powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 static void free_buffer_page(struct buffer_page *bpage)
358 {
359         free_page((unsigned long)bpage->page);
360         kfree(bpage);
361 }
362
363 /*
364  * We need to fit the time_stamp delta into 27 bits.
365  */
366 static inline bool test_time_stamp(u64 delta)
367 {
368         return !!(delta & TS_DELTA_TEST);
369 }
370
371 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
372
373 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
374 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
375
376 int ring_buffer_print_page_header(struct trace_seq *s)
377 {
378         struct buffer_data_page field;
379
380         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
381                          "offset:0;\tsize:%u;\tsigned:%u;\n",
382                          (unsigned int)sizeof(field.time_stamp),
383                          (unsigned int)is_signed_type(u64));
384
385         trace_seq_printf(s, "\tfield: local_t commit;\t"
386                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
387                          (unsigned int)offsetof(typeof(field), commit),
388                          (unsigned int)sizeof(field.commit),
389                          (unsigned int)is_signed_type(long));
390
391         trace_seq_printf(s, "\tfield: int overwrite;\t"
392                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
393                          (unsigned int)offsetof(typeof(field), commit),
394                          1,
395                          (unsigned int)is_signed_type(long));
396
397         trace_seq_printf(s, "\tfield: char data;\t"
398                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
399                          (unsigned int)offsetof(typeof(field), data),
400                          (unsigned int)BUF_PAGE_SIZE,
401                          (unsigned int)is_signed_type(char));
402
403         return !trace_seq_has_overflowed(s);
404 }
405
406 struct rb_irq_work {
407         struct irq_work                 work;
408         wait_queue_head_t               waiters;
409         wait_queue_head_t               full_waiters;
410         long                            wait_index;
411         bool                            waiters_pending;
412         bool                            full_waiters_pending;
413         bool                            wakeup_full;
414 };
415
416 /*
417  * Structure to hold event state and handle nested events.
418  */
419 struct rb_event_info {
420         u64                     ts;
421         u64                     delta;
422         u64                     before;
423         u64                     after;
424         unsigned long           length;
425         struct buffer_page      *tail_page;
426         int                     add_timestamp;
427 };
428
429 /*
430  * Used for the add_timestamp
431  *  NONE
432  *  EXTEND - wants a time extend
433  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
434  *  FORCE - force a full time stamp.
435  */
436 enum {
437         RB_ADD_STAMP_NONE               = 0,
438         RB_ADD_STAMP_EXTEND             = BIT(1),
439         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
440         RB_ADD_STAMP_FORCE              = BIT(3)
441 };
442 /*
443  * Used for which event context the event is in.
444  *  TRANSITION = 0
445  *  NMI     = 1
446  *  IRQ     = 2
447  *  SOFTIRQ = 3
448  *  NORMAL  = 4
449  *
450  * See trace_recursive_lock() comment below for more details.
451  */
452 enum {
453         RB_CTX_TRANSITION,
454         RB_CTX_NMI,
455         RB_CTX_IRQ,
456         RB_CTX_SOFTIRQ,
457         RB_CTX_NORMAL,
458         RB_CTX_MAX
459 };
460
461 #if BITS_PER_LONG == 32
462 #define RB_TIME_32
463 #endif
464
465 /* To test on 64 bit machines */
466 //#define RB_TIME_32
467
468 #ifdef RB_TIME_32
469
470 struct rb_time_struct {
471         local_t         cnt;
472         local_t         top;
473         local_t         bottom;
474         local_t         msb;
475 };
476 #else
477 #include <asm/local64.h>
478 struct rb_time_struct {
479         local64_t       time;
480 };
481 #endif
482 typedef struct rb_time_struct rb_time_t;
483
484 #define MAX_NEST        5
485
486 /*
487  * head_page == tail_page && head == tail then buffer is empty.
488  */
489 struct ring_buffer_per_cpu {
490         int                             cpu;
491         atomic_t                        record_disabled;
492         atomic_t                        resize_disabled;
493         struct trace_buffer     *buffer;
494         raw_spinlock_t                  reader_lock;    /* serialize readers */
495         arch_spinlock_t                 lock;
496         struct lock_class_key           lock_key;
497         struct buffer_data_page         *free_page;
498         unsigned long                   nr_pages;
499         unsigned int                    current_context;
500         struct list_head                *pages;
501         struct buffer_page              *head_page;     /* read from head */
502         struct buffer_page              *tail_page;     /* write to tail */
503         struct buffer_page              *commit_page;   /* committed pages */
504         struct buffer_page              *reader_page;
505         unsigned long                   lost_events;
506         unsigned long                   last_overrun;
507         unsigned long                   nest;
508         local_t                         entries_bytes;
509         local_t                         entries;
510         local_t                         overrun;
511         local_t                         commit_overrun;
512         local_t                         dropped_events;
513         local_t                         committing;
514         local_t                         commits;
515         local_t                         pages_touched;
516         local_t                         pages_lost;
517         local_t                         pages_read;
518         long                            last_pages_touch;
519         size_t                          shortest_full;
520         unsigned long                   read;
521         unsigned long                   read_bytes;
522         rb_time_t                       write_stamp;
523         rb_time_t                       before_stamp;
524         u64                             event_stamp[MAX_NEST];
525         u64                             read_stamp;
526         /* pages removed since last reset */
527         unsigned long                   pages_removed;
528         /* ring buffer pages to update, > 0 to add, < 0 to remove */
529         long                            nr_pages_to_update;
530         struct list_head                new_pages; /* new pages to add */
531         struct work_struct              update_pages_work;
532         struct completion               update_done;
533
534         struct rb_irq_work              irq_work;
535 };
536
537 struct trace_buffer {
538         unsigned                        flags;
539         int                             cpus;
540         atomic_t                        record_disabled;
541         atomic_t                        resizing;
542         cpumask_var_t                   cpumask;
543
544         struct lock_class_key           *reader_lock_key;
545
546         struct mutex                    mutex;
547
548         struct ring_buffer_per_cpu      **buffers;
549
550         struct hlist_node               node;
551         u64                             (*clock)(void);
552
553         struct rb_irq_work              irq_work;
554         bool                            time_stamp_abs;
555 };
556
557 struct ring_buffer_iter {
558         struct ring_buffer_per_cpu      *cpu_buffer;
559         unsigned long                   head;
560         unsigned long                   next_event;
561         struct buffer_page              *head_page;
562         struct buffer_page              *cache_reader_page;
563         unsigned long                   cache_read;
564         unsigned long                   cache_pages_removed;
565         u64                             read_stamp;
566         u64                             page_stamp;
567         struct ring_buffer_event        *event;
568         int                             missed_events;
569 };
570
571 #ifdef RB_TIME_32
572
573 /*
574  * On 32 bit machines, local64_t is very expensive. As the ring
575  * buffer doesn't need all the features of a true 64 bit atomic,
576  * on 32 bit, it uses these functions (64 still uses local64_t).
577  *
578  * For the ring buffer, 64 bit required operations for the time is
579  * the following:
580  *
581  *  - Reads may fail if it interrupted a modification of the time stamp.
582  *      It will succeed if it did not interrupt another write even if
583  *      the read itself is interrupted by a write.
584  *      It returns whether it was successful or not.
585  *
586  *  - Writes always succeed and will overwrite other writes and writes
587  *      that were done by events interrupting the current write.
588  *
589  *  - A write followed by a read of the same time stamp will always succeed,
590  *      but may not contain the same value.
591  *
592  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
593  *      Other than that, it acts like a normal cmpxchg.
594  *
595  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
596  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
597  *
598  * The two most significant bits of each half holds a 2 bit counter (0-3).
599  * Each update will increment this counter by one.
600  * When reading the top and bottom, if the two counter bits match then the
601  *  top and bottom together make a valid 60 bit number.
602  */
603 #define RB_TIME_SHIFT   30
604 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
605 #define RB_TIME_MSB_SHIFT        60
606
607 static inline int rb_time_cnt(unsigned long val)
608 {
609         return (val >> RB_TIME_SHIFT) & 3;
610 }
611
612 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
613 {
614         u64 val;
615
616         val = top & RB_TIME_VAL_MASK;
617         val <<= RB_TIME_SHIFT;
618         val |= bottom & RB_TIME_VAL_MASK;
619
620         return val;
621 }
622
623 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
624 {
625         unsigned long top, bottom, msb;
626         unsigned long c;
627
628         /*
629          * If the read is interrupted by a write, then the cnt will
630          * be different. Loop until both top and bottom have been read
631          * without interruption.
632          */
633         do {
634                 c = local_read(&t->cnt);
635                 top = local_read(&t->top);
636                 bottom = local_read(&t->bottom);
637                 msb = local_read(&t->msb);
638         } while (c != local_read(&t->cnt));
639
640         *cnt = rb_time_cnt(top);
641
642         /* If top and bottom counts don't match, this interrupted a write */
643         if (*cnt != rb_time_cnt(bottom))
644                 return false;
645
646         /* The shift to msb will lose its cnt bits */
647         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
648         return true;
649 }
650
651 static bool rb_time_read(rb_time_t *t, u64 *ret)
652 {
653         unsigned long cnt;
654
655         return __rb_time_read(t, ret, &cnt);
656 }
657
658 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
659 {
660         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
661 }
662
663 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
664                                  unsigned long *msb)
665 {
666         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
667         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
668         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
669 }
670
671 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
672 {
673         val = rb_time_val_cnt(val, cnt);
674         local_set(t, val);
675 }
676
677 static void rb_time_set(rb_time_t *t, u64 val)
678 {
679         unsigned long cnt, top, bottom, msb;
680
681         rb_time_split(val, &top, &bottom, &msb);
682
683         /* Writes always succeed with a valid number even if it gets interrupted. */
684         do {
685                 cnt = local_inc_return(&t->cnt);
686                 rb_time_val_set(&t->top, top, cnt);
687                 rb_time_val_set(&t->bottom, bottom, cnt);
688                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
689         } while (cnt != local_read(&t->cnt));
690 }
691
692 static inline bool
693 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
694 {
695         return local_try_cmpxchg(l, &expect, set);
696 }
697
698 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
699 {
700         unsigned long cnt, top, bottom, msb;
701         unsigned long cnt2, top2, bottom2, msb2;
702         u64 val;
703
704         /* The cmpxchg always fails if it interrupted an update */
705          if (!__rb_time_read(t, &val, &cnt2))
706                  return false;
707
708          if (val != expect)
709                  return false;
710
711          cnt = local_read(&t->cnt);
712          if ((cnt & 3) != cnt2)
713                  return false;
714
715          cnt2 = cnt + 1;
716
717          rb_time_split(val, &top, &bottom, &msb);
718          top = rb_time_val_cnt(top, cnt);
719          bottom = rb_time_val_cnt(bottom, cnt);
720
721          rb_time_split(set, &top2, &bottom2, &msb2);
722          top2 = rb_time_val_cnt(top2, cnt2);
723          bottom2 = rb_time_val_cnt(bottom2, cnt2);
724
725         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
726                 return false;
727         if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
728                 return false;
729         if (!rb_time_read_cmpxchg(&t->top, top, top2))
730                 return false;
731         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
732                 return false;
733         return true;
734 }
735
736 #else /* 64 bits */
737
738 /* local64_t always succeeds */
739
740 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
741 {
742         *ret = local64_read(&t->time);
743         return true;
744 }
745 static void rb_time_set(rb_time_t *t, u64 val)
746 {
747         local64_set(&t->time, val);
748 }
749
750 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
751 {
752         return local64_try_cmpxchg(&t->time, &expect, set);
753 }
754 #endif
755
756 /*
757  * Enable this to make sure that the event passed to
758  * ring_buffer_event_time_stamp() is not committed and also
759  * is on the buffer that it passed in.
760  */
761 //#define RB_VERIFY_EVENT
762 #ifdef RB_VERIFY_EVENT
763 static struct list_head *rb_list_head(struct list_head *list);
764 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
765                          void *event)
766 {
767         struct buffer_page *page = cpu_buffer->commit_page;
768         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
769         struct list_head *next;
770         long commit, write;
771         unsigned long addr = (unsigned long)event;
772         bool done = false;
773         int stop = 0;
774
775         /* Make sure the event exists and is not committed yet */
776         do {
777                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
778                         done = true;
779                 commit = local_read(&page->page->commit);
780                 write = local_read(&page->write);
781                 if (addr >= (unsigned long)&page->page->data[commit] &&
782                     addr < (unsigned long)&page->page->data[write])
783                         return;
784
785                 next = rb_list_head(page->list.next);
786                 page = list_entry(next, struct buffer_page, list);
787         } while (!done);
788         WARN_ON_ONCE(1);
789 }
790 #else
791 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
792                          void *event)
793 {
794 }
795 #endif
796
797 /*
798  * The absolute time stamp drops the 5 MSBs and some clocks may
799  * require them. The rb_fix_abs_ts() will take a previous full
800  * time stamp, and add the 5 MSB of that time stamp on to the
801  * saved absolute time stamp. Then they are compared in case of
802  * the unlikely event that the latest time stamp incremented
803  * the 5 MSB.
804  */
805 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
806 {
807         if (save_ts & TS_MSB) {
808                 abs |= save_ts & TS_MSB;
809                 /* Check for overflow */
810                 if (unlikely(abs < save_ts))
811                         abs += 1ULL << 59;
812         }
813         return abs;
814 }
815
816 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
817
818 /**
819  * ring_buffer_event_time_stamp - return the event's current time stamp
820  * @buffer: The buffer that the event is on
821  * @event: the event to get the time stamp of
822  *
823  * Note, this must be called after @event is reserved, and before it is
824  * committed to the ring buffer. And must be called from the same
825  * context where the event was reserved (normal, softirq, irq, etc).
826  *
827  * Returns the time stamp associated with the current event.
828  * If the event has an extended time stamp, then that is used as
829  * the time stamp to return.
830  * In the highly unlikely case that the event was nested more than
831  * the max nesting, then the write_stamp of the buffer is returned,
832  * otherwise  current time is returned, but that really neither of
833  * the last two cases should ever happen.
834  */
835 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
836                                  struct ring_buffer_event *event)
837 {
838         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
839         unsigned int nest;
840         u64 ts;
841
842         /* If the event includes an absolute time, then just use that */
843         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
844                 ts = rb_event_time_stamp(event);
845                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
846         }
847
848         nest = local_read(&cpu_buffer->committing);
849         verify_event(cpu_buffer, event);
850         if (WARN_ON_ONCE(!nest))
851                 goto fail;
852
853         /* Read the current saved nesting level time stamp */
854         if (likely(--nest < MAX_NEST))
855                 return cpu_buffer->event_stamp[nest];
856
857         /* Shouldn't happen, warn if it does */
858         WARN_ONCE(1, "nest (%d) greater than max", nest);
859
860  fail:
861         /* Can only fail on 32 bit */
862         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
863                 /* Screw it, just read the current time */
864                 ts = rb_time_stamp(cpu_buffer->buffer);
865
866         return ts;
867 }
868
869 /**
870  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
871  * @buffer: The ring_buffer to get the number of pages from
872  * @cpu: The cpu of the ring_buffer to get the number of pages from
873  *
874  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
875  */
876 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
877 {
878         return buffer->buffers[cpu]->nr_pages;
879 }
880
881 /**
882  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
883  * @buffer: The ring_buffer to get the number of pages from
884  * @cpu: The cpu of the ring_buffer to get the number of pages from
885  *
886  * Returns the number of pages that have content in the ring buffer.
887  */
888 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
889 {
890         size_t read;
891         size_t lost;
892         size_t cnt;
893
894         read = local_read(&buffer->buffers[cpu]->pages_read);
895         lost = local_read(&buffer->buffers[cpu]->pages_lost);
896         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
897
898         if (WARN_ON_ONCE(cnt < lost))
899                 return 0;
900
901         cnt -= lost;
902
903         /* The reader can read an empty page, but not more than that */
904         if (cnt < read) {
905                 WARN_ON_ONCE(read > cnt + 1);
906                 return 0;
907         }
908
909         return cnt - read;
910 }
911
912 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
913 {
914         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
915         size_t nr_pages;
916         size_t dirty;
917
918         nr_pages = cpu_buffer->nr_pages;
919         if (!nr_pages || !full)
920                 return true;
921
922         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
923
924         return (dirty * 100) > (full * nr_pages);
925 }
926
927 /*
928  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
929  *
930  * Schedules a delayed work to wake up any task that is blocked on the
931  * ring buffer waiters queue.
932  */
933 static void rb_wake_up_waiters(struct irq_work *work)
934 {
935         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
936
937         wake_up_all(&rbwork->waiters);
938         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
939                 rbwork->wakeup_full = false;
940                 rbwork->full_waiters_pending = false;
941                 wake_up_all(&rbwork->full_waiters);
942         }
943 }
944
945 /**
946  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
947  * @buffer: The ring buffer to wake waiters on
948  * @cpu: The CPU buffer to wake waiters on
949  *
950  * In the case of a file that represents a ring buffer is closing,
951  * it is prudent to wake up any waiters that are on this.
952  */
953 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
954 {
955         struct ring_buffer_per_cpu *cpu_buffer;
956         struct rb_irq_work *rbwork;
957
958         if (!buffer)
959                 return;
960
961         if (cpu == RING_BUFFER_ALL_CPUS) {
962
963                 /* Wake up individual ones too. One level recursion */
964                 for_each_buffer_cpu(buffer, cpu)
965                         ring_buffer_wake_waiters(buffer, cpu);
966
967                 rbwork = &buffer->irq_work;
968         } else {
969                 if (WARN_ON_ONCE(!buffer->buffers))
970                         return;
971                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
972                         return;
973
974                 cpu_buffer = buffer->buffers[cpu];
975                 /* The CPU buffer may not have been initialized yet */
976                 if (!cpu_buffer)
977                         return;
978                 rbwork = &cpu_buffer->irq_work;
979         }
980
981         rbwork->wait_index++;
982         /* make sure the waiters see the new index */
983         smp_wmb();
984
985         rb_wake_up_waiters(&rbwork->work);
986 }
987
988 /**
989  * ring_buffer_wait - wait for input to the ring buffer
990  * @buffer: buffer to wait on
991  * @cpu: the cpu buffer to wait on
992  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
993  *
994  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
995  * as data is added to any of the @buffer's cpu buffers. Otherwise
996  * it will wait for data to be added to a specific cpu buffer.
997  */
998 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
999 {
1000         struct ring_buffer_per_cpu *cpu_buffer;
1001         DEFINE_WAIT(wait);
1002         struct rb_irq_work *work;
1003         long wait_index;
1004         int ret = 0;
1005
1006         /*
1007          * Depending on what the caller is waiting for, either any
1008          * data in any cpu buffer, or a specific buffer, put the
1009          * caller on the appropriate wait queue.
1010          */
1011         if (cpu == RING_BUFFER_ALL_CPUS) {
1012                 work = &buffer->irq_work;
1013                 /* Full only makes sense on per cpu reads */
1014                 full = 0;
1015         } else {
1016                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1017                         return -ENODEV;
1018                 cpu_buffer = buffer->buffers[cpu];
1019                 work = &cpu_buffer->irq_work;
1020         }
1021
1022         wait_index = READ_ONCE(work->wait_index);
1023
1024         while (true) {
1025                 if (full)
1026                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1027                 else
1028                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1029
1030                 /*
1031                  * The events can happen in critical sections where
1032                  * checking a work queue can cause deadlocks.
1033                  * After adding a task to the queue, this flag is set
1034                  * only to notify events to try to wake up the queue
1035                  * using irq_work.
1036                  *
1037                  * We don't clear it even if the buffer is no longer
1038                  * empty. The flag only causes the next event to run
1039                  * irq_work to do the work queue wake up. The worse
1040                  * that can happen if we race with !trace_empty() is that
1041                  * an event will cause an irq_work to try to wake up
1042                  * an empty queue.
1043                  *
1044                  * There's no reason to protect this flag either, as
1045                  * the work queue and irq_work logic will do the necessary
1046                  * synchronization for the wake ups. The only thing
1047                  * that is necessary is that the wake up happens after
1048                  * a task has been queued. It's OK for spurious wake ups.
1049                  */
1050                 if (full)
1051                         work->full_waiters_pending = true;
1052                 else
1053                         work->waiters_pending = true;
1054
1055                 if (signal_pending(current)) {
1056                         ret = -EINTR;
1057                         break;
1058                 }
1059
1060                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1061                         break;
1062
1063                 if (cpu != RING_BUFFER_ALL_CPUS &&
1064                     !ring_buffer_empty_cpu(buffer, cpu)) {
1065                         unsigned long flags;
1066                         bool pagebusy;
1067                         bool done;
1068
1069                         if (!full)
1070                                 break;
1071
1072                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1073                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1074                         done = !pagebusy && full_hit(buffer, cpu, full);
1075
1076                         if (!cpu_buffer->shortest_full ||
1077                             cpu_buffer->shortest_full > full)
1078                                 cpu_buffer->shortest_full = full;
1079                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1080                         if (done)
1081                                 break;
1082                 }
1083
1084                 schedule();
1085
1086                 /* Make sure to see the new wait index */
1087                 smp_rmb();
1088                 if (wait_index != work->wait_index)
1089                         break;
1090         }
1091
1092         if (full)
1093                 finish_wait(&work->full_waiters, &wait);
1094         else
1095                 finish_wait(&work->waiters, &wait);
1096
1097         return ret;
1098 }
1099
1100 /**
1101  * ring_buffer_poll_wait - poll on buffer input
1102  * @buffer: buffer to wait on
1103  * @cpu: the cpu buffer to wait on
1104  * @filp: the file descriptor
1105  * @poll_table: The poll descriptor
1106  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1107  *
1108  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1109  * as data is added to any of the @buffer's cpu buffers. Otherwise
1110  * it will wait for data to be added to a specific cpu buffer.
1111  *
1112  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1113  * zero otherwise.
1114  */
1115 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1116                           struct file *filp, poll_table *poll_table, int full)
1117 {
1118         struct ring_buffer_per_cpu *cpu_buffer;
1119         struct rb_irq_work *work;
1120
1121         if (cpu == RING_BUFFER_ALL_CPUS) {
1122                 work = &buffer->irq_work;
1123                 full = 0;
1124         } else {
1125                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1126                         return -EINVAL;
1127
1128                 cpu_buffer = buffer->buffers[cpu];
1129                 work = &cpu_buffer->irq_work;
1130         }
1131
1132         if (full) {
1133                 poll_wait(filp, &work->full_waiters, poll_table);
1134                 work->full_waiters_pending = true;
1135         } else {
1136                 poll_wait(filp, &work->waiters, poll_table);
1137                 work->waiters_pending = true;
1138         }
1139
1140         /*
1141          * There's a tight race between setting the waiters_pending and
1142          * checking if the ring buffer is empty.  Once the waiters_pending bit
1143          * is set, the next event will wake the task up, but we can get stuck
1144          * if there's only a single event in.
1145          *
1146          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1147          * but adding a memory barrier to all events will cause too much of a
1148          * performance hit in the fast path.  We only need a memory barrier when
1149          * the buffer goes from empty to having content.  But as this race is
1150          * extremely small, and it's not a problem if another event comes in, we
1151          * will fix it later.
1152          */
1153         smp_mb();
1154
1155         if (full)
1156                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1157
1158         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1159             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1160                 return EPOLLIN | EPOLLRDNORM;
1161         return 0;
1162 }
1163
1164 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1165 #define RB_WARN_ON(b, cond)                                             \
1166         ({                                                              \
1167                 int _____ret = unlikely(cond);                          \
1168                 if (_____ret) {                                         \
1169                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1170                                 struct ring_buffer_per_cpu *__b =       \
1171                                         (void *)b;                      \
1172                                 atomic_inc(&__b->buffer->record_disabled); \
1173                         } else                                          \
1174                                 atomic_inc(&b->record_disabled);        \
1175                         WARN_ON(1);                                     \
1176                 }                                                       \
1177                 _____ret;                                               \
1178         })
1179
1180 /* Up this if you want to test the TIME_EXTENTS and normalization */
1181 #define DEBUG_SHIFT 0
1182
1183 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1184 {
1185         u64 ts;
1186
1187         /* Skip retpolines :-( */
1188         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1189                 ts = trace_clock_local();
1190         else
1191                 ts = buffer->clock();
1192
1193         /* shift to debug/test normalization and TIME_EXTENTS */
1194         return ts << DEBUG_SHIFT;
1195 }
1196
1197 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1198 {
1199         u64 time;
1200
1201         preempt_disable_notrace();
1202         time = rb_time_stamp(buffer);
1203         preempt_enable_notrace();
1204
1205         return time;
1206 }
1207 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1208
1209 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1210                                       int cpu, u64 *ts)
1211 {
1212         /* Just stupid testing the normalize function and deltas */
1213         *ts >>= DEBUG_SHIFT;
1214 }
1215 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1216
1217 /*
1218  * Making the ring buffer lockless makes things tricky.
1219  * Although writes only happen on the CPU that they are on,
1220  * and they only need to worry about interrupts. Reads can
1221  * happen on any CPU.
1222  *
1223  * The reader page is always off the ring buffer, but when the
1224  * reader finishes with a page, it needs to swap its page with
1225  * a new one from the buffer. The reader needs to take from
1226  * the head (writes go to the tail). But if a writer is in overwrite
1227  * mode and wraps, it must push the head page forward.
1228  *
1229  * Here lies the problem.
1230  *
1231  * The reader must be careful to replace only the head page, and
1232  * not another one. As described at the top of the file in the
1233  * ASCII art, the reader sets its old page to point to the next
1234  * page after head. It then sets the page after head to point to
1235  * the old reader page. But if the writer moves the head page
1236  * during this operation, the reader could end up with the tail.
1237  *
1238  * We use cmpxchg to help prevent this race. We also do something
1239  * special with the page before head. We set the LSB to 1.
1240  *
1241  * When the writer must push the page forward, it will clear the
1242  * bit that points to the head page, move the head, and then set
1243  * the bit that points to the new head page.
1244  *
1245  * We also don't want an interrupt coming in and moving the head
1246  * page on another writer. Thus we use the second LSB to catch
1247  * that too. Thus:
1248  *
1249  * head->list->prev->next        bit 1          bit 0
1250  *                              -------        -------
1251  * Normal page                     0              0
1252  * Points to head page             0              1
1253  * New head page                   1              0
1254  *
1255  * Note we can not trust the prev pointer of the head page, because:
1256  *
1257  * +----+       +-----+        +-----+
1258  * |    |------>|  T  |---X--->|  N  |
1259  * |    |<------|     |        |     |
1260  * +----+       +-----+        +-----+
1261  *   ^                           ^ |
1262  *   |          +-----+          | |
1263  *   +----------|  R  |----------+ |
1264  *              |     |<-----------+
1265  *              +-----+
1266  *
1267  * Key:  ---X-->  HEAD flag set in pointer
1268  *         T      Tail page
1269  *         R      Reader page
1270  *         N      Next page
1271  *
1272  * (see __rb_reserve_next() to see where this happens)
1273  *
1274  *  What the above shows is that the reader just swapped out
1275  *  the reader page with a page in the buffer, but before it
1276  *  could make the new header point back to the new page added
1277  *  it was preempted by a writer. The writer moved forward onto
1278  *  the new page added by the reader and is about to move forward
1279  *  again.
1280  *
1281  *  You can see, it is legitimate for the previous pointer of
1282  *  the head (or any page) not to point back to itself. But only
1283  *  temporarily.
1284  */
1285
1286 #define RB_PAGE_NORMAL          0UL
1287 #define RB_PAGE_HEAD            1UL
1288 #define RB_PAGE_UPDATE          2UL
1289
1290
1291 #define RB_FLAG_MASK            3UL
1292
1293 /* PAGE_MOVED is not part of the mask */
1294 #define RB_PAGE_MOVED           4UL
1295
1296 /*
1297  * rb_list_head - remove any bit
1298  */
1299 static struct list_head *rb_list_head(struct list_head *list)
1300 {
1301         unsigned long val = (unsigned long)list;
1302
1303         return (struct list_head *)(val & ~RB_FLAG_MASK);
1304 }
1305
1306 /*
1307  * rb_is_head_page - test if the given page is the head page
1308  *
1309  * Because the reader may move the head_page pointer, we can
1310  * not trust what the head page is (it may be pointing to
1311  * the reader page). But if the next page is a header page,
1312  * its flags will be non zero.
1313  */
1314 static inline int
1315 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1316 {
1317         unsigned long val;
1318
1319         val = (unsigned long)list->next;
1320
1321         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1322                 return RB_PAGE_MOVED;
1323
1324         return val & RB_FLAG_MASK;
1325 }
1326
1327 /*
1328  * rb_is_reader_page
1329  *
1330  * The unique thing about the reader page, is that, if the
1331  * writer is ever on it, the previous pointer never points
1332  * back to the reader page.
1333  */
1334 static bool rb_is_reader_page(struct buffer_page *page)
1335 {
1336         struct list_head *list = page->list.prev;
1337
1338         return rb_list_head(list->next) != &page->list;
1339 }
1340
1341 /*
1342  * rb_set_list_to_head - set a list_head to be pointing to head.
1343  */
1344 static void rb_set_list_to_head(struct list_head *list)
1345 {
1346         unsigned long *ptr;
1347
1348         ptr = (unsigned long *)&list->next;
1349         *ptr |= RB_PAGE_HEAD;
1350         *ptr &= ~RB_PAGE_UPDATE;
1351 }
1352
1353 /*
1354  * rb_head_page_activate - sets up head page
1355  */
1356 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1357 {
1358         struct buffer_page *head;
1359
1360         head = cpu_buffer->head_page;
1361         if (!head)
1362                 return;
1363
1364         /*
1365          * Set the previous list pointer to have the HEAD flag.
1366          */
1367         rb_set_list_to_head(head->list.prev);
1368 }
1369
1370 static void rb_list_head_clear(struct list_head *list)
1371 {
1372         unsigned long *ptr = (unsigned long *)&list->next;
1373
1374         *ptr &= ~RB_FLAG_MASK;
1375 }
1376
1377 /*
1378  * rb_head_page_deactivate - clears head page ptr (for free list)
1379  */
1380 static void
1381 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1382 {
1383         struct list_head *hd;
1384
1385         /* Go through the whole list and clear any pointers found. */
1386         rb_list_head_clear(cpu_buffer->pages);
1387
1388         list_for_each(hd, cpu_buffer->pages)
1389                 rb_list_head_clear(hd);
1390 }
1391
1392 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1393                             struct buffer_page *head,
1394                             struct buffer_page *prev,
1395                             int old_flag, int new_flag)
1396 {
1397         struct list_head *list;
1398         unsigned long val = (unsigned long)&head->list;
1399         unsigned long ret;
1400
1401         list = &prev->list;
1402
1403         val &= ~RB_FLAG_MASK;
1404
1405         ret = cmpxchg((unsigned long *)&list->next,
1406                       val | old_flag, val | new_flag);
1407
1408         /* check if the reader took the page */
1409         if ((ret & ~RB_FLAG_MASK) != val)
1410                 return RB_PAGE_MOVED;
1411
1412         return ret & RB_FLAG_MASK;
1413 }
1414
1415 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1416                                    struct buffer_page *head,
1417                                    struct buffer_page *prev,
1418                                    int old_flag)
1419 {
1420         return rb_head_page_set(cpu_buffer, head, prev,
1421                                 old_flag, RB_PAGE_UPDATE);
1422 }
1423
1424 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1425                                  struct buffer_page *head,
1426                                  struct buffer_page *prev,
1427                                  int old_flag)
1428 {
1429         return rb_head_page_set(cpu_buffer, head, prev,
1430                                 old_flag, RB_PAGE_HEAD);
1431 }
1432
1433 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1434                                    struct buffer_page *head,
1435                                    struct buffer_page *prev,
1436                                    int old_flag)
1437 {
1438         return rb_head_page_set(cpu_buffer, head, prev,
1439                                 old_flag, RB_PAGE_NORMAL);
1440 }
1441
1442 static inline void rb_inc_page(struct buffer_page **bpage)
1443 {
1444         struct list_head *p = rb_list_head((*bpage)->list.next);
1445
1446         *bpage = list_entry(p, struct buffer_page, list);
1447 }
1448
1449 static struct buffer_page *
1450 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1451 {
1452         struct buffer_page *head;
1453         struct buffer_page *page;
1454         struct list_head *list;
1455         int i;
1456
1457         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1458                 return NULL;
1459
1460         /* sanity check */
1461         list = cpu_buffer->pages;
1462         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1463                 return NULL;
1464
1465         page = head = cpu_buffer->head_page;
1466         /*
1467          * It is possible that the writer moves the header behind
1468          * where we started, and we miss in one loop.
1469          * A second loop should grab the header, but we'll do
1470          * three loops just because I'm paranoid.
1471          */
1472         for (i = 0; i < 3; i++) {
1473                 do {
1474                         if (rb_is_head_page(page, page->list.prev)) {
1475                                 cpu_buffer->head_page = page;
1476                                 return page;
1477                         }
1478                         rb_inc_page(&page);
1479                 } while (page != head);
1480         }
1481
1482         RB_WARN_ON(cpu_buffer, 1);
1483
1484         return NULL;
1485 }
1486
1487 static bool rb_head_page_replace(struct buffer_page *old,
1488                                 struct buffer_page *new)
1489 {
1490         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1491         unsigned long val;
1492
1493         val = *ptr & ~RB_FLAG_MASK;
1494         val |= RB_PAGE_HEAD;
1495
1496         return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1497 }
1498
1499 /*
1500  * rb_tail_page_update - move the tail page forward
1501  */
1502 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1503                                struct buffer_page *tail_page,
1504                                struct buffer_page *next_page)
1505 {
1506         unsigned long old_entries;
1507         unsigned long old_write;
1508
1509         /*
1510          * The tail page now needs to be moved forward.
1511          *
1512          * We need to reset the tail page, but without messing
1513          * with possible erasing of data brought in by interrupts
1514          * that have moved the tail page and are currently on it.
1515          *
1516          * We add a counter to the write field to denote this.
1517          */
1518         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1519         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1520
1521         local_inc(&cpu_buffer->pages_touched);
1522         /*
1523          * Just make sure we have seen our old_write and synchronize
1524          * with any interrupts that come in.
1525          */
1526         barrier();
1527
1528         /*
1529          * If the tail page is still the same as what we think
1530          * it is, then it is up to us to update the tail
1531          * pointer.
1532          */
1533         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1534                 /* Zero the write counter */
1535                 unsigned long val = old_write & ~RB_WRITE_MASK;
1536                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1537
1538                 /*
1539                  * This will only succeed if an interrupt did
1540                  * not come in and change it. In which case, we
1541                  * do not want to modify it.
1542                  *
1543                  * We add (void) to let the compiler know that we do not care
1544                  * about the return value of these functions. We use the
1545                  * cmpxchg to only update if an interrupt did not already
1546                  * do it for us. If the cmpxchg fails, we don't care.
1547                  */
1548                 (void)local_cmpxchg(&next_page->write, old_write, val);
1549                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1550
1551                 /*
1552                  * No need to worry about races with clearing out the commit.
1553                  * it only can increment when a commit takes place. But that
1554                  * only happens in the outer most nested commit.
1555                  */
1556                 local_set(&next_page->page->commit, 0);
1557
1558                 /* Again, either we update tail_page or an interrupt does */
1559                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1560         }
1561 }
1562
1563 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1564                           struct buffer_page *bpage)
1565 {
1566         unsigned long val = (unsigned long)bpage;
1567
1568         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1569 }
1570
1571 /**
1572  * rb_check_pages - integrity check of buffer pages
1573  * @cpu_buffer: CPU buffer with pages to test
1574  *
1575  * As a safety measure we check to make sure the data pages have not
1576  * been corrupted.
1577  */
1578 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1579 {
1580         struct list_head *head = rb_list_head(cpu_buffer->pages);
1581         struct list_head *tmp;
1582
1583         if (RB_WARN_ON(cpu_buffer,
1584                         rb_list_head(rb_list_head(head->next)->prev) != head))
1585                 return;
1586
1587         if (RB_WARN_ON(cpu_buffer,
1588                         rb_list_head(rb_list_head(head->prev)->next) != head))
1589                 return;
1590
1591         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1592                 if (RB_WARN_ON(cpu_buffer,
1593                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1594                         return;
1595
1596                 if (RB_WARN_ON(cpu_buffer,
1597                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1598                         return;
1599         }
1600 }
1601
1602 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1603                 long nr_pages, struct list_head *pages)
1604 {
1605         struct buffer_page *bpage, *tmp;
1606         bool user_thread = current->mm != NULL;
1607         gfp_t mflags;
1608         long i;
1609
1610         /*
1611          * Check if the available memory is there first.
1612          * Note, si_mem_available() only gives us a rough estimate of available
1613          * memory. It may not be accurate. But we don't care, we just want
1614          * to prevent doing any allocation when it is obvious that it is
1615          * not going to succeed.
1616          */
1617         i = si_mem_available();
1618         if (i < nr_pages)
1619                 return -ENOMEM;
1620
1621         /*
1622          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1623          * gracefully without invoking oom-killer and the system is not
1624          * destabilized.
1625          */
1626         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1627
1628         /*
1629          * If a user thread allocates too much, and si_mem_available()
1630          * reports there's enough memory, even though there is not.
1631          * Make sure the OOM killer kills this thread. This can happen
1632          * even with RETRY_MAYFAIL because another task may be doing
1633          * an allocation after this task has taken all memory.
1634          * This is the task the OOM killer needs to take out during this
1635          * loop, even if it was triggered by an allocation somewhere else.
1636          */
1637         if (user_thread)
1638                 set_current_oom_origin();
1639         for (i = 0; i < nr_pages; i++) {
1640                 struct page *page;
1641
1642                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1643                                     mflags, cpu_to_node(cpu_buffer->cpu));
1644                 if (!bpage)
1645                         goto free_pages;
1646
1647                 rb_check_bpage(cpu_buffer, bpage);
1648
1649                 list_add(&bpage->list, pages);
1650
1651                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1652                 if (!page)
1653                         goto free_pages;
1654                 bpage->page = page_address(page);
1655                 rb_init_page(bpage->page);
1656
1657                 if (user_thread && fatal_signal_pending(current))
1658                         goto free_pages;
1659         }
1660         if (user_thread)
1661                 clear_current_oom_origin();
1662
1663         return 0;
1664
1665 free_pages:
1666         list_for_each_entry_safe(bpage, tmp, pages, list) {
1667                 list_del_init(&bpage->list);
1668                 free_buffer_page(bpage);
1669         }
1670         if (user_thread)
1671                 clear_current_oom_origin();
1672
1673         return -ENOMEM;
1674 }
1675
1676 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1677                              unsigned long nr_pages)
1678 {
1679         LIST_HEAD(pages);
1680
1681         WARN_ON(!nr_pages);
1682
1683         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1684                 return -ENOMEM;
1685
1686         /*
1687          * The ring buffer page list is a circular list that does not
1688          * start and end with a list head. All page list items point to
1689          * other pages.
1690          */
1691         cpu_buffer->pages = pages.next;
1692         list_del(&pages);
1693
1694         cpu_buffer->nr_pages = nr_pages;
1695
1696         rb_check_pages(cpu_buffer);
1697
1698         return 0;
1699 }
1700
1701 static struct ring_buffer_per_cpu *
1702 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1703 {
1704         struct ring_buffer_per_cpu *cpu_buffer;
1705         struct buffer_page *bpage;
1706         struct page *page;
1707         int ret;
1708
1709         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1710                                   GFP_KERNEL, cpu_to_node(cpu));
1711         if (!cpu_buffer)
1712                 return NULL;
1713
1714         cpu_buffer->cpu = cpu;
1715         cpu_buffer->buffer = buffer;
1716         raw_spin_lock_init(&cpu_buffer->reader_lock);
1717         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1718         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1719         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1720         init_completion(&cpu_buffer->update_done);
1721         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1722         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1723         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1724
1725         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1726                             GFP_KERNEL, cpu_to_node(cpu));
1727         if (!bpage)
1728                 goto fail_free_buffer;
1729
1730         rb_check_bpage(cpu_buffer, bpage);
1731
1732         cpu_buffer->reader_page = bpage;
1733         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1734         if (!page)
1735                 goto fail_free_reader;
1736         bpage->page = page_address(page);
1737         rb_init_page(bpage->page);
1738
1739         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1740         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1741
1742         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1743         if (ret < 0)
1744                 goto fail_free_reader;
1745
1746         cpu_buffer->head_page
1747                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1748         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1749
1750         rb_head_page_activate(cpu_buffer);
1751
1752         return cpu_buffer;
1753
1754  fail_free_reader:
1755         free_buffer_page(cpu_buffer->reader_page);
1756
1757  fail_free_buffer:
1758         kfree(cpu_buffer);
1759         return NULL;
1760 }
1761
1762 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1763 {
1764         struct list_head *head = cpu_buffer->pages;
1765         struct buffer_page *bpage, *tmp;
1766
1767         irq_work_sync(&cpu_buffer->irq_work.work);
1768
1769         free_buffer_page(cpu_buffer->reader_page);
1770
1771         if (head) {
1772                 rb_head_page_deactivate(cpu_buffer);
1773
1774                 list_for_each_entry_safe(bpage, tmp, head, list) {
1775                         list_del_init(&bpage->list);
1776                         free_buffer_page(bpage);
1777                 }
1778                 bpage = list_entry(head, struct buffer_page, list);
1779                 free_buffer_page(bpage);
1780         }
1781
1782         kfree(cpu_buffer);
1783 }
1784
1785 /**
1786  * __ring_buffer_alloc - allocate a new ring_buffer
1787  * @size: the size in bytes per cpu that is needed.
1788  * @flags: attributes to set for the ring buffer.
1789  * @key: ring buffer reader_lock_key.
1790  *
1791  * Currently the only flag that is available is the RB_FL_OVERWRITE
1792  * flag. This flag means that the buffer will overwrite old data
1793  * when the buffer wraps. If this flag is not set, the buffer will
1794  * drop data when the tail hits the head.
1795  */
1796 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1797                                         struct lock_class_key *key)
1798 {
1799         struct trace_buffer *buffer;
1800         long nr_pages;
1801         int bsize;
1802         int cpu;
1803         int ret;
1804
1805         /* keep it in its own cache line */
1806         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1807                          GFP_KERNEL);
1808         if (!buffer)
1809                 return NULL;
1810
1811         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1812                 goto fail_free_buffer;
1813
1814         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1815         buffer->flags = flags;
1816         buffer->clock = trace_clock_local;
1817         buffer->reader_lock_key = key;
1818
1819         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1820         init_waitqueue_head(&buffer->irq_work.waiters);
1821
1822         /* need at least two pages */
1823         if (nr_pages < 2)
1824                 nr_pages = 2;
1825
1826         buffer->cpus = nr_cpu_ids;
1827
1828         bsize = sizeof(void *) * nr_cpu_ids;
1829         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1830                                   GFP_KERNEL);
1831         if (!buffer->buffers)
1832                 goto fail_free_cpumask;
1833
1834         cpu = raw_smp_processor_id();
1835         cpumask_set_cpu(cpu, buffer->cpumask);
1836         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1837         if (!buffer->buffers[cpu])
1838                 goto fail_free_buffers;
1839
1840         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1841         if (ret < 0)
1842                 goto fail_free_buffers;
1843
1844         mutex_init(&buffer->mutex);
1845
1846         return buffer;
1847
1848  fail_free_buffers:
1849         for_each_buffer_cpu(buffer, cpu) {
1850                 if (buffer->buffers[cpu])
1851                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1852         }
1853         kfree(buffer->buffers);
1854
1855  fail_free_cpumask:
1856         free_cpumask_var(buffer->cpumask);
1857
1858  fail_free_buffer:
1859         kfree(buffer);
1860         return NULL;
1861 }
1862 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1863
1864 /**
1865  * ring_buffer_free - free a ring buffer.
1866  * @buffer: the buffer to free.
1867  */
1868 void
1869 ring_buffer_free(struct trace_buffer *buffer)
1870 {
1871         int cpu;
1872
1873         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1874
1875         irq_work_sync(&buffer->irq_work.work);
1876
1877         for_each_buffer_cpu(buffer, cpu)
1878                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1879
1880         kfree(buffer->buffers);
1881         free_cpumask_var(buffer->cpumask);
1882
1883         kfree(buffer);
1884 }
1885 EXPORT_SYMBOL_GPL(ring_buffer_free);
1886
1887 void ring_buffer_set_clock(struct trace_buffer *buffer,
1888                            u64 (*clock)(void))
1889 {
1890         buffer->clock = clock;
1891 }
1892
1893 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1894 {
1895         buffer->time_stamp_abs = abs;
1896 }
1897
1898 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1899 {
1900         return buffer->time_stamp_abs;
1901 }
1902
1903 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1904
1905 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1906 {
1907         return local_read(&bpage->entries) & RB_WRITE_MASK;
1908 }
1909
1910 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1911 {
1912         return local_read(&bpage->write) & RB_WRITE_MASK;
1913 }
1914
1915 static bool
1916 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1917 {
1918         struct list_head *tail_page, *to_remove, *next_page;
1919         struct buffer_page *to_remove_page, *tmp_iter_page;
1920         struct buffer_page *last_page, *first_page;
1921         unsigned long nr_removed;
1922         unsigned long head_bit;
1923         int page_entries;
1924
1925         head_bit = 0;
1926
1927         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1928         atomic_inc(&cpu_buffer->record_disabled);
1929         /*
1930          * We don't race with the readers since we have acquired the reader
1931          * lock. We also don't race with writers after disabling recording.
1932          * This makes it easy to figure out the first and the last page to be
1933          * removed from the list. We unlink all the pages in between including
1934          * the first and last pages. This is done in a busy loop so that we
1935          * lose the least number of traces.
1936          * The pages are freed after we restart recording and unlock readers.
1937          */
1938         tail_page = &cpu_buffer->tail_page->list;
1939
1940         /*
1941          * tail page might be on reader page, we remove the next page
1942          * from the ring buffer
1943          */
1944         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1945                 tail_page = rb_list_head(tail_page->next);
1946         to_remove = tail_page;
1947
1948         /* start of pages to remove */
1949         first_page = list_entry(rb_list_head(to_remove->next),
1950                                 struct buffer_page, list);
1951
1952         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1953                 to_remove = rb_list_head(to_remove)->next;
1954                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1955         }
1956         /* Read iterators need to reset themselves when some pages removed */
1957         cpu_buffer->pages_removed += nr_removed;
1958
1959         next_page = rb_list_head(to_remove)->next;
1960
1961         /*
1962          * Now we remove all pages between tail_page and next_page.
1963          * Make sure that we have head_bit value preserved for the
1964          * next page
1965          */
1966         tail_page->next = (struct list_head *)((unsigned long)next_page |
1967                                                 head_bit);
1968         next_page = rb_list_head(next_page);
1969         next_page->prev = tail_page;
1970
1971         /* make sure pages points to a valid page in the ring buffer */
1972         cpu_buffer->pages = next_page;
1973
1974         /* update head page */
1975         if (head_bit)
1976                 cpu_buffer->head_page = list_entry(next_page,
1977                                                 struct buffer_page, list);
1978
1979         /* pages are removed, resume tracing and then free the pages */
1980         atomic_dec(&cpu_buffer->record_disabled);
1981         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1982
1983         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1984
1985         /* last buffer page to remove */
1986         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1987                                 list);
1988         tmp_iter_page = first_page;
1989
1990         do {
1991                 cond_resched();
1992
1993                 to_remove_page = tmp_iter_page;
1994                 rb_inc_page(&tmp_iter_page);
1995
1996                 /* update the counters */
1997                 page_entries = rb_page_entries(to_remove_page);
1998                 if (page_entries) {
1999                         /*
2000                          * If something was added to this page, it was full
2001                          * since it is not the tail page. So we deduct the
2002                          * bytes consumed in ring buffer from here.
2003                          * Increment overrun to account for the lost events.
2004                          */
2005                         local_add(page_entries, &cpu_buffer->overrun);
2006                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2007                         local_inc(&cpu_buffer->pages_lost);
2008                 }
2009
2010                 /*
2011                  * We have already removed references to this list item, just
2012                  * free up the buffer_page and its page
2013                  */
2014                 free_buffer_page(to_remove_page);
2015                 nr_removed--;
2016
2017         } while (to_remove_page != last_page);
2018
2019         RB_WARN_ON(cpu_buffer, nr_removed);
2020
2021         return nr_removed == 0;
2022 }
2023
2024 static bool
2025 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2026 {
2027         struct list_head *pages = &cpu_buffer->new_pages;
2028         unsigned long flags;
2029         bool success;
2030         int retries;
2031
2032         /* Can be called at early boot up, where interrupts must not been enabled */
2033         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2034         /*
2035          * We are holding the reader lock, so the reader page won't be swapped
2036          * in the ring buffer. Now we are racing with the writer trying to
2037          * move head page and the tail page.
2038          * We are going to adapt the reader page update process where:
2039          * 1. We first splice the start and end of list of new pages between
2040          *    the head page and its previous page.
2041          * 2. We cmpxchg the prev_page->next to point from head page to the
2042          *    start of new pages list.
2043          * 3. Finally, we update the head->prev to the end of new list.
2044          *
2045          * We will try this process 10 times, to make sure that we don't keep
2046          * spinning.
2047          */
2048         retries = 10;
2049         success = false;
2050         while (retries--) {
2051                 struct list_head *head_page, *prev_page, *r;
2052                 struct list_head *last_page, *first_page;
2053                 struct list_head *head_page_with_bit;
2054                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2055
2056                 if (!hpage)
2057                         break;
2058                 head_page = &hpage->list;
2059                 prev_page = head_page->prev;
2060
2061                 first_page = pages->next;
2062                 last_page  = pages->prev;
2063
2064                 head_page_with_bit = (struct list_head *)
2065                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2066
2067                 last_page->next = head_page_with_bit;
2068                 first_page->prev = prev_page;
2069
2070                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2071
2072                 if (r == head_page_with_bit) {
2073                         /*
2074                          * yay, we replaced the page pointer to our new list,
2075                          * now, we just have to update to head page's prev
2076                          * pointer to point to end of list
2077                          */
2078                         head_page->prev = last_page;
2079                         success = true;
2080                         break;
2081                 }
2082         }
2083
2084         if (success)
2085                 INIT_LIST_HEAD(pages);
2086         /*
2087          * If we weren't successful in adding in new pages, warn and stop
2088          * tracing
2089          */
2090         RB_WARN_ON(cpu_buffer, !success);
2091         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2092
2093         /* free pages if they weren't inserted */
2094         if (!success) {
2095                 struct buffer_page *bpage, *tmp;
2096                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2097                                          list) {
2098                         list_del_init(&bpage->list);
2099                         free_buffer_page(bpage);
2100                 }
2101         }
2102         return success;
2103 }
2104
2105 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2106 {
2107         bool success;
2108
2109         if (cpu_buffer->nr_pages_to_update > 0)
2110                 success = rb_insert_pages(cpu_buffer);
2111         else
2112                 success = rb_remove_pages(cpu_buffer,
2113                                         -cpu_buffer->nr_pages_to_update);
2114
2115         if (success)
2116                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2117 }
2118
2119 static void update_pages_handler(struct work_struct *work)
2120 {
2121         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2122                         struct ring_buffer_per_cpu, update_pages_work);
2123         rb_update_pages(cpu_buffer);
2124         complete(&cpu_buffer->update_done);
2125 }
2126
2127 /**
2128  * ring_buffer_resize - resize the ring buffer
2129  * @buffer: the buffer to resize.
2130  * @size: the new size.
2131  * @cpu_id: the cpu buffer to resize
2132  *
2133  * Minimum size is 2 * BUF_PAGE_SIZE.
2134  *
2135  * Returns 0 on success and < 0 on failure.
2136  */
2137 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2138                         int cpu_id)
2139 {
2140         struct ring_buffer_per_cpu *cpu_buffer;
2141         unsigned long nr_pages;
2142         int cpu, err;
2143
2144         /*
2145          * Always succeed at resizing a non-existent buffer:
2146          */
2147         if (!buffer)
2148                 return 0;
2149
2150         /* Make sure the requested buffer exists */
2151         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2152             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2153                 return 0;
2154
2155         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2156
2157         /* we need a minimum of two pages */
2158         if (nr_pages < 2)
2159                 nr_pages = 2;
2160
2161         /* prevent another thread from changing buffer sizes */
2162         mutex_lock(&buffer->mutex);
2163         atomic_inc(&buffer->resizing);
2164
2165         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2166                 /*
2167                  * Don't succeed if resizing is disabled, as a reader might be
2168                  * manipulating the ring buffer and is expecting a sane state while
2169                  * this is true.
2170                  */
2171                 for_each_buffer_cpu(buffer, cpu) {
2172                         cpu_buffer = buffer->buffers[cpu];
2173                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2174                                 err = -EBUSY;
2175                                 goto out_err_unlock;
2176                         }
2177                 }
2178
2179                 /* calculate the pages to update */
2180                 for_each_buffer_cpu(buffer, cpu) {
2181                         cpu_buffer = buffer->buffers[cpu];
2182
2183                         cpu_buffer->nr_pages_to_update = nr_pages -
2184                                                         cpu_buffer->nr_pages;
2185                         /*
2186                          * nothing more to do for removing pages or no update
2187                          */
2188                         if (cpu_buffer->nr_pages_to_update <= 0)
2189                                 continue;
2190                         /*
2191                          * to add pages, make sure all new pages can be
2192                          * allocated without receiving ENOMEM
2193                          */
2194                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2195                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2196                                                 &cpu_buffer->new_pages)) {
2197                                 /* not enough memory for new pages */
2198                                 err = -ENOMEM;
2199                                 goto out_err;
2200                         }
2201
2202                         cond_resched();
2203                 }
2204
2205                 cpus_read_lock();
2206                 /*
2207                  * Fire off all the required work handlers
2208                  * We can't schedule on offline CPUs, but it's not necessary
2209                  * since we can change their buffer sizes without any race.
2210                  */
2211                 for_each_buffer_cpu(buffer, cpu) {
2212                         cpu_buffer = buffer->buffers[cpu];
2213                         if (!cpu_buffer->nr_pages_to_update)
2214                                 continue;
2215
2216                         /* Can't run something on an offline CPU. */
2217                         if (!cpu_online(cpu)) {
2218                                 rb_update_pages(cpu_buffer);
2219                                 cpu_buffer->nr_pages_to_update = 0;
2220                         } else {
2221                                 /* Run directly if possible. */
2222                                 migrate_disable();
2223                                 if (cpu != smp_processor_id()) {
2224                                         migrate_enable();
2225                                         schedule_work_on(cpu,
2226                                                          &cpu_buffer->update_pages_work);
2227                                 } else {
2228                                         update_pages_handler(&cpu_buffer->update_pages_work);
2229                                         migrate_enable();
2230                                 }
2231                         }
2232                 }
2233
2234                 /* wait for all the updates to complete */
2235                 for_each_buffer_cpu(buffer, cpu) {
2236                         cpu_buffer = buffer->buffers[cpu];
2237                         if (!cpu_buffer->nr_pages_to_update)
2238                                 continue;
2239
2240                         if (cpu_online(cpu))
2241                                 wait_for_completion(&cpu_buffer->update_done);
2242                         cpu_buffer->nr_pages_to_update = 0;
2243                 }
2244
2245                 cpus_read_unlock();
2246         } else {
2247                 cpu_buffer = buffer->buffers[cpu_id];
2248
2249                 if (nr_pages == cpu_buffer->nr_pages)
2250                         goto out;
2251
2252                 /*
2253                  * Don't succeed if resizing is disabled, as a reader might be
2254                  * manipulating the ring buffer and is expecting a sane state while
2255                  * this is true.
2256                  */
2257                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2258                         err = -EBUSY;
2259                         goto out_err_unlock;
2260                 }
2261
2262                 cpu_buffer->nr_pages_to_update = nr_pages -
2263                                                 cpu_buffer->nr_pages;
2264
2265                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2266                 if (cpu_buffer->nr_pages_to_update > 0 &&
2267                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2268                                             &cpu_buffer->new_pages)) {
2269                         err = -ENOMEM;
2270                         goto out_err;
2271                 }
2272
2273                 cpus_read_lock();
2274
2275                 /* Can't run something on an offline CPU. */
2276                 if (!cpu_online(cpu_id))
2277                         rb_update_pages(cpu_buffer);
2278                 else {
2279                         /* Run directly if possible. */
2280                         migrate_disable();
2281                         if (cpu_id == smp_processor_id()) {
2282                                 rb_update_pages(cpu_buffer);
2283                                 migrate_enable();
2284                         } else {
2285                                 migrate_enable();
2286                                 schedule_work_on(cpu_id,
2287                                                  &cpu_buffer->update_pages_work);
2288                                 wait_for_completion(&cpu_buffer->update_done);
2289                         }
2290                 }
2291
2292                 cpu_buffer->nr_pages_to_update = 0;
2293                 cpus_read_unlock();
2294         }
2295
2296  out:
2297         /*
2298          * The ring buffer resize can happen with the ring buffer
2299          * enabled, so that the update disturbs the tracing as little
2300          * as possible. But if the buffer is disabled, we do not need
2301          * to worry about that, and we can take the time to verify
2302          * that the buffer is not corrupt.
2303          */
2304         if (atomic_read(&buffer->record_disabled)) {
2305                 atomic_inc(&buffer->record_disabled);
2306                 /*
2307                  * Even though the buffer was disabled, we must make sure
2308                  * that it is truly disabled before calling rb_check_pages.
2309                  * There could have been a race between checking
2310                  * record_disable and incrementing it.
2311                  */
2312                 synchronize_rcu();
2313                 for_each_buffer_cpu(buffer, cpu) {
2314                         cpu_buffer = buffer->buffers[cpu];
2315                         rb_check_pages(cpu_buffer);
2316                 }
2317                 atomic_dec(&buffer->record_disabled);
2318         }
2319
2320         atomic_dec(&buffer->resizing);
2321         mutex_unlock(&buffer->mutex);
2322         return 0;
2323
2324  out_err:
2325         for_each_buffer_cpu(buffer, cpu) {
2326                 struct buffer_page *bpage, *tmp;
2327
2328                 cpu_buffer = buffer->buffers[cpu];
2329                 cpu_buffer->nr_pages_to_update = 0;
2330
2331                 if (list_empty(&cpu_buffer->new_pages))
2332                         continue;
2333
2334                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2335                                         list) {
2336                         list_del_init(&bpage->list);
2337                         free_buffer_page(bpage);
2338                 }
2339         }
2340  out_err_unlock:
2341         atomic_dec(&buffer->resizing);
2342         mutex_unlock(&buffer->mutex);
2343         return err;
2344 }
2345 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2346
2347 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2348 {
2349         mutex_lock(&buffer->mutex);
2350         if (val)
2351                 buffer->flags |= RB_FL_OVERWRITE;
2352         else
2353                 buffer->flags &= ~RB_FL_OVERWRITE;
2354         mutex_unlock(&buffer->mutex);
2355 }
2356 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2357
2358 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2359 {
2360         return bpage->page->data + index;
2361 }
2362
2363 static __always_inline struct ring_buffer_event *
2364 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2365 {
2366         return __rb_page_index(cpu_buffer->reader_page,
2367                                cpu_buffer->reader_page->read);
2368 }
2369
2370 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2371 {
2372         return local_read(&bpage->page->commit);
2373 }
2374
2375 static struct ring_buffer_event *
2376 rb_iter_head_event(struct ring_buffer_iter *iter)
2377 {
2378         struct ring_buffer_event *event;
2379         struct buffer_page *iter_head_page = iter->head_page;
2380         unsigned long commit;
2381         unsigned length;
2382
2383         if (iter->head != iter->next_event)
2384                 return iter->event;
2385
2386         /*
2387          * When the writer goes across pages, it issues a cmpxchg which
2388          * is a mb(), which will synchronize with the rmb here.
2389          * (see rb_tail_page_update() and __rb_reserve_next())
2390          */
2391         commit = rb_page_commit(iter_head_page);
2392         smp_rmb();
2393
2394         /* An event needs to be at least 8 bytes in size */
2395         if (iter->head > commit - 8)
2396                 goto reset;
2397
2398         event = __rb_page_index(iter_head_page, iter->head);
2399         length = rb_event_length(event);
2400
2401         /*
2402          * READ_ONCE() doesn't work on functions and we don't want the
2403          * compiler doing any crazy optimizations with length.
2404          */
2405         barrier();
2406
2407         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2408                 /* Writer corrupted the read? */
2409                 goto reset;
2410
2411         memcpy(iter->event, event, length);
2412         /*
2413          * If the page stamp is still the same after this rmb() then the
2414          * event was safely copied without the writer entering the page.
2415          */
2416         smp_rmb();
2417
2418         /* Make sure the page didn't change since we read this */
2419         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2420             commit > rb_page_commit(iter_head_page))
2421                 goto reset;
2422
2423         iter->next_event = iter->head + length;
2424         return iter->event;
2425  reset:
2426         /* Reset to the beginning */
2427         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2428         iter->head = 0;
2429         iter->next_event = 0;
2430         iter->missed_events = 1;
2431         return NULL;
2432 }
2433
2434 /* Size is determined by what has been committed */
2435 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2436 {
2437         return rb_page_commit(bpage);
2438 }
2439
2440 static __always_inline unsigned
2441 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2442 {
2443         return rb_page_commit(cpu_buffer->commit_page);
2444 }
2445
2446 static __always_inline unsigned
2447 rb_event_index(struct ring_buffer_event *event)
2448 {
2449         unsigned long addr = (unsigned long)event;
2450
2451         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2452 }
2453
2454 static void rb_inc_iter(struct ring_buffer_iter *iter)
2455 {
2456         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2457
2458         /*
2459          * The iterator could be on the reader page (it starts there).
2460          * But the head could have moved, since the reader was
2461          * found. Check for this case and assign the iterator
2462          * to the head page instead of next.
2463          */
2464         if (iter->head_page == cpu_buffer->reader_page)
2465                 iter->head_page = rb_set_head_page(cpu_buffer);
2466         else
2467                 rb_inc_page(&iter->head_page);
2468
2469         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2470         iter->head = 0;
2471         iter->next_event = 0;
2472 }
2473
2474 /*
2475  * rb_handle_head_page - writer hit the head page
2476  *
2477  * Returns: +1 to retry page
2478  *           0 to continue
2479  *          -1 on error
2480  */
2481 static int
2482 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2483                     struct buffer_page *tail_page,
2484                     struct buffer_page *next_page)
2485 {
2486         struct buffer_page *new_head;
2487         int entries;
2488         int type;
2489         int ret;
2490
2491         entries = rb_page_entries(next_page);
2492
2493         /*
2494          * The hard part is here. We need to move the head
2495          * forward, and protect against both readers on
2496          * other CPUs and writers coming in via interrupts.
2497          */
2498         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2499                                        RB_PAGE_HEAD);
2500
2501         /*
2502          * type can be one of four:
2503          *  NORMAL - an interrupt already moved it for us
2504          *  HEAD   - we are the first to get here.
2505          *  UPDATE - we are the interrupt interrupting
2506          *           a current move.
2507          *  MOVED  - a reader on another CPU moved the next
2508          *           pointer to its reader page. Give up
2509          *           and try again.
2510          */
2511
2512         switch (type) {
2513         case RB_PAGE_HEAD:
2514                 /*
2515                  * We changed the head to UPDATE, thus
2516                  * it is our responsibility to update
2517                  * the counters.
2518                  */
2519                 local_add(entries, &cpu_buffer->overrun);
2520                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2521                 local_inc(&cpu_buffer->pages_lost);
2522
2523                 /*
2524                  * The entries will be zeroed out when we move the
2525                  * tail page.
2526                  */
2527
2528                 /* still more to do */
2529                 break;
2530
2531         case RB_PAGE_UPDATE:
2532                 /*
2533                  * This is an interrupt that interrupt the
2534                  * previous update. Still more to do.
2535                  */
2536                 break;
2537         case RB_PAGE_NORMAL:
2538                 /*
2539                  * An interrupt came in before the update
2540                  * and processed this for us.
2541                  * Nothing left to do.
2542                  */
2543                 return 1;
2544         case RB_PAGE_MOVED:
2545                 /*
2546                  * The reader is on another CPU and just did
2547                  * a swap with our next_page.
2548                  * Try again.
2549                  */
2550                 return 1;
2551         default:
2552                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2553                 return -1;
2554         }
2555
2556         /*
2557          * Now that we are here, the old head pointer is
2558          * set to UPDATE. This will keep the reader from
2559          * swapping the head page with the reader page.
2560          * The reader (on another CPU) will spin till
2561          * we are finished.
2562          *
2563          * We just need to protect against interrupts
2564          * doing the job. We will set the next pointer
2565          * to HEAD. After that, we set the old pointer
2566          * to NORMAL, but only if it was HEAD before.
2567          * otherwise we are an interrupt, and only
2568          * want the outer most commit to reset it.
2569          */
2570         new_head = next_page;
2571         rb_inc_page(&new_head);
2572
2573         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2574                                     RB_PAGE_NORMAL);
2575
2576         /*
2577          * Valid returns are:
2578          *  HEAD   - an interrupt came in and already set it.
2579          *  NORMAL - One of two things:
2580          *            1) We really set it.
2581          *            2) A bunch of interrupts came in and moved
2582          *               the page forward again.
2583          */
2584         switch (ret) {
2585         case RB_PAGE_HEAD:
2586         case RB_PAGE_NORMAL:
2587                 /* OK */
2588                 break;
2589         default:
2590                 RB_WARN_ON(cpu_buffer, 1);
2591                 return -1;
2592         }
2593
2594         /*
2595          * It is possible that an interrupt came in,
2596          * set the head up, then more interrupts came in
2597          * and moved it again. When we get back here,
2598          * the page would have been set to NORMAL but we
2599          * just set it back to HEAD.
2600          *
2601          * How do you detect this? Well, if that happened
2602          * the tail page would have moved.
2603          */
2604         if (ret == RB_PAGE_NORMAL) {
2605                 struct buffer_page *buffer_tail_page;
2606
2607                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2608                 /*
2609                  * If the tail had moved passed next, then we need
2610                  * to reset the pointer.
2611                  */
2612                 if (buffer_tail_page != tail_page &&
2613                     buffer_tail_page != next_page)
2614                         rb_head_page_set_normal(cpu_buffer, new_head,
2615                                                 next_page,
2616                                                 RB_PAGE_HEAD);
2617         }
2618
2619         /*
2620          * If this was the outer most commit (the one that
2621          * changed the original pointer from HEAD to UPDATE),
2622          * then it is up to us to reset it to NORMAL.
2623          */
2624         if (type == RB_PAGE_HEAD) {
2625                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2626                                               tail_page,
2627                                               RB_PAGE_UPDATE);
2628                 if (RB_WARN_ON(cpu_buffer,
2629                                ret != RB_PAGE_UPDATE))
2630                         return -1;
2631         }
2632
2633         return 0;
2634 }
2635
2636 static inline void
2637 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2638               unsigned long tail, struct rb_event_info *info)
2639 {
2640         struct buffer_page *tail_page = info->tail_page;
2641         struct ring_buffer_event *event;
2642         unsigned long length = info->length;
2643
2644         /*
2645          * Only the event that crossed the page boundary
2646          * must fill the old tail_page with padding.
2647          */
2648         if (tail >= BUF_PAGE_SIZE) {
2649                 /*
2650                  * If the page was filled, then we still need
2651                  * to update the real_end. Reset it to zero
2652                  * and the reader will ignore it.
2653                  */
2654                 if (tail == BUF_PAGE_SIZE)
2655                         tail_page->real_end = 0;
2656
2657                 local_sub(length, &tail_page->write);
2658                 return;
2659         }
2660
2661         event = __rb_page_index(tail_page, tail);
2662
2663         /* account for padding bytes */
2664         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2665
2666         /*
2667          * Save the original length to the meta data.
2668          * This will be used by the reader to add lost event
2669          * counter.
2670          */
2671         tail_page->real_end = tail;
2672
2673         /*
2674          * If this event is bigger than the minimum size, then
2675          * we need to be careful that we don't subtract the
2676          * write counter enough to allow another writer to slip
2677          * in on this page.
2678          * We put in a discarded commit instead, to make sure
2679          * that this space is not used again.
2680          *
2681          * If we are less than the minimum size, we don't need to
2682          * worry about it.
2683          */
2684         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2685                 /* No room for any events */
2686
2687                 /* Mark the rest of the page with padding */
2688                 rb_event_set_padding(event);
2689
2690                 /* Make sure the padding is visible before the write update */
2691                 smp_wmb();
2692
2693                 /* Set the write back to the previous setting */
2694                 local_sub(length, &tail_page->write);
2695                 return;
2696         }
2697
2698         /* Put in a discarded event */
2699         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2700         event->type_len = RINGBUF_TYPE_PADDING;
2701         /* time delta must be non zero */
2702         event->time_delta = 1;
2703
2704         /* Make sure the padding is visible before the tail_page->write update */
2705         smp_wmb();
2706
2707         /* Set write to end of buffer */
2708         length = (tail + length) - BUF_PAGE_SIZE;
2709         local_sub(length, &tail_page->write);
2710 }
2711
2712 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2713
2714 /*
2715  * This is the slow path, force gcc not to inline it.
2716  */
2717 static noinline struct ring_buffer_event *
2718 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2719              unsigned long tail, struct rb_event_info *info)
2720 {
2721         struct buffer_page *tail_page = info->tail_page;
2722         struct buffer_page *commit_page = cpu_buffer->commit_page;
2723         struct trace_buffer *buffer = cpu_buffer->buffer;
2724         struct buffer_page *next_page;
2725         int ret;
2726
2727         next_page = tail_page;
2728
2729         rb_inc_page(&next_page);
2730
2731         /*
2732          * If for some reason, we had an interrupt storm that made
2733          * it all the way around the buffer, bail, and warn
2734          * about it.
2735          */
2736         if (unlikely(next_page == commit_page)) {
2737                 local_inc(&cpu_buffer->commit_overrun);
2738                 goto out_reset;
2739         }
2740
2741         /*
2742          * This is where the fun begins!
2743          *
2744          * We are fighting against races between a reader that
2745          * could be on another CPU trying to swap its reader
2746          * page with the buffer head.
2747          *
2748          * We are also fighting against interrupts coming in and
2749          * moving the head or tail on us as well.
2750          *
2751          * If the next page is the head page then we have filled
2752          * the buffer, unless the commit page is still on the
2753          * reader page.
2754          */
2755         if (rb_is_head_page(next_page, &tail_page->list)) {
2756
2757                 /*
2758                  * If the commit is not on the reader page, then
2759                  * move the header page.
2760                  */
2761                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2762                         /*
2763                          * If we are not in overwrite mode,
2764                          * this is easy, just stop here.
2765                          */
2766                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2767                                 local_inc(&cpu_buffer->dropped_events);
2768                                 goto out_reset;
2769                         }
2770
2771                         ret = rb_handle_head_page(cpu_buffer,
2772                                                   tail_page,
2773                                                   next_page);
2774                         if (ret < 0)
2775                                 goto out_reset;
2776                         if (ret)
2777                                 goto out_again;
2778                 } else {
2779                         /*
2780                          * We need to be careful here too. The
2781                          * commit page could still be on the reader
2782                          * page. We could have a small buffer, and
2783                          * have filled up the buffer with events
2784                          * from interrupts and such, and wrapped.
2785                          *
2786                          * Note, if the tail page is also on the
2787                          * reader_page, we let it move out.
2788                          */
2789                         if (unlikely((cpu_buffer->commit_page !=
2790                                       cpu_buffer->tail_page) &&
2791                                      (cpu_buffer->commit_page ==
2792                                       cpu_buffer->reader_page))) {
2793                                 local_inc(&cpu_buffer->commit_overrun);
2794                                 goto out_reset;
2795                         }
2796                 }
2797         }
2798
2799         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2800
2801  out_again:
2802
2803         rb_reset_tail(cpu_buffer, tail, info);
2804
2805         /* Commit what we have for now. */
2806         rb_end_commit(cpu_buffer);
2807         /* rb_end_commit() decs committing */
2808         local_inc(&cpu_buffer->committing);
2809
2810         /* fail and let the caller try again */
2811         return ERR_PTR(-EAGAIN);
2812
2813  out_reset:
2814         /* reset write */
2815         rb_reset_tail(cpu_buffer, tail, info);
2816
2817         return NULL;
2818 }
2819
2820 /* Slow path */
2821 static struct ring_buffer_event *
2822 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2823 {
2824         if (abs)
2825                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2826         else
2827                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2828
2829         /* Not the first event on the page, or not delta? */
2830         if (abs || rb_event_index(event)) {
2831                 event->time_delta = delta & TS_MASK;
2832                 event->array[0] = delta >> TS_SHIFT;
2833         } else {
2834                 /* nope, just zero it */
2835                 event->time_delta = 0;
2836                 event->array[0] = 0;
2837         }
2838
2839         return skip_time_extend(event);
2840 }
2841
2842 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2843 static inline bool sched_clock_stable(void)
2844 {
2845         return true;
2846 }
2847 #endif
2848
2849 static void
2850 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2851                    struct rb_event_info *info)
2852 {
2853         u64 write_stamp;
2854
2855         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2856                   (unsigned long long)info->delta,
2857                   (unsigned long long)info->ts,
2858                   (unsigned long long)info->before,
2859                   (unsigned long long)info->after,
2860                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2861                   sched_clock_stable() ? "" :
2862                   "If you just came from a suspend/resume,\n"
2863                   "please switch to the trace global clock:\n"
2864                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2865                   "or add trace_clock=global to the kernel command line\n");
2866 }
2867
2868 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2869                                       struct ring_buffer_event **event,
2870                                       struct rb_event_info *info,
2871                                       u64 *delta,
2872                                       unsigned int *length)
2873 {
2874         bool abs = info->add_timestamp &
2875                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2876
2877         if (unlikely(info->delta > (1ULL << 59))) {
2878                 /*
2879                  * Some timers can use more than 59 bits, and when a timestamp
2880                  * is added to the buffer, it will lose those bits.
2881                  */
2882                 if (abs && (info->ts & TS_MSB)) {
2883                         info->delta &= ABS_TS_MASK;
2884
2885                 /* did the clock go backwards */
2886                 } else if (info->before == info->after && info->before > info->ts) {
2887                         /* not interrupted */
2888                         static int once;
2889
2890                         /*
2891                          * This is possible with a recalibrating of the TSC.
2892                          * Do not produce a call stack, but just report it.
2893                          */
2894                         if (!once) {
2895                                 once++;
2896                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2897                                         info->before, info->ts);
2898                         }
2899                 } else
2900                         rb_check_timestamp(cpu_buffer, info);
2901                 if (!abs)
2902                         info->delta = 0;
2903         }
2904         *event = rb_add_time_stamp(*event, info->delta, abs);
2905         *length -= RB_LEN_TIME_EXTEND;
2906         *delta = 0;
2907 }
2908
2909 /**
2910  * rb_update_event - update event type and data
2911  * @cpu_buffer: The per cpu buffer of the @event
2912  * @event: the event to update
2913  * @info: The info to update the @event with (contains length and delta)
2914  *
2915  * Update the type and data fields of the @event. The length
2916  * is the actual size that is written to the ring buffer,
2917  * and with this, we can determine what to place into the
2918  * data field.
2919  */
2920 static void
2921 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2922                 struct ring_buffer_event *event,
2923                 struct rb_event_info *info)
2924 {
2925         unsigned length = info->length;
2926         u64 delta = info->delta;
2927         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2928
2929         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2930                 cpu_buffer->event_stamp[nest] = info->ts;
2931
2932         /*
2933          * If we need to add a timestamp, then we
2934          * add it to the start of the reserved space.
2935          */
2936         if (unlikely(info->add_timestamp))
2937                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2938
2939         event->time_delta = delta;
2940         length -= RB_EVNT_HDR_SIZE;
2941         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2942                 event->type_len = 0;
2943                 event->array[0] = length;
2944         } else
2945                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2946 }
2947
2948 static unsigned rb_calculate_event_length(unsigned length)
2949 {
2950         struct ring_buffer_event event; /* Used only for sizeof array */
2951
2952         /* zero length can cause confusions */
2953         if (!length)
2954                 length++;
2955
2956         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2957                 length += sizeof(event.array[0]);
2958
2959         length += RB_EVNT_HDR_SIZE;
2960         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2961
2962         /*
2963          * In case the time delta is larger than the 27 bits for it
2964          * in the header, we need to add a timestamp. If another
2965          * event comes in when trying to discard this one to increase
2966          * the length, then the timestamp will be added in the allocated
2967          * space of this event. If length is bigger than the size needed
2968          * for the TIME_EXTEND, then padding has to be used. The events
2969          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2970          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2971          * As length is a multiple of 4, we only need to worry if it
2972          * is 12 (RB_LEN_TIME_EXTEND + 4).
2973          */
2974         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2975                 length += RB_ALIGNMENT;
2976
2977         return length;
2978 }
2979
2980 static u64 rb_time_delta(struct ring_buffer_event *event)
2981 {
2982         switch (event->type_len) {
2983         case RINGBUF_TYPE_PADDING:
2984                 return 0;
2985
2986         case RINGBUF_TYPE_TIME_EXTEND:
2987                 return rb_event_time_stamp(event);
2988
2989         case RINGBUF_TYPE_TIME_STAMP:
2990                 return 0;
2991
2992         case RINGBUF_TYPE_DATA:
2993                 return event->time_delta;
2994         default:
2995                 return 0;
2996         }
2997 }
2998
2999 static inline bool
3000 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3001                   struct ring_buffer_event *event)
3002 {
3003         unsigned long new_index, old_index;
3004         struct buffer_page *bpage;
3005         unsigned long addr;
3006         u64 write_stamp;
3007         u64 delta;
3008
3009         new_index = rb_event_index(event);
3010         old_index = new_index + rb_event_ts_length(event);
3011         addr = (unsigned long)event;
3012         addr &= PAGE_MASK;
3013
3014         bpage = READ_ONCE(cpu_buffer->tail_page);
3015
3016         delta = rb_time_delta(event);
3017
3018         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3019                 return false;
3020
3021         /* Make sure the write stamp is read before testing the location */
3022         barrier();
3023
3024         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3025                 unsigned long write_mask =
3026                         local_read(&bpage->write) & ~RB_WRITE_MASK;
3027                 unsigned long event_length = rb_event_length(event);
3028
3029                 /* Something came in, can't discard */
3030                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3031                                        write_stamp, write_stamp - delta))
3032                         return false;
3033
3034                 /*
3035                  * It's possible that the event time delta is zero
3036                  * (has the same time stamp as the previous event)
3037                  * in which case write_stamp and before_stamp could
3038                  * be the same. In such a case, force before_stamp
3039                  * to be different than write_stamp. It doesn't
3040                  * matter what it is, as long as its different.
3041                  */
3042                 if (!delta)
3043                         rb_time_set(&cpu_buffer->before_stamp, 0);
3044
3045                 /*
3046                  * If an event were to come in now, it would see that the
3047                  * write_stamp and the before_stamp are different, and assume
3048                  * that this event just added itself before updating
3049                  * the write stamp. The interrupting event will fix the
3050                  * write stamp for us, and use the before stamp as its delta.
3051                  */
3052
3053                 /*
3054                  * This is on the tail page. It is possible that
3055                  * a write could come in and move the tail page
3056                  * and write to the next page. That is fine
3057                  * because we just shorten what is on this page.
3058                  */
3059                 old_index += write_mask;
3060                 new_index += write_mask;
3061
3062                 /* caution: old_index gets updated on cmpxchg failure */
3063                 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3064                         /* update counters */
3065                         local_sub(event_length, &cpu_buffer->entries_bytes);
3066                         return true;
3067                 }
3068         }
3069
3070         /* could not discard */
3071         return false;
3072 }
3073
3074 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3075 {
3076         local_inc(&cpu_buffer->committing);
3077         local_inc(&cpu_buffer->commits);
3078 }
3079
3080 static __always_inline void
3081 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3082 {
3083         unsigned long max_count;
3084
3085         /*
3086          * We only race with interrupts and NMIs on this CPU.
3087          * If we own the commit event, then we can commit
3088          * all others that interrupted us, since the interruptions
3089          * are in stack format (they finish before they come
3090          * back to us). This allows us to do a simple loop to
3091          * assign the commit to the tail.
3092          */
3093  again:
3094         max_count = cpu_buffer->nr_pages * 100;
3095
3096         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3097                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3098                         return;
3099                 if (RB_WARN_ON(cpu_buffer,
3100                                rb_is_reader_page(cpu_buffer->tail_page)))
3101                         return;
3102                 /*
3103                  * No need for a memory barrier here, as the update
3104                  * of the tail_page did it for this page.
3105                  */
3106                 local_set(&cpu_buffer->commit_page->page->commit,
3107                           rb_page_write(cpu_buffer->commit_page));
3108                 rb_inc_page(&cpu_buffer->commit_page);
3109                 /* add barrier to keep gcc from optimizing too much */
3110                 barrier();
3111         }
3112         while (rb_commit_index(cpu_buffer) !=
3113                rb_page_write(cpu_buffer->commit_page)) {
3114
3115                 /* Make sure the readers see the content of what is committed. */
3116                 smp_wmb();
3117                 local_set(&cpu_buffer->commit_page->page->commit,
3118                           rb_page_write(cpu_buffer->commit_page));
3119                 RB_WARN_ON(cpu_buffer,
3120                            local_read(&cpu_buffer->commit_page->page->commit) &
3121                            ~RB_WRITE_MASK);
3122                 barrier();
3123         }
3124
3125         /* again, keep gcc from optimizing */
3126         barrier();
3127
3128         /*
3129          * If an interrupt came in just after the first while loop
3130          * and pushed the tail page forward, we will be left with
3131          * a dangling commit that will never go forward.
3132          */
3133         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3134                 goto again;
3135 }
3136
3137 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3138 {
3139         unsigned long commits;
3140
3141         if (RB_WARN_ON(cpu_buffer,
3142                        !local_read(&cpu_buffer->committing)))
3143                 return;
3144
3145  again:
3146         commits = local_read(&cpu_buffer->commits);
3147         /* synchronize with interrupts */
3148         barrier();
3149         if (local_read(&cpu_buffer->committing) == 1)
3150                 rb_set_commit_to_write(cpu_buffer);
3151
3152         local_dec(&cpu_buffer->committing);
3153
3154         /* synchronize with interrupts */
3155         barrier();
3156
3157         /*
3158          * Need to account for interrupts coming in between the
3159          * updating of the commit page and the clearing of the
3160          * committing counter.
3161          */
3162         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3163             !local_read(&cpu_buffer->committing)) {
3164                 local_inc(&cpu_buffer->committing);
3165                 goto again;
3166         }
3167 }
3168
3169 static inline void rb_event_discard(struct ring_buffer_event *event)
3170 {
3171         if (extended_time(event))
3172                 event = skip_time_extend(event);
3173
3174         /* array[0] holds the actual length for the discarded event */
3175         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3176         event->type_len = RINGBUF_TYPE_PADDING;
3177         /* time delta must be non zero */
3178         if (!event->time_delta)
3179                 event->time_delta = 1;
3180 }
3181
3182 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3183 {
3184         local_inc(&cpu_buffer->entries);
3185         rb_end_commit(cpu_buffer);
3186 }
3187
3188 static __always_inline void
3189 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3190 {
3191         if (buffer->irq_work.waiters_pending) {
3192                 buffer->irq_work.waiters_pending = false;
3193                 /* irq_work_queue() supplies it's own memory barriers */
3194                 irq_work_queue(&buffer->irq_work.work);
3195         }
3196
3197         if (cpu_buffer->irq_work.waiters_pending) {
3198                 cpu_buffer->irq_work.waiters_pending = false;
3199                 /* irq_work_queue() supplies it's own memory barriers */
3200                 irq_work_queue(&cpu_buffer->irq_work.work);
3201         }
3202
3203         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3204                 return;
3205
3206         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3207                 return;
3208
3209         if (!cpu_buffer->irq_work.full_waiters_pending)
3210                 return;
3211
3212         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3213
3214         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3215                 return;
3216
3217         cpu_buffer->irq_work.wakeup_full = true;
3218         cpu_buffer->irq_work.full_waiters_pending = false;
3219         /* irq_work_queue() supplies it's own memory barriers */
3220         irq_work_queue(&cpu_buffer->irq_work.work);
3221 }
3222
3223 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3224 # define do_ring_buffer_record_recursion()      \
3225         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3226 #else
3227 # define do_ring_buffer_record_recursion() do { } while (0)
3228 #endif
3229
3230 /*
3231  * The lock and unlock are done within a preempt disable section.
3232  * The current_context per_cpu variable can only be modified
3233  * by the current task between lock and unlock. But it can
3234  * be modified more than once via an interrupt. To pass this
3235  * information from the lock to the unlock without having to
3236  * access the 'in_interrupt()' functions again (which do show
3237  * a bit of overhead in something as critical as function tracing,
3238  * we use a bitmask trick.
3239  *
3240  *  bit 1 =  NMI context
3241  *  bit 2 =  IRQ context
3242  *  bit 3 =  SoftIRQ context
3243  *  bit 4 =  normal context.
3244  *
3245  * This works because this is the order of contexts that can
3246  * preempt other contexts. A SoftIRQ never preempts an IRQ
3247  * context.
3248  *
3249  * When the context is determined, the corresponding bit is
3250  * checked and set (if it was set, then a recursion of that context
3251  * happened).
3252  *
3253  * On unlock, we need to clear this bit. To do so, just subtract
3254  * 1 from the current_context and AND it to itself.
3255  *
3256  * (binary)
3257  *  101 - 1 = 100
3258  *  101 & 100 = 100 (clearing bit zero)
3259  *
3260  *  1010 - 1 = 1001
3261  *  1010 & 1001 = 1000 (clearing bit 1)
3262  *
3263  * The least significant bit can be cleared this way, and it
3264  * just so happens that it is the same bit corresponding to
3265  * the current context.
3266  *
3267  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3268  * is set when a recursion is detected at the current context, and if
3269  * the TRANSITION bit is already set, it will fail the recursion.
3270  * This is needed because there's a lag between the changing of
3271  * interrupt context and updating the preempt count. In this case,
3272  * a false positive will be found. To handle this, one extra recursion
3273  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3274  * bit is already set, then it is considered a recursion and the function
3275  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3276  *
3277  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3278  * to be cleared. Even if it wasn't the context that set it. That is,
3279  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3280  * is called before preempt_count() is updated, since the check will
3281  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3282  * NMI then comes in, it will set the NMI bit, but when the NMI code
3283  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3284  * and leave the NMI bit set. But this is fine, because the interrupt
3285  * code that set the TRANSITION bit will then clear the NMI bit when it
3286  * calls trace_recursive_unlock(). If another NMI comes in, it will
3287  * set the TRANSITION bit and continue.
3288  *
3289  * Note: The TRANSITION bit only handles a single transition between context.
3290  */
3291
3292 static __always_inline bool
3293 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3294 {
3295         unsigned int val = cpu_buffer->current_context;
3296         int bit = interrupt_context_level();
3297
3298         bit = RB_CTX_NORMAL - bit;
3299
3300         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3301                 /*
3302                  * It is possible that this was called by transitioning
3303                  * between interrupt context, and preempt_count() has not
3304                  * been updated yet. In this case, use the TRANSITION bit.
3305                  */
3306                 bit = RB_CTX_TRANSITION;
3307                 if (val & (1 << (bit + cpu_buffer->nest))) {
3308                         do_ring_buffer_record_recursion();
3309                         return true;
3310                 }
3311         }
3312
3313         val |= (1 << (bit + cpu_buffer->nest));
3314         cpu_buffer->current_context = val;
3315
3316         return false;
3317 }
3318
3319 static __always_inline void
3320 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3321 {
3322         cpu_buffer->current_context &=
3323                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3324 }
3325
3326 /* The recursive locking above uses 5 bits */
3327 #define NESTED_BITS 5
3328
3329 /**
3330  * ring_buffer_nest_start - Allow to trace while nested
3331  * @buffer: The ring buffer to modify
3332  *
3333  * The ring buffer has a safety mechanism to prevent recursion.
3334  * But there may be a case where a trace needs to be done while
3335  * tracing something else. In this case, calling this function
3336  * will allow this function to nest within a currently active
3337  * ring_buffer_lock_reserve().
3338  *
3339  * Call this function before calling another ring_buffer_lock_reserve() and
3340  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3341  */
3342 void ring_buffer_nest_start(struct trace_buffer *buffer)
3343 {
3344         struct ring_buffer_per_cpu *cpu_buffer;
3345         int cpu;
3346
3347         /* Enabled by ring_buffer_nest_end() */
3348         preempt_disable_notrace();
3349         cpu = raw_smp_processor_id();
3350         cpu_buffer = buffer->buffers[cpu];
3351         /* This is the shift value for the above recursive locking */
3352         cpu_buffer->nest += NESTED_BITS;
3353 }
3354
3355 /**
3356  * ring_buffer_nest_end - Allow to trace while nested
3357  * @buffer: The ring buffer to modify
3358  *
3359  * Must be called after ring_buffer_nest_start() and after the
3360  * ring_buffer_unlock_commit().
3361  */
3362 void ring_buffer_nest_end(struct trace_buffer *buffer)
3363 {
3364         struct ring_buffer_per_cpu *cpu_buffer;
3365         int cpu;
3366
3367         /* disabled by ring_buffer_nest_start() */
3368         cpu = raw_smp_processor_id();
3369         cpu_buffer = buffer->buffers[cpu];
3370         /* This is the shift value for the above recursive locking */
3371         cpu_buffer->nest -= NESTED_BITS;
3372         preempt_enable_notrace();
3373 }
3374
3375 /**
3376  * ring_buffer_unlock_commit - commit a reserved
3377  * @buffer: The buffer to commit to
3378  *
3379  * This commits the data to the ring buffer, and releases any locks held.
3380  *
3381  * Must be paired with ring_buffer_lock_reserve.
3382  */
3383 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3384 {
3385         struct ring_buffer_per_cpu *cpu_buffer;
3386         int cpu = raw_smp_processor_id();
3387
3388         cpu_buffer = buffer->buffers[cpu];
3389
3390         rb_commit(cpu_buffer);
3391
3392         rb_wakeups(buffer, cpu_buffer);
3393
3394         trace_recursive_unlock(cpu_buffer);
3395
3396         preempt_enable_notrace();
3397
3398         return 0;
3399 }
3400 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3401
3402 /* Special value to validate all deltas on a page. */
3403 #define CHECK_FULL_PAGE         1L
3404
3405 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3406 static void dump_buffer_page(struct buffer_data_page *bpage,
3407                              struct rb_event_info *info,
3408                              unsigned long tail)
3409 {
3410         struct ring_buffer_event *event;
3411         u64 ts, delta;
3412         int e;
3413
3414         ts = bpage->time_stamp;
3415         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3416
3417         for (e = 0; e < tail; e += rb_event_length(event)) {
3418
3419                 event = (struct ring_buffer_event *)(bpage->data + e);
3420
3421                 switch (event->type_len) {
3422
3423                 case RINGBUF_TYPE_TIME_EXTEND:
3424                         delta = rb_event_time_stamp(event);
3425                         ts += delta;
3426                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3427                         break;
3428
3429                 case RINGBUF_TYPE_TIME_STAMP:
3430                         delta = rb_event_time_stamp(event);
3431                         ts = rb_fix_abs_ts(delta, ts);
3432                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3433                         break;
3434
3435                 case RINGBUF_TYPE_PADDING:
3436                         ts += event->time_delta;
3437                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3438                         break;
3439
3440                 case RINGBUF_TYPE_DATA:
3441                         ts += event->time_delta;
3442                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3443                         break;
3444
3445                 default:
3446                         break;
3447                 }
3448         }
3449 }
3450
3451 static DEFINE_PER_CPU(atomic_t, checking);
3452 static atomic_t ts_dump;
3453
3454 /*
3455  * Check if the current event time stamp matches the deltas on
3456  * the buffer page.
3457  */
3458 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3459                          struct rb_event_info *info,
3460                          unsigned long tail)
3461 {
3462         struct ring_buffer_event *event;
3463         struct buffer_data_page *bpage;
3464         u64 ts, delta;
3465         bool full = false;
3466         int e;
3467
3468         bpage = info->tail_page->page;
3469
3470         if (tail == CHECK_FULL_PAGE) {
3471                 full = true;
3472                 tail = local_read(&bpage->commit);
3473         } else if (info->add_timestamp &
3474                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3475                 /* Ignore events with absolute time stamps */
3476                 return;
3477         }
3478
3479         /*
3480          * Do not check the first event (skip possible extends too).
3481          * Also do not check if previous events have not been committed.
3482          */
3483         if (tail <= 8 || tail > local_read(&bpage->commit))
3484                 return;
3485
3486         /*
3487          * If this interrupted another event, 
3488          */
3489         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3490                 goto out;
3491
3492         ts = bpage->time_stamp;
3493
3494         for (e = 0; e < tail; e += rb_event_length(event)) {
3495
3496                 event = (struct ring_buffer_event *)(bpage->data + e);
3497
3498                 switch (event->type_len) {
3499
3500                 case RINGBUF_TYPE_TIME_EXTEND:
3501                         delta = rb_event_time_stamp(event);
3502                         ts += delta;
3503                         break;
3504
3505                 case RINGBUF_TYPE_TIME_STAMP:
3506                         delta = rb_event_time_stamp(event);
3507                         ts = rb_fix_abs_ts(delta, ts);
3508                         break;
3509
3510                 case RINGBUF_TYPE_PADDING:
3511                         if (event->time_delta == 1)
3512                                 break;
3513                         fallthrough;
3514                 case RINGBUF_TYPE_DATA:
3515                         ts += event->time_delta;
3516                         break;
3517
3518                 default:
3519                         RB_WARN_ON(cpu_buffer, 1);
3520                 }
3521         }
3522         if ((full && ts > info->ts) ||
3523             (!full && ts + info->delta != info->ts)) {
3524                 /* If another report is happening, ignore this one */
3525                 if (atomic_inc_return(&ts_dump) != 1) {
3526                         atomic_dec(&ts_dump);
3527                         goto out;
3528                 }
3529                 atomic_inc(&cpu_buffer->record_disabled);
3530                 /* There's some cases in boot up that this can happen */
3531                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3532                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3533                         cpu_buffer->cpu,
3534                         ts + info->delta, info->ts, info->delta,
3535                         info->before, info->after,
3536                         full ? " (full)" : "");
3537                 dump_buffer_page(bpage, info, tail);
3538                 atomic_dec(&ts_dump);
3539                 /* Do not re-enable checking */
3540                 return;
3541         }
3542 out:
3543         atomic_dec(this_cpu_ptr(&checking));
3544 }
3545 #else
3546 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3547                          struct rb_event_info *info,
3548                          unsigned long tail)
3549 {
3550 }
3551 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3552
3553 static struct ring_buffer_event *
3554 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3555                   struct rb_event_info *info)
3556 {
3557         struct ring_buffer_event *event;
3558         struct buffer_page *tail_page;
3559         unsigned long tail, write, w;
3560         bool a_ok;
3561         bool b_ok;
3562
3563         /* Don't let the compiler play games with cpu_buffer->tail_page */
3564         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3565
3566  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3567         barrier();
3568         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3569         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3570         barrier();
3571         info->ts = rb_time_stamp(cpu_buffer->buffer);
3572
3573         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3574                 info->delta = info->ts;
3575         } else {
3576                 /*
3577                  * If interrupting an event time update, we may need an
3578                  * absolute timestamp.
3579                  * Don't bother if this is the start of a new page (w == 0).
3580                  */
3581                 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3582                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3583                         info->length += RB_LEN_TIME_EXTEND;
3584                 } else {
3585                         info->delta = info->ts - info->after;
3586                         if (unlikely(test_time_stamp(info->delta))) {
3587                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3588                                 info->length += RB_LEN_TIME_EXTEND;
3589                         }
3590                 }
3591         }
3592
3593  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3594
3595  /*C*/  write = local_add_return(info->length, &tail_page->write);
3596
3597         /* set write to only the index of the write */
3598         write &= RB_WRITE_MASK;
3599
3600         tail = write - info->length;
3601
3602         /* See if we shot pass the end of this buffer page */
3603         if (unlikely(write > BUF_PAGE_SIZE)) {
3604                 /* before and after may now different, fix it up*/
3605                 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3606                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3607                 if (a_ok && b_ok && info->before != info->after)
3608                         (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3609                                               info->before, info->after);
3610                 if (a_ok && b_ok)
3611                         check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3612                 return rb_move_tail(cpu_buffer, tail, info);
3613         }
3614
3615         if (likely(tail == w)) {
3616                 u64 save_before;
3617                 bool s_ok;
3618
3619                 /* Nothing interrupted us between A and C */
3620  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3621                 barrier();
3622  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3623                 RB_WARN_ON(cpu_buffer, !s_ok);
3624                 if (likely(!(info->add_timestamp &
3625                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3626                         /* This did not interrupt any time update */
3627                         info->delta = info->ts - info->after;
3628                 else
3629                         /* Just use full timestamp for interrupting event */
3630                         info->delta = info->ts;
3631                 barrier();
3632                 check_buffer(cpu_buffer, info, tail);
3633                 if (unlikely(info->ts != save_before)) {
3634                         /* SLOW PATH - Interrupted between C and E */
3635
3636                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3637                         RB_WARN_ON(cpu_buffer, !a_ok);
3638
3639                         /* Write stamp must only go forward */
3640                         if (save_before > info->after) {
3641                                 /*
3642                                  * We do not care about the result, only that
3643                                  * it gets updated atomically.
3644                                  */
3645                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3646                                                       info->after, save_before);
3647                         }
3648                 }
3649         } else {
3650                 u64 ts;
3651                 /* SLOW PATH - Interrupted between A and C */
3652                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3653                 /* Was interrupted before here, write_stamp must be valid */
3654                 RB_WARN_ON(cpu_buffer, !a_ok);
3655                 ts = rb_time_stamp(cpu_buffer->buffer);
3656                 barrier();
3657  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3658                     info->after < ts &&
3659                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3660                                     info->after, ts)) {
3661                         /* Nothing came after this event between C and E */
3662                         info->delta = ts - info->after;
3663                 } else {
3664                         /*
3665                          * Interrupted between C and E:
3666                          * Lost the previous events time stamp. Just set the
3667                          * delta to zero, and this will be the same time as
3668                          * the event this event interrupted. And the events that
3669                          * came after this will still be correct (as they would
3670                          * have built their delta on the previous event.
3671                          */
3672                         info->delta = 0;
3673                 }
3674                 info->ts = ts;
3675                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3676         }
3677
3678         /*
3679          * If this is the first commit on the page, then it has the same
3680          * timestamp as the page itself.
3681          */
3682         if (unlikely(!tail && !(info->add_timestamp &
3683                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3684                 info->delta = 0;
3685
3686         /* We reserved something on the buffer */
3687
3688         event = __rb_page_index(tail_page, tail);
3689         rb_update_event(cpu_buffer, event, info);
3690
3691         local_inc(&tail_page->entries);
3692
3693         /*
3694          * If this is the first commit on the page, then update
3695          * its timestamp.
3696          */
3697         if (unlikely(!tail))
3698                 tail_page->page->time_stamp = info->ts;
3699
3700         /* account for these added bytes */
3701         local_add(info->length, &cpu_buffer->entries_bytes);
3702
3703         return event;
3704 }
3705
3706 static __always_inline struct ring_buffer_event *
3707 rb_reserve_next_event(struct trace_buffer *buffer,
3708                       struct ring_buffer_per_cpu *cpu_buffer,
3709                       unsigned long length)
3710 {
3711         struct ring_buffer_event *event;
3712         struct rb_event_info info;
3713         int nr_loops = 0;
3714         int add_ts_default;
3715
3716         rb_start_commit(cpu_buffer);
3717         /* The commit page can not change after this */
3718
3719 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3720         /*
3721          * Due to the ability to swap a cpu buffer from a buffer
3722          * it is possible it was swapped before we committed.
3723          * (committing stops a swap). We check for it here and
3724          * if it happened, we have to fail the write.
3725          */
3726         barrier();
3727         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3728                 local_dec(&cpu_buffer->committing);
3729                 local_dec(&cpu_buffer->commits);
3730                 return NULL;
3731         }
3732 #endif
3733
3734         info.length = rb_calculate_event_length(length);
3735
3736         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3737                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3738                 info.length += RB_LEN_TIME_EXTEND;
3739         } else {
3740                 add_ts_default = RB_ADD_STAMP_NONE;
3741         }
3742
3743  again:
3744         info.add_timestamp = add_ts_default;
3745         info.delta = 0;
3746
3747         /*
3748          * We allow for interrupts to reenter here and do a trace.
3749          * If one does, it will cause this original code to loop
3750          * back here. Even with heavy interrupts happening, this
3751          * should only happen a few times in a row. If this happens
3752          * 1000 times in a row, there must be either an interrupt
3753          * storm or we have something buggy.
3754          * Bail!
3755          */
3756         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3757                 goto out_fail;
3758
3759         event = __rb_reserve_next(cpu_buffer, &info);
3760
3761         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3762                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3763                         info.length -= RB_LEN_TIME_EXTEND;
3764                 goto again;
3765         }
3766
3767         if (likely(event))
3768                 return event;
3769  out_fail:
3770         rb_end_commit(cpu_buffer);
3771         return NULL;
3772 }
3773
3774 /**
3775  * ring_buffer_lock_reserve - reserve a part of the buffer
3776  * @buffer: the ring buffer to reserve from
3777  * @length: the length of the data to reserve (excluding event header)
3778  *
3779  * Returns a reserved event on the ring buffer to copy directly to.
3780  * The user of this interface will need to get the body to write into
3781  * and can use the ring_buffer_event_data() interface.
3782  *
3783  * The length is the length of the data needed, not the event length
3784  * which also includes the event header.
3785  *
3786  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3787  * If NULL is returned, then nothing has been allocated or locked.
3788  */
3789 struct ring_buffer_event *
3790 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3791 {
3792         struct ring_buffer_per_cpu *cpu_buffer;
3793         struct ring_buffer_event *event;
3794         int cpu;
3795
3796         /* If we are tracing schedule, we don't want to recurse */
3797         preempt_disable_notrace();
3798
3799         if (unlikely(atomic_read(&buffer->record_disabled)))
3800                 goto out;
3801
3802         cpu = raw_smp_processor_id();
3803
3804         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3805                 goto out;
3806
3807         cpu_buffer = buffer->buffers[cpu];
3808
3809         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3810                 goto out;
3811
3812         if (unlikely(length > BUF_MAX_DATA_SIZE))
3813                 goto out;
3814
3815         if (unlikely(trace_recursive_lock(cpu_buffer)))
3816                 goto out;
3817
3818         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3819         if (!event)
3820                 goto out_unlock;
3821
3822         return event;
3823
3824  out_unlock:
3825         trace_recursive_unlock(cpu_buffer);
3826  out:
3827         preempt_enable_notrace();
3828         return NULL;
3829 }
3830 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3831
3832 /*
3833  * Decrement the entries to the page that an event is on.
3834  * The event does not even need to exist, only the pointer
3835  * to the page it is on. This may only be called before the commit
3836  * takes place.
3837  */
3838 static inline void
3839 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3840                    struct ring_buffer_event *event)
3841 {
3842         unsigned long addr = (unsigned long)event;
3843         struct buffer_page *bpage = cpu_buffer->commit_page;
3844         struct buffer_page *start;
3845
3846         addr &= PAGE_MASK;
3847
3848         /* Do the likely case first */
3849         if (likely(bpage->page == (void *)addr)) {
3850                 local_dec(&bpage->entries);
3851                 return;
3852         }
3853
3854         /*
3855          * Because the commit page may be on the reader page we
3856          * start with the next page and check the end loop there.
3857          */
3858         rb_inc_page(&bpage);
3859         start = bpage;
3860         do {
3861                 if (bpage->page == (void *)addr) {
3862                         local_dec(&bpage->entries);
3863                         return;
3864                 }
3865                 rb_inc_page(&bpage);
3866         } while (bpage != start);
3867
3868         /* commit not part of this buffer?? */
3869         RB_WARN_ON(cpu_buffer, 1);
3870 }
3871
3872 /**
3873  * ring_buffer_discard_commit - discard an event that has not been committed
3874  * @buffer: the ring buffer
3875  * @event: non committed event to discard
3876  *
3877  * Sometimes an event that is in the ring buffer needs to be ignored.
3878  * This function lets the user discard an event in the ring buffer
3879  * and then that event will not be read later.
3880  *
3881  * This function only works if it is called before the item has been
3882  * committed. It will try to free the event from the ring buffer
3883  * if another event has not been added behind it.
3884  *
3885  * If another event has been added behind it, it will set the event
3886  * up as discarded, and perform the commit.
3887  *
3888  * If this function is called, do not call ring_buffer_unlock_commit on
3889  * the event.
3890  */
3891 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3892                                 struct ring_buffer_event *event)
3893 {
3894         struct ring_buffer_per_cpu *cpu_buffer;
3895         int cpu;
3896
3897         /* The event is discarded regardless */
3898         rb_event_discard(event);
3899
3900         cpu = smp_processor_id();
3901         cpu_buffer = buffer->buffers[cpu];
3902
3903         /*
3904          * This must only be called if the event has not been
3905          * committed yet. Thus we can assume that preemption
3906          * is still disabled.
3907          */
3908         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3909
3910         rb_decrement_entry(cpu_buffer, event);
3911         if (rb_try_to_discard(cpu_buffer, event))
3912                 goto out;
3913
3914  out:
3915         rb_end_commit(cpu_buffer);
3916
3917         trace_recursive_unlock(cpu_buffer);
3918
3919         preempt_enable_notrace();
3920
3921 }
3922 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3923
3924 /**
3925  * ring_buffer_write - write data to the buffer without reserving
3926  * @buffer: The ring buffer to write to.
3927  * @length: The length of the data being written (excluding the event header)
3928  * @data: The data to write to the buffer.
3929  *
3930  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3931  * one function. If you already have the data to write to the buffer, it
3932  * may be easier to simply call this function.
3933  *
3934  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3935  * and not the length of the event which would hold the header.
3936  */
3937 int ring_buffer_write(struct trace_buffer *buffer,
3938                       unsigned long length,
3939                       void *data)
3940 {
3941         struct ring_buffer_per_cpu *cpu_buffer;
3942         struct ring_buffer_event *event;
3943         void *body;
3944         int ret = -EBUSY;
3945         int cpu;
3946
3947         preempt_disable_notrace();
3948
3949         if (atomic_read(&buffer->record_disabled))
3950                 goto out;
3951
3952         cpu = raw_smp_processor_id();
3953
3954         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3955                 goto out;
3956
3957         cpu_buffer = buffer->buffers[cpu];
3958
3959         if (atomic_read(&cpu_buffer->record_disabled))
3960                 goto out;
3961
3962         if (length > BUF_MAX_DATA_SIZE)
3963                 goto out;
3964
3965         if (unlikely(trace_recursive_lock(cpu_buffer)))
3966                 goto out;
3967
3968         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3969         if (!event)
3970                 goto out_unlock;
3971
3972         body = rb_event_data(event);
3973
3974         memcpy(body, data, length);
3975
3976         rb_commit(cpu_buffer);
3977
3978         rb_wakeups(buffer, cpu_buffer);
3979
3980         ret = 0;
3981
3982  out_unlock:
3983         trace_recursive_unlock(cpu_buffer);
3984
3985  out:
3986         preempt_enable_notrace();
3987
3988         return ret;
3989 }
3990 EXPORT_SYMBOL_GPL(ring_buffer_write);
3991
3992 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3993 {
3994         struct buffer_page *reader = cpu_buffer->reader_page;
3995         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3996         struct buffer_page *commit = cpu_buffer->commit_page;
3997
3998         /* In case of error, head will be NULL */
3999         if (unlikely(!head))
4000                 return true;
4001
4002         /* Reader should exhaust content in reader page */
4003         if (reader->read != rb_page_commit(reader))
4004                 return false;
4005
4006         /*
4007          * If writers are committing on the reader page, knowing all
4008          * committed content has been read, the ring buffer is empty.
4009          */
4010         if (commit == reader)
4011                 return true;
4012
4013         /*
4014          * If writers are committing on a page other than reader page
4015          * and head page, there should always be content to read.
4016          */
4017         if (commit != head)
4018                 return false;
4019
4020         /*
4021          * Writers are committing on the head page, we just need
4022          * to care about there're committed data, and the reader will
4023          * swap reader page with head page when it is to read data.
4024          */
4025         return rb_page_commit(commit) == 0;
4026 }
4027
4028 /**
4029  * ring_buffer_record_disable - stop all writes into the buffer
4030  * @buffer: The ring buffer to stop writes to.
4031  *
4032  * This prevents all writes to the buffer. Any attempt to write
4033  * to the buffer after this will fail and return NULL.
4034  *
4035  * The caller should call synchronize_rcu() after this.
4036  */
4037 void ring_buffer_record_disable(struct trace_buffer *buffer)
4038 {
4039         atomic_inc(&buffer->record_disabled);
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4042
4043 /**
4044  * ring_buffer_record_enable - enable writes to the buffer
4045  * @buffer: The ring buffer to enable writes
4046  *
4047  * Note, multiple disables will need the same number of enables
4048  * to truly enable the writing (much like preempt_disable).
4049  */
4050 void ring_buffer_record_enable(struct trace_buffer *buffer)
4051 {
4052         atomic_dec(&buffer->record_disabled);
4053 }
4054 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4055
4056 /**
4057  * ring_buffer_record_off - stop all writes into the buffer
4058  * @buffer: The ring buffer to stop writes to.
4059  *
4060  * This prevents all writes to the buffer. Any attempt to write
4061  * to the buffer after this will fail and return NULL.
4062  *
4063  * This is different than ring_buffer_record_disable() as
4064  * it works like an on/off switch, where as the disable() version
4065  * must be paired with a enable().
4066  */
4067 void ring_buffer_record_off(struct trace_buffer *buffer)
4068 {
4069         unsigned int rd;
4070         unsigned int new_rd;
4071
4072         rd = atomic_read(&buffer->record_disabled);
4073         do {
4074                 new_rd = rd | RB_BUFFER_OFF;
4075         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4076 }
4077 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4078
4079 /**
4080  * ring_buffer_record_on - restart writes into the buffer
4081  * @buffer: The ring buffer to start writes to.
4082  *
4083  * This enables all writes to the buffer that was disabled by
4084  * ring_buffer_record_off().
4085  *
4086  * This is different than ring_buffer_record_enable() as
4087  * it works like an on/off switch, where as the enable() version
4088  * must be paired with a disable().
4089  */
4090 void ring_buffer_record_on(struct trace_buffer *buffer)
4091 {
4092         unsigned int rd;
4093         unsigned int new_rd;
4094
4095         rd = atomic_read(&buffer->record_disabled);
4096         do {
4097                 new_rd = rd & ~RB_BUFFER_OFF;
4098         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4099 }
4100 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4101
4102 /**
4103  * ring_buffer_record_is_on - return true if the ring buffer can write
4104  * @buffer: The ring buffer to see if write is enabled
4105  *
4106  * Returns true if the ring buffer is in a state that it accepts writes.
4107  */
4108 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4109 {
4110         return !atomic_read(&buffer->record_disabled);
4111 }
4112
4113 /**
4114  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4115  * @buffer: The ring buffer to see if write is set enabled
4116  *
4117  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4118  * Note that this does NOT mean it is in a writable state.
4119  *
4120  * It may return true when the ring buffer has been disabled by
4121  * ring_buffer_record_disable(), as that is a temporary disabling of
4122  * the ring buffer.
4123  */
4124 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4125 {
4126         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4127 }
4128
4129 /**
4130  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4131  * @buffer: The ring buffer to stop writes to.
4132  * @cpu: The CPU buffer to stop
4133  *
4134  * This prevents all writes to the buffer. Any attempt to write
4135  * to the buffer after this will fail and return NULL.
4136  *
4137  * The caller should call synchronize_rcu() after this.
4138  */
4139 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4140 {
4141         struct ring_buffer_per_cpu *cpu_buffer;
4142
4143         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4144                 return;
4145
4146         cpu_buffer = buffer->buffers[cpu];
4147         atomic_inc(&cpu_buffer->record_disabled);
4148 }
4149 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4150
4151 /**
4152  * ring_buffer_record_enable_cpu - enable writes to the buffer
4153  * @buffer: The ring buffer to enable writes
4154  * @cpu: The CPU to enable.
4155  *
4156  * Note, multiple disables will need the same number of enables
4157  * to truly enable the writing (much like preempt_disable).
4158  */
4159 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4160 {
4161         struct ring_buffer_per_cpu *cpu_buffer;
4162
4163         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164                 return;
4165
4166         cpu_buffer = buffer->buffers[cpu];
4167         atomic_dec(&cpu_buffer->record_disabled);
4168 }
4169 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4170
4171 /*
4172  * The total entries in the ring buffer is the running counter
4173  * of entries entered into the ring buffer, minus the sum of
4174  * the entries read from the ring buffer and the number of
4175  * entries that were overwritten.
4176  */
4177 static inline unsigned long
4178 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4179 {
4180         return local_read(&cpu_buffer->entries) -
4181                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4182 }
4183
4184 /**
4185  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4186  * @buffer: The ring buffer
4187  * @cpu: The per CPU buffer to read from.
4188  */
4189 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4190 {
4191         unsigned long flags;
4192         struct ring_buffer_per_cpu *cpu_buffer;
4193         struct buffer_page *bpage;
4194         u64 ret = 0;
4195
4196         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197                 return 0;
4198
4199         cpu_buffer = buffer->buffers[cpu];
4200         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4201         /*
4202          * if the tail is on reader_page, oldest time stamp is on the reader
4203          * page
4204          */
4205         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4206                 bpage = cpu_buffer->reader_page;
4207         else
4208                 bpage = rb_set_head_page(cpu_buffer);
4209         if (bpage)
4210                 ret = bpage->page->time_stamp;
4211         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4212
4213         return ret;
4214 }
4215 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4216
4217 /**
4218  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4219  * @buffer: The ring buffer
4220  * @cpu: The per CPU buffer to read from.
4221  */
4222 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4223 {
4224         struct ring_buffer_per_cpu *cpu_buffer;
4225         unsigned long ret;
4226
4227         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4228                 return 0;
4229
4230         cpu_buffer = buffer->buffers[cpu];
4231         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4232
4233         return ret;
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4236
4237 /**
4238  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4239  * @buffer: The ring buffer
4240  * @cpu: The per CPU buffer to get the entries from.
4241  */
4242 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4243 {
4244         struct ring_buffer_per_cpu *cpu_buffer;
4245
4246         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4247                 return 0;
4248
4249         cpu_buffer = buffer->buffers[cpu];
4250
4251         return rb_num_of_entries(cpu_buffer);
4252 }
4253 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4254
4255 /**
4256  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4257  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4258  * @buffer: The ring buffer
4259  * @cpu: The per CPU buffer to get the number of overruns from
4260  */
4261 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4262 {
4263         struct ring_buffer_per_cpu *cpu_buffer;
4264         unsigned long ret;
4265
4266         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4267                 return 0;
4268
4269         cpu_buffer = buffer->buffers[cpu];
4270         ret = local_read(&cpu_buffer->overrun);
4271
4272         return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4275
4276 /**
4277  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4278  * commits failing due to the buffer wrapping around while there are uncommitted
4279  * events, such as during an interrupt storm.
4280  * @buffer: The ring buffer
4281  * @cpu: The per CPU buffer to get the number of overruns from
4282  */
4283 unsigned long
4284 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4285 {
4286         struct ring_buffer_per_cpu *cpu_buffer;
4287         unsigned long ret;
4288
4289         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4290                 return 0;
4291
4292         cpu_buffer = buffer->buffers[cpu];
4293         ret = local_read(&cpu_buffer->commit_overrun);
4294
4295         return ret;
4296 }
4297 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4298
4299 /**
4300  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4301  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4302  * @buffer: The ring buffer
4303  * @cpu: The per CPU buffer to get the number of overruns from
4304  */
4305 unsigned long
4306 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4307 {
4308         struct ring_buffer_per_cpu *cpu_buffer;
4309         unsigned long ret;
4310
4311         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4312                 return 0;
4313
4314         cpu_buffer = buffer->buffers[cpu];
4315         ret = local_read(&cpu_buffer->dropped_events);
4316
4317         return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4320
4321 /**
4322  * ring_buffer_read_events_cpu - get the number of events successfully read
4323  * @buffer: The ring buffer
4324  * @cpu: The per CPU buffer to get the number of events read
4325  */
4326 unsigned long
4327 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4328 {
4329         struct ring_buffer_per_cpu *cpu_buffer;
4330
4331         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4332                 return 0;
4333
4334         cpu_buffer = buffer->buffers[cpu];
4335         return cpu_buffer->read;
4336 }
4337 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4338
4339 /**
4340  * ring_buffer_entries - get the number of entries in a buffer
4341  * @buffer: The ring buffer
4342  *
4343  * Returns the total number of entries in the ring buffer
4344  * (all CPU entries)
4345  */
4346 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4347 {
4348         struct ring_buffer_per_cpu *cpu_buffer;
4349         unsigned long entries = 0;
4350         int cpu;
4351
4352         /* if you care about this being correct, lock the buffer */
4353         for_each_buffer_cpu(buffer, cpu) {
4354                 cpu_buffer = buffer->buffers[cpu];
4355                 entries += rb_num_of_entries(cpu_buffer);
4356         }
4357
4358         return entries;
4359 }
4360 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4361
4362 /**
4363  * ring_buffer_overruns - get the number of overruns in buffer
4364  * @buffer: The ring buffer
4365  *
4366  * Returns the total number of overruns in the ring buffer
4367  * (all CPU entries)
4368  */
4369 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4370 {
4371         struct ring_buffer_per_cpu *cpu_buffer;
4372         unsigned long overruns = 0;
4373         int cpu;
4374
4375         /* if you care about this being correct, lock the buffer */
4376         for_each_buffer_cpu(buffer, cpu) {
4377                 cpu_buffer = buffer->buffers[cpu];
4378                 overruns += local_read(&cpu_buffer->overrun);
4379         }
4380
4381         return overruns;
4382 }
4383 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4384
4385 static void rb_iter_reset(struct ring_buffer_iter *iter)
4386 {
4387         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4388
4389         /* Iterator usage is expected to have record disabled */
4390         iter->head_page = cpu_buffer->reader_page;
4391         iter->head = cpu_buffer->reader_page->read;
4392         iter->next_event = iter->head;
4393
4394         iter->cache_reader_page = iter->head_page;
4395         iter->cache_read = cpu_buffer->read;
4396         iter->cache_pages_removed = cpu_buffer->pages_removed;
4397
4398         if (iter->head) {
4399                 iter->read_stamp = cpu_buffer->read_stamp;
4400                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4401         } else {
4402                 iter->read_stamp = iter->head_page->page->time_stamp;
4403                 iter->page_stamp = iter->read_stamp;
4404         }
4405 }
4406
4407 /**
4408  * ring_buffer_iter_reset - reset an iterator
4409  * @iter: The iterator to reset
4410  *
4411  * Resets the iterator, so that it will start from the beginning
4412  * again.
4413  */
4414 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4415 {
4416         struct ring_buffer_per_cpu *cpu_buffer;
4417         unsigned long flags;
4418
4419         if (!iter)
4420                 return;
4421
4422         cpu_buffer = iter->cpu_buffer;
4423
4424         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4425         rb_iter_reset(iter);
4426         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4427 }
4428 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4429
4430 /**
4431  * ring_buffer_iter_empty - check if an iterator has no more to read
4432  * @iter: The iterator to check
4433  */
4434 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4435 {
4436         struct ring_buffer_per_cpu *cpu_buffer;
4437         struct buffer_page *reader;
4438         struct buffer_page *head_page;
4439         struct buffer_page *commit_page;
4440         struct buffer_page *curr_commit_page;
4441         unsigned commit;
4442         u64 curr_commit_ts;
4443         u64 commit_ts;
4444
4445         cpu_buffer = iter->cpu_buffer;
4446         reader = cpu_buffer->reader_page;
4447         head_page = cpu_buffer->head_page;
4448         commit_page = cpu_buffer->commit_page;
4449         commit_ts = commit_page->page->time_stamp;
4450
4451         /*
4452          * When the writer goes across pages, it issues a cmpxchg which
4453          * is a mb(), which will synchronize with the rmb here.
4454          * (see rb_tail_page_update())
4455          */
4456         smp_rmb();
4457         commit = rb_page_commit(commit_page);
4458         /* We want to make sure that the commit page doesn't change */
4459         smp_rmb();
4460
4461         /* Make sure commit page didn't change */
4462         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4463         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4464
4465         /* If the commit page changed, then there's more data */
4466         if (curr_commit_page != commit_page ||
4467             curr_commit_ts != commit_ts)
4468                 return 0;
4469
4470         /* Still racy, as it may return a false positive, but that's OK */
4471         return ((iter->head_page == commit_page && iter->head >= commit) ||
4472                 (iter->head_page == reader && commit_page == head_page &&
4473                  head_page->read == commit &&
4474                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4475 }
4476 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4477
4478 static void
4479 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4480                      struct ring_buffer_event *event)
4481 {
4482         u64 delta;
4483
4484         switch (event->type_len) {
4485         case RINGBUF_TYPE_PADDING:
4486                 return;
4487
4488         case RINGBUF_TYPE_TIME_EXTEND:
4489                 delta = rb_event_time_stamp(event);
4490                 cpu_buffer->read_stamp += delta;
4491                 return;
4492
4493         case RINGBUF_TYPE_TIME_STAMP:
4494                 delta = rb_event_time_stamp(event);
4495                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4496                 cpu_buffer->read_stamp = delta;
4497                 return;
4498
4499         case RINGBUF_TYPE_DATA:
4500                 cpu_buffer->read_stamp += event->time_delta;
4501                 return;
4502
4503         default:
4504                 RB_WARN_ON(cpu_buffer, 1);
4505         }
4506 }
4507
4508 static void
4509 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4510                           struct ring_buffer_event *event)
4511 {
4512         u64 delta;
4513
4514         switch (event->type_len) {
4515         case RINGBUF_TYPE_PADDING:
4516                 return;
4517
4518         case RINGBUF_TYPE_TIME_EXTEND:
4519                 delta = rb_event_time_stamp(event);
4520                 iter->read_stamp += delta;
4521                 return;
4522
4523         case RINGBUF_TYPE_TIME_STAMP:
4524                 delta = rb_event_time_stamp(event);
4525                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4526                 iter->read_stamp = delta;
4527                 return;
4528
4529         case RINGBUF_TYPE_DATA:
4530                 iter->read_stamp += event->time_delta;
4531                 return;
4532
4533         default:
4534                 RB_WARN_ON(iter->cpu_buffer, 1);
4535         }
4536 }
4537
4538 static struct buffer_page *
4539 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4540 {
4541         struct buffer_page *reader = NULL;
4542         unsigned long overwrite;
4543         unsigned long flags;
4544         int nr_loops = 0;
4545         bool ret;
4546
4547         local_irq_save(flags);
4548         arch_spin_lock(&cpu_buffer->lock);
4549
4550  again:
4551         /*
4552          * This should normally only loop twice. But because the
4553          * start of the reader inserts an empty page, it causes
4554          * a case where we will loop three times. There should be no
4555          * reason to loop four times (that I know of).
4556          */
4557         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4558                 reader = NULL;
4559                 goto out;
4560         }
4561
4562         reader = cpu_buffer->reader_page;
4563
4564         /* If there's more to read, return this page */
4565         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4566                 goto out;
4567
4568         /* Never should we have an index greater than the size */
4569         if (RB_WARN_ON(cpu_buffer,
4570                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4571                 goto out;
4572
4573         /* check if we caught up to the tail */
4574         reader = NULL;
4575         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4576                 goto out;
4577
4578         /* Don't bother swapping if the ring buffer is empty */
4579         if (rb_num_of_entries(cpu_buffer) == 0)
4580                 goto out;
4581
4582         /*
4583          * Reset the reader page to size zero.
4584          */
4585         local_set(&cpu_buffer->reader_page->write, 0);
4586         local_set(&cpu_buffer->reader_page->entries, 0);
4587         local_set(&cpu_buffer->reader_page->page->commit, 0);
4588         cpu_buffer->reader_page->real_end = 0;
4589
4590  spin:
4591         /*
4592          * Splice the empty reader page into the list around the head.
4593          */
4594         reader = rb_set_head_page(cpu_buffer);
4595         if (!reader)
4596                 goto out;
4597         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4598         cpu_buffer->reader_page->list.prev = reader->list.prev;
4599
4600         /*
4601          * cpu_buffer->pages just needs to point to the buffer, it
4602          *  has no specific buffer page to point to. Lets move it out
4603          *  of our way so we don't accidentally swap it.
4604          */
4605         cpu_buffer->pages = reader->list.prev;
4606
4607         /* The reader page will be pointing to the new head */
4608         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4609
4610         /*
4611          * We want to make sure we read the overruns after we set up our
4612          * pointers to the next object. The writer side does a
4613          * cmpxchg to cross pages which acts as the mb on the writer
4614          * side. Note, the reader will constantly fail the swap
4615          * while the writer is updating the pointers, so this
4616          * guarantees that the overwrite recorded here is the one we
4617          * want to compare with the last_overrun.
4618          */
4619         smp_mb();
4620         overwrite = local_read(&(cpu_buffer->overrun));
4621
4622         /*
4623          * Here's the tricky part.
4624          *
4625          * We need to move the pointer past the header page.
4626          * But we can only do that if a writer is not currently
4627          * moving it. The page before the header page has the
4628          * flag bit '1' set if it is pointing to the page we want.
4629          * but if the writer is in the process of moving it
4630          * than it will be '2' or already moved '0'.
4631          */
4632
4633         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4634
4635         /*
4636          * If we did not convert it, then we must try again.
4637          */
4638         if (!ret)
4639                 goto spin;
4640
4641         /*
4642          * Yay! We succeeded in replacing the page.
4643          *
4644          * Now make the new head point back to the reader page.
4645          */
4646         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4647         rb_inc_page(&cpu_buffer->head_page);
4648
4649         local_inc(&cpu_buffer->pages_read);
4650
4651         /* Finally update the reader page to the new head */
4652         cpu_buffer->reader_page = reader;
4653         cpu_buffer->reader_page->read = 0;
4654
4655         if (overwrite != cpu_buffer->last_overrun) {
4656                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4657                 cpu_buffer->last_overrun = overwrite;
4658         }
4659
4660         goto again;
4661
4662  out:
4663         /* Update the read_stamp on the first event */
4664         if (reader && reader->read == 0)
4665                 cpu_buffer->read_stamp = reader->page->time_stamp;
4666
4667         arch_spin_unlock(&cpu_buffer->lock);
4668         local_irq_restore(flags);
4669
4670         /*
4671          * The writer has preempt disable, wait for it. But not forever
4672          * Although, 1 second is pretty much "forever"
4673          */
4674 #define USECS_WAIT      1000000
4675         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4676                 /* If the write is past the end of page, a writer is still updating it */
4677                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4678                         break;
4679
4680                 udelay(1);
4681
4682                 /* Get the latest version of the reader write value */
4683                 smp_rmb();
4684         }
4685
4686         /* The writer is not moving forward? Something is wrong */
4687         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4688                 reader = NULL;
4689
4690         /*
4691          * Make sure we see any padding after the write update
4692          * (see rb_reset_tail()).
4693          *
4694          * In addition, a writer may be writing on the reader page
4695          * if the page has not been fully filled, so the read barrier
4696          * is also needed to make sure we see the content of what is
4697          * committed by the writer (see rb_set_commit_to_write()).
4698          */
4699         smp_rmb();
4700
4701
4702         return reader;
4703 }
4704
4705 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4706 {
4707         struct ring_buffer_event *event;
4708         struct buffer_page *reader;
4709         unsigned length;
4710
4711         reader = rb_get_reader_page(cpu_buffer);
4712
4713         /* This function should not be called when buffer is empty */
4714         if (RB_WARN_ON(cpu_buffer, !reader))
4715                 return;
4716
4717         event = rb_reader_event(cpu_buffer);
4718
4719         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4720                 cpu_buffer->read++;
4721
4722         rb_update_read_stamp(cpu_buffer, event);
4723
4724         length = rb_event_length(event);
4725         cpu_buffer->reader_page->read += length;
4726 }
4727
4728 static void rb_advance_iter(struct ring_buffer_iter *iter)
4729 {
4730         struct ring_buffer_per_cpu *cpu_buffer;
4731
4732         cpu_buffer = iter->cpu_buffer;
4733
4734         /* If head == next_event then we need to jump to the next event */
4735         if (iter->head == iter->next_event) {
4736                 /* If the event gets overwritten again, there's nothing to do */
4737                 if (rb_iter_head_event(iter) == NULL)
4738                         return;
4739         }
4740
4741         iter->head = iter->next_event;
4742
4743         /*
4744          * Check if we are at the end of the buffer.
4745          */
4746         if (iter->next_event >= rb_page_size(iter->head_page)) {
4747                 /* discarded commits can make the page empty */
4748                 if (iter->head_page == cpu_buffer->commit_page)
4749                         return;
4750                 rb_inc_iter(iter);
4751                 return;
4752         }
4753
4754         rb_update_iter_read_stamp(iter, iter->event);
4755 }
4756
4757 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4758 {
4759         return cpu_buffer->lost_events;
4760 }
4761
4762 static struct ring_buffer_event *
4763 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4764                unsigned long *lost_events)
4765 {
4766         struct ring_buffer_event *event;
4767         struct buffer_page *reader;
4768         int nr_loops = 0;
4769
4770         if (ts)
4771                 *ts = 0;
4772  again:
4773         /*
4774          * We repeat when a time extend is encountered.
4775          * Since the time extend is always attached to a data event,
4776          * we should never loop more than once.
4777          * (We never hit the following condition more than twice).
4778          */
4779         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4780                 return NULL;
4781
4782         reader = rb_get_reader_page(cpu_buffer);
4783         if (!reader)
4784                 return NULL;
4785
4786         event = rb_reader_event(cpu_buffer);
4787
4788         switch (event->type_len) {
4789         case RINGBUF_TYPE_PADDING:
4790                 if (rb_null_event(event))
4791                         RB_WARN_ON(cpu_buffer, 1);
4792                 /*
4793                  * Because the writer could be discarding every
4794                  * event it creates (which would probably be bad)
4795                  * if we were to go back to "again" then we may never
4796                  * catch up, and will trigger the warn on, or lock
4797                  * the box. Return the padding, and we will release
4798                  * the current locks, and try again.
4799                  */
4800                 return event;
4801
4802         case RINGBUF_TYPE_TIME_EXTEND:
4803                 /* Internal data, OK to advance */
4804                 rb_advance_reader(cpu_buffer);
4805                 goto again;
4806
4807         case RINGBUF_TYPE_TIME_STAMP:
4808                 if (ts) {
4809                         *ts = rb_event_time_stamp(event);
4810                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4811                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4812                                                          cpu_buffer->cpu, ts);
4813                 }
4814                 /* Internal data, OK to advance */
4815                 rb_advance_reader(cpu_buffer);
4816                 goto again;
4817
4818         case RINGBUF_TYPE_DATA:
4819                 if (ts && !(*ts)) {
4820                         *ts = cpu_buffer->read_stamp + event->time_delta;
4821                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4822                                                          cpu_buffer->cpu, ts);
4823                 }
4824                 if (lost_events)
4825                         *lost_events = rb_lost_events(cpu_buffer);
4826                 return event;
4827
4828         default:
4829                 RB_WARN_ON(cpu_buffer, 1);
4830         }
4831
4832         return NULL;
4833 }
4834 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4835
4836 static struct ring_buffer_event *
4837 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4838 {
4839         struct trace_buffer *buffer;
4840         struct ring_buffer_per_cpu *cpu_buffer;
4841         struct ring_buffer_event *event;
4842         int nr_loops = 0;
4843
4844         if (ts)
4845                 *ts = 0;
4846
4847         cpu_buffer = iter->cpu_buffer;
4848         buffer = cpu_buffer->buffer;
4849
4850         /*
4851          * Check if someone performed a consuming read to the buffer
4852          * or removed some pages from the buffer. In these cases,
4853          * iterator was invalidated and we need to reset it.
4854          */
4855         if (unlikely(iter->cache_read != cpu_buffer->read ||
4856                      iter->cache_reader_page != cpu_buffer->reader_page ||
4857                      iter->cache_pages_removed != cpu_buffer->pages_removed))
4858                 rb_iter_reset(iter);
4859
4860  again:
4861         if (ring_buffer_iter_empty(iter))
4862                 return NULL;
4863
4864         /*
4865          * As the writer can mess with what the iterator is trying
4866          * to read, just give up if we fail to get an event after
4867          * three tries. The iterator is not as reliable when reading
4868          * the ring buffer with an active write as the consumer is.
4869          * Do not warn if the three failures is reached.
4870          */
4871         if (++nr_loops > 3)
4872                 return NULL;
4873
4874         if (rb_per_cpu_empty(cpu_buffer))
4875                 return NULL;
4876
4877         if (iter->head >= rb_page_size(iter->head_page)) {
4878                 rb_inc_iter(iter);
4879                 goto again;
4880         }
4881
4882         event = rb_iter_head_event(iter);
4883         if (!event)
4884                 goto again;
4885
4886         switch (event->type_len) {
4887         case RINGBUF_TYPE_PADDING:
4888                 if (rb_null_event(event)) {
4889                         rb_inc_iter(iter);
4890                         goto again;
4891                 }
4892                 rb_advance_iter(iter);
4893                 return event;
4894
4895         case RINGBUF_TYPE_TIME_EXTEND:
4896                 /* Internal data, OK to advance */
4897                 rb_advance_iter(iter);
4898                 goto again;
4899
4900         case RINGBUF_TYPE_TIME_STAMP:
4901                 if (ts) {
4902                         *ts = rb_event_time_stamp(event);
4903                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4904                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4905                                                          cpu_buffer->cpu, ts);
4906                 }
4907                 /* Internal data, OK to advance */
4908                 rb_advance_iter(iter);
4909                 goto again;
4910
4911         case RINGBUF_TYPE_DATA:
4912                 if (ts && !(*ts)) {
4913                         *ts = iter->read_stamp + event->time_delta;
4914                         ring_buffer_normalize_time_stamp(buffer,
4915                                                          cpu_buffer->cpu, ts);
4916                 }
4917                 return event;
4918
4919         default:
4920                 RB_WARN_ON(cpu_buffer, 1);
4921         }
4922
4923         return NULL;
4924 }
4925 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4926
4927 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4928 {
4929         if (likely(!in_nmi())) {
4930                 raw_spin_lock(&cpu_buffer->reader_lock);
4931                 return true;
4932         }
4933
4934         /*
4935          * If an NMI die dumps out the content of the ring buffer
4936          * trylock must be used to prevent a deadlock if the NMI
4937          * preempted a task that holds the ring buffer locks. If
4938          * we get the lock then all is fine, if not, then continue
4939          * to do the read, but this can corrupt the ring buffer,
4940          * so it must be permanently disabled from future writes.
4941          * Reading from NMI is a oneshot deal.
4942          */
4943         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4944                 return true;
4945
4946         /* Continue without locking, but disable the ring buffer */
4947         atomic_inc(&cpu_buffer->record_disabled);
4948         return false;
4949 }
4950
4951 static inline void
4952 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4953 {
4954         if (likely(locked))
4955                 raw_spin_unlock(&cpu_buffer->reader_lock);
4956 }
4957
4958 /**
4959  * ring_buffer_peek - peek at the next event to be read
4960  * @buffer: The ring buffer to read
4961  * @cpu: The cpu to peak at
4962  * @ts: The timestamp counter of this event.
4963  * @lost_events: a variable to store if events were lost (may be NULL)
4964  *
4965  * This will return the event that will be read next, but does
4966  * not consume the data.
4967  */
4968 struct ring_buffer_event *
4969 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4970                  unsigned long *lost_events)
4971 {
4972         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4973         struct ring_buffer_event *event;
4974         unsigned long flags;
4975         bool dolock;
4976
4977         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4978                 return NULL;
4979
4980  again:
4981         local_irq_save(flags);
4982         dolock = rb_reader_lock(cpu_buffer);
4983         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4984         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4985                 rb_advance_reader(cpu_buffer);
4986         rb_reader_unlock(cpu_buffer, dolock);
4987         local_irq_restore(flags);
4988
4989         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4990                 goto again;
4991
4992         return event;
4993 }
4994
4995 /** ring_buffer_iter_dropped - report if there are dropped events
4996  * @iter: The ring buffer iterator
4997  *
4998  * Returns true if there was dropped events since the last peek.
4999  */
5000 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5001 {
5002         bool ret = iter->missed_events != 0;
5003
5004         iter->missed_events = 0;
5005         return ret;
5006 }
5007 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5008
5009 /**
5010  * ring_buffer_iter_peek - peek at the next event to be read
5011  * @iter: The ring buffer iterator
5012  * @ts: The timestamp counter of this event.
5013  *
5014  * This will return the event that will be read next, but does
5015  * not increment the iterator.
5016  */
5017 struct ring_buffer_event *
5018 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5019 {
5020         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5021         struct ring_buffer_event *event;
5022         unsigned long flags;
5023
5024  again:
5025         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5026         event = rb_iter_peek(iter, ts);
5027         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5028
5029         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5030                 goto again;
5031
5032         return event;
5033 }
5034
5035 /**
5036  * ring_buffer_consume - return an event and consume it
5037  * @buffer: The ring buffer to get the next event from
5038  * @cpu: the cpu to read the buffer from
5039  * @ts: a variable to store the timestamp (may be NULL)
5040  * @lost_events: a variable to store if events were lost (may be NULL)
5041  *
5042  * Returns the next event in the ring buffer, and that event is consumed.
5043  * Meaning, that sequential reads will keep returning a different event,
5044  * and eventually empty the ring buffer if the producer is slower.
5045  */
5046 struct ring_buffer_event *
5047 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5048                     unsigned long *lost_events)
5049 {
5050         struct ring_buffer_per_cpu *cpu_buffer;
5051         struct ring_buffer_event *event = NULL;
5052         unsigned long flags;
5053         bool dolock;
5054
5055  again:
5056         /* might be called in atomic */
5057         preempt_disable();
5058
5059         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5060                 goto out;
5061
5062         cpu_buffer = buffer->buffers[cpu];
5063         local_irq_save(flags);
5064         dolock = rb_reader_lock(cpu_buffer);
5065
5066         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5067         if (event) {
5068                 cpu_buffer->lost_events = 0;
5069                 rb_advance_reader(cpu_buffer);
5070         }
5071
5072         rb_reader_unlock(cpu_buffer, dolock);
5073         local_irq_restore(flags);
5074
5075  out:
5076         preempt_enable();
5077
5078         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5079                 goto again;
5080
5081         return event;
5082 }
5083 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5084
5085 /**
5086  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5087  * @buffer: The ring buffer to read from
5088  * @cpu: The cpu buffer to iterate over
5089  * @flags: gfp flags to use for memory allocation
5090  *
5091  * This performs the initial preparations necessary to iterate
5092  * through the buffer.  Memory is allocated, buffer recording
5093  * is disabled, and the iterator pointer is returned to the caller.
5094  *
5095  * Disabling buffer recording prevents the reading from being
5096  * corrupted. This is not a consuming read, so a producer is not
5097  * expected.
5098  *
5099  * After a sequence of ring_buffer_read_prepare calls, the user is
5100  * expected to make at least one call to ring_buffer_read_prepare_sync.
5101  * Afterwards, ring_buffer_read_start is invoked to get things going
5102  * for real.
5103  *
5104  * This overall must be paired with ring_buffer_read_finish.
5105  */
5106 struct ring_buffer_iter *
5107 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5108 {
5109         struct ring_buffer_per_cpu *cpu_buffer;
5110         struct ring_buffer_iter *iter;
5111
5112         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5113                 return NULL;
5114
5115         iter = kzalloc(sizeof(*iter), flags);
5116         if (!iter)
5117                 return NULL;
5118
5119         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5120         if (!iter->event) {
5121                 kfree(iter);
5122                 return NULL;
5123         }
5124
5125         cpu_buffer = buffer->buffers[cpu];
5126
5127         iter->cpu_buffer = cpu_buffer;
5128
5129         atomic_inc(&cpu_buffer->resize_disabled);
5130
5131         return iter;
5132 }
5133 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5134
5135 /**
5136  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5137  *
5138  * All previously invoked ring_buffer_read_prepare calls to prepare
5139  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5140  * calls on those iterators are allowed.
5141  */
5142 void
5143 ring_buffer_read_prepare_sync(void)
5144 {
5145         synchronize_rcu();
5146 }
5147 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5148
5149 /**
5150  * ring_buffer_read_start - start a non consuming read of the buffer
5151  * @iter: The iterator returned by ring_buffer_read_prepare
5152  *
5153  * This finalizes the startup of an iteration through the buffer.
5154  * The iterator comes from a call to ring_buffer_read_prepare and
5155  * an intervening ring_buffer_read_prepare_sync must have been
5156  * performed.
5157  *
5158  * Must be paired with ring_buffer_read_finish.
5159  */
5160 void
5161 ring_buffer_read_start(struct ring_buffer_iter *iter)
5162 {
5163         struct ring_buffer_per_cpu *cpu_buffer;
5164         unsigned long flags;
5165
5166         if (!iter)
5167                 return;
5168
5169         cpu_buffer = iter->cpu_buffer;
5170
5171         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5172         arch_spin_lock(&cpu_buffer->lock);
5173         rb_iter_reset(iter);
5174         arch_spin_unlock(&cpu_buffer->lock);
5175         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5176 }
5177 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5178
5179 /**
5180  * ring_buffer_read_finish - finish reading the iterator of the buffer
5181  * @iter: The iterator retrieved by ring_buffer_start
5182  *
5183  * This re-enables the recording to the buffer, and frees the
5184  * iterator.
5185  */
5186 void
5187 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5188 {
5189         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5190         unsigned long flags;
5191
5192         /*
5193          * Ring buffer is disabled from recording, here's a good place
5194          * to check the integrity of the ring buffer.
5195          * Must prevent readers from trying to read, as the check
5196          * clears the HEAD page and readers require it.
5197          */
5198         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5199         rb_check_pages(cpu_buffer);
5200         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5201
5202         atomic_dec(&cpu_buffer->resize_disabled);
5203         kfree(iter->event);
5204         kfree(iter);
5205 }
5206 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5207
5208 /**
5209  * ring_buffer_iter_advance - advance the iterator to the next location
5210  * @iter: The ring buffer iterator
5211  *
5212  * Move the location of the iterator such that the next read will
5213  * be the next location of the iterator.
5214  */
5215 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5216 {
5217         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5218         unsigned long flags;
5219
5220         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5221
5222         rb_advance_iter(iter);
5223
5224         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5225 }
5226 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5227
5228 /**
5229  * ring_buffer_size - return the size of the ring buffer (in bytes)
5230  * @buffer: The ring buffer.
5231  * @cpu: The CPU to get ring buffer size from.
5232  */
5233 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5234 {
5235         /*
5236          * Earlier, this method returned
5237          *      BUF_PAGE_SIZE * buffer->nr_pages
5238          * Since the nr_pages field is now removed, we have converted this to
5239          * return the per cpu buffer value.
5240          */
5241         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5242                 return 0;
5243
5244         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5245 }
5246 EXPORT_SYMBOL_GPL(ring_buffer_size);
5247
5248 static void rb_clear_buffer_page(struct buffer_page *page)
5249 {
5250         local_set(&page->write, 0);
5251         local_set(&page->entries, 0);
5252         rb_init_page(page->page);
5253         page->read = 0;
5254 }
5255
5256 static void
5257 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5258 {
5259         struct buffer_page *page;
5260
5261         rb_head_page_deactivate(cpu_buffer);
5262
5263         cpu_buffer->head_page
5264                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5265         rb_clear_buffer_page(cpu_buffer->head_page);
5266         list_for_each_entry(page, cpu_buffer->pages, list) {
5267                 rb_clear_buffer_page(page);
5268         }
5269
5270         cpu_buffer->tail_page = cpu_buffer->head_page;
5271         cpu_buffer->commit_page = cpu_buffer->head_page;
5272
5273         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5274         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5275         rb_clear_buffer_page(cpu_buffer->reader_page);
5276
5277         local_set(&cpu_buffer->entries_bytes, 0);
5278         local_set(&cpu_buffer->overrun, 0);
5279         local_set(&cpu_buffer->commit_overrun, 0);
5280         local_set(&cpu_buffer->dropped_events, 0);
5281         local_set(&cpu_buffer->entries, 0);
5282         local_set(&cpu_buffer->committing, 0);
5283         local_set(&cpu_buffer->commits, 0);
5284         local_set(&cpu_buffer->pages_touched, 0);
5285         local_set(&cpu_buffer->pages_lost, 0);
5286         local_set(&cpu_buffer->pages_read, 0);
5287         cpu_buffer->last_pages_touch = 0;
5288         cpu_buffer->shortest_full = 0;
5289         cpu_buffer->read = 0;
5290         cpu_buffer->read_bytes = 0;
5291
5292         rb_time_set(&cpu_buffer->write_stamp, 0);
5293         rb_time_set(&cpu_buffer->before_stamp, 0);
5294
5295         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5296
5297         cpu_buffer->lost_events = 0;
5298         cpu_buffer->last_overrun = 0;
5299
5300         rb_head_page_activate(cpu_buffer);
5301         cpu_buffer->pages_removed = 0;
5302 }
5303
5304 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5305 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5306 {
5307         unsigned long flags;
5308
5309         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5310
5311         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5312                 goto out;
5313
5314         arch_spin_lock(&cpu_buffer->lock);
5315
5316         rb_reset_cpu(cpu_buffer);
5317
5318         arch_spin_unlock(&cpu_buffer->lock);
5319
5320  out:
5321         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5322 }
5323
5324 /**
5325  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5326  * @buffer: The ring buffer to reset a per cpu buffer of
5327  * @cpu: The CPU buffer to be reset
5328  */
5329 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5330 {
5331         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5332
5333         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5334                 return;
5335
5336         /* prevent another thread from changing buffer sizes */
5337         mutex_lock(&buffer->mutex);
5338
5339         atomic_inc(&cpu_buffer->resize_disabled);
5340         atomic_inc(&cpu_buffer->record_disabled);
5341
5342         /* Make sure all commits have finished */
5343         synchronize_rcu();
5344
5345         reset_disabled_cpu_buffer(cpu_buffer);
5346
5347         atomic_dec(&cpu_buffer->record_disabled);
5348         atomic_dec(&cpu_buffer->resize_disabled);
5349
5350         mutex_unlock(&buffer->mutex);
5351 }
5352 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5353
5354 /* Flag to ensure proper resetting of atomic variables */
5355 #define RESET_BIT       (1 << 30)
5356
5357 /**
5358  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5359  * @buffer: The ring buffer to reset a per cpu buffer of
5360  */
5361 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5362 {
5363         struct ring_buffer_per_cpu *cpu_buffer;
5364         int cpu;
5365
5366         /* prevent another thread from changing buffer sizes */
5367         mutex_lock(&buffer->mutex);
5368
5369         for_each_online_buffer_cpu(buffer, cpu) {
5370                 cpu_buffer = buffer->buffers[cpu];
5371
5372                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5373                 atomic_inc(&cpu_buffer->record_disabled);
5374         }
5375
5376         /* Make sure all commits have finished */
5377         synchronize_rcu();
5378
5379         for_each_buffer_cpu(buffer, cpu) {
5380                 cpu_buffer = buffer->buffers[cpu];
5381
5382                 /*
5383                  * If a CPU came online during the synchronize_rcu(), then
5384                  * ignore it.
5385                  */
5386                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5387                         continue;
5388
5389                 reset_disabled_cpu_buffer(cpu_buffer);
5390
5391                 atomic_dec(&cpu_buffer->record_disabled);
5392                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5393         }
5394
5395         mutex_unlock(&buffer->mutex);
5396 }
5397
5398 /**
5399  * ring_buffer_reset - reset a ring buffer
5400  * @buffer: The ring buffer to reset all cpu buffers
5401  */
5402 void ring_buffer_reset(struct trace_buffer *buffer)
5403 {
5404         struct ring_buffer_per_cpu *cpu_buffer;
5405         int cpu;
5406
5407         /* prevent another thread from changing buffer sizes */
5408         mutex_lock(&buffer->mutex);
5409
5410         for_each_buffer_cpu(buffer, cpu) {
5411                 cpu_buffer = buffer->buffers[cpu];
5412
5413                 atomic_inc(&cpu_buffer->resize_disabled);
5414                 atomic_inc(&cpu_buffer->record_disabled);
5415         }
5416
5417         /* Make sure all commits have finished */
5418         synchronize_rcu();
5419
5420         for_each_buffer_cpu(buffer, cpu) {
5421                 cpu_buffer = buffer->buffers[cpu];
5422
5423                 reset_disabled_cpu_buffer(cpu_buffer);
5424
5425                 atomic_dec(&cpu_buffer->record_disabled);
5426                 atomic_dec(&cpu_buffer->resize_disabled);
5427         }
5428
5429         mutex_unlock(&buffer->mutex);
5430 }
5431 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5432
5433 /**
5434  * ring_buffer_empty - is the ring buffer empty?
5435  * @buffer: The ring buffer to test
5436  */
5437 bool ring_buffer_empty(struct trace_buffer *buffer)
5438 {
5439         struct ring_buffer_per_cpu *cpu_buffer;
5440         unsigned long flags;
5441         bool dolock;
5442         bool ret;
5443         int cpu;
5444
5445         /* yes this is racy, but if you don't like the race, lock the buffer */
5446         for_each_buffer_cpu(buffer, cpu) {
5447                 cpu_buffer = buffer->buffers[cpu];
5448                 local_irq_save(flags);
5449                 dolock = rb_reader_lock(cpu_buffer);
5450                 ret = rb_per_cpu_empty(cpu_buffer);
5451                 rb_reader_unlock(cpu_buffer, dolock);
5452                 local_irq_restore(flags);
5453
5454                 if (!ret)
5455                         return false;
5456         }
5457
5458         return true;
5459 }
5460 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5461
5462 /**
5463  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5464  * @buffer: The ring buffer
5465  * @cpu: The CPU buffer to test
5466  */
5467 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5468 {
5469         struct ring_buffer_per_cpu *cpu_buffer;
5470         unsigned long flags;
5471         bool dolock;
5472         bool ret;
5473
5474         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5475                 return true;
5476
5477         cpu_buffer = buffer->buffers[cpu];
5478         local_irq_save(flags);
5479         dolock = rb_reader_lock(cpu_buffer);
5480         ret = rb_per_cpu_empty(cpu_buffer);
5481         rb_reader_unlock(cpu_buffer, dolock);
5482         local_irq_restore(flags);
5483
5484         return ret;
5485 }
5486 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5487
5488 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5489 /**
5490  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5491  * @buffer_a: One buffer to swap with
5492  * @buffer_b: The other buffer to swap with
5493  * @cpu: the CPU of the buffers to swap
5494  *
5495  * This function is useful for tracers that want to take a "snapshot"
5496  * of a CPU buffer and has another back up buffer lying around.
5497  * it is expected that the tracer handles the cpu buffer not being
5498  * used at the moment.
5499  */
5500 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5501                          struct trace_buffer *buffer_b, int cpu)
5502 {
5503         struct ring_buffer_per_cpu *cpu_buffer_a;
5504         struct ring_buffer_per_cpu *cpu_buffer_b;
5505         int ret = -EINVAL;
5506
5507         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5508             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5509                 goto out;
5510
5511         cpu_buffer_a = buffer_a->buffers[cpu];
5512         cpu_buffer_b = buffer_b->buffers[cpu];
5513
5514         /* At least make sure the two buffers are somewhat the same */
5515         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5516                 goto out;
5517
5518         ret = -EAGAIN;
5519
5520         if (atomic_read(&buffer_a->record_disabled))
5521                 goto out;
5522
5523         if (atomic_read(&buffer_b->record_disabled))
5524                 goto out;
5525
5526         if (atomic_read(&cpu_buffer_a->record_disabled))
5527                 goto out;
5528
5529         if (atomic_read(&cpu_buffer_b->record_disabled))
5530                 goto out;
5531
5532         /*
5533          * We can't do a synchronize_rcu here because this
5534          * function can be called in atomic context.
5535          * Normally this will be called from the same CPU as cpu.
5536          * If not it's up to the caller to protect this.
5537          */
5538         atomic_inc(&cpu_buffer_a->record_disabled);
5539         atomic_inc(&cpu_buffer_b->record_disabled);
5540
5541         ret = -EBUSY;
5542         if (local_read(&cpu_buffer_a->committing))
5543                 goto out_dec;
5544         if (local_read(&cpu_buffer_b->committing))
5545                 goto out_dec;
5546
5547         /*
5548          * When resize is in progress, we cannot swap it because
5549          * it will mess the state of the cpu buffer.
5550          */
5551         if (atomic_read(&buffer_a->resizing))
5552                 goto out_dec;
5553         if (atomic_read(&buffer_b->resizing))
5554                 goto out_dec;
5555
5556         buffer_a->buffers[cpu] = cpu_buffer_b;
5557         buffer_b->buffers[cpu] = cpu_buffer_a;
5558
5559         cpu_buffer_b->buffer = buffer_a;
5560         cpu_buffer_a->buffer = buffer_b;
5561
5562         ret = 0;
5563
5564 out_dec:
5565         atomic_dec(&cpu_buffer_a->record_disabled);
5566         atomic_dec(&cpu_buffer_b->record_disabled);
5567 out:
5568         return ret;
5569 }
5570 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5571 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5572
5573 /**
5574  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5575  * @buffer: the buffer to allocate for.
5576  * @cpu: the cpu buffer to allocate.
5577  *
5578  * This function is used in conjunction with ring_buffer_read_page.
5579  * When reading a full page from the ring buffer, these functions
5580  * can be used to speed up the process. The calling function should
5581  * allocate a few pages first with this function. Then when it
5582  * needs to get pages from the ring buffer, it passes the result
5583  * of this function into ring_buffer_read_page, which will swap
5584  * the page that was allocated, with the read page of the buffer.
5585  *
5586  * Returns:
5587  *  The page allocated, or ERR_PTR
5588  */
5589 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5590 {
5591         struct ring_buffer_per_cpu *cpu_buffer;
5592         struct buffer_data_page *bpage = NULL;
5593         unsigned long flags;
5594         struct page *page;
5595
5596         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5597                 return ERR_PTR(-ENODEV);
5598
5599         cpu_buffer = buffer->buffers[cpu];
5600         local_irq_save(flags);
5601         arch_spin_lock(&cpu_buffer->lock);
5602
5603         if (cpu_buffer->free_page) {
5604                 bpage = cpu_buffer->free_page;
5605                 cpu_buffer->free_page = NULL;
5606         }
5607
5608         arch_spin_unlock(&cpu_buffer->lock);
5609         local_irq_restore(flags);
5610
5611         if (bpage)
5612                 goto out;
5613
5614         page = alloc_pages_node(cpu_to_node(cpu),
5615                                 GFP_KERNEL | __GFP_NORETRY, 0);
5616         if (!page)
5617                 return ERR_PTR(-ENOMEM);
5618
5619         bpage = page_address(page);
5620
5621  out:
5622         rb_init_page(bpage);
5623
5624         return bpage;
5625 }
5626 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5627
5628 /**
5629  * ring_buffer_free_read_page - free an allocated read page
5630  * @buffer: the buffer the page was allocate for
5631  * @cpu: the cpu buffer the page came from
5632  * @data: the page to free
5633  *
5634  * Free a page allocated from ring_buffer_alloc_read_page.
5635  */
5636 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5637 {
5638         struct ring_buffer_per_cpu *cpu_buffer;
5639         struct buffer_data_page *bpage = data;
5640         struct page *page = virt_to_page(bpage);
5641         unsigned long flags;
5642
5643         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5644                 return;
5645
5646         cpu_buffer = buffer->buffers[cpu];
5647
5648         /* If the page is still in use someplace else, we can't reuse it */
5649         if (page_ref_count(page) > 1)
5650                 goto out;
5651
5652         local_irq_save(flags);
5653         arch_spin_lock(&cpu_buffer->lock);
5654
5655         if (!cpu_buffer->free_page) {
5656                 cpu_buffer->free_page = bpage;
5657                 bpage = NULL;
5658         }
5659
5660         arch_spin_unlock(&cpu_buffer->lock);
5661         local_irq_restore(flags);
5662
5663  out:
5664         free_page((unsigned long)bpage);
5665 }
5666 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5667
5668 /**
5669  * ring_buffer_read_page - extract a page from the ring buffer
5670  * @buffer: buffer to extract from
5671  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5672  * @len: amount to extract
5673  * @cpu: the cpu of the buffer to extract
5674  * @full: should the extraction only happen when the page is full.
5675  *
5676  * This function will pull out a page from the ring buffer and consume it.
5677  * @data_page must be the address of the variable that was returned
5678  * from ring_buffer_alloc_read_page. This is because the page might be used
5679  * to swap with a page in the ring buffer.
5680  *
5681  * for example:
5682  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5683  *      if (IS_ERR(rpage))
5684  *              return PTR_ERR(rpage);
5685  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5686  *      if (ret >= 0)
5687  *              process_page(rpage, ret);
5688  *
5689  * When @full is set, the function will not return true unless
5690  * the writer is off the reader page.
5691  *
5692  * Note: it is up to the calling functions to handle sleeps and wakeups.
5693  *  The ring buffer can be used anywhere in the kernel and can not
5694  *  blindly call wake_up. The layer that uses the ring buffer must be
5695  *  responsible for that.
5696  *
5697  * Returns:
5698  *  >=0 if data has been transferred, returns the offset of consumed data.
5699  *  <0 if no data has been transferred.
5700  */
5701 int ring_buffer_read_page(struct trace_buffer *buffer,
5702                           void **data_page, size_t len, int cpu, int full)
5703 {
5704         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5705         struct ring_buffer_event *event;
5706         struct buffer_data_page *bpage;
5707         struct buffer_page *reader;
5708         unsigned long missed_events;
5709         unsigned long flags;
5710         unsigned int commit;
5711         unsigned int read;
5712         u64 save_timestamp;
5713         int ret = -1;
5714
5715         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5716                 goto out;
5717
5718         /*
5719          * If len is not big enough to hold the page header, then
5720          * we can not copy anything.
5721          */
5722         if (len <= BUF_PAGE_HDR_SIZE)
5723                 goto out;
5724
5725         len -= BUF_PAGE_HDR_SIZE;
5726
5727         if (!data_page)
5728                 goto out;
5729
5730         bpage = *data_page;
5731         if (!bpage)
5732                 goto out;
5733
5734         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5735
5736         reader = rb_get_reader_page(cpu_buffer);
5737         if (!reader)
5738                 goto out_unlock;
5739
5740         event = rb_reader_event(cpu_buffer);
5741
5742         read = reader->read;
5743         commit = rb_page_commit(reader);
5744
5745         /* Check if any events were dropped */
5746         missed_events = cpu_buffer->lost_events;
5747
5748         /*
5749          * If this page has been partially read or
5750          * if len is not big enough to read the rest of the page or
5751          * a writer is still on the page, then
5752          * we must copy the data from the page to the buffer.
5753          * Otherwise, we can simply swap the page with the one passed in.
5754          */
5755         if (read || (len < (commit - read)) ||
5756             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5757                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5758                 unsigned int rpos = read;
5759                 unsigned int pos = 0;
5760                 unsigned int size;
5761
5762                 /*
5763                  * If a full page is expected, this can still be returned
5764                  * if there's been a previous partial read and the
5765                  * rest of the page can be read and the commit page is off
5766                  * the reader page.
5767                  */
5768                 if (full &&
5769                     (!read || (len < (commit - read)) ||
5770                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5771                         goto out_unlock;
5772
5773                 if (len > (commit - read))
5774                         len = (commit - read);
5775
5776                 /* Always keep the time extend and data together */
5777                 size = rb_event_ts_length(event);
5778
5779                 if (len < size)
5780                         goto out_unlock;
5781
5782                 /* save the current timestamp, since the user will need it */
5783                 save_timestamp = cpu_buffer->read_stamp;
5784
5785                 /* Need to copy one event at a time */
5786                 do {
5787                         /* We need the size of one event, because
5788                          * rb_advance_reader only advances by one event,
5789                          * whereas rb_event_ts_length may include the size of
5790                          * one or two events.
5791                          * We have already ensured there's enough space if this
5792                          * is a time extend. */
5793                         size = rb_event_length(event);
5794                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5795
5796                         len -= size;
5797
5798                         rb_advance_reader(cpu_buffer);
5799                         rpos = reader->read;
5800                         pos += size;
5801
5802                         if (rpos >= commit)
5803                                 break;
5804
5805                         event = rb_reader_event(cpu_buffer);
5806                         /* Always keep the time extend and data together */
5807                         size = rb_event_ts_length(event);
5808                 } while (len >= size);
5809
5810                 /* update bpage */
5811                 local_set(&bpage->commit, pos);
5812                 bpage->time_stamp = save_timestamp;
5813
5814                 /* we copied everything to the beginning */
5815                 read = 0;
5816         } else {
5817                 /* update the entry counter */
5818                 cpu_buffer->read += rb_page_entries(reader);
5819                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5820
5821                 /* swap the pages */
5822                 rb_init_page(bpage);
5823                 bpage = reader->page;
5824                 reader->page = *data_page;
5825                 local_set(&reader->write, 0);
5826                 local_set(&reader->entries, 0);
5827                 reader->read = 0;
5828                 *data_page = bpage;
5829
5830                 /*
5831                  * Use the real_end for the data size,
5832                  * This gives us a chance to store the lost events
5833                  * on the page.
5834                  */
5835                 if (reader->real_end)
5836                         local_set(&bpage->commit, reader->real_end);
5837         }
5838         ret = read;
5839
5840         cpu_buffer->lost_events = 0;
5841
5842         commit = local_read(&bpage->commit);
5843         /*
5844          * Set a flag in the commit field if we lost events
5845          */
5846         if (missed_events) {
5847                 /* If there is room at the end of the page to save the
5848                  * missed events, then record it there.
5849                  */
5850                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5851                         memcpy(&bpage->data[commit], &missed_events,
5852                                sizeof(missed_events));
5853                         local_add(RB_MISSED_STORED, &bpage->commit);
5854                         commit += sizeof(missed_events);
5855                 }
5856                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5857         }
5858
5859         /*
5860          * This page may be off to user land. Zero it out here.
5861          */
5862         if (commit < BUF_PAGE_SIZE)
5863                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5864
5865  out_unlock:
5866         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5867
5868  out:
5869         return ret;
5870 }
5871 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5872
5873 /*
5874  * We only allocate new buffers, never free them if the CPU goes down.
5875  * If we were to free the buffer, then the user would lose any trace that was in
5876  * the buffer.
5877  */
5878 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5879 {
5880         struct trace_buffer *buffer;
5881         long nr_pages_same;
5882         int cpu_i;
5883         unsigned long nr_pages;
5884
5885         buffer = container_of(node, struct trace_buffer, node);
5886         if (cpumask_test_cpu(cpu, buffer->cpumask))
5887                 return 0;
5888
5889         nr_pages = 0;
5890         nr_pages_same = 1;
5891         /* check if all cpu sizes are same */
5892         for_each_buffer_cpu(buffer, cpu_i) {
5893                 /* fill in the size from first enabled cpu */
5894                 if (nr_pages == 0)
5895                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5896                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5897                         nr_pages_same = 0;
5898                         break;
5899                 }
5900         }
5901         /* allocate minimum pages, user can later expand it */
5902         if (!nr_pages_same)
5903                 nr_pages = 2;
5904         buffer->buffers[cpu] =
5905                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5906         if (!buffer->buffers[cpu]) {
5907                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5908                      cpu);
5909                 return -ENOMEM;
5910         }
5911         smp_wmb();
5912         cpumask_set_cpu(cpu, buffer->cpumask);
5913         return 0;
5914 }
5915
5916 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5917 /*
5918  * This is a basic integrity check of the ring buffer.
5919  * Late in the boot cycle this test will run when configured in.
5920  * It will kick off a thread per CPU that will go into a loop
5921  * writing to the per cpu ring buffer various sizes of data.
5922  * Some of the data will be large items, some small.
5923  *
5924  * Another thread is created that goes into a spin, sending out
5925  * IPIs to the other CPUs to also write into the ring buffer.
5926  * this is to test the nesting ability of the buffer.
5927  *
5928  * Basic stats are recorded and reported. If something in the
5929  * ring buffer should happen that's not expected, a big warning
5930  * is displayed and all ring buffers are disabled.
5931  */
5932 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5933
5934 struct rb_test_data {
5935         struct trace_buffer *buffer;
5936         unsigned long           events;
5937         unsigned long           bytes_written;
5938         unsigned long           bytes_alloc;
5939         unsigned long           bytes_dropped;
5940         unsigned long           events_nested;
5941         unsigned long           bytes_written_nested;
5942         unsigned long           bytes_alloc_nested;
5943         unsigned long           bytes_dropped_nested;
5944         int                     min_size_nested;
5945         int                     max_size_nested;
5946         int                     max_size;
5947         int                     min_size;
5948         int                     cpu;
5949         int                     cnt;
5950 };
5951
5952 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5953
5954 /* 1 meg per cpu */
5955 #define RB_TEST_BUFFER_SIZE     1048576
5956
5957 static char rb_string[] __initdata =
5958         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5959         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5960         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5961
5962 static bool rb_test_started __initdata;
5963
5964 struct rb_item {
5965         int size;
5966         char str[];
5967 };
5968
5969 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5970 {
5971         struct ring_buffer_event *event;
5972         struct rb_item *item;
5973         bool started;
5974         int event_len;
5975         int size;
5976         int len;
5977         int cnt;
5978
5979         /* Have nested writes different that what is written */
5980         cnt = data->cnt + (nested ? 27 : 0);
5981
5982         /* Multiply cnt by ~e, to make some unique increment */
5983         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5984
5985         len = size + sizeof(struct rb_item);
5986
5987         started = rb_test_started;
5988         /* read rb_test_started before checking buffer enabled */
5989         smp_rmb();
5990
5991         event = ring_buffer_lock_reserve(data->buffer, len);
5992         if (!event) {
5993                 /* Ignore dropped events before test starts. */
5994                 if (started) {
5995                         if (nested)
5996                                 data->bytes_dropped += len;
5997                         else
5998                                 data->bytes_dropped_nested += len;
5999                 }
6000                 return len;
6001         }
6002
6003         event_len = ring_buffer_event_length(event);
6004
6005         if (RB_WARN_ON(data->buffer, event_len < len))
6006                 goto out;
6007
6008         item = ring_buffer_event_data(event);
6009         item->size = size;
6010         memcpy(item->str, rb_string, size);
6011
6012         if (nested) {
6013                 data->bytes_alloc_nested += event_len;
6014                 data->bytes_written_nested += len;
6015                 data->events_nested++;
6016                 if (!data->min_size_nested || len < data->min_size_nested)
6017                         data->min_size_nested = len;
6018                 if (len > data->max_size_nested)
6019                         data->max_size_nested = len;
6020         } else {
6021                 data->bytes_alloc += event_len;
6022                 data->bytes_written += len;
6023                 data->events++;
6024                 if (!data->min_size || len < data->min_size)
6025                         data->max_size = len;
6026                 if (len > data->max_size)
6027                         data->max_size = len;
6028         }
6029
6030  out:
6031         ring_buffer_unlock_commit(data->buffer);
6032
6033         return 0;
6034 }
6035
6036 static __init int rb_test(void *arg)
6037 {
6038         struct rb_test_data *data = arg;
6039
6040         while (!kthread_should_stop()) {
6041                 rb_write_something(data, false);
6042                 data->cnt++;
6043
6044                 set_current_state(TASK_INTERRUPTIBLE);
6045                 /* Now sleep between a min of 100-300us and a max of 1ms */
6046                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6047         }
6048
6049         return 0;
6050 }
6051
6052 static __init void rb_ipi(void *ignore)
6053 {
6054         struct rb_test_data *data;
6055         int cpu = smp_processor_id();
6056
6057         data = &rb_data[cpu];
6058         rb_write_something(data, true);
6059 }
6060
6061 static __init int rb_hammer_test(void *arg)
6062 {
6063         while (!kthread_should_stop()) {
6064
6065                 /* Send an IPI to all cpus to write data! */
6066                 smp_call_function(rb_ipi, NULL, 1);
6067                 /* No sleep, but for non preempt, let others run */
6068                 schedule();
6069         }
6070
6071         return 0;
6072 }
6073
6074 static __init int test_ringbuffer(void)
6075 {
6076         struct task_struct *rb_hammer;
6077         struct trace_buffer *buffer;
6078         int cpu;
6079         int ret = 0;
6080
6081         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6082                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6083                 return 0;
6084         }
6085
6086         pr_info("Running ring buffer tests...\n");
6087
6088         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6089         if (WARN_ON(!buffer))
6090                 return 0;
6091
6092         /* Disable buffer so that threads can't write to it yet */
6093         ring_buffer_record_off(buffer);
6094
6095         for_each_online_cpu(cpu) {
6096                 rb_data[cpu].buffer = buffer;
6097                 rb_data[cpu].cpu = cpu;
6098                 rb_data[cpu].cnt = cpu;
6099                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6100                                                      cpu, "rbtester/%u");
6101                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6102                         pr_cont("FAILED\n");
6103                         ret = PTR_ERR(rb_threads[cpu]);
6104                         goto out_free;
6105                 }
6106         }
6107
6108         /* Now create the rb hammer! */
6109         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6110         if (WARN_ON(IS_ERR(rb_hammer))) {
6111                 pr_cont("FAILED\n");
6112                 ret = PTR_ERR(rb_hammer);
6113                 goto out_free;
6114         }
6115
6116         ring_buffer_record_on(buffer);
6117         /*
6118          * Show buffer is enabled before setting rb_test_started.
6119          * Yes there's a small race window where events could be
6120          * dropped and the thread wont catch it. But when a ring
6121          * buffer gets enabled, there will always be some kind of
6122          * delay before other CPUs see it. Thus, we don't care about
6123          * those dropped events. We care about events dropped after
6124          * the threads see that the buffer is active.
6125          */
6126         smp_wmb();
6127         rb_test_started = true;
6128
6129         set_current_state(TASK_INTERRUPTIBLE);
6130         /* Just run for 10 seconds */;
6131         schedule_timeout(10 * HZ);
6132
6133         kthread_stop(rb_hammer);
6134
6135  out_free:
6136         for_each_online_cpu(cpu) {
6137                 if (!rb_threads[cpu])
6138                         break;
6139                 kthread_stop(rb_threads[cpu]);
6140         }
6141         if (ret) {
6142                 ring_buffer_free(buffer);
6143                 return ret;
6144         }
6145
6146         /* Report! */
6147         pr_info("finished\n");
6148         for_each_online_cpu(cpu) {
6149                 struct ring_buffer_event *event;
6150                 struct rb_test_data *data = &rb_data[cpu];
6151                 struct rb_item *item;
6152                 unsigned long total_events;
6153                 unsigned long total_dropped;
6154                 unsigned long total_written;
6155                 unsigned long total_alloc;
6156                 unsigned long total_read = 0;
6157                 unsigned long total_size = 0;
6158                 unsigned long total_len = 0;
6159                 unsigned long total_lost = 0;
6160                 unsigned long lost;
6161                 int big_event_size;
6162                 int small_event_size;
6163
6164                 ret = -1;
6165
6166                 total_events = data->events + data->events_nested;
6167                 total_written = data->bytes_written + data->bytes_written_nested;
6168                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6169                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6170
6171                 big_event_size = data->max_size + data->max_size_nested;
6172                 small_event_size = data->min_size + data->min_size_nested;
6173
6174                 pr_info("CPU %d:\n", cpu);
6175                 pr_info("              events:    %ld\n", total_events);
6176                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6177                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6178                 pr_info("       written bytes:    %ld\n", total_written);
6179                 pr_info("       biggest event:    %d\n", big_event_size);
6180                 pr_info("      smallest event:    %d\n", small_event_size);
6181
6182                 if (RB_WARN_ON(buffer, total_dropped))
6183                         break;
6184
6185                 ret = 0;
6186
6187                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6188                         total_lost += lost;
6189                         item = ring_buffer_event_data(event);
6190                         total_len += ring_buffer_event_length(event);
6191                         total_size += item->size + sizeof(struct rb_item);
6192                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6193                                 pr_info("FAILED!\n");
6194                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6195                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6196                                 RB_WARN_ON(buffer, 1);
6197                                 ret = -1;
6198                                 break;
6199                         }
6200                         total_read++;
6201                 }
6202                 if (ret)
6203                         break;
6204
6205                 ret = -1;
6206
6207                 pr_info("         read events:   %ld\n", total_read);
6208                 pr_info("         lost events:   %ld\n", total_lost);
6209                 pr_info("        total events:   %ld\n", total_lost + total_read);
6210                 pr_info("  recorded len bytes:   %ld\n", total_len);
6211                 pr_info(" recorded size bytes:   %ld\n", total_size);
6212                 if (total_lost) {
6213                         pr_info(" With dropped events, record len and size may not match\n"
6214                                 " alloced and written from above\n");
6215                 } else {
6216                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6217                                        total_size != total_written))
6218                                 break;
6219                 }
6220                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6221                         break;
6222
6223                 ret = 0;
6224         }
6225         if (!ret)
6226                 pr_info("Ring buffer PASSED!\n");
6227
6228         ring_buffer_free(buffer);
6229         return 0;
6230 }
6231
6232 late_initcall(test_ringbuffer);
6233 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */