring buffer.
1789 * @key: ring buffer reader_lock_key.
1791 * Currently the only flag that is available is the RB_FL_OVERWRITE
1792 * flag. This flag means that the buffer will overwrite old data
1793 * when the buffer wraps. If this flag is not set, the buffer will
1794 * drop data when the tail hits the head.
1796 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1797 struct lock_class_key *key)
1799 struct trace_buffer *buffer;
1805 /* keep it in its own cache line */
1806 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1811 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1812 goto fail_free_buffer;
1814 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1815 buffer->flags = flags;
1816 buffer->clock = trace_clock_local;
1817 buffer->reader_lock_key = key;
1819 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1820 init_waitqueue_head(&buffer->irq_work.waiters);
1822 /* need at least two pages */
1826 buffer->cpus = nr_cpu_ids;
1828 bsize = sizeof(void *) * nr_cpu_ids;
1829 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1831 if (!buffer->buffers)
1832 goto fail_free_cpumask;
1834 cpu = raw_smp_processor_id();
1835 cpumask_set_cpu(cpu, buffer->cpumask);
1836 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1837 if (!buffer->buffers[cpu])
1838 goto fail_free_buffers;
1840 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1842 goto fail_free_buffers;
1844 mutex_init(&buffer->mutex);
1849 for_each_buffer_cpu(buffer, cpu) {
1850 if (buffer->buffers[cpu])
1851 rb_free_cpu_buffer(buffer->buffers[cpu]);
1853 kfree(buffer->buffers);
1856 free_cpumask_var(buffer->cpumask);
1862 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1865 * ring_buffer_free - free a ring buffer.
1866 * @buffer: the buffer to free.
1869 ring_buffer_free(struct trace_buffer *buffer)
1873 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1875 irq_work_sync(&buffer->irq_work.work);
1877 for_each_buffer_cpu(buffer, cpu)
1878 rb_free_cpu_buffer(buffer->buffers[cpu]);
1880 kfree(buffer->buffers);
1881 free_cpumask_var(buffer->cpumask);
1885 EXPORT_SYMBOL_GPL(ring_buffer_free);
1887 void ring_buffer_set_clock(struct trace_buffer *buffer,
1890 buffer->clock = clock;
1893 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1895 buffer->time_stamp_abs = abs;
1898 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1900 return buffer->time_stamp_abs;
1903 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1905 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1907 return local_read(&bpage->entries) & RB_WRITE_MASK;
1910 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1912 return local_read(&bpage->write) & RB_WRITE_MASK;
1916 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1918 struct list_head *tail_page, *to_remove, *next_page;
1919 struct buffer_page *to_remove_page, *tmp_iter_page;
1920 struct buffer_page *last_page, *first_page;
1921 unsigned long nr_removed;
1922 unsigned long head_bit;
1927 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1928 atomic_inc(&cpu_buffer->record_disabled);
1930 * We don't race with the readers since we have acquired the reader
1931 * lock. We also don't race with writers after disabling recording.
1932 * This makes it easy to figure out the first and the last page to be
1933 * removed from the list. We unlink all the pages in between including
1934 * the first and last pages. This is done in a busy loop so that we
1935 * lose the least number of traces.
1936 * The pages are freed after we restart recording and unlock readers.
1938 tail_page = &cpu_buffer->tail_page->list;
1941 * tail page might be on reader page, we remove the next page
1942 * from the ring buffer
1944 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1945 tail_page = rb_list_head(tail_page->next);
1946 to_remove = tail_page;
1948 /* start of pages to remove */
1949 first_page = list_entry(rb_list_head(to_remove->next),
1950 struct buffer_page, list);
1952 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1953 to_remove = rb_list_head(to_remove)->next;
1954 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1956 /* Read iterators need to reset themselves when some pages removed */
1957 cpu_buffer->pages_removed += nr_removed;
1959 next_page = rb_list_head(to_remove)->next;
1962 * Now we remove all pages between tail_page and next_page.
1963 * Make sure that we have head_bit value preserved for the
1966 tail_page->next = (struct list_head *)((unsigned long)next_page |
1968 next_page = rb_list_head(next_page);
1969 next_page->prev = tail_page;
1971 /* make sure pages points to a valid page in the ring buffer */
1972 cpu_buffer->pages = next_page;
1974 /* update head page */
1976 cpu_buffer->head_page = list_entry(next_page,
1977 struct buffer_page, list);
1979 /* pages are removed, resume tracing and then free the pages */
1980 atomic_dec(&cpu_buffer->record_disabled);
1981 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1983 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1985 /* last buffer page to remove */
1986 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1988 tmp_iter_page = first_page;
1993 to_remove_page = tmp_iter_page;
1994 rb_inc_page(&tmp_iter_page);
1996 /* update the counters */
1997 page_entries = rb_page_entries(to_remove_page);
2000 * If something was added to this page, it was full
2001 * since it is not the tail page. So we deduct the
2002 * bytes consumed in ring buffer from here.
2003 * Increment overrun to account for the lost events.
2005 local_add(page_entries, &cpu_buffer->overrun);
2006 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2007 local_inc(&cpu_buffer->pages_lost);
2011 * We have already removed references to this list item, just
2012 * free up the buffer_page and its page
2014 free_buffer_page(to_remove_page);
2017 } while (to_remove_page != last_page);
2019 RB_WARN_ON(cpu_buffer, nr_removed);
2021 return nr_removed == 0;
2025 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2027 struct list_head *pages = &cpu_buffer->new_pages;
2028 unsigned long flags;
2032 /* Can be called at early boot up, where interrupts must not been enabled */
2033 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2035 * We are holding the reader lock, so the reader page won't be swapped
2036 * in the ring buffer. Now we are racing with the writer trying to
2037 * move head page and the tail page.
2038 * We are going to adapt the reader page update process where:
2039 * 1. We first splice the start and end of list of new pages between
2040 * the head page and its previous page.
2041 * 2. We cmpxchg the prev_page->next to point from head page to the
2042 * start of new pages list.
2043 * 3. Finally, we update the head->prev to the end of new list.
2045 * We will try this process 10 times, to make sure that we don't keep
2051 struct list_head *head_page, *prev_page, *r;
2052 struct list_head *last_page, *first_page;
2053 struct list_head *head_page_with_bit;
2054 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2058 head_page = &hpage->list;
2059 prev_page = head_page->prev;
2061 first_page = pages->next;
2062 last_page = pages->prev;
2064 head_page_with_bit = (struct list_head *)
2065 ((unsigned long)head_page | RB_PAGE_HEAD);
2067 last_page->next = head_page_with_bit;
2068 first_page->prev = prev_page;
2070 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2072 if (r == head_page_with_bit) {
2074 * yay, we replaced the page pointer to our new list,
2075 * now, we just have to update to head page's prev
2076 * pointer to point to end of list
2078 head_page->prev = last_page;
2085 INIT_LIST_HEAD(pages);
2087 * If we weren't successful in adding in new pages, warn and stop
2090 RB_WARN_ON(cpu_buffer, !success);
2091 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2093 /* free pages if they weren't inserted */
2095 struct buffer_page *bpage, *tmp;
2096 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2098 list_del_init(&bpage->list);
2099 free_buffer_page(bpage);
2105 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2109 if (cpu_buffer->nr_pages_to_update > 0)
2110 success = rb_insert_pages(cpu_buffer);
2112 success = rb_remove_pages(cpu_buffer,
2113 -cpu_buffer->nr_pages_to_update);
2116 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2119 static void update_pages_handler(struct work_struct *work)
2121 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2122 struct ring_buffer_per_cpu, update_pages_work);
2123 rb_update_pages(cpu_buffer);
2124 complete(&cpu_buffer->update_done);
2128 * ring_buffer_resize - resize the ring buffer
2129 * @buffer: the buffer to resize.
2130 * @size: the new size.
2131 * @cpu_id: the cpu buffer to resize
2133 * Minimum size is 2 * BUF_PAGE_SIZE.
2135 * Returns 0 on success and < 0 on failure.
2137 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2140 struct ring_buffer_per_cpu *cpu_buffer;
2141 unsigned long nr_pages;
2145 * Always succeed at resizing a non-existent buffer:
2150 /* Make sure the requested buffer exists */
2151 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2152 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2155 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2157 /* we need a minimum of two pages */
2161 /* prevent another thread from changing buffer sizes */
2162 mutex_lock(&buffer->mutex);
2163 atomic_inc(&buffer->resizing);
2165 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2167 * Don't succeed if resizing is disabled, as a reader might be
2168 * manipulating the ring buffer and is expecting a sane state while
2171 for_each_buffer_cpu(buffer, cpu) {
2172 cpu_buffer = buffer->buffers[cpu];
2173 if (atomic_read(&cpu_buffer->resize_disabled)) {
2175 goto out_err_unlock;
2179 /* calculate the pages to update */
2180 for_each_buffer_cpu(buffer, cpu) {
2181 cpu_buffer = buffer->buffers[cpu];
2183 cpu_buffer->nr_pages_to_update = nr_pages -
2184 cpu_buffer->nr_pages;
2186 * nothing more to do for removing pages or no update
2188 if (cpu_buffer->nr_pages_to_update <= 0)
2191 * to add pages, make sure all new pages can be
2192 * allocated without receiving ENOMEM
2194 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2195 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2196 &cpu_buffer->new_pages)) {
2197 /* not enough memory for new pages */
2207 * Fire off all the required work handlers
2208 * We can't schedule on offline CPUs, but it's not necessary
2209 * since we can change their buffer sizes without any race.
2211 for_each_buffer_cpu(buffer, cpu) {
2212 cpu_buffer = buffer->buffers[cpu];
2213 if (!cpu_buffer->nr_pages_to_update)
2216 /* Can't run something on an offline CPU. */
2217 if (!cpu_online(cpu)) {
2218 rb_update_pages(cpu_buffer);
2219 cpu_buffer->nr_pages_to_update = 0;
2221 /* Run directly if possible. */
2223 if (cpu != smp_processor_id()) {
2225 schedule_work_on(cpu,
2226 &cpu_buffer->update_pages_work);
2228 update_pages_handler(&cpu_buffer->update_pages_work);
2234 /* wait for all the updates to complete */
2235 for_each_buffer_cpu(buffer, cpu) {
2236 cpu_buffer = buffer->buffers[cpu];
2237 if (!cpu_buffer->nr_pages_to_update)
2240 if (cpu_online(cpu))
2241 wait_for_completion(&cpu_buffer->update_done);
2242 cpu_buffer->nr_pages_to_update = 0;
2247 cpu_buffer = buffer->buffers[cpu_id];
2249 if (nr_pages == cpu_buffer->nr_pages)
2253 * Don't succeed if resizing is disabled, as a reader might be
2254 * manipulating the ring buffer and is expecting a sane state while
2257 if (atomic_read(&cpu_buffer->resize_disabled)) {
2259 goto out_err_unlock;
2262 cpu_buffer->nr_pages_to_update = nr_pages -
2263 cpu_buffer->nr_pages;
2265 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2266 if (cpu_buffer->nr_pages_to_update > 0 &&
2267 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2268 &cpu_buffer->new_pages)) {
2275 /* Can't run something on an offline CPU. */
2276 if (!cpu_online(cpu_id))
2277 rb_update_pages(cpu_buffer);
2279 /* Run directly if possible. */
2281 if (cpu_id == smp_processor_id()) {
2282 rb_update_pages(cpu_buffer);
2286 schedule_work_on(cpu_id,
2287 &cpu_buffer->update_pages_work);
2288 wait_for_completion(&cpu_buffer->update_done);
2292 cpu_buffer->nr_pages_to_update = 0;
2298 * The ring buffer resize can happen with the ring buffer
2299 * enabled, so that the update disturbs the tracing as little
2300 * as possible. But if the buffer is disabled, we do not need
2301 * to worry about that, and we can take the time to verify
2302 * that the buffer is not corrupt.
2304 if (atomic_read(&buffer->record_disabled)) {
2305 atomic_inc(&buffer->record_disabled);
2307 * Even though the buffer was disabled, we must make sure
2308 * that it is truly disabled before calling rb_check_pages.
2309 * There could have been a race between checking
2310 * record_disable and incrementing it.
2313 for_each_buffer_cpu(buffer, cpu) {
2314 cpu_buffer = buffer->buffers[cpu];
2315 rb_check_pages(cpu_buffer);
2317 atomic_dec(&buffer->record_disabled);
2320 atomic_dec(&buffer->resizing);
2321 mutex_unlock(&buffer->mutex);
2325 for_each_buffer_cpu(buffer, cpu) {
2326 struct buffer_page *bpage, *tmp;
2328 cpu_buffer = buffer->buffers[cpu];
2329 cpu_buffer->nr_pages_to_update = 0;
2331 if (list_empty(&cpu_buffer->new_pages))
2334 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2336 list_del_init(&bpage->list);
2337 free_buffer_page(bpage);
2341 atomic_dec(&buffer->resizing);
2342 mutex_unlock(&buffer->mutex);
2345 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2347 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2349 mutex_lock(&buffer->mutex);
2351 buffer->flags |= RB_FL_OVERWRITE;
2353 buffer->flags &= ~RB_FL_OVERWRITE;
2354 mutex_unlock(&buffer->mutex);
2356 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2358 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2360 return bpage->page->data + index;
2363 static __always_inline struct ring_buffer_event *
2364 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2366 return __rb_page_index(cpu_buffer->reader_page,
2367 cpu_buffer->reader_page->read);
2370 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2372 return local_read(&bpage->page->commit);
2375 static struct ring_buffer_event *
2376 rb_iter_head_event(struct ring_buffer_iter *iter)
2378 struct ring_buffer_event *event;
2379 struct buffer_page *iter_head_page = iter->head_page;
2380 unsigned long commit;
2383 if (iter->head != iter->next_event)
2387 * When the writer goes across pages, it issues a cmpxchg which
2388 * is a mb(), which will synchronize with the rmb here.
2389 * (see rb_tail_page_update() and __rb_reserve_next())
2391 commit = rb_page_commit(iter_head_page);
2394 /* An event needs to be at least 8 bytes in size */
2395 if (iter->head > commit - 8)
2398 event = __rb_page_index(iter_head_page, iter->head);
2399 length = rb_event_length(event);
2402 * READ_ONCE() doesn't work on functions and we don't want the
2403 * compiler doing any crazy optimizations with length.
2407 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2408 /* Writer corrupted the read? */
2411 memcpy(iter->event, event, length);
2413 * If the page stamp is still the same after this rmb() then the
2414 * event was safely copied without the writer entering the page.
2418 /* Make sure the page didn't change since we read this */
2419 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2420 commit > rb_page_commit(iter_head_page))
2423 iter->next_event = iter->head + length;
2426 /* Reset to the beginning */
2427 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2429 iter->next_event = 0;
2430 iter->missed_events = 1;
2434 /* Size is determined by what has been committed */
2435 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2437 return rb_page_commit(bpage);
2440 static __always_inline unsigned
2441 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2443 return rb_page_commit(cpu_buffer->commit_page);
2446 static __always_inline unsigned
2447 rb_event_index(struct ring_buffer_event *event)
2449 unsigned long addr = (unsigned long)event;
2451 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2454 static void rb_inc_iter(struct ring_buffer_iter *iter)
2456 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2459 * The iterator could be on the reader page (it starts there).
2460 * But the head could have moved, since the reader was
2461 * found. Check for this case and assign the iterator
2462 * to the head page instead of next.
2464 if (iter->head_page == cpu_buffer->reader_page)
2465 iter->head_page = rb_set_head_page(cpu_buffer);
2467 rb_inc_page(&iter->head_page);
2469 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2471 iter->next_event = 0;
2475 * rb_handle_head_page - writer hit the head page
2477 * Returns: +1 to retry page
2482 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2483 struct buffer_page *tail_page,
2484 struct buffer_page *next_page)
2486 struct buffer_page *new_head;
2491 entries = rb_page_entries(next_page);
2494 * The hard part is here. We need to move the head
2495 * forward, and protect against both readers on
2496 * other CPUs and writers coming in via interrupts.
2498 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2502 * type can be one of four:
2503 * NORMAL - an interrupt already moved it for us
2504 * HEAD - we are the first to get here.
2505 * UPDATE - we are the interrupt interrupting
2507 * MOVED - a reader on another CPU moved the next
2508 * pointer to its reader page. Give up
2515 * We changed the head to UPDATE, thus
2516 * it is our responsibility to update
2519 local_add(entries, &cpu_buffer->overrun);
2520 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2521 local_inc(&cpu_buffer->pages_lost);
2524 * The entries will be zeroed out when we move the
2528 /* still more to do */
2531 case RB_PAGE_UPDATE:
2533 * This is an interrupt that interrupt the
2534 * previous update. Still more to do.
2537 case RB_PAGE_NORMAL:
2539 * An interrupt came in before the update
2540 * and processed this for us.
2541 * Nothing left to do.
2546 * The reader is on another CPU and just did
2547 * a swap with our next_page.
2552 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2557 * Now that we are here, the old head pointer is
2558 * set to UPDATE. This will keep the reader from
2559 * swapping the head page with the reader page.
2560 * The reader (on another CPU) will spin till
2563 * We just need to protect against interrupts
2564 * doing the job. We will set the next pointer
2565 * to HEAD. After that, we set the old pointer
2566 * to NORMAL, but only if it was HEAD before.
2567 * otherwise we are an interrupt, and only
2568 * want the outer most commit to reset it.
2570 new_head = next_page;
2571 rb_inc_page(&new_head);
2573 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2577 * Valid returns are:
2578 * HEAD - an interrupt came in and already set it.
2579 * NORMAL - One of two things:
2580 * 1) We really set it.
2581 * 2) A bunch of interrupts came in and moved
2582 * the page forward again.
2586 case RB_PAGE_NORMAL:
2590 RB_WARN_ON(cpu_buffer, 1);
2595 * It is possible that an interrupt came in,
2596 * set the head up, then more interrupts came in
2597 * and moved it again. When we get back here,
2598 * the page would have been set to NORMAL but we
2599 * just set it back to HEAD.
2601 * How do you detect this? Well, if that happened
2602 * the tail page would have moved.
2604 if (ret == RB_PAGE_NORMAL) {
2605 struct buffer_page *buffer_tail_page;
2607 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2609 * If the tail had moved passed next, then we need
2610 * to reset the pointer.
2612 if (buffer_tail_page != tail_page &&
2613 buffer_tail_page != next_page)
2614 rb_head_page_set_normal(cpu_buffer, new_head,
2620 * If this was the outer most commit (the one that
2621 * changed the original pointer from HEAD to UPDATE),
2622 * then it is up to us to reset it to NORMAL.
2624 if (type == RB_PAGE_HEAD) {
2625 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2628 if (RB_WARN_ON(cpu_buffer,
2629 ret != RB_PAGE_UPDATE))
2637 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2638 unsigned long tail, struct rb_event_info *info)
2640 struct buffer_page *tail_page = info->tail_page;
2641 struct ring_buffer_event *event;
2642 unsigned long length = info->length;
2645 * Only the event that crossed the page boundary
2646 * must fill the old tail_page with padding.
2648 if (tail >= BUF_PAGE_SIZE) {
2650 * If the page was filled, then we still need
2651 * to update the real_end. Reset it to zero
2652 * and the reader will ignore it.
2654 if (tail == BUF_PAGE_SIZE)
2655 tail_page->real_end = 0;
2657 local_sub(length, &tail_page->write);
2661 event = __rb_page_index(tail_page, tail);
2663 /* account for padding bytes */
2664 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2667 * Save the original length to the meta data.
2668 * This will be used by the reader to add lost event
2671 tail_page->real_end = tail;
2674 * If this event is bigger than the minimum size, then
2675 * we need to be careful that we don't subtract the
2676 * write counter enough to allow another writer to slip
2678 * We put in a discarded commit instead, to make sure
2679 * that this space is not used again.
2681 * If we are less than the minimum size, we don't need to
2684 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2685 /* No room for any events */
2687 /* Mark the rest of the page with padding */
2688 rb_event_set_padding(event);
2690 /* Make sure the padding is visible before the write update */
2693 /* Set the write back to the previous setting */
2694 local_sub(length, &tail_page->write);
2698 /* Put in a discarded event */
2699 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2700 event->type_len = RINGBUF_TYPE_PADDING;
2701 /* time delta must be non zero */
2702 event->time_delta = 1;
2704 /* Make sure the padding is visible before the tail_page->write update */
2707 /* Set write to end of buffer */
2708 length = (tail + length) - BUF_PAGE_SIZE;
2709 local_sub(length, &tail_page->write);
2712 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2715 * This is the slow path, force gcc not to inline it.
2717 static noinline struct ring_buffer_event *
2718 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2719 unsigned long tail, struct rb_event_info *info)
2721 struct buffer_page *tail_page = info->tail_page;
2722 struct buffer_page *commit_page = cpu_buffer->commit_page;
2723 struct trace_buffer *buffer = cpu_buffer->buffer;
2724 struct buffer_page *next_page;
2727 next_page = tail_page;
2729 rb_inc_page(&next_page);
2732 * If for some reason, we had an interrupt storm that made
2733 * it all the way around the buffer, bail, and warn
2736 if (unlikely(next_page == commit_page)) {
2737 local_inc(&cpu_buffer->commit_overrun);
2742 * This is where the fun begins!
2744 * We are fighting against races between a reader that
2745 * could be on another CPU trying to swap its reader
2746 * page with the buffer head.
2748 * We are also fighting against interrupts coming in and
2749 * moving the head or tail on us as well.
2751 * If the next page is the head page then we have filled
2752 * the buffer, unless the commit page is still on the
2755 if (rb_is_head_page(next_page, &tail_page->list)) {
2758 * If the commit is not on the reader page, then
2759 * move the header page.
2761 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2763 * If we are not in overwrite mode,
2764 * this is easy, just stop here.
2766 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2767 local_inc(&cpu_buffer->dropped_events);
2771 ret = rb_handle_head_page(cpu_buffer,
2780 * We need to be careful here too. The
2781 * commit page could still be on the reader
2782 * page. We could have a small buffer, and
2783 * have filled up the buffer with events
2784 * from interrupts and such, and wrapped.
2786 * Note, if the tail page is also on the
2787 * reader_page, we let it move out.
2789 if (unlikely((cpu_buffer->commit_page !=
2790 cpu_buffer->tail_page) &&
2791 (cpu_buffer->commit_page ==
2792 cpu_buffer->reader_page))) {
2793 local_inc(&cpu_buffer->commit_overrun);
2799 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2803 rb_reset_tail(cpu_buffer, tail, info);
2805 /* Commit what we have for now. */
2806 rb_end_commit(cpu_buffer);
2807 /* rb_end_commit() decs committing */
2808 local_inc(&cpu_buffer->committing);
2810 /* fail and let the caller try again */
2811 return ERR_PTR(-EAGAIN);
2815 rb_reset_tail(cpu_buffer, tail, info);
2821 static struct ring_buffer_event *
2822 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2825 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2827 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2829 /* Not the first event on the page, or not delta? */
2830 if (abs || rb_event_index(event)) {
2831 event->time_delta = delta & TS_MASK;
2832 event->array[0] = delta >> TS_SHIFT;
2834 /* nope, just zero it */
2835 event->time_delta = 0;
2836 event->array[0] = 0;
2839 return skip_time_extend(event);
2842 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2843 static inline bool sched_clock_stable(void)
2850 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2851 struct rb_event_info *info)
2855 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2856 (unsigned long long)info->delta,
2857 (unsigned long long)info->ts,
2858 (unsigned long long)info->before,
2859 (unsigned long long)info->after,
2860 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2861 sched_clock_stable() ? "" :
2862 "If you just came from a suspend/resume,\n"
2863 "please switch to the trace global clock:\n"
2864 " echo global > /sys/kernel/tracing/trace_clock\n"
2865 "or add trace_clock=global to the kernel command line\n");
2868 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2869 struct ring_buffer_event **event,
2870 struct rb_event_info *info,
2872 unsigned int *length)
2874 bool abs = info->add_timestamp &
2875 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2877 if (unlikely(info->delta > (1ULL << 59))) {
2879 * Some timers can use more than 59 bits, and when a timestamp
2880 * is added to the buffer, it will lose those bits.
2882 if (abs && (info->ts & TS_MSB)) {
2883 info->delta &= ABS_TS_MASK;
2885 /* did the clock go backwards */
2886 } else if (info->before == info->after && info->before > info->ts) {
2887 /* not interrupted */
2891 * This is possible with a recalibrating of the TSC.
2892 * Do not produce a call stack, but just report it.
2896 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2897 info->before, info->ts);
2900 rb_check_timestamp(cpu_buffer, info);
2904 *event = rb_add_time_stamp(*event, info->delta, abs);
2905 *length -= RB_LEN_TIME_EXTEND;
2910 * rb_update_event - update event type and data
2911 * @cpu_buffer: The per cpu buffer of the @event
2912 * @event: the event to update
2913 * @info: The info to update the @event with (contains length and delta)
2915 * Update the type and data fields of the @event. The length
2916 * is the actual size that is written to the ring buffer,
2917 * and with this, we can determine what to place into the
2921 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2922 struct ring_buffer_event *event,
2923 struct rb_event_info *info)
2925 unsigned length = info->length;
2926 u64 delta = info->delta;
2927 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2929 if (!WARN_ON_ONCE(nest >= MAX_NEST))
2930 cpu_buffer->event_stamp[nest] = info->ts;
2933 * If we need to add a timestamp, then we
2934 * add it to the start of the reserved space.
2936 if (unlikely(info->add_timestamp))
2937 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2939 event->time_delta = delta;
2940 length -= RB_EVNT_HDR_SIZE;
2941 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2942 event->type_len = 0;
2943 event->array[0] = length;
2945 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2948 static unsigned rb_calculate_event_length(unsigned length)
2950 struct ring_buffer_event event; /* Used only for sizeof array */
2952 /* zero length can cause confusions */
2956 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2957 length += sizeof(event.array[0]);
2959 length += RB_EVNT_HDR_SIZE;
2960 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2963 * In case the time delta is larger than the 27 bits for it
2964 * in the header, we need to add a timestamp. If another
2965 * event comes in when trying to discard this one to increase
2966 * the length, then the timestamp will be added in the allocated
2967 * space of this event. If length is bigger than the size needed
2968 * for the TIME_EXTEND, then padding has to be used. The events
2969 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2970 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2971 * As length is a multiple of 4, we only need to worry if it
2972 * is 12 (RB_LEN_TIME_EXTEND + 4).
2974 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2975 length += RB_ALIGNMENT;
2980 static u64 rb_time_delta(struct ring_buffer_event *event)
2982 switch (event->type_len) {
2983 case RINGBUF_TYPE_PADDING:
2986 case RINGBUF_TYPE_TIME_EXTEND:
2987 return rb_event_time_stamp(event);
2989 case RINGBUF_TYPE_TIME_STAMP:
2992 case RINGBUF_TYPE_DATA:
2993 return event->time_delta;
3000 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3001 struct ring_buffer_event *event)
3003 unsigned long new_index, old_index;
3004 struct buffer_page *bpage;
3009 new_index = rb_event_index(event);
3010 old_index = new_index + rb_event_ts_length(event);
3011 addr = (unsigned long)event;
3014 bpage = READ_ONCE(cpu_buffer->tail_page);
3016 delta = rb_time_delta(event);
3018 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3021 /* Make sure the write stamp is read before testing the location */
3024 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3025 unsigned long write_mask =
3026 local_read(&bpage->write) & ~RB_WRITE_MASK;
3027 unsigned long event_length = rb_event_length(event);
3029 /* Something came in, can't discard */
3030 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3031 write_stamp, write_stamp - delta))
3035 * It's possible that the event time delta is zero
3036 * (has the same time stamp as the previous event)
3037 * in which case write_stamp and before_stamp could
3038 * be the same. In such a case, force before_stamp
3039 * to be different than write_stamp. It doesn't
3040 * matter what it is, as long as its different.
3043 rb_time_set(&cpu_buffer->before_stamp, 0);
3046 * If an event were to come in now, it would see that the
3047 * write_stamp and the before_stamp are different, and assume
3048 * that this event just added itself before updating
3049 * the write stamp. The interrupting event will fix the
3050 * write stamp for us, and use the before stamp as its delta.
3054 * This is on the tail page. It is possible that
3055 * a write could come in and move the tail page
3056 * and write to the next page. That is fine
3057 * because we just shorten what is on this page.
3059 old_index += write_mask;
3060 new_index += write_mask;
3062 /* caution: old_index gets updated on cmpxchg failure */
3063 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3064 /* update counters */
3065 local_sub(event_length, &cpu_buffer->entries_bytes);
3070 /* could not discard */
3074 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3076 local_inc(&cpu_buffer->committing);
3077 local_inc(&cpu_buffer->commits);
3080 static __always_inline void
3081 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3083 unsigned long max_count;
3086 * We only race with interrupts and NMIs on this CPU.
3087 * If we own the commit event, then we can commit
3088 * all others that interrupted us, since the interruptions
3089 * are in stack format (they finish before they come
3090 * back to us). This allows us to do a simple loop to
3091 * assign the commit to the tail.
3094 max_count = cpu_buffer->nr_pages * 100;
3096 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3097 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3099 if (RB_WARN_ON(cpu_buffer,
3100 rb_is_reader_page(cpu_buffer->tail_page)))
3103 * No need for a memory barrier here, as the update
3104 * of the tail_page did it for this page.
3106 local_set(&cpu_buffer->commit_page->page->commit,
3107 rb_page_write(cpu_buffer->commit_page));
3108 rb_inc_page(&cpu_buffer->commit_page);
3109 /* add barrier to keep gcc from optimizing too much */
3112 while (rb_commit_index(cpu_buffer) !=
3113 rb_page_write(cpu_buffer->commit_page)) {
3115 /* Make sure the readers see the content of what is committed. */
3117 local_set(&cpu_buffer->commit_page->page->commit,
3118 rb_page_write(cpu_buffer->commit_page));
3119 RB_WARN_ON(cpu_buffer,
3120 local_read(&cpu_buffer->commit_page->page->commit) &
3125 /* again, keep gcc from optimizing */
3129 * If an interrupt came in just after the first while loop
3130 * and pushed the tail page forward, we will be left with
3131 * a dangling commit that will never go forward.
3133 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3137 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3139 unsigned long commits;
3141 if (RB_WARN_ON(cpu_buffer,
3142 !local_read(&cpu_buffer->committing)))
3146 commits = local_read(&cpu_buffer->commits);
3147 /* synchronize with interrupts */
3149 if (local_read(&cpu_buffer->committing) == 1)
3150 rb_set_commit_to_write(cpu_buffer);
3152 local_dec(&cpu_buffer->committing);
3154 /* synchronize with interrupts */
3158 * Need to account for interrupts coming in between the
3159 * updating of the commit page and the clearing of the
3160 * committing counter.
3162 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3163 !local_read(&cpu_buffer->committing)) {
3164 local_inc(&cpu_buffer->committing);
3169 static inline void rb_event_discard(struct ring_buffer_event *event)
3171 if (extended_time(event))
3172 event = skip_time_extend(event);
3174 /* array[0] holds the actual length for the discarded event */
3175 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3176 event->type_len = RINGBUF_TYPE_PADDING;
3177 /* time delta must be non zero */
3178 if (!event->time_delta)
3179 event->time_delta = 1;
3182 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3184 local_inc(&cpu_buffer->entries);
3185 rb_end_commit(cpu_buffer);
3188 static __always_inline void
3189 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3191 if (buffer->irq_work.waiters_pending) {
3192 buffer->irq_work.waiters_pending = false;
3193 /* irq_work_queue() supplies it's own memory barriers */
3194 irq_work_queue(&buffer->irq_work.work);
3197 if (cpu_buffer->irq_work.waiters_pending) {
3198 cpu_buffer->irq_work.waiters_pending = false;
3199 /* irq_work_queue() supplies it's own memory barriers */
3200 irq_work_queue(&cpu_buffer->irq_work.work);
3203 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3206 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3209 if (!cpu_buffer->irq_work.full_waiters_pending)
3212 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3214 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3217 cpu_buffer->irq_work.wakeup_full = true;
3218 cpu_buffer->irq_work.full_waiters_pending = false;
3219 /* irq_work_queue() supplies it's own memory barriers */
3220 irq_work_queue(&cpu_buffer->irq_work.work);
3223 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3224 # define do_ring_buffer_record_recursion() \
3225 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3227 # define do_ring_buffer_record_recursion() do { } while (0)
3231 * The lock and unlock are done within a preempt disable section.
3232 * The current_context per_cpu variable can only be modified
3233 * by the current task between lock and unlock. But it can
3234 * be modified more than once via an interrupt. To pass this
3235 * information from the lock to the unlock without having to
3236 * access the 'in_interrupt()' functions again (which do show
3237 * a bit of overhead in something as critical as function tracing,
3238 * we use a bitmask trick.
3240 * bit 1 = NMI context
3241 * bit 2 = IRQ context
3242 * bit 3 = SoftIRQ context
3243 * bit 4 = normal context.
3245 * This works because this is the order of contexts that can
3246 * preempt other contexts. A SoftIRQ never preempts an IRQ
3249 * When the context is determined, the corresponding bit is
3250 * checked and set (if it was set, then a recursion of that context
3253 * On unlock, we need to clear this bit. To do so, just subtract
3254 * 1 from the current_context and AND it to itself.
3258 * 101 & 100 = 100 (clearing bit zero)
3261 * 1010 & 1001 = 1000 (clearing bit 1)
3263 * The least significant bit can be cleared this way, and it
3264 * just so happens that it is the same bit corresponding to
3265 * the current context.
3267 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3268 * is set when a recursion is detected at the current context, and if
3269 * the TRANSITION bit is already set, it will fail the recursion.
3270 * This is needed because there's a lag between the changing of
3271 * interrupt context and updating the preempt count. In this case,
3272 * a false positive will be found. To handle this, one extra recursion
3273 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3274 * bit is already set, then it is considered a recursion and the function
3275 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3277 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3278 * to be cleared. Even if it wasn't the context that set it. That is,
3279 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3280 * is called before preempt_count() is updated, since the check will
3281 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3282 * NMI then comes in, it will set the NMI bit, but when the NMI code
3283 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3284 * and leave the NMI bit set. But this is fine, because the interrupt
3285 * code that set the TRANSITION bit will then clear the NMI bit when it
3286 * calls trace_recursive_unlock(). If another NMI comes in, it will
3287 * set the TRANSITION bit and continue.
3289 * Note: The TRANSITION bit only handles a single transition between context.
3292 static __always_inline bool
3293 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3295 unsigned int val = cpu_buffer->current_context;
3296 int bit = interrupt_context_level();
3298 bit = RB_CTX_NORMAL - bit;
3300 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3302 * It is possible that this was called by transitioning
3303 * between interrupt context, and preempt_count() has not
3304 * been updated yet. In this case, use the TRANSITION bit.
3306 bit = RB_CTX_TRANSITION;
3307 if (val & (1 << (bit + cpu_buffer->nest))) {
3308 do_ring_buffer_record_recursion();
3313 val |= (1 << (bit + cpu_buffer->nest));
3314 cpu_buffer->current_context = val;
3319 static __always_inline void
3320 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3322 cpu_buffer->current_context &=
3323 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3326 /* The recursive locking above uses 5 bits */
3327 #define NESTED_BITS 5
3330 * ring_buffer_nest_start - Allow to trace while nested
3331 * @buffer: The ring buffer to modify
3333 * The ring buffer has a safety mechanism to prevent recursion.
3334 * But there may be a case where a trace needs to be done while
3335 * tracing something else. In this case, calling this function
3336 * will allow this function to nest within a currently active
3337 * ring_buffer_lock_reserve().
3339 * Call this function before calling another ring_buffer_lock_reserve() and
3340 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3342 void ring_buffer_nest_start(struct trace_buffer *buffer)
3344 struct ring_buffer_per_cpu *cpu_buffer;
3347 /* Enabled by ring_buffer_nest_end() */
3348 preempt_disable_notrace();
3349 cpu = raw_smp_processor_id();
3350 cpu_buffer = buffer->buffers[cpu];
3351 /* This is the shift value for the above recursive locking */
3352 cpu_buffer->nest += NESTED_BITS;
3356 * ring_buffer_nest_end - Allow to trace while nested
3357 * @buffer: The ring buffer to modify
3359 * Must be called after ring_buffer_nest_start() and after the
3360 * ring_buffer_unlock_commit().
3362 void ring_buffer_nest_end(struct trace_buffer *buffer)
3364 struct ring_buffer_per_cpu *cpu_buffer;
3367 /* disabled by ring_buffer_nest_start() */
3368 cpu = raw_smp_processor_id();
3369 cpu_buffer = buffer->buffers[cpu];
3370 /* This is the shift value for the above recursive locking */
3371 cpu_buffer->nest -= NESTED_BITS;
3372 preempt_enable_notrace();
3376 * ring_buffer_unlock_commit - commit a reserved
3377 * @buffer: The buffer to commit to
3379 * This commits the data to the ring buffer, and releases any locks held.
3381 * Must be paired with ring_buffer_lock_reserve.
3383 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3385 struct ring_buffer_per_cpu *cpu_buffer;
3386 int cpu = raw_smp_processor_id();
3388 cpu_buffer = buffer->buffers[cpu];
3390 rb_commit(cpu_buffer);
3392 rb_wakeups(buffer, cpu_buffer);
3394 trace_recursive_unlock(cpu_buffer);
3396 preempt_enable_notrace();
3400 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3402 /* Special value to validate all deltas on a page. */
3403 #define CHECK_FULL_PAGE 1L
3405 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3406 static void dump_buffer_page(struct buffer_data_page *bpage,
3407 struct rb_event_info *info,
3410 struct ring_buffer_event *event;
3414 ts = bpage->time_stamp;
3415 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
3417 for (e = 0; e < tail; e += rb_event_length(event)) {
3419 event = (struct ring_buffer_event *)(bpage->data + e);
3421 switch (event->type_len) {
3423 case RINGBUF_TYPE_TIME_EXTEND:
3424 delta = rb_event_time_stamp(event);
3426 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3429 case RINGBUF_TYPE_TIME_STAMP:
3430 delta = rb_event_time_stamp(event);
3431 ts = rb_fix_abs_ts(delta, ts);
3432 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3435 case RINGBUF_TYPE_PADDING:
3436 ts += event->time_delta;
3437 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta);
3440 case RINGBUF_TYPE_DATA:
3441 ts += event->time_delta;
3442 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta);
3451 static DEFINE_PER_CPU(atomic_t, checking);
3452 static atomic_t ts_dump;
3455 * Check if the current event time stamp matches the deltas on
3458 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3459 struct rb_event_info *info,
3462 struct ring_buffer_event *event;
3463 struct buffer_data_page *bpage;
3468 bpage = info->tail_page->page;
3470 if (tail == CHECK_FULL_PAGE) {
3472 tail = local_read(&bpage->commit);
3473 } else if (info->add_timestamp &
3474 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3475 /* Ignore events with absolute time stamps */
3480 * Do not check the first event (skip possible extends too).
3481 * Also do not check if previous events have not been committed.
3483 if (tail <= 8 || tail > local_read(&bpage->commit))
3487 * If this interrupted another event,
3489 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3492 ts = bpage->time_stamp;
3494 for (e = 0; e < tail; e += rb_event_length(event)) {
3496 event = (struct ring_buffer_event *)(bpage->data + e);
3498 switch (event->type_len) {
3500 case RINGBUF_TYPE_TIME_EXTEND:
3501 delta = rb_event_time_stamp(event);
3505 case RINGBUF_TYPE_TIME_STAMP:
3506 delta = rb_event_time_stamp(event);
3507 ts = rb_fix_abs_ts(delta, ts);
3510 case RINGBUF_TYPE_PADDING:
3511 if (event->time_delta == 1)
3514 case RINGBUF_TYPE_DATA:
3515 ts += event->time_delta;
3519 RB_WARN_ON(cpu_buffer, 1);
3522 if ((full && ts > info->ts) ||
3523 (!full && ts + info->delta != info->ts)) {
3524 /* If another report is happening, ignore this one */
3525 if (atomic_inc_return(&ts_dump) != 1) {
3526 atomic_dec(&ts_dump);
3529 atomic_inc(&cpu_buffer->record_disabled);
3530 /* There's some cases in boot up that this can happen */
3531 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3532 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3534 ts + info->delta, info->ts, info->delta,
3535 info->before, info->after,
3536 full ? " (full)" : "");
3537 dump_buffer_page(bpage, info, tail);
3538 atomic_dec(&ts_dump);
3539 /* Do not re-enable checking */
3543 atomic_dec(this_cpu_ptr(&checking));
3546 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3547 struct rb_event_info *info,
3551 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3553 static struct ring_buffer_event *
3554 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3555 struct rb_event_info *info)
3557 struct ring_buffer_event *event;
3558 struct buffer_page *tail_page;
3559 unsigned long tail, write, w;
3563 /* Don't let the compiler play games with cpu_buffer->tail_page */
3564 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3566 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3568 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3569 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3571 info->ts = rb_time_stamp(cpu_buffer->buffer);
3573 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3574 info->delta = info->ts;
3577 * If interrupting an event time update, we may need an
3578 * absolute timestamp.
3579 * Don't bother if this is the start of a new page (w == 0).
3581 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3582 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3583 info->length += RB_LEN_TIME_EXTEND;
3585 info->delta = info->ts - info->after;
3586 if (unlikely(test_time_stamp(info->delta))) {
3587 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3588 info->length += RB_LEN_TIME_EXTEND;
3593 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3595 /*C*/ write = local_add_return(info->length, &tail_page->write);
3597 /* set write to only the index of the write */
3598 write &= RB_WRITE_MASK;
3600 tail = write - info->length;
3602 /* See if we shot pass the end of this buffer page */
3603 if (unlikely(write > BUF_PAGE_SIZE)) {
3604 /* before and after may now different, fix it up*/
3605 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3606 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3607 if (a_ok && b_ok && info->before != info->after)
3608 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3609 info->before, info->after);
3611 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3612 return rb_move_tail(cpu_buffer, tail, info);
3615 if (likely(tail == w)) {
3619 /* Nothing interrupted us between A and C */
3620 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3622 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3623 RB_WARN_ON(cpu_buffer, !s_ok);
3624 if (likely(!(info->add_timestamp &
3625 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3626 /* This did not interrupt any time update */
3627 info->delta = info->ts - info->after;
3629 /* Just use full timestamp for interrupting event */
3630 info->delta = info->ts;
3632 check_buffer(cpu_buffer, info, tail);
3633 if (unlikely(info->ts != save_before)) {
3634 /* SLOW PATH - Interrupted between C and E */
3636 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3637 RB_WARN_ON(cpu_buffer, !a_ok);
3639 /* Write stamp must only go forward */
3640 if (save_before > info->after) {
3642 * We do not care about the result, only that
3643 * it gets updated atomically.
3645 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3646 info->after, save_before);
3651 /* SLOW PATH - Interrupted between A and C */
3652 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3653 /* Was interrupted before here, write_stamp must be valid */
3654 RB_WARN_ON(cpu_buffer, !a_ok);
3655 ts = rb_time_stamp(cpu_buffer->buffer);
3657 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3659 rb_time_cmpxchg(&cpu_buffer->write_stamp,
3661 /* Nothing came after this event between C and E */
3662 info->delta = ts - info->after;
3665 * Interrupted between C and E:
3666 * Lost the previous events time stamp. Just set the
3667 * delta to zero, and this will be the same time as
3668 * the event this event interrupted. And the events that
3669 * came after this will still be correct (as they would
3670 * have built their delta on the previous event.
3675 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3679 * If this is the first commit on the page, then it has the same
3680 * timestamp as the page itself.
3682 if (unlikely(!tail && !(info->add_timestamp &
3683 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3686 /* We reserved something on the buffer */
3688 event = __rb_page_index(tail_page, tail);
3689 rb_update_event(cpu_buffer, event, info);
3691 local_inc(&tail_page->entries);
3694 * If this is the first commit on the page, then update
3697 if (unlikely(!tail))
3698 tail_page->page->time_stamp = info->ts;
3700 /* account for these added bytes */
3701 local_add(info->length, &cpu_buffer->entries_bytes);
3706 static __always_inline struct ring_buffer_event *
3707 rb_reserve_next_event(struct trace_buffer *buffer,
3708 struct ring_buffer_per_cpu *cpu_buffer,
3709 unsigned long length)
3711 struct ring_buffer_event *event;
3712 struct rb_event_info info;
3716 rb_start_commit(cpu_buffer);
3717 /* The commit page can not change after this */
3719 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3721 * Due to the ability to swap a cpu buffer from a buffer
3722 * it is possible it was swapped before we committed.
3723 * (committing stops a swap). We check for it here and
3724 * if it happened, we have to fail the write.
3727 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3728 local_dec(&cpu_buffer->committing);
3729 local_dec(&cpu_buffer->commits);
3734 info.length = rb_calculate_event_length(length);
3736 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3737 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3738 info.length += RB_LEN_TIME_EXTEND;
3740 add_ts_default = RB_ADD_STAMP_NONE;
3744 info.add_timestamp = add_ts_default;
3748 * We allow for interrupts to reenter here and do a trace.
3749 * If one does, it will cause this original code to loop
3750 * back here. Even with heavy interrupts happening, this
3751 * should only happen a few times in a row. If this happens
3752 * 1000 times in a row, there must be either an interrupt
3753 * storm or we have something buggy.
3756 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3759 event = __rb_reserve_next(cpu_buffer, &info);
3761 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3762 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3763 info.length -= RB_LEN_TIME_EXTEND;
3770 rb_end_commit(cpu_buffer);
3775 * ring_buffer_lock_reserve - reserve a part of the buffer
3776 * @buffer: the ring buffer to reserve from
3777 * @length: the length of the data to reserve (excluding event header)
3779 * Returns a reserved event on the ring buffer to copy directly to.
3780 * The user of this interface will need to get the body to write into
3781 * and can use the ring_buffer_event_data() interface.
3783 * The length is the length of the data needed, not the event length
3784 * which also includes the event header.
3786 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3787 * If NULL is returned, then nothing has been allocated or locked.
3789 struct ring_buffer_event *
3790 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3792 struct ring_buffer_per_cpu *cpu_buffer;
3793 struct ring_buffer_event *event;
3796 /* If we are tracing schedule, we don't want to recurse */
3797 preempt_disable_notrace();
3799 if (unlikely(atomic_read(&buffer->record_disabled)))
3802 cpu = raw_smp_processor_id();
3804 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3807 cpu_buffer = buffer->buffers[cpu];
3809 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3812 if (unlikely(length > BUF_MAX_DATA_SIZE))
3815 if (unlikely(trace_recursive_lock(cpu_buffer)))
3818 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3825 trace_recursive_unlock(cpu_buffer);
3827 preempt_enable_notrace();
3830 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3833 * Decrement the entries to the page that an event is on.
3834 * The event does not even need to exist, only the pointer
3835 * to the page it is on. This may only be called before the commit
3839 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3840 struct ring_buffer_event *event)
3842 unsigned long addr = (unsigned long)event;
3843 struct buffer_page *bpage = cpu_buffer->commit_page;
3844 struct buffer_page *start;
3848 /* Do the likely case first */
3849 if (likely(bpage->page == (void *)addr)) {
3850 local_dec(&bpage->entries);
3855 * Because the commit page may be on the reader page we
3856 * start with the next page and check the end loop there.
3858 rb_inc_page(&bpage);
3861 if (bpage->page == (void *)addr) {
3862 local_dec(&bpage->entries);
3865 rb_inc_page(&bpage);
3866 } while (bpage != start);
3868 /* commit not part of this buffer?? */
3869 RB_WARN_ON(cpu_buffer, 1);
3873 * ring_buffer_discard_commit - discard an event that has not been committed
3874 * @buffer: the ring buffer
3875 * @event: non committed event to discard
3877 * Sometimes an event that is in the ring buffer needs to be ignored.
3878 * This function lets the user discard an event in the ring buffer
3879 * and then that event will not be read later.
3881 * This function only works if it is called before the item has been
3882 * committed. It will try to free the event from the ring buffer
3883 * if another event has not been added behind it.
3885 * If another event has been added behind it, it will set the event
3886 * up as discarded, and perform the commit.
3888 * If this function is called, do not call ring_buffer_unlock_commit on
3891 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3892 struct ring_buffer_event *event)
3894 struct ring_buffer_per_cpu *cpu_buffer;
3897 /* The event is discarded regardless */
3898 rb_event_discard(event);
3900 cpu = smp_processor_id();
3901 cpu_buffer = buffer->buffers[cpu];
3904 * This must only be called if the event has not been
3905 * committed yet. Thus we can assume that preemption
3906 * is still disabled.
3908 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3910 rb_decrement_entry(cpu_buffer, event);
3911 if (rb_try_to_discard(cpu_buffer, event))
3915 rb_end_commit(cpu_buffer);
3917 trace_recursive_unlock(cpu_buffer);
3919 preempt_enable_notrace();
3922 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3925 * ring_buffer_write - write data to the buffer without reserving
3926 * @buffer: The ring buffer to write to.
3927 * @length: The length of the data being written (excluding the event header)
3928 * @data: The data to write to the buffer.
3930 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3931 * one function. If you already have the data to write to the buffer, it
3932 * may be easier to simply call this function.
3934 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3935 * and not the length of the event which would hold the header.
3937 int ring_buffer_write(struct trace_buffer *buffer,
3938 unsigned long length,
3941 struct ring_buffer_per_cpu *cpu_buffer;
3942 struct ring_buffer_event *event;
3947 preempt_disable_notrace();
3949 if (atomic_read(&buffer->record_disabled))
3952 cpu = raw_smp_processor_id();
3954 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3957 cpu_buffer = buffer->buffers[cpu];
3959 if (atomic_read(&cpu_buffer->record_disabled))
3962 if (length > BUF_MAX_DATA_SIZE)
3965 if (unlikely(trace_recursive_lock(cpu_buffer)))
3968 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3972 body = rb_event_data(event);
3974 memcpy(body, data, length);
3976 rb_commit(cpu_buffer);
3978 rb_wakeups(buffer, cpu_buffer);
3983 trace_recursive_unlock(cpu_buffer);
3986 preempt_enable_notrace();
3990 EXPORT_SYMBOL_GPL(ring_buffer_write);
3992 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3994 struct buffer_page *reader = cpu_buffer->reader_page;
3995 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3996 struct buffer_page *commit = cpu_buffer->commit_page;
3998 /* In case of error, head will be NULL */
3999 if (unlikely(!head))
4002 /* Reader should exhaust content in reader page */
4003 if (reader->read != rb_page_commit(reader))
4007 * If writers are committing on the reader page, knowing all
4008 * committed content has been read, the ring buffer is empty.
4010 if (commit == reader)
4014 * If writers are committing on a page other than reader page
4015 * and head page, there should always be content to read.
4021 * Writers are committing on the head page, we just need
4022 * to care about there're committed data, and the reader will
4023 * swap reader page with head page when it is to read data.
4025 return rb_page_commit(commit) == 0;
4029 * ring_buffer_record_disable - stop all writes into the buffer
4030 * @buffer: The ring buffer to stop writes to.
4032 * This prevents all writes to the buffer. Any attempt to write
4033 * to the buffer after this will fail and return NULL.
4035 * The caller should call synchronize_rcu() after this.
4037 void ring_buffer_record_disable(struct trace_buffer *buffer)
4039 atomic_inc(&buffer->record_disabled);
4041 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4044 * ring_buffer_record_enable - enable writes to the buffer
4045 * @buffer: The ring buffer to enable writes
4047 * Note, multiple disables will need the same number of enables
4048 * to truly enable the writing (much like preempt_disable).
4050 void ring_buffer_record_enable(struct trace_buffer *buffer)
4052 atomic_dec(&buffer->record_disabled);
4054 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4057 * ring_buffer_record_off - stop all writes into the buffer
4058 * @buffer: The ring buffer to stop writes to.
4060 * This prevents all writes to the buffer. Any attempt to write
4061 * to the buffer after this will fail and return NULL.
4063 * This is different than ring_buffer_record_disable() as
4064 * it works like an on/off switch, where as the disable() version
4065 * must be paired with a enable().
4067 void ring_buffer_record_off(struct trace_buffer *buffer)
4070 unsigned int new_rd;
4072 rd = atomic_read(&buffer->record_disabled);
4074 new_rd = rd | RB_BUFFER_OFF;
4075 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4077 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4080 * ring_buffer_record_on - restart writes into the buffer
4081 * @buffer: The ring buffer to start writes to.
4083 * This enables all writes to the buffer that was disabled by
4084 * ring_buffer_record_off().
4086 * This is different than ring_buffer_record_enable() as
4087 * it works like an on/off switch, where as the enable() version
4088 * must be paired with a disable().
4090 void ring_buffer_record_on(struct trace_buffer *buffer)
4093 unsigned int new_rd;
4095 rd = atomic_read(&buffer->record_disabled);
4097 new_rd = rd & ~RB_BUFFER_OFF;
4098 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4100 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4103 * ring_buffer_record_is_on - return true if the ring buffer can write
4104 * @buffer: The ring buffer to see if write is enabled
4106 * Returns true if the ring buffer is in a state that it accepts writes.
4108 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4110 return !atomic_read(&buffer->record_disabled);
4114 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4115 * @buffer: The ring buffer to see if write is set enabled
4117 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4118 * Note that this does NOT mean it is in a writable state.
4120 * It may return true when the ring buffer has been disabled by
4121 * ring_buffer_record_disable(), as that is a temporary disabling of
4124 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4126 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4130 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4131 * @buffer: The ring buffer to stop writes to.
4132 * @cpu: The CPU buffer to stop
4134 * This prevents all writes to the buffer. Any attempt to write
4135 * to the buffer after this will fail and return NULL.
4137 * The caller should call synchronize_rcu() after this.
4139 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4141 struct ring_buffer_per_cpu *cpu_buffer;
4143 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4146 cpu_buffer = buffer->buffers[cpu];
4147 atomic_inc(&cpu_buffer->record_disabled);
4149 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4152 * ring_buffer_record_enable_cpu - enable writes to the buffer
4153 * @buffer: The ring buffer to enable writes
4154 * @cpu: The CPU to enable.
4156 * Note, multiple disables will need the same number of enables
4157 * to truly enable the writing (much like preempt_disable).
4159 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4161 struct ring_buffer_per_cpu *cpu_buffer;
4163 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166 cpu_buffer = buffer->buffers[cpu];
4167 atomic_dec(&cpu_buffer->record_disabled);
4169 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4172 * The total entries in the ring buffer is the running counter
4173 * of entries entered into the ring buffer, minus the sum of
4174 * the entries read from the ring buffer and the number of
4175 * entries that were overwritten.
4177 static inline unsigned long
4178 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4180 return local_read(&cpu_buffer->entries) -
4181 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4185 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4186 * @buffer: The ring buffer
4187 * @cpu: The per CPU buffer to read from.
4189 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4191 unsigned long flags;
4192 struct ring_buffer_per_cpu *cpu_buffer;
4193 struct buffer_page *bpage;
4196 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4199 cpu_buffer = buffer->buffers[cpu];
4200 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4202 * if the tail is on reader_page, oldest time stamp is on the reader
4205 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4206 bpage = cpu_buffer->reader_page;
4208 bpage = rb_set_head_page(cpu_buffer);
4210 ret = bpage->page->time_stamp;
4211 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4215 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4218 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4219 * @buffer: The ring buffer
4220 * @cpu: The per CPU buffer to read from.
4222 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4224 struct ring_buffer_per_cpu *cpu_buffer;
4227 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4230 cpu_buffer = buffer->buffers[cpu];
4231 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4235 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4238 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4239 * @buffer: The ring buffer
4240 * @cpu: The per CPU buffer to get the entries from.
4242 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4244 struct ring_buffer_per_cpu *cpu_buffer;
4246 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4249 cpu_buffer = buffer->buffers[cpu];
4251 return rb_num_of_entries(cpu_buffer);
4253 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4256 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4257 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4258 * @buffer: The ring buffer
4259 * @cpu: The per CPU buffer to get the number of overruns from
4261 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4263 struct ring_buffer_per_cpu *cpu_buffer;
4266 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4269 cpu_buffer = buffer->buffers[cpu];
4270 ret = local_read(&cpu_buffer->overrun);
4274 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4277 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4278 * commits failing due to the buffer wrapping around while there are uncommitted
4279 * events, such as during an interrupt storm.
4280 * @buffer: The ring buffer
4281 * @cpu: The per CPU buffer to get the number of overruns from
4284 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4286 struct ring_buffer_per_cpu *cpu_buffer;
4289 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4292 cpu_buffer = buffer->buffers[cpu];
4293 ret = local_read(&cpu_buffer->commit_overrun);
4297 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4300 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4301 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4302 * @buffer: The ring buffer
4303 * @cpu: The per CPU buffer to get the number of overruns from
4306 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4308 struct ring_buffer_per_cpu *cpu_buffer;
4311 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4314 cpu_buffer = buffer->buffers[cpu];
4315 ret = local_read(&cpu_buffer->dropped_events);
4319 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4322 * ring_buffer_read_events_cpu - get the number of events successfully read
4323 * @buffer: The ring buffer
4324 * @cpu: The per CPU buffer to get the number of events read
4327 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4329 struct ring_buffer_per_cpu *cpu_buffer;
4331 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4334 cpu_buffer = buffer->buffers[cpu];
4335 return cpu_buffer->read;
4337 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4340 * ring_buffer_entries - get the number of entries in a buffer
4341 * @buffer: The ring buffer
4343 * Returns the total number of entries in the ring buffer
4346 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4348 struct ring_buffer_per_cpu *cpu_buffer;
4349 unsigned long entries = 0;
4352 /* if you care about this being correct, lock the buffer */
4353 for_each_buffer_cpu(buffer, cpu) {
4354 cpu_buffer = buffer->buffers[cpu];
4355 entries += rb_num_of_entries(cpu_buffer);
4360 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4363 * ring_buffer_overruns - get the number of overruns in buffer
4364 * @buffer: The ring buffer
4366 * Returns the total number of overruns in the ring buffer
4369 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4371 struct ring_buffer_per_cpu *cpu_buffer;
4372 unsigned long overruns = 0;
4375 /* if you care about this being correct, lock the buffer */
4376 for_each_buffer_cpu(buffer, cpu) {
4377 cpu_buffer = buffer->buffers[cpu];
4378 overruns += local_read(&cpu_buffer->overrun);
4383 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4385 static void rb_iter_reset(struct ring_buffer_iter *iter)
4387 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4389 /* Iterator usage is expected to have record disabled */
4390 iter->head_page = cpu_buffer->reader_page;
4391 iter->head = cpu_buffer->reader_page->read;
4392 iter->next_event = iter->head;
4394 iter->cache_reader_page = iter->head_page;
4395 iter->cache_read = cpu_buffer->read;
4396 iter->cache_pages_removed = cpu_buffer->pages_removed;
4399 iter->read_stamp = cpu_buffer->read_stamp;
4400 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4402 iter->read_stamp = iter->head_page->page->time_stamp;
4403 iter->page_stamp = iter->read_stamp;
4408 * ring_buffer_iter_reset - reset an iterator
4409 * @iter: The iterator to reset
4411 * Resets the iterator, so that it will start from the beginning
4414 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4416 struct ring_buffer_per_cpu *cpu_buffer;
4417 unsigned long flags;
4422 cpu_buffer = iter->cpu_buffer;
4424 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4425 rb_iter_reset(iter);
4426 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4428 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4431 * ring_buffer_iter_empty - check if an iterator has no more to read
4432 * @iter: The iterator to check
4434 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4436 struct ring_buffer_per_cpu *cpu_buffer;
4437 struct buffer_page *reader;
4438 struct buffer_page *head_page;
4439 struct buffer_page *commit_page;
4440 struct buffer_page *curr_commit_page;
4445 cpu_buffer = iter->cpu_buffer;
4446 reader = cpu_buffer->reader_page;
4447 head_page = cpu_buffer->head_page;
4448 commit_page = cpu_buffer->commit_page;
4449 commit_ts = commit_page->page->time_stamp;
4452 * When the writer goes across pages, it issues a cmpxchg which
4453 * is a mb(), which will synchronize with the rmb here.
4454 * (see rb_tail_page_update())
4457 commit = rb_page_commit(commit_page);
4458 /* We want to make sure that the commit page doesn't change */
4461 /* Make sure commit page didn't change */
4462 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4463 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4465 /* If the commit page changed, then there's more data */
4466 if (curr_commit_page != commit_page ||
4467 curr_commit_ts != commit_ts)
4470 /* Still racy, as it may return a false positive, but that's OK */
4471 return ((iter->head_page == commit_page && iter->head >= commit) ||
4472 (iter->head_page == reader && commit_page == head_page &&
4473 head_page->read == commit &&
4474 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4476 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4479 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4480 struct ring_buffer_event *event)
4484 switch (event->type_len) {
4485 case RINGBUF_TYPE_PADDING:
4488 case RINGBUF_TYPE_TIME_EXTEND:
4489 delta = rb_event_time_stamp(event);
4490 cpu_buffer->read_stamp += delta;
4493 case RINGBUF_TYPE_TIME_STAMP:
4494 delta = rb_event_time_stamp(event);
4495 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4496 cpu_buffer->read_stamp = delta;
4499 case RINGBUF_TYPE_DATA:
4500 cpu_buffer->read_stamp += event->time_delta;
4504 RB_WARN_ON(cpu_buffer, 1);
4509 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4510 struct ring_buffer_event *event)
4514 switch (event->type_len) {
4515 case RINGBUF_TYPE_PADDING:
4518 case RINGBUF_TYPE_TIME_EXTEND:
4519 delta = rb_event_time_stamp(event);
4520 iter->read_stamp += delta;
4523 case RINGBUF_TYPE_TIME_STAMP:
4524 delta = rb_event_time_stamp(event);
4525 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4526 iter->read_stamp = delta;
4529 case RINGBUF_TYPE_DATA:
4530 iter->read_stamp += event->time_delta;
4534 RB_WARN_ON(iter->cpu_buffer, 1);
4538 static struct buffer_page *
4539 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4541 struct buffer_page *reader = NULL;
4542 unsigned long overwrite;
4543 unsigned long flags;
4547 local_irq_save(flags);
4548 arch_spin_lock(&cpu_buffer->lock);
4552 * This should normally only loop twice. But because the
4553 * start of the reader inserts an empty page, it causes
4554 * a case where we will loop three times. There should be no
4555 * reason to loop four times (that I know of).
4557 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4562 reader = cpu_buffer->reader_page;
4564 /* If there's more to read, return this page */
4565 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4568 /* Never should we have an index greater than the size */
4569 if (RB_WARN_ON(cpu_buffer,
4570 cpu_buffer->reader_page->read > rb_page_size(reader)))
4573 /* check if we caught up to the tail */
4575 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4578 /* Don't bother swapping if the ring buffer is empty */
4579 if (rb_num_of_entries(cpu_buffer) == 0)
4583 * Reset the reader page to size zero.
4585 local_set(&cpu_buffer->reader_page->write, 0);
4586 local_set(&cpu_buffer->reader_page->entries, 0);
4587 local_set(&cpu_buffer->reader_page->page->commit, 0);
4588 cpu_buffer->reader_page->real_end = 0;
4592 * Splice the empty reader page into the list around the head.
4594 reader = rb_set_head_page(cpu_buffer);
4597 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4598 cpu_buffer->reader_page->list.prev = reader->list.prev;
4601 * cpu_buffer->pages just needs to point to the buffer, it
4602 * has no specific buffer page to point to. Lets move it out
4603 * of our way so we don't accidentally swap it.
4605 cpu_buffer->pages = reader->list.prev;
4607 /* The reader page will be pointing to the new head */
4608 rb_set_list_to_head(&cpu_buffer->reader_page->list);
4611 * We want to make sure we read the overruns after we set up our
4612 * pointers to the next object. The writer side does a
4613 * cmpxchg to cross pages which acts as the mb on the writer
4614 * side. Note, the reader will constantly fail the swap
4615 * while the writer is updating the pointers, so this
4616 * guarantees that the overwrite recorded here is the one we
4617 * want to compare with the last_overrun.
4620 overwrite = local_read(&(cpu_buffer->overrun));
4623 * Here's the tricky part.
4625 * We need to move the pointer past the header page.
4626 * But we can only do that if a writer is not currently
4627 * moving it. The page before the header page has the
4628 * flag bit '1' set if it is pointing to the page we want.
4629 * but if the writer is in the process of moving it
4630 * than it will be '2' or already moved '0'.
4633 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4636 * If we did not convert it, then we must try again.
4642 * Yay! We succeeded in replacing the page.
4644 * Now make the new head point back to the reader page.
4646 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4647 rb_inc_page(&cpu_buffer->head_page);
4649 local_inc(&cpu_buffer->pages_read);
4651 /* Finally update the reader page to the new head */
4652 cpu_buffer->reader_page = reader;
4653 cpu_buffer->reader_page->read = 0;
4655 if (overwrite != cpu_buffer->last_overrun) {
4656 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4657 cpu_buffer->last_overrun = overwrite;
4663 /* Update the read_stamp on the first event */
4664 if (reader && reader->read == 0)
4665 cpu_buffer->read_stamp = reader->page->time_stamp;
4667 arch_spin_unlock(&cpu_buffer->lock);
4668 local_irq_restore(flags);
4671 * The writer has preempt disable, wait for it. But not forever
4672 * Although, 1 second is pretty much "forever"
4674 #define USECS_WAIT 1000000
4675 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4676 /* If the write is past the end of page, a writer is still updating it */
4677 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4682 /* Get the latest version of the reader write value */
4686 /* The writer is not moving forward? Something is wrong */
4687 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4691 * Make sure we see any padding after the write update
4692 * (see rb_reset_tail()).
4694 * In addition, a writer may be writing on the reader page
4695 * if the page has not been fully filled, so the read barrier
4696 * is also needed to make sure we see the content of what is
4697 * committed by the writer (see rb_set_commit_to_write()).
4705 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4707 struct ring_buffer_event *event;
4708 struct buffer_page *reader;
4711 reader = rb_get_reader_page(cpu_buffer);
4713 /* This function should not be called when buffer is empty */
4714 if (RB_WARN_ON(cpu_buffer, !reader))
4717 event = rb_reader_event(cpu_buffer);
4719 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4722 rb_update_read_stamp(cpu_buffer, event);
4724 length = rb_event_length(event);
4725 cpu_buffer->reader_page->read += length;
4728 static void rb_advance_iter(struct ring_buffer_iter *iter)
4730 struct ring_buffer_per_cpu *cpu_buffer;
4732 cpu_buffer = iter->cpu_buffer;
4734 /* If head == next_event then we need to jump to the next event */
4735 if (iter->head == iter->next_event) {
4736 /* If the event gets overwritten again, there's nothing to do */
4737 if (rb_iter_head_event(iter) == NULL)
4741 iter->head = iter->next_event;
4744 * Check if we are at the end of the buffer.
4746 if (iter->next_event >= rb_page_size(iter->head_page)) {
4747 /* discarded commits can make the page empty */
4748 if (iter->head_page == cpu_buffer->commit_page)
4754 rb_update_iter_read_stamp(iter, iter->event);
4757 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4759 return cpu_buffer->lost_events;
4762 static struct ring_buffer_event *
4763 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4764 unsigned long *lost_events)
4766 struct ring_buffer_event *event;
4767 struct buffer_page *reader;
4774 * We repeat when a time extend is encountered.
4775 * Since the time extend is always attached to a data event,
4776 * we should never loop more than once.
4777 * (We never hit the following condition more than twice).
4779 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4782 reader = rb_get_reader_page(cpu_buffer);
4786 event = rb_reader_event(cpu_buffer);
4788 switch (event->type_len) {
4789 case RINGBUF_TYPE_PADDING:
4790 if (rb_null_event(event))
4791 RB_WARN_ON(cpu_buffer, 1);
4793 * Because the writer could be discarding every
4794 * event it creates (which would probably be bad)
4795 * if we were to go back to "again" then we may never
4796 * catch up, and will trigger the warn on, or lock
4797 * the box. Return the padding, and we will release
4798 * the current locks, and try again.
4802 case RINGBUF_TYPE_TIME_EXTEND:
4803 /* Internal data, OK to advance */
4804 rb_advance_reader(cpu_buffer);
4807 case RINGBUF_TYPE_TIME_STAMP:
4809 *ts = rb_event_time_stamp(event);
4810 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4811 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4812 cpu_buffer->cpu, ts);
4814 /* Internal data, OK to advance */
4815 rb_advance_reader(cpu_buffer);
4818 case RINGBUF_TYPE_DATA:
4820 *ts = cpu_buffer->read_stamp + event->time_delta;
4821 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4822 cpu_buffer->cpu, ts);
4825 *lost_events = rb_lost_events(cpu_buffer);
4829 RB_WARN_ON(cpu_buffer, 1);
4834 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4836 static struct ring_buffer_event *
4837 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4839 struct trace_buffer *buffer;
4840 struct ring_buffer_per_cpu *cpu_buffer;
4841 struct ring_buffer_event *event;
4847 cpu_buffer = iter->cpu_buffer;
4848 buffer = cpu_buffer->buffer;
4851 * Check if someone performed a consuming read to the buffer
4852 * or removed some pages from the buffer. In these cases,
4853 * iterator was invalidated and we need to reset it.
4855 if (unlikely(iter->cache_read != cpu_buffer->read ||
4856 iter->cache_reader_page != cpu_buffer->reader_page ||
4857 iter->cache_pages_removed != cpu_buffer->pages_removed))
4858 rb_iter_reset(iter);
4861 if (ring_buffer_iter_empty(iter))
4865 * As the writer can mess with what the iterator is trying
4866 * to read, just give up if we fail to get an event after
4867 * three tries. The iterator is not as reliable when reading
4868 * the ring buffer with an active write as the consumer is.
4869 * Do not warn if the three failures is reached.
4874 if (rb_per_cpu_empty(cpu_buffer))
4877 if (iter->head >= rb_page_size(iter->head_page)) {
4882 event = rb_iter_head_event(iter);
4886 switch (event->type_len) {
4887 case RINGBUF_TYPE_PADDING:
4888 if (rb_null_event(event)) {
4892 rb_advance_iter(iter);
4895 case RINGBUF_TYPE_TIME_EXTEND:
4896 /* Internal data, OK to advance */
4897 rb_advance_iter(iter);
4900 case RINGBUF_TYPE_TIME_STAMP:
4902 *ts = rb_event_time_stamp(event);
4903 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4904 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4905 cpu_buffer->cpu, ts);
4907 /* Internal data, OK to advance */
4908 rb_advance_iter(iter);
4911 case RINGBUF_TYPE_DATA:
4913 *ts = iter->read_stamp + event->time_delta;
4914 ring_buffer_normalize_time_stamp(buffer,
4915 cpu_buffer->cpu, ts);
4920 RB_WARN_ON(cpu_buffer, 1);
4925 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4927 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4929 if (likely(!in_nmi())) {
4930 raw_spin_lock(&cpu_buffer->reader_lock);
4935 * If an NMI die dumps out the content of the ring buffer
4936 * trylock must be used to prevent a deadlock if the NMI
4937 * preempted a task that holds the ring buffer locks. If
4938 * we get the lock then all is fine, if not, then continue
4939 * to do the read, but this can corrupt the ring buffer,
4940 * so it must be permanently disabled from future writes.
4941 * Reading from NMI is a oneshot deal.
4943 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4946 /* Continue without locking, but disable the ring buffer */
4947 atomic_inc(&cpu_buffer->record_disabled);
4952 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4955 raw_spin_unlock(&cpu_buffer->reader_lock);
4959 * ring_buffer_peek - peek at the next event to be read
4960 * @buffer: The ring buffer to read
4961 * @cpu: The cpu to peak at
4962 * @ts: The timestamp counter of this event.
4963 * @lost_events: a variable to store if events were lost (may be NULL)
4965 * This will return the event that will be read next, but does
4966 * not consume the data.
4968 struct ring_buffer_event *
4969 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4970 unsigned long *lost_events)
4972 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4973 struct ring_buffer_event *event;
4974 unsigned long flags;
4977 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4981 local_irq_save(flags);
4982 dolock = rb_reader_lock(cpu_buffer);
4983 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4984 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4985 rb_advance_reader(cpu_buffer);
4986 rb_reader_unlock(cpu_buffer, dolock);
4987 local_irq_restore(flags);
4989 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4995 /** ring_buffer_iter_dropped - report if there are dropped events
4996 * @iter: The ring buffer iterator
4998 * Returns true if there was dropped events since the last peek.
5000 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5002 bool ret = iter->missed_events != 0;
5004 iter->missed_events = 0;
5007 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5010 * ring_buffer_iter_peek - peek at the next event to be read
5011 * @iter: The ring buffer iterator
5012 * @ts: The timestamp counter of this event.
5014 * This will return the event that will be read next, but does
5015 * not increment the iterator.
5017 struct ring_buffer_event *
5018 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5020 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5021 struct ring_buffer_event *event;
5022 unsigned long flags;
5025 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5026 event = rb_iter_peek(iter, ts);
5027 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5029 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5036 * ring_buffer_consume - return an event and consume it
5037 * @buffer: The ring buffer to get the next event from
5038 * @cpu: the cpu to read the buffer from
5039 * @ts: a variable to store the timestamp (may be NULL)
5040 * @lost_events: a variable to store if events were lost (may be NULL)
5042 * Returns the next event in the ring buffer, and that event is consumed.
5043 * Meaning, that sequential reads will keep returning a different event,
5044 * and eventually empty the ring buffer if the producer is slower.
5046 struct ring_buffer_event *
5047 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5048 unsigned long *lost_events)
5050 struct ring_buffer_per_cpu *cpu_buffer;
5051 struct ring_buffer_event *event = NULL;
5052 unsigned long flags;
5056 /* might be called in atomic */
5059 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5062 cpu_buffer = buffer->buffers[cpu];
5063 local_irq_save(flags);
5064 dolock = rb_reader_lock(cpu_buffer);
5066 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5068 cpu_buffer->lost_events = 0;
5069 rb_advance_reader(cpu_buffer);
5072 rb_reader_unlock(cpu_buffer, dolock);
5073 local_irq_restore(flags);
5078 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5083 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5086 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5087 * @buffer: The ring buffer to read from
5088 * @cpu: The cpu buffer to iterate over
5089 * @flags: gfp flags to use for memory allocation
5091 * This performs the initial preparations necessary to iterate
5092 * through the buffer. Memory is allocated, buffer recording
5093 * is disabled, and the iterator pointer is returned to the caller.
5095 * Disabling buffer recording prevents the reading from being
5096 * corrupted. This is not a consuming read, so a producer is not
5099 * After a sequence of ring_buffer_read_prepare calls, the user is
5100 * expected to make at least one call to ring_buffer_read_prepare_sync.
5101 * Afterwards, ring_buffer_read_start is invoked to get things going
5104 * This overall must be paired with ring_buffer_read_finish.
5106 struct ring_buffer_iter *
5107 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5109 struct ring_buffer_per_cpu *cpu_buffer;
5110 struct ring_buffer_iter *iter;
5112 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5115 iter = kzalloc(sizeof(*iter), flags);
5119 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5125 cpu_buffer = buffer->buffers[cpu];
5127 iter->cpu_buffer = cpu_buffer;
5129 atomic_inc(&cpu_buffer->resize_disabled);
5133 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5136 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5138 * All previously invoked ring_buffer_read_prepare calls to prepare
5139 * iterators will be synchronized. Afterwards, read_buffer_read_start
5140 * calls on those iterators are allowed.
5143 ring_buffer_read_prepare_sync(void)
5147 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5150 * ring_buffer_read_start - start a non consuming read of the buffer
5151 * @iter: The iterator returned by ring_buffer_read_prepare
5153 * This finalizes the startup of an iteration through the buffer.
5154 * The iterator comes from a call to ring_buffer_read_prepare and
5155 * an intervening ring_buffer_read_prepare_sync must have been
5158 * Must be paired with ring_buffer_read_finish.
5161 ring_buffer_read_start(struct ring_buffer_iter *iter)
5163 struct ring_buffer_per_cpu *cpu_buffer;
5164 unsigned long flags;
5169 cpu_buffer = iter->cpu_buffer;
5171 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5172 arch_spin_lock(&cpu_buffer->lock);
5173 rb_iter_reset(iter);
5174 arch_spin_unlock(&cpu_buffer->lock);
5175 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5177 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5180 * ring_buffer_read_finish - finish reading the iterator of the buffer
5181 * @iter: The iterator retrieved by ring_buffer_start
5183 * This re-enables the recording to the buffer, and frees the
5187 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5189 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5190 unsigned long flags;
5193 * Ring buffer is disabled from recording, here's a good place
5194 * to check the integrity of the ring buffer.
5195 * Must prevent readers from trying to read, as the check
5196 * clears the HEAD page and readers require it.
5198 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5199 rb_check_pages(cpu_buffer);
5200 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5202 atomic_dec(&cpu_buffer->resize_disabled);
5206 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5209 * ring_buffer_iter_advance - advance the iterator to the next location
5210 * @iter: The ring buffer iterator
5212 * Move the location of the iterator such that the next read will
5213 * be the next location of the iterator.
5215 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5217 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5218 unsigned long flags;
5220 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5222 rb_advance_iter(iter);
5224 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5226 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5229 * ring_buffer_size - return the size of the ring buffer (in bytes)
5230 * @buffer: The ring buffer.
5231 * @cpu: The CPU to get ring buffer size from.
5233 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5236 * Earlier, this method returned
5237 * BUF_PAGE_SIZE * buffer->nr_pages
5238 * Since the nr_pages field is now removed, we have converted this to
5239 * return the per cpu buffer value.
5241 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5244 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5246 EXPORT_SYMBOL_GPL(ring_buffer_size);
5248 static void rb_clear_buffer_page(struct buffer_page *page)
5250 local_set(&page->write, 0);
5251 local_set(&page->entries, 0);
5252 rb_init_page(page->page);
5257 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5259 struct buffer_page *page;
5261 rb_head_page_deactivate(cpu_buffer);
5263 cpu_buffer->head_page
5264 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5265 rb_clear_buffer_page(cpu_buffer->head_page);
5266 list_for_each_entry(page, cpu_buffer->pages, list) {
5267 rb_clear_buffer_page(page);
5270 cpu_buffer->tail_page = cpu_buffer->head_page;
5271 cpu_buffer->commit_page = cpu_buffer->head_page;
5273 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5274 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5275 rb_clear_buffer_page(cpu_buffer->reader_page);
5277 local_set(&cpu_buffer->entries_bytes, 0);
5278 local_set(&cpu_buffer->overrun, 0);
5279 local_set(&cpu_buffer->commit_overrun, 0);
5280 local_set(&cpu_buffer->dropped_events, 0);
5281 local_set(&cpu_buffer->entries, 0);
5282 local_set(&cpu_buffer->committing, 0);
5283 local_set(&cpu_buffer->commits, 0);
5284 local_set(&cpu_buffer->pages_touched, 0);
5285 local_set(&cpu_buffer->pages_lost, 0);
5286 local_set(&cpu_buffer->pages_read, 0);
5287 cpu_buffer->last_pages_touch = 0;
5288 cpu_buffer->shortest_full = 0;
5289 cpu_buffer->read = 0;
5290 cpu_buffer->read_bytes = 0;
5292 rb_time_set(&cpu_buffer->write_stamp, 0);
5293 rb_time_set(&cpu_buffer->before_stamp, 0);
5295 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5297 cpu_buffer->lost_events = 0;
5298 cpu_buffer->last_overrun = 0;
5300 rb_head_page_activate(cpu_buffer);
5301 cpu_buffer->pages_removed = 0;
5304 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5305 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5307 unsigned long flags;
5309 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5311 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5314 arch_spin_lock(&cpu_buffer->lock);
5316 rb_reset_cpu(cpu_buffer);
5318 arch_spin_unlock(&cpu_buffer->lock);
5321 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5325 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5326 * @buffer: The ring buffer to reset a per cpu buffer of
5327 * @cpu: The CPU buffer to be reset
5329 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5331 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5333 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5336 /* prevent another thread from changing buffer sizes */
5337 mutex_lock(&buffer->mutex);
5339 atomic_inc(&cpu_buffer->resize_disabled);
5340 atomic_inc(&cpu_buffer->record_disabled);
5342 /* Make sure all commits have finished */
5345 reset_disabled_cpu_buffer(cpu_buffer);
5347 atomic_dec(&cpu_buffer->record_disabled);
5348 atomic_dec(&cpu_buffer->resize_disabled);
5350 mutex_unlock(&buffer->mutex);
5352 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5354 /* Flag to ensure proper resetting of atomic variables */
5355 #define RESET_BIT (1 << 30)
5358 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5359 * @buffer: The ring buffer to reset a per cpu buffer of
5361 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5363 struct ring_buffer_per_cpu *cpu_buffer;
5366 /* prevent another thread from changing buffer sizes */
5367 mutex_lock(&buffer->mutex);
5369 for_each_online_buffer_cpu(buffer, cpu) {
5370 cpu_buffer = buffer->buffers[cpu];
5372 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5373 atomic_inc(&cpu_buffer->record_disabled);
5376 /* Make sure all commits have finished */
5379 for_each_buffer_cpu(buffer, cpu) {
5380 cpu_buffer = buffer->buffers[cpu];
5383 * If a CPU came online during the synchronize_rcu(), then
5386 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5389 reset_disabled_cpu_buffer(cpu_buffer);
5391 atomic_dec(&cpu_buffer->record_disabled);
5392 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5395 mutex_unlock(&buffer->mutex);
5399 * ring_buffer_reset - reset a ring buffer
5400 * @buffer: The ring buffer to reset all cpu buffers
5402 void ring_buffer_reset(struct trace_buffer *buffer)
5404 struct ring_buffer_per_cpu *cpu_buffer;
5407 /* prevent another thread from changing buffer sizes */
5408 mutex_lock(&buffer->mutex);
5410 for_each_buffer_cpu(buffer, cpu) {
5411 cpu_buffer = buffer->buffers[cpu];
5413 atomic_inc(&cpu_buffer->resize_disabled);
5414 atomic_inc(&cpu_buffer->record_disabled);
5417 /* Make sure all commits have finished */
5420 for_each_buffer_cpu(buffer, cpu) {
5421 cpu_buffer = buffer->buffers[cpu];
5423 reset_disabled_cpu_buffer(cpu_buffer);
5425 atomic_dec(&cpu_buffer->record_disabled);
5426 atomic_dec(&cpu_buffer->resize_disabled);
5429 mutex_unlock(&buffer->mutex);
5431 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5434 * ring_buffer_empty - is the ring buffer empty?
5435 * @buffer: The ring buffer to test
5437 bool ring_buffer_empty(struct trace_buffer *buffer)
5439 struct ring_buffer_per_cpu *cpu_buffer;
5440 unsigned long flags;
5445 /* yes this is racy, but if you don't like the race, lock the buffer */
5446 for_each_buffer_cpu(buffer, cpu) {
5447 cpu_buffer = buffer->buffers[cpu];
5448 local_irq_save(flags);
5449 dolock = rb_reader_lock(cpu_buffer);
5450 ret = rb_per_cpu_empty(cpu_buffer);
5451 rb_reader_unlock(cpu_buffer, dolock);
5452 local_irq_restore(flags);
5460 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5463 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5464 * @buffer: The ring buffer
5465 * @cpu: The CPU buffer to test
5467 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5469 struct ring_buffer_per_cpu *cpu_buffer;
5470 unsigned long flags;
5474 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5477 cpu_buffer = buffer->buffers[cpu];
5478 local_irq_save(flags);
5479 dolock = rb_reader_lock(cpu_buffer);
5480 ret = rb_per_cpu_empty(cpu_buffer);
5481 rb_reader_unlock(cpu_buffer, dolock);
5482 local_irq_restore(flags);
5486 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5488 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5490 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5491 * @buffer_a: One buffer to swap with
5492 * @buffer_b: The other buffer to swap with
5493 * @cpu: the CPU of the buffers to swap
5495 * This function is useful for tracers that want to take a "snapshot"
5496 * of a CPU buffer and has another back up buffer lying around.
5497 * it is expected that the tracer handles the cpu buffer not being
5498 * used at the moment.
5500 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5501 struct trace_buffer *buffer_b, int cpu)
5503 struct ring_buffer_per_cpu *cpu_buffer_a;
5504 struct ring_buffer_per_cpu *cpu_buffer_b;
5507 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5508 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5511 cpu_buffer_a = buffer_a->buffers[cpu];
5512 cpu_buffer_b = buffer_b->buffers[cpu];
5514 /* At least make sure the two buffers are somewhat the same */
5515 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5520 if (atomic_read(&buffer_a->record_disabled))
5523 if (atomic_read(&buffer_b->record_disabled))
5526 if (atomic_read(&cpu_buffer_a->record_disabled))
5529 if (atomic_read(&cpu_buffer_b->record_disabled))
5533 * We can't do a synchronize_rcu here because this
5534 * function can be called in atomic context.
5535 * Normally this will be called from the same CPU as cpu.
5536 * If not it's up to the caller to protect this.
5538 atomic_inc(&cpu_buffer_a->record_disabled);
5539 atomic_inc(&cpu_buffer_b->record_disabled);
5542 if (local_read(&cpu_buffer_a->committing))
5544 if (local_read(&cpu_buffer_b->committing))
5548 * When resize is in progress, we cannot swap it because
5549 * it will mess the state of the cpu buffer.
5551 if (atomic_read(&buffer_a->resizing))
5553 if (atomic_read(&buffer_b->resizing))
5556 buffer_a->buffers[cpu] = cpu_buffer_b;
5557 buffer_b->buffers[cpu] = cpu_buffer_a;
5559 cpu_buffer_b->buffer = buffer_a;
5560 cpu_buffer_a->buffer = buffer_b;
5565 atomic_dec(&cpu_buffer_a->record_disabled);
5566 atomic_dec(&cpu_buffer_b->record_disabled);
5570 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5571 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5574 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5575 * @buffer: the buffer to allocate for.
5576 * @cpu: the cpu buffer to allocate.
5578 * This function is used in conjunction with ring_buffer_read_page.
5579 * When reading a full page from the ring buffer, these functions
5580 * can be used to speed up the process. The calling function should
5581 * allocate a few pages first with this function. Then when it
5582 * needs to get pages from the ring buffer, it passes the result
5583 * of this function into ring_buffer_read_page, which will swap
5584 * the page that was allocated, with the read page of the buffer.
5587 * The page allocated, or ERR_PTR
5589 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5591 struct ring_buffer_per_cpu *cpu_buffer;
5592 struct buffer_data_page *bpage = NULL;
5593 unsigned long flags;
5596 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5597 return ERR_PTR(-ENODEV);
5599 cpu_buffer = buffer->buffers[cpu];
5600 local_irq_save(flags);
5601 arch_spin_lock(&cpu_buffer->lock);
5603 if (cpu_buffer->free_page) {
5604 bpage = cpu_buffer->free_page;
5605 cpu_buffer->free_page = NULL;
5608 arch_spin_unlock(&cpu_buffer->lock);
5609 local_irq_restore(flags);
5614 page = alloc_pages_node(cpu_to_node(cpu),
5615 GFP_KERNEL | __GFP_NORETRY, 0);
5617 return ERR_PTR(-ENOMEM);
5619 bpage = page_address(page);
5622 rb_init_page(bpage);
5626 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5629 * ring_buffer_free_read_page - free an allocated read page
5630 * @buffer: the buffer the page was allocate for
5631 * @cpu: the cpu buffer the page came from
5632 * @data: the page to free
5634 * Free a page allocated from ring_buffer_alloc_read_page.
5636 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5638 struct ring_buffer_per_cpu *cpu_buffer;
5639 struct buffer_data_page *bpage = data;
5640 struct page *page = virt_to_page(bpage);
5641 unsigned long flags;
5643 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5646 cpu_buffer = buffer->buffers[cpu];
5648 /* If the page is still in use someplace else, we can't reuse it */
5649 if (page_ref_count(page) > 1)
5652 local_irq_save(flags);
5653 arch_spin_lock(&cpu_buffer->lock);
5655 if (!cpu_buffer->free_page) {
5656 cpu_buffer->free_page = bpage;
5660 arch_spin_unlock(&cpu_buffer->lock);
5661 local_irq_restore(flags);
5664 free_page((unsigned long)bpage);
5666 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5669 * ring_buffer_read_page - extract a page from the ring buffer
5670 * @buffer: buffer to extract from
5671 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5672 * @len: amount to extract
5673 * @cpu: the cpu of the buffer to extract
5674 * @full: should the extraction only happen when the page is full.
5676 * This function will pull out a page from the ring buffer and consume it.
5677 * @data_page must be the address of the variable that was returned
5678 * from ring_buffer_alloc_read_page. This is because the page might be used
5679 * to swap with a page in the ring buffer.
5682 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5683 * if (IS_ERR(rpage))
5684 * return PTR_ERR(rpage);
5685 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5687 * process_page(rpage, ret);
5689 * When @full is set, the function will not return true unless
5690 * the writer is off the reader page.
5692 * Note: it is up to the calling functions to handle sleeps and wakeups.
5693 * The ring buffer can be used anywhere in the kernel and can not
5694 * blindly call wake_up. The layer that uses the ring buffer must be
5695 * responsible for that.
5698 * >=0 if data has been transferred, returns the offset of consumed data.
5699 * <0 if no data has been transferred.
5701 int ring_buffer_read_page(struct trace_buffer *buffer,
5702 void **data_page, size_t len, int cpu, int full)
5704 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5705 struct ring_buffer_event *event;
5706 struct buffer_data_page *bpage;
5707 struct buffer_page *reader;
5708 unsigned long missed_events;
5709 unsigned long flags;
5710 unsigned int commit;
5715 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5719 * If len is not big enough to hold the page header, then
5720 * we can not copy anything.
5722 if (len <= BUF_PAGE_HDR_SIZE)
5725 len -= BUF_PAGE_HDR_SIZE;
5734 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5736 reader = rb_get_reader_page(cpu_buffer);
5740 event = rb_reader_event(cpu_buffer);
5742 read = reader->read;
5743 commit = rb_page_commit(reader);
5745 /* Check if any events were dropped */
5746 missed_events = cpu_buffer->lost_events;
5749 * If this page has been partially read or
5750 * if len is not big enough to read the rest of the page or
5751 * a writer is still on the page, then
5752 * we must copy the data from the page to the buffer.
5753 * Otherwise, we can simply swap the page with the one passed in.
5755 if (read || (len < (commit - read)) ||
5756 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5757 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5758 unsigned int rpos = read;
5759 unsigned int pos = 0;
5763 * If a full page is expected, this can still be returned
5764 * if there's been a previous partial read and the
5765 * rest of the page can be read and the commit page is off
5769 (!read || (len < (commit - read)) ||
5770 cpu_buffer->reader_page == cpu_buffer->commit_page))
5773 if (len > (commit - read))
5774 len = (commit - read);
5776 /* Always keep the time extend and data together */
5777 size = rb_event_ts_length(event);
5782 /* save the current timestamp, since the user will need it */
5783 save_timestamp = cpu_buffer->read_stamp;
5785 /* Need to copy one event at a time */
5787 /* We need the size of one event, because
5788 * rb_advance_reader only advances by one event,
5789 * whereas rb_event_ts_length may include the size of
5790 * one or two events.
5791 * We have already ensured there's enough space if this
5792 * is a time extend. */
5793 size = rb_event_length(event);
5794 memcpy(bpage->data + pos, rpage->data + rpos, size);
5798 rb_advance_reader(cpu_buffer);
5799 rpos = reader->read;
5805 event = rb_reader_event(cpu_buffer);
5806 /* Always keep the time extend and data together */
5807 size = rb_event_ts_length(event);
5808 } while (len >= size);
5811 local_set(&bpage->commit, pos);
5812 bpage->time_stamp = save_timestamp;
5814 /* we copied everything to the beginning */
5817 /* update the entry counter */
5818 cpu_buffer->read += rb_page_entries(reader);
5819 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5821 /* swap the pages */
5822 rb_init_page(bpage);
5823 bpage = reader->page;
5824 reader->page = *data_page;
5825 local_set(&reader->write, 0);
5826 local_set(&reader->entries, 0);
5831 * Use the real_end for the data size,
5832 * This gives us a chance to store the lost events
5835 if (reader->real_end)
5836 local_set(&bpage->commit, reader->real_end);
5840 cpu_buffer->lost_events = 0;
5842 commit = local_read(&bpage->commit);
5844 * Set a flag in the commit field if we lost events
5846 if (missed_events) {
5847 /* If there is room at the end of the page to save the
5848 * missed events, then record it there.
5850 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5851 memcpy(&bpage->data[commit], &missed_events,
5852 sizeof(missed_events));
5853 local_add(RB_MISSED_STORED, &bpage->commit);
5854 commit += sizeof(missed_events);
5856 local_add(RB_MISSED_EVENTS, &bpage->commit);
5860 * This page may be off to user land. Zero it out here.
5862 if (commit < BUF_PAGE_SIZE)
5863 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5866 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5871 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5874 * We only allocate new buffers, never free them if the CPU goes down.
5875 * If we were to free the buffer, then the user would lose any trace that was in
5878 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5880 struct trace_buffer *buffer;
5883 unsigned long nr_pages;
5885 buffer = container_of(node, struct trace_buffer, node);
5886 if (cpumask_test_cpu(cpu, buffer->cpumask))
5891 /* check if all cpu sizes are same */
5892 for_each_buffer_cpu(buffer, cpu_i) {
5893 /* fill in the size from first enabled cpu */
5895 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5896 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5901 /* allocate minimum pages, user can later expand it */
5904 buffer->buffers[cpu] =
5905 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5906 if (!buffer->buffers[cpu]) {
5907 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5912 cpumask_set_cpu(cpu, buffer->cpumask);
5916 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5918 * This is a basic integrity check of the ring buffer.
5919 * Late in the boot cycle this test will run when configured in.
5920 * It will kick off a thread per CPU that will go into a loop
5921 * writing to the per cpu ring buffer various sizes of data.
5922 * Some of the data will be large items, some small.
5924 * Another thread is created that goes into a spin, sending out
5925 * IPIs to the other CPUs to also write into the ring buffer.
5926 * this is to test the nesting ability of the buffer.
5928 * Basic stats are recorded and reported. If something in the
5929 * ring buffer should happen that's not expected, a big warning
5930 * is displayed and all ring buffers are disabled.
5932 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5934 struct rb_test_data {
5935 struct trace_buffer *buffer;
5936 unsigned long events;
5937 unsigned long bytes_written;
5938 unsigned long bytes_alloc;
5939 unsigned long bytes_dropped;
5940 unsigned long events_nested;
5941 unsigned long bytes_written_nested;
5942 unsigned long bytes_alloc_nested;
5943 unsigned long bytes_dropped_nested;
5944 int min_size_nested;
5945 int max_size_nested;
5952 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5955 #define RB_TEST_BUFFER_SIZE 1048576
5957 static char rb_string[] __initdata =
5958 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5959 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5960 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5962 static bool rb_test_started __initdata;
5969 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5971 struct ring_buffer_event *event;
5972 struct rb_item *item;
5979 /* Have nested writes different that what is written */
5980 cnt = data->cnt + (nested ? 27 : 0);
5982 /* Multiply cnt by ~e, to make some unique increment */
5983 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5985 len = size + sizeof(struct rb_item);
5987 started = rb_test_started;
5988 /* read rb_test_started before checking buffer enabled */
5991 event = ring_buffer_lock_reserve(data->buffer, len);
5993 /* Ignore dropped events before test starts. */
5996 data->bytes_dropped += len;
5998 data->bytes_dropped_nested += len;
6003 event_len = ring_buffer_event_length(event);
6005 if (RB_WARN_ON(data->buffer, event_len < len))
6008 item = ring_buffer_event_data(event);
6010 memcpy(item->str, rb_string, size);
6013 data->bytes_alloc_nested += event_len;
6014 data->bytes_written_nested += len;
6015 data->events_nested++;
6016 if (!data->min_size_nested || len < data->min_size_nested)
6017 data->min_size_nested = len;
6018 if (len > data->max_size_nested)
6019 data->max_size_nested = len;
6021 data->bytes_alloc += event_len;
6022 data->bytes_written += len;
6024 if (!data->min_size || len < data->min_size)
6025 data->max_size = len;
6026 if (len > data->max_size)
6027 data->max_size = len;
6031 ring_buffer_unlock_commit(data->buffer);
6036 static __init int rb_test(void *arg)
6038 struct rb_test_data *data = arg;
6040 while (!kthread_should_stop()) {
6041 rb_write_something(data, false);
6044 set_current_state(TASK_INTERRUPTIBLE);
6045 /* Now sleep between a min of 100-300us and a max of 1ms */
6046 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6052 static __init void rb_ipi(void *ignore)
6054 struct rb_test_data *data;
6055 int cpu = smp_processor_id();
6057 data = &rb_data[cpu];
6058 rb_write_something(data, true);
6061 static __init int rb_hammer_test(void *arg)
6063 while (!kthread_should_stop()) {
6065 /* Send an IPI to all cpus to write data! */
6066 smp_call_function(rb_ipi, NULL, 1);
6067 /* No sleep, but for non preempt, let others run */
6074 static __init int test_ringbuffer(void)
6076 struct task_struct *rb_hammer;
6077 struct trace_buffer *buffer;
6081 if (security_locked_down(LOCKDOWN_TRACEFS)) {
6082 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6086 pr_info("Running ring buffer tests...\n");
6088 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6089 if (WARN_ON(!buffer))
6092 /* Disable buffer so that threads can't write to it yet */
6093 ring_buffer_record_off(buffer);
6095 for_each_online_cpu(cpu) {
6096 rb_data[cpu].buffer = buffer;
6097 rb_data[cpu].cpu = cpu;
6098 rb_data[cpu].cnt = cpu;
6099 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6100 cpu, "rbtester/%u");
6101 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6102 pr_cont("FAILED\n");
6103 ret = PTR_ERR(rb_threads[cpu]);
6108 /* Now create the rb hammer! */
6109 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6110 if (WARN_ON(IS_ERR(rb_hammer))) {
6111 pr_cont("FAILED\n");
6112 ret = PTR_ERR(rb_hammer);
6116 ring_buffer_record_on(buffer);
6118 * Show buffer is enabled before setting rb_test_started.
6119 * Yes there's a small race window where events could be
6120 * dropped and the thread wont catch it. But when a ring
6121 * buffer gets enabled, there will always be some kind of
6122 * delay before other CPUs see it. Thus, we don't care about
6123 * those dropped events. We care about events dropped after
6124 * the threads see that the buffer is active.
6127 rb_test_started = true;
6129 set_current_state(TASK_INTERRUPTIBLE);
6130 /* Just run for 10 seconds */;
6131 schedule_timeout(10 * HZ);
6133 kthread_stop(rb_hammer);
6136 for_each_online_cpu(cpu) {
6137 if (!rb_threads[cpu])
6139 kthread_stop(rb_threads[cpu]);
6142 ring_buffer_free(buffer);
6147 pr_info("finished\n");
6148 for_each_online_cpu(cpu) {
6149 struct ring_buffer_event *event;
6150 struct rb_test_data *data = &rb_data[cpu];
6151 struct rb_item *item;
6152 unsigned long total_events;
6153 unsigned long total_dropped;
6154 unsigned long total_written;
6155 unsigned long total_alloc;
6156 unsigned long total_read = 0;
6157 unsigned long total_size = 0;
6158 unsigned long total_len = 0;
6159 unsigned long total_lost = 0;
6162 int small_event_size;
6166 total_events = data->events + data->events_nested;
6167 total_written = data->bytes_written + data->bytes_written_nested;
6168 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6169 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6171 big_event_size = data->max_size + data->max_size_nested;
6172 small_event_size = data->min_size + data->min_size_nested;
6174 pr_info("CPU %d:\n", cpu);
6175 pr_info(" events: %ld\n", total_events);
6176 pr_info(" dropped bytes: %ld\n", total_dropped);
6177 pr_info(" alloced bytes: %ld\n", total_alloc);
6178 pr_info(" written bytes: %ld\n", total_written);
6179 pr_info(" biggest event: %d\n", big_event_size);
6180 pr_info(" smallest event: %d\n", small_event_size);
6182 if (RB_WARN_ON(buffer, total_dropped))
6187 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6189 item = ring_buffer_event_data(event);
6190 total_len += ring_buffer_event_length(event);
6191 total_size += item->size + sizeof(struct rb_item);
6192 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6193 pr_info("FAILED!\n");
6194 pr_info("buffer had: %.*s\n", item->size, item->str);
6195 pr_info("expected: %.*s\n", item->size, rb_string);
6196 RB_WARN_ON(buffer, 1);
6207 pr_info(" read events: %ld\n", total_read);
6208 pr_info(" lost events: %ld\n", total_lost);
6209 pr_info(" total events: %ld\n", total_lost + total_read);
6210 pr_info(" recorded len bytes: %ld\n", total_len);
6211 pr_info(" recorded size bytes: %ld\n", total_size);
6213 pr_info(" With dropped events, record len and size may not match\n"
6214 " alloced and written from above\n");
6216 if (RB_WARN_ON(buffer, total_len != total_alloc ||
6217 total_size != total_written))
6220 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6226 pr_info("Ring buffer PASSED!\n");
6228 ring_buffer_free(buffer);
6232 late_initcall(test_ringbuffer);
6233 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */