Merge tag 'backport/v3.14.24-ltsi-rc1/rcar-snd-to-next-20141121' into backport/v3...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         int ret;
38
39         ret = trace_seq_puts(s, "# compressed entry header\n");
40         ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41         ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42         ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43         ret = trace_seq_putc(s, '\n');
44         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45                                RINGBUF_TYPE_PADDING);
46         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                                RINGBUF_TYPE_TIME_EXTEND);
48         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return ret;
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150
151 enum {
152         RB_BUFFERS_ON_BIT       = 0,
153         RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
158         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF           (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT            4U
181 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT       0
186 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT       1
189 # define RB_ARCH_ALIGNMENT              8U
190 #endif
191
192 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198         RB_LEN_TIME_EXTEND = 8,
199         RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212         /* padding has a NULL time_delta */
213         event->type_len = RINGBUF_TYPE_PADDING;
214         event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220         unsigned length;
221
222         if (event->type_len)
223                 length = event->type_len * RB_ALIGNMENT;
224         else
225                 length = event->array[0];
226         return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237         switch (event->type_len) {
238         case RINGBUF_TYPE_PADDING:
239                 if (rb_null_event(event))
240                         /* undefined */
241                         return -1;
242                 return  event->array[0] + RB_EVNT_HDR_SIZE;
243
244         case RINGBUF_TYPE_TIME_EXTEND:
245                 return RB_LEN_TIME_EXTEND;
246
247         case RINGBUF_TYPE_TIME_STAMP:
248                 return RB_LEN_TIME_STAMP;
249
250         case RINGBUF_TYPE_DATA:
251                 return rb_event_data_length(event);
252         default:
253                 BUG();
254         }
255         /* not hit */
256         return 0;
257 }
258
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266         unsigned len = 0;
267
268         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269                 /* time extends include the data event after it */
270                 len = RB_LEN_TIME_EXTEND;
271                 event = skip_time_extend(event);
272         }
273         return len + rb_event_length(event);
274 }
275
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288         unsigned length;
289
290         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291                 event = skip_time_extend(event);
292
293         length = rb_event_length(event);
294         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295                 return length;
296         length -= RB_EVNT_HDR_SIZE;
297         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299         return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308                 event = skip_time_extend(event);
309         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310         /* If length is in len field, then array[0] has the data */
311         if (event->type_len)
312                 return (void *)&event->array[0];
313         /* Otherwise length is in array[0] and array[1] has the data */
314         return (void *)&event->array[1];
315 }
316
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323         return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu)                \
328         for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT        27
331 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST   (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS        (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED        (1 << 30)
338
339 struct buffer_data_page {
340         u64              time_stamp;    /* page time stamp */
341         local_t          commit;        /* write committed index */
342         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
343 };
344
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354         struct list_head list;          /* list of buffer pages */
355         local_t          write;         /* index for next write */
356         unsigned         read;          /* index for next read */
357         local_t          entries;       /* entries on this page */
358         unsigned long    real_end;      /* real end of data */
359         struct buffer_data_page *page;  /* Actual data page */
360 };
361
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK           0xfffff
375 #define RB_WRITE_INTCNT         (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379         local_set(&bpage->commit, 0);
380 }
381
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390         return local_read(&((struct buffer_data_page *)page)->commit)
391                 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400         free_page((unsigned long)bpage->page);
401         kfree(bpage);
402 }
403
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409         if (delta & TS_DELTA_TEST)
410                 return 1;
411         return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421         struct buffer_data_page field;
422         int ret;
423
424         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425                                "offset:0;\tsize:%u;\tsigned:%u;\n",
426                                (unsigned int)sizeof(field.time_stamp),
427                                (unsigned int)is_signed_type(u64));
428
429         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                (unsigned int)sizeof(field.commit),
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), commit),
438                                1,
439                                (unsigned int)is_signed_type(long));
440
441         ret = trace_seq_printf(s, "\tfield: char data;\t"
442                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
443                                (unsigned int)offsetof(typeof(field), data),
444                                (unsigned int)BUF_PAGE_SIZE,
445                                (unsigned int)is_signed_type(char));
446
447         return ret;
448 }
449
450 struct rb_irq_work {
451         struct irq_work                 work;
452         wait_queue_head_t               waiters;
453         bool                            waiters_pending;
454 };
455
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460         int                             cpu;
461         atomic_t                        record_disabled;
462         struct ring_buffer              *buffer;
463         raw_spinlock_t                  reader_lock;    /* serialize readers */
464         arch_spinlock_t                 lock;
465         struct lock_class_key           lock_key;
466         unsigned int                    nr_pages;
467         struct list_head                *pages;
468         struct buffer_page              *head_page;     /* read from head */
469         struct buffer_page              *tail_page;     /* write to tail */
470         struct buffer_page              *commit_page;   /* committed pages */
471         struct buffer_page              *reader_page;
472         unsigned long                   lost_events;
473         unsigned long                   last_overrun;
474         local_t                         entries_bytes;
475         local_t                         entries;
476         local_t                         overrun;
477         local_t                         commit_overrun;
478         local_t                         dropped_events;
479         local_t                         committing;
480         local_t                         commits;
481         unsigned long                   read;
482         unsigned long                   read_bytes;
483         u64                             write_stamp;
484         u64                             read_stamp;
485         /* ring buffer pages to update, > 0 to add, < 0 to remove */
486         int                             nr_pages_to_update;
487         struct list_head                new_pages; /* new pages to add */
488         struct work_struct              update_pages_work;
489         struct completion               update_done;
490
491         struct rb_irq_work              irq_work;
492 };
493
494 struct ring_buffer {
495         unsigned                        flags;
496         int                             cpus;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         cpumask_var_t                   cpumask;
500
501         struct lock_class_key           *reader_lock_key;
502
503         struct mutex                    mutex;
504
505         struct ring_buffer_per_cpu      **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508         struct notifier_block           cpu_notify;
509 #endif
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513 };
514
515 struct ring_buffer_iter {
516         struct ring_buffer_per_cpu      *cpu_buffer;
517         unsigned long                   head;
518         struct buffer_page              *head_page;
519         struct buffer_page              *cache_reader_page;
520         unsigned long                   cache_read;
521         u64                             read_stamp;
522 };
523
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534         wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548         struct ring_buffer_per_cpu *cpu_buffer;
549         DEFINE_WAIT(wait);
550         struct rb_irq_work *work;
551
552         /*
553          * Depending on what the caller is waiting for, either any
554          * data in any cpu buffer, or a specific buffer, put the
555          * caller on the appropriate wait queue.
556          */
557         if (cpu == RING_BUFFER_ALL_CPUS)
558                 work = &buffer->irq_work;
559         else {
560                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561                         return -ENODEV;
562                 cpu_buffer = buffer->buffers[cpu];
563                 work = &cpu_buffer->irq_work;
564         }
565
566
567         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569         /*
570          * The events can happen in critical sections where
571          * checking a work queue can cause deadlocks.
572          * After adding a task to the queue, this flag is set
573          * only to notify events to try to wake up the queue
574          * using irq_work.
575          *
576          * We don't clear it even if the buffer is no longer
577          * empty. The flag only causes the next event to run
578          * irq_work to do the work queue wake up. The worse
579          * that can happen if we race with !trace_empty() is that
580          * an event will cause an irq_work to try to wake up
581          * an empty queue.
582          *
583          * There's no reason to protect this flag either, as
584          * the work queue and irq_work logic will do the necessary
585          * synchronization for the wake ups. The only thing
586          * that is necessary is that the wake up happens after
587          * a task has been queued. It's OK for spurious wake ups.
588          */
589         work->waiters_pending = true;
590
591         if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592             (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593                 schedule();
594
595         finish_wait(&work->waiters, &wait);
596         return 0;
597 }
598
599 /**
600  * ring_buffer_poll_wait - poll on buffer input
601  * @buffer: buffer to wait on
602  * @cpu: the cpu buffer to wait on
603  * @filp: the file descriptor
604  * @poll_table: The poll descriptor
605  *
606  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607  * as data is added to any of the @buffer's cpu buffers. Otherwise
608  * it will wait for data to be added to a specific cpu buffer.
609  *
610  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611  * zero otherwise.
612  */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614                           struct file *filp, poll_table *poll_table)
615 {
616         struct ring_buffer_per_cpu *cpu_buffer;
617         struct rb_irq_work *work;
618
619         if (cpu == RING_BUFFER_ALL_CPUS)
620                 work = &buffer->irq_work;
621         else {
622                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623                         return -EINVAL;
624
625                 cpu_buffer = buffer->buffers[cpu];
626                 work = &cpu_buffer->irq_work;
627         }
628
629         poll_wait(filp, &work->waiters, poll_table);
630         work->waiters_pending = true;
631         /*
632          * There's a tight race between setting the waiters_pending and
633          * checking if the ring buffer is empty.  Once the waiters_pending bit
634          * is set, the next event will wake the task up, but we can get stuck
635          * if there's only a single event in.
636          *
637          * FIXME: Ideally, we need a memory barrier on the writer side as well,
638          * but adding a memory barrier to all events will cause too much of a
639          * performance hit in the fast path.  We only need a memory barrier when
640          * the buffer goes from empty to having content.  But as this race is
641          * extremely small, and it's not a problem if another event comes in, we
642          * will fix it later.
643          */
644         smp_mb();
645
646         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
647             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
648                 return POLLIN | POLLRDNORM;
649         return 0;
650 }
651
652 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
653 #define RB_WARN_ON(b, cond)                                             \
654         ({                                                              \
655                 int _____ret = unlikely(cond);                          \
656                 if (_____ret) {                                         \
657                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
658                                 struct ring_buffer_per_cpu *__b =       \
659                                         (void *)b;                      \
660                                 atomic_inc(&__b->buffer->record_disabled); \
661                         } else                                          \
662                                 atomic_inc(&b->record_disabled);        \
663                         WARN_ON(1);                                     \
664                 }                                                       \
665                 _____ret;                                               \
666         })
667
668 /* Up this if you want to test the TIME_EXTENTS and normalization */
669 #define DEBUG_SHIFT 0
670
671 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
672 {
673         /* shift to debug/test normalization and TIME_EXTENTS */
674         return buffer->clock() << DEBUG_SHIFT;
675 }
676
677 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
678 {
679         u64 time;
680
681         preempt_disable_notrace();
682         time = rb_time_stamp(buffer);
683         preempt_enable_no_resched_notrace();
684
685         return time;
686 }
687 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
688
689 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
690                                       int cpu, u64 *ts)
691 {
692         /* Just stupid testing the normalize function and deltas */
693         *ts >>= DEBUG_SHIFT;
694 }
695 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
696
697 /*
698  * Making the ring buffer lockless makes things tricky.
699  * Although writes only happen on the CPU that they are on,
700  * and they only need to worry about interrupts. Reads can
701  * happen on any CPU.
702  *
703  * The reader page is always off the ring buffer, but when the
704  * reader finishes with a page, it needs to swap its page with
705  * a new one from the buffer. The reader needs to take from
706  * the head (writes go to the tail). But if a writer is in overwrite
707  * mode and wraps, it must push the head page forward.
708  *
709  * Here lies the problem.
710  *
711  * The reader must be careful to replace only the head page, and
712  * not another one. As described at the top of the file in the
713  * ASCII art, the reader sets its old page to point to the next
714  * page after head. It then sets the page after head to point to
715  * the old reader page. But if the writer moves the head page
716  * during this operation, the reader could end up with the tail.
717  *
718  * We use cmpxchg to help prevent this race. We also do something
719  * special with the page before head. We set the LSB to 1.
720  *
721  * When the writer must push the page forward, it will clear the
722  * bit that points to the head page, move the head, and then set
723  * the bit that points to the new head page.
724  *
725  * We also don't want an interrupt coming in and moving the head
726  * page on another writer. Thus we use the second LSB to catch
727  * that too. Thus:
728  *
729  * head->list->prev->next        bit 1          bit 0
730  *                              -------        -------
731  * Normal page                     0              0
732  * Points to head page             0              1
733  * New head page                   1              0
734  *
735  * Note we can not trust the prev pointer of the head page, because:
736  *
737  * +----+       +-----+        +-----+
738  * |    |------>|  T  |---X--->|  N  |
739  * |    |<------|     |        |     |
740  * +----+       +-----+        +-----+
741  *   ^                           ^ |
742  *   |          +-----+          | |
743  *   +----------|  R  |----------+ |
744  *              |     |<-----------+
745  *              +-----+
746  *
747  * Key:  ---X-->  HEAD flag set in pointer
748  *         T      Tail page
749  *         R      Reader page
750  *         N      Next page
751  *
752  * (see __rb_reserve_next() to see where this happens)
753  *
754  *  What the above shows is that the reader just swapped out
755  *  the reader page with a page in the buffer, but before it
756  *  could make the new header point back to the new page added
757  *  it was preempted by a writer. The writer moved forward onto
758  *  the new page added by the reader and is about to move forward
759  *  again.
760  *
761  *  You can see, it is legitimate for the previous pointer of
762  *  the head (or any page) not to point back to itself. But only
763  *  temporarially.
764  */
765
766 #define RB_PAGE_NORMAL          0UL
767 #define RB_PAGE_HEAD            1UL
768 #define RB_PAGE_UPDATE          2UL
769
770
771 #define RB_FLAG_MASK            3UL
772
773 /* PAGE_MOVED is not part of the mask */
774 #define RB_PAGE_MOVED           4UL
775
776 /*
777  * rb_list_head - remove any bit
778  */
779 static struct list_head *rb_list_head(struct list_head *list)
780 {
781         unsigned long val = (unsigned long)list;
782
783         return (struct list_head *)(val & ~RB_FLAG_MASK);
784 }
785
786 /*
787  * rb_is_head_page - test if the given page is the head page
788  *
789  * Because the reader may move the head_page pointer, we can
790  * not trust what the head page is (it may be pointing to
791  * the reader page). But if the next page is a header page,
792  * its flags will be non zero.
793  */
794 static inline int
795 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
796                 struct buffer_page *page, struct list_head *list)
797 {
798         unsigned long val;
799
800         val = (unsigned long)list->next;
801
802         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
803                 return RB_PAGE_MOVED;
804
805         return val & RB_FLAG_MASK;
806 }
807
808 /*
809  * rb_is_reader_page
810  *
811  * The unique thing about the reader page, is that, if the
812  * writer is ever on it, the previous pointer never points
813  * back to the reader page.
814  */
815 static int rb_is_reader_page(struct buffer_page *page)
816 {
817         struct list_head *list = page->list.prev;
818
819         return rb_list_head(list->next) != &page->list;
820 }
821
822 /*
823  * rb_set_list_to_head - set a list_head to be pointing to head.
824  */
825 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
826                                 struct list_head *list)
827 {
828         unsigned long *ptr;
829
830         ptr = (unsigned long *)&list->next;
831         *ptr |= RB_PAGE_HEAD;
832         *ptr &= ~RB_PAGE_UPDATE;
833 }
834
835 /*
836  * rb_head_page_activate - sets up head page
837  */
838 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
839 {
840         struct buffer_page *head;
841
842         head = cpu_buffer->head_page;
843         if (!head)
844                 return;
845
846         /*
847          * Set the previous list pointer to have the HEAD flag.
848          */
849         rb_set_list_to_head(cpu_buffer, head->list.prev);
850 }
851
852 static void rb_list_head_clear(struct list_head *list)
853 {
854         unsigned long *ptr = (unsigned long *)&list->next;
855
856         *ptr &= ~RB_FLAG_MASK;
857 }
858
859 /*
860  * rb_head_page_dactivate - clears head page ptr (for free list)
861  */
862 static void
863 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
864 {
865         struct list_head *hd;
866
867         /* Go through the whole list and clear any pointers found. */
868         rb_list_head_clear(cpu_buffer->pages);
869
870         list_for_each(hd, cpu_buffer->pages)
871                 rb_list_head_clear(hd);
872 }
873
874 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
875                             struct buffer_page *head,
876                             struct buffer_page *prev,
877                             int old_flag, int new_flag)
878 {
879         struct list_head *list;
880         unsigned long val = (unsigned long)&head->list;
881         unsigned long ret;
882
883         list = &prev->list;
884
885         val &= ~RB_FLAG_MASK;
886
887         ret = cmpxchg((unsigned long *)&list->next,
888                       val | old_flag, val | new_flag);
889
890         /* check if the reader took the page */
891         if ((ret & ~RB_FLAG_MASK) != val)
892                 return RB_PAGE_MOVED;
893
894         return ret & RB_FLAG_MASK;
895 }
896
897 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
898                                    struct buffer_page *head,
899                                    struct buffer_page *prev,
900                                    int old_flag)
901 {
902         return rb_head_page_set(cpu_buffer, head, prev,
903                                 old_flag, RB_PAGE_UPDATE);
904 }
905
906 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
907                                  struct buffer_page *head,
908                                  struct buffer_page *prev,
909                                  int old_flag)
910 {
911         return rb_head_page_set(cpu_buffer, head, prev,
912                                 old_flag, RB_PAGE_HEAD);
913 }
914
915 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
916                                    struct buffer_page *head,
917                                    struct buffer_page *prev,
918                                    int old_flag)
919 {
920         return rb_head_page_set(cpu_buffer, head, prev,
921                                 old_flag, RB_PAGE_NORMAL);
922 }
923
924 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
925                                struct buffer_page **bpage)
926 {
927         struct list_head *p = rb_list_head((*bpage)->list.next);
928
929         *bpage = list_entry(p, struct buffer_page, list);
930 }
931
932 static struct buffer_page *
933 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
934 {
935         struct buffer_page *head;
936         struct buffer_page *page;
937         struct list_head *list;
938         int i;
939
940         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
941                 return NULL;
942
943         /* sanity check */
944         list = cpu_buffer->pages;
945         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
946                 return NULL;
947
948         page = head = cpu_buffer->head_page;
949         /*
950          * It is possible that the writer moves the header behind
951          * where we started, and we miss in one loop.
952          * A second loop should grab the header, but we'll do
953          * three loops just because I'm paranoid.
954          */
955         for (i = 0; i < 3; i++) {
956                 do {
957                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
958                                 cpu_buffer->head_page = page;
959                                 return page;
960                         }
961                         rb_inc_page(cpu_buffer, &page);
962                 } while (page != head);
963         }
964
965         RB_WARN_ON(cpu_buffer, 1);
966
967         return NULL;
968 }
969
970 static int rb_head_page_replace(struct buffer_page *old,
971                                 struct buffer_page *new)
972 {
973         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
974         unsigned long val;
975         unsigned long ret;
976
977         val = *ptr & ~RB_FLAG_MASK;
978         val |= RB_PAGE_HEAD;
979
980         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
981
982         return ret == val;
983 }
984
985 /*
986  * rb_tail_page_update - move the tail page forward
987  *
988  * Returns 1 if moved tail page, 0 if someone else did.
989  */
990 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
991                                struct buffer_page *tail_page,
992                                struct buffer_page *next_page)
993 {
994         struct buffer_page *old_tail;
995         unsigned long old_entries;
996         unsigned long old_write;
997         int ret = 0;
998
999         /*
1000          * The tail page now needs to be moved forward.
1001          *
1002          * We need to reset the tail page, but without messing
1003          * with possible erasing of data brought in by interrupts
1004          * that have moved the tail page and are currently on it.
1005          *
1006          * We add a counter to the write field to denote this.
1007          */
1008         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1009         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1010
1011         /*
1012          * Just make sure we have seen our old_write and synchronize
1013          * with any interrupts that come in.
1014          */
1015         barrier();
1016
1017         /*
1018          * If the tail page is still the same as what we think
1019          * it is, then it is up to us to update the tail
1020          * pointer.
1021          */
1022         if (tail_page == cpu_buffer->tail_page) {
1023                 /* Zero the write counter */
1024                 unsigned long val = old_write & ~RB_WRITE_MASK;
1025                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1026
1027                 /*
1028                  * This will only succeed if an interrupt did
1029                  * not come in and change it. In which case, we
1030                  * do not want to modify it.
1031                  *
1032                  * We add (void) to let the compiler know that we do not care
1033                  * about the return value of these functions. We use the
1034                  * cmpxchg to only update if an interrupt did not already
1035                  * do it for us. If the cmpxchg fails, we don't care.
1036                  */
1037                 (void)local_cmpxchg(&next_page->write, old_write, val);
1038                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1039
1040                 /*
1041                  * No need to worry about races with clearing out the commit.
1042                  * it only can increment when a commit takes place. But that
1043                  * only happens in the outer most nested commit.
1044                  */
1045                 local_set(&next_page->page->commit, 0);
1046
1047                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1048                                    tail_page, next_page);
1049
1050                 if (old_tail == tail_page)
1051                         ret = 1;
1052         }
1053
1054         return ret;
1055 }
1056
1057 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1058                           struct buffer_page *bpage)
1059 {
1060         unsigned long val = (unsigned long)bpage;
1061
1062         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1063                 return 1;
1064
1065         return 0;
1066 }
1067
1068 /**
1069  * rb_check_list - make sure a pointer to a list has the last bits zero
1070  */
1071 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1072                          struct list_head *list)
1073 {
1074         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1075                 return 1;
1076         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1077                 return 1;
1078         return 0;
1079 }
1080
1081 /**
1082  * rb_check_pages - integrity check of buffer pages
1083  * @cpu_buffer: CPU buffer with pages to test
1084  *
1085  * As a safety measure we check to make sure the data pages have not
1086  * been corrupted.
1087  */
1088 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1089 {
1090         struct list_head *head = cpu_buffer->pages;
1091         struct buffer_page *bpage, *tmp;
1092
1093         /* Reset the head page if it exists */
1094         if (cpu_buffer->head_page)
1095                 rb_set_head_page(cpu_buffer);
1096
1097         rb_head_page_deactivate(cpu_buffer);
1098
1099         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1100                 return -1;
1101         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1102                 return -1;
1103
1104         if (rb_check_list(cpu_buffer, head))
1105                 return -1;
1106
1107         list_for_each_entry_safe(bpage, tmp, head, list) {
1108                 if (RB_WARN_ON(cpu_buffer,
1109                                bpage->list.next->prev != &bpage->list))
1110                         return -1;
1111                 if (RB_WARN_ON(cpu_buffer,
1112                                bpage->list.prev->next != &bpage->list))
1113                         return -1;
1114                 if (rb_check_list(cpu_buffer, &bpage->list))
1115                         return -1;
1116         }
1117
1118         rb_head_page_activate(cpu_buffer);
1119
1120         return 0;
1121 }
1122
1123 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1124 {
1125         int i;
1126         struct buffer_page *bpage, *tmp;
1127
1128         for (i = 0; i < nr_pages; i++) {
1129                 struct page *page;
1130                 /*
1131                  * __GFP_NORETRY flag makes sure that the allocation fails
1132                  * gracefully without invoking oom-killer and the system is
1133                  * not destabilized.
1134                  */
1135                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1136                                     GFP_KERNEL | __GFP_NORETRY,
1137                                     cpu_to_node(cpu));
1138                 if (!bpage)
1139                         goto free_pages;
1140
1141                 list_add(&bpage->list, pages);
1142
1143                 page = alloc_pages_node(cpu_to_node(cpu),
1144                                         GFP_KERNEL | __GFP_NORETRY, 0);
1145                 if (!page)
1146                         goto free_pages;
1147                 bpage->page = page_address(page);
1148                 rb_init_page(bpage->page);
1149         }
1150
1151         return 0;
1152
1153 free_pages:
1154         list_for_each_entry_safe(bpage, tmp, pages, list) {
1155                 list_del_init(&bpage->list);
1156                 free_buffer_page(bpage);
1157         }
1158
1159         return -ENOMEM;
1160 }
1161
1162 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1163                              unsigned nr_pages)
1164 {
1165         LIST_HEAD(pages);
1166
1167         WARN_ON(!nr_pages);
1168
1169         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1170                 return -ENOMEM;
1171
1172         /*
1173          * The ring buffer page list is a circular list that does not
1174          * start and end with a list head. All page list items point to
1175          * other pages.
1176          */
1177         cpu_buffer->pages = pages.next;
1178         list_del(&pages);
1179
1180         cpu_buffer->nr_pages = nr_pages;
1181
1182         rb_check_pages(cpu_buffer);
1183
1184         return 0;
1185 }
1186
1187 static struct ring_buffer_per_cpu *
1188 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1189 {
1190         struct ring_buffer_per_cpu *cpu_buffer;
1191         struct buffer_page *bpage;
1192         struct page *page;
1193         int ret;
1194
1195         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1196                                   GFP_KERNEL, cpu_to_node(cpu));
1197         if (!cpu_buffer)
1198                 return NULL;
1199
1200         cpu_buffer->cpu = cpu;
1201         cpu_buffer->buffer = buffer;
1202         raw_spin_lock_init(&cpu_buffer->reader_lock);
1203         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1204         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1205         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1206         init_completion(&cpu_buffer->update_done);
1207         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1208         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1209
1210         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1211                             GFP_KERNEL, cpu_to_node(cpu));
1212         if (!bpage)
1213                 goto fail_free_buffer;
1214
1215         rb_check_bpage(cpu_buffer, bpage);
1216
1217         cpu_buffer->reader_page = bpage;
1218         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1219         if (!page)
1220                 goto fail_free_reader;
1221         bpage->page = page_address(page);
1222         rb_init_page(bpage->page);
1223
1224         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1225         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1226
1227         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1228         if (ret < 0)
1229                 goto fail_free_reader;
1230
1231         cpu_buffer->head_page
1232                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1233         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1234
1235         rb_head_page_activate(cpu_buffer);
1236
1237         return cpu_buffer;
1238
1239  fail_free_reader:
1240         free_buffer_page(cpu_buffer->reader_page);
1241
1242  fail_free_buffer:
1243         kfree(cpu_buffer);
1244         return NULL;
1245 }
1246
1247 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1248 {
1249         struct list_head *head = cpu_buffer->pages;
1250         struct buffer_page *bpage, *tmp;
1251
1252         free_buffer_page(cpu_buffer->reader_page);
1253
1254         rb_head_page_deactivate(cpu_buffer);
1255
1256         if (head) {
1257                 list_for_each_entry_safe(bpage, tmp, head, list) {
1258                         list_del_init(&bpage->list);
1259                         free_buffer_page(bpage);
1260                 }
1261                 bpage = list_entry(head, struct buffer_page, list);
1262                 free_buffer_page(bpage);
1263         }
1264
1265         kfree(cpu_buffer);
1266 }
1267
1268 #ifdef CONFIG_HOTPLUG_CPU
1269 static int rb_cpu_notify(struct notifier_block *self,
1270                          unsigned long action, void *hcpu);
1271 #endif
1272
1273 /**
1274  * __ring_buffer_alloc - allocate a new ring_buffer
1275  * @size: the size in bytes per cpu that is needed.
1276  * @flags: attributes to set for the ring buffer.
1277  *
1278  * Currently the only flag that is available is the RB_FL_OVERWRITE
1279  * flag. This flag means that the buffer will overwrite old data
1280  * when the buffer wraps. If this flag is not set, the buffer will
1281  * drop data when the tail hits the head.
1282  */
1283 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1284                                         struct lock_class_key *key)
1285 {
1286         struct ring_buffer *buffer;
1287         int bsize;
1288         int cpu, nr_pages;
1289
1290         /* keep it in its own cache line */
1291         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1292                          GFP_KERNEL);
1293         if (!buffer)
1294                 return NULL;
1295
1296         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1297                 goto fail_free_buffer;
1298
1299         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1300         buffer->flags = flags;
1301         buffer->clock = trace_clock_local;
1302         buffer->reader_lock_key = key;
1303
1304         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1305         init_waitqueue_head(&buffer->irq_work.waiters);
1306
1307         /* need at least two pages */
1308         if (nr_pages < 2)
1309                 nr_pages = 2;
1310
1311         /*
1312          * In case of non-hotplug cpu, if the ring-buffer is allocated
1313          * in early initcall, it will not be notified of secondary cpus.
1314          * In that off case, we need to allocate for all possible cpus.
1315          */
1316 #ifdef CONFIG_HOTPLUG_CPU
1317         get_online_cpus();
1318         cpumask_copy(buffer->cpumask, cpu_online_mask);
1319 #else
1320         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1321 #endif
1322         buffer->cpus = nr_cpu_ids;
1323
1324         bsize = sizeof(void *) * nr_cpu_ids;
1325         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1326                                   GFP_KERNEL);
1327         if (!buffer->buffers)
1328                 goto fail_free_cpumask;
1329
1330         for_each_buffer_cpu(buffer, cpu) {
1331                 buffer->buffers[cpu] =
1332                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1333                 if (!buffer->buffers[cpu])
1334                         goto fail_free_buffers;
1335         }
1336
1337 #ifdef CONFIG_HOTPLUG_CPU
1338         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1339         buffer->cpu_notify.priority = 0;
1340         register_cpu_notifier(&buffer->cpu_notify);
1341 #endif
1342
1343         put_online_cpus();
1344         mutex_init(&buffer->mutex);
1345
1346         return buffer;
1347
1348  fail_free_buffers:
1349         for_each_buffer_cpu(buffer, cpu) {
1350                 if (buffer->buffers[cpu])
1351                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1352         }
1353         kfree(buffer->buffers);
1354
1355  fail_free_cpumask:
1356         free_cpumask_var(buffer->cpumask);
1357         put_online_cpus();
1358
1359  fail_free_buffer:
1360         kfree(buffer);
1361         return NULL;
1362 }
1363 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1364
1365 /**
1366  * ring_buffer_free - free a ring buffer.
1367  * @buffer: the buffer to free.
1368  */
1369 void
1370 ring_buffer_free(struct ring_buffer *buffer)
1371 {
1372         int cpu;
1373
1374         get_online_cpus();
1375
1376 #ifdef CONFIG_HOTPLUG_CPU
1377         unregister_cpu_notifier(&buffer->cpu_notify);
1378 #endif
1379
1380         for_each_buffer_cpu(buffer, cpu)
1381                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1382
1383         put_online_cpus();
1384
1385         kfree(buffer->buffers);
1386         free_cpumask_var(buffer->cpumask);
1387
1388         kfree(buffer);
1389 }
1390 EXPORT_SYMBOL_GPL(ring_buffer_free);
1391
1392 void ring_buffer_set_clock(struct ring_buffer *buffer,
1393                            u64 (*clock)(void))
1394 {
1395         buffer->clock = clock;
1396 }
1397
1398 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1399
1400 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1401 {
1402         return local_read(&bpage->entries) & RB_WRITE_MASK;
1403 }
1404
1405 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1406 {
1407         return local_read(&bpage->write) & RB_WRITE_MASK;
1408 }
1409
1410 static int
1411 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1412 {
1413         struct list_head *tail_page, *to_remove, *next_page;
1414         struct buffer_page *to_remove_page, *tmp_iter_page;
1415         struct buffer_page *last_page, *first_page;
1416         unsigned int nr_removed;
1417         unsigned long head_bit;
1418         int page_entries;
1419
1420         head_bit = 0;
1421
1422         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1423         atomic_inc(&cpu_buffer->record_disabled);
1424         /*
1425          * We don't race with the readers since we have acquired the reader
1426          * lock. We also don't race with writers after disabling recording.
1427          * This makes it easy to figure out the first and the last page to be
1428          * removed from the list. We unlink all the pages in between including
1429          * the first and last pages. This is done in a busy loop so that we
1430          * lose the least number of traces.
1431          * The pages are freed after we restart recording and unlock readers.
1432          */
1433         tail_page = &cpu_buffer->tail_page->list;
1434
1435         /*
1436          * tail page might be on reader page, we remove the next page
1437          * from the ring buffer
1438          */
1439         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1440                 tail_page = rb_list_head(tail_page->next);
1441         to_remove = tail_page;
1442
1443         /* start of pages to remove */
1444         first_page = list_entry(rb_list_head(to_remove->next),
1445                                 struct buffer_page, list);
1446
1447         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1448                 to_remove = rb_list_head(to_remove)->next;
1449                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1450         }
1451
1452         next_page = rb_list_head(to_remove)->next;
1453
1454         /*
1455          * Now we remove all pages between tail_page and next_page.
1456          * Make sure that we have head_bit value preserved for the
1457          * next page
1458          */
1459         tail_page->next = (struct list_head *)((unsigned long)next_page |
1460                                                 head_bit);
1461         next_page = rb_list_head(next_page);
1462         next_page->prev = tail_page;
1463
1464         /* make sure pages points to a valid page in the ring buffer */
1465         cpu_buffer->pages = next_page;
1466
1467         /* update head page */
1468         if (head_bit)
1469                 cpu_buffer->head_page = list_entry(next_page,
1470                                                 struct buffer_page, list);
1471
1472         /*
1473          * change read pointer to make sure any read iterators reset
1474          * themselves
1475          */
1476         cpu_buffer->read = 0;
1477
1478         /* pages are removed, resume tracing and then free the pages */
1479         atomic_dec(&cpu_buffer->record_disabled);
1480         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1481
1482         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1483
1484         /* last buffer page to remove */
1485         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1486                                 list);
1487         tmp_iter_page = first_page;
1488
1489         do {
1490                 to_remove_page = tmp_iter_page;
1491                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1492
1493                 /* update the counters */
1494                 page_entries = rb_page_entries(to_remove_page);
1495                 if (page_entries) {
1496                         /*
1497                          * If something was added to this page, it was full
1498                          * since it is not the tail page. So we deduct the
1499                          * bytes consumed in ring buffer from here.
1500                          * Increment overrun to account for the lost events.
1501                          */
1502                         local_add(page_entries, &cpu_buffer->overrun);
1503                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1504                 }
1505
1506                 /*
1507                  * We have already removed references to this list item, just
1508                  * free up the buffer_page and its page
1509                  */
1510                 free_buffer_page(to_remove_page);
1511                 nr_removed--;
1512
1513         } while (to_remove_page != last_page);
1514
1515         RB_WARN_ON(cpu_buffer, nr_removed);
1516
1517         return nr_removed == 0;
1518 }
1519
1520 static int
1521 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1522 {
1523         struct list_head *pages = &cpu_buffer->new_pages;
1524         int retries, success;
1525
1526         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1527         /*
1528          * We are holding the reader lock, so the reader page won't be swapped
1529          * in the ring buffer. Now we are racing with the writer trying to
1530          * move head page and the tail page.
1531          * We are going to adapt the reader page update process where:
1532          * 1. We first splice the start and end of list of new pages between
1533          *    the head page and its previous page.
1534          * 2. We cmpxchg the prev_page->next to point from head page to the
1535          *    start of new pages list.
1536          * 3. Finally, we update the head->prev to the end of new list.
1537          *
1538          * We will try this process 10 times, to make sure that we don't keep
1539          * spinning.
1540          */
1541         retries = 10;
1542         success = 0;
1543         while (retries--) {
1544                 struct list_head *head_page, *prev_page, *r;
1545                 struct list_head *last_page, *first_page;
1546                 struct list_head *head_page_with_bit;
1547
1548                 head_page = &rb_set_head_page(cpu_buffer)->list;
1549                 if (!head_page)
1550                         break;
1551                 prev_page = head_page->prev;
1552
1553                 first_page = pages->next;
1554                 last_page  = pages->prev;
1555
1556                 head_page_with_bit = (struct list_head *)
1557                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1558
1559                 last_page->next = head_page_with_bit;
1560                 first_page->prev = prev_page;
1561
1562                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1563
1564                 if (r == head_page_with_bit) {
1565                         /*
1566                          * yay, we replaced the page pointer to our new list,
1567                          * now, we just have to update to head page's prev
1568                          * pointer to point to end of list
1569                          */
1570                         head_page->prev = last_page;
1571                         success = 1;
1572                         break;
1573                 }
1574         }
1575
1576         if (success)
1577                 INIT_LIST_HEAD(pages);
1578         /*
1579          * If we weren't successful in adding in new pages, warn and stop
1580          * tracing
1581          */
1582         RB_WARN_ON(cpu_buffer, !success);
1583         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1584
1585         /* free pages if they weren't inserted */
1586         if (!success) {
1587                 struct buffer_page *bpage, *tmp;
1588                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1589                                          list) {
1590                         list_del_init(&bpage->list);
1591                         free_buffer_page(bpage);
1592                 }
1593         }
1594         return success;
1595 }
1596
1597 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1598 {
1599         int success;
1600
1601         if (cpu_buffer->nr_pages_to_update > 0)
1602                 success = rb_insert_pages(cpu_buffer);
1603         else
1604                 success = rb_remove_pages(cpu_buffer,
1605                                         -cpu_buffer->nr_pages_to_update);
1606
1607         if (success)
1608                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1609 }
1610
1611 static void update_pages_handler(struct work_struct *work)
1612 {
1613         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1614                         struct ring_buffer_per_cpu, update_pages_work);
1615         rb_update_pages(cpu_buffer);
1616         complete(&cpu_buffer->update_done);
1617 }
1618
1619 /**
1620  * ring_buffer_resize - resize the ring buffer
1621  * @buffer: the buffer to resize.
1622  * @size: the new size.
1623  * @cpu_id: the cpu buffer to resize
1624  *
1625  * Minimum size is 2 * BUF_PAGE_SIZE.
1626  *
1627  * Returns 0 on success and < 0 on failure.
1628  */
1629 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1630                         int cpu_id)
1631 {
1632         struct ring_buffer_per_cpu *cpu_buffer;
1633         unsigned nr_pages;
1634         int cpu, err = 0;
1635
1636         /*
1637          * Always succeed at resizing a non-existent buffer:
1638          */
1639         if (!buffer)
1640                 return size;
1641
1642         /* Make sure the requested buffer exists */
1643         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1644             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1645                 return size;
1646
1647         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1648         size *= BUF_PAGE_SIZE;
1649
1650         /* we need a minimum of two pages */
1651         if (size < BUF_PAGE_SIZE * 2)
1652                 size = BUF_PAGE_SIZE * 2;
1653
1654         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1655
1656         /*
1657          * Don't succeed if resizing is disabled, as a reader might be
1658          * manipulating the ring buffer and is expecting a sane state while
1659          * this is true.
1660          */
1661         if (atomic_read(&buffer->resize_disabled))
1662                 return -EBUSY;
1663
1664         /* prevent another thread from changing buffer sizes */
1665         mutex_lock(&buffer->mutex);
1666
1667         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1668                 /* calculate the pages to update */
1669                 for_each_buffer_cpu(buffer, cpu) {
1670                         cpu_buffer = buffer->buffers[cpu];
1671
1672                         cpu_buffer->nr_pages_to_update = nr_pages -
1673                                                         cpu_buffer->nr_pages;
1674                         /*
1675                          * nothing more to do for removing pages or no update
1676                          */
1677                         if (cpu_buffer->nr_pages_to_update <= 0)
1678                                 continue;
1679                         /*
1680                          * to add pages, make sure all new pages can be
1681                          * allocated without receiving ENOMEM
1682                          */
1683                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1684                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1685                                                 &cpu_buffer->new_pages, cpu)) {
1686                                 /* not enough memory for new pages */
1687                                 err = -ENOMEM;
1688                                 goto out_err;
1689                         }
1690                 }
1691
1692                 get_online_cpus();
1693                 /*
1694                  * Fire off all the required work handlers
1695                  * We can't schedule on offline CPUs, but it's not necessary
1696                  * since we can change their buffer sizes without any race.
1697                  */
1698                 for_each_buffer_cpu(buffer, cpu) {
1699                         cpu_buffer = buffer->buffers[cpu];
1700                         if (!cpu_buffer->nr_pages_to_update)
1701                                 continue;
1702
1703                         /* The update must run on the CPU that is being updated. */
1704                         preempt_disable();
1705                         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1706                                 rb_update_pages(cpu_buffer);
1707                                 cpu_buffer->nr_pages_to_update = 0;
1708                         } else {
1709                                 /*
1710                                  * Can not disable preemption for schedule_work_on()
1711                                  * on PREEMPT_RT.
1712                                  */
1713                                 preempt_enable();
1714                                 schedule_work_on(cpu,
1715                                                 &cpu_buffer->update_pages_work);
1716                                 preempt_disable();
1717                         }
1718                         preempt_enable();
1719                 }
1720
1721                 /* wait for all the updates to complete */
1722                 for_each_buffer_cpu(buffer, cpu) {
1723                         cpu_buffer = buffer->buffers[cpu];
1724                         if (!cpu_buffer->nr_pages_to_update)
1725                                 continue;
1726
1727                         if (cpu_online(cpu))
1728                                 wait_for_completion(&cpu_buffer->update_done);
1729                         cpu_buffer->nr_pages_to_update = 0;
1730                 }
1731
1732                 put_online_cpus();
1733         } else {
1734                 /* Make sure this CPU has been intitialized */
1735                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1736                         goto out;
1737
1738                 cpu_buffer = buffer->buffers[cpu_id];
1739
1740                 if (nr_pages == cpu_buffer->nr_pages)
1741                         goto out;
1742
1743                 cpu_buffer->nr_pages_to_update = nr_pages -
1744                                                 cpu_buffer->nr_pages;
1745
1746                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1747                 if (cpu_buffer->nr_pages_to_update > 0 &&
1748                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1749                                             &cpu_buffer->new_pages, cpu_id)) {
1750                         err = -ENOMEM;
1751                         goto out_err;
1752                 }
1753
1754                 get_online_cpus();
1755
1756                 preempt_disable();
1757                 /* The update must run on the CPU that is being updated. */
1758                 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1759                         rb_update_pages(cpu_buffer);
1760                 else {
1761                         /*
1762                          * Can not disable preemption for schedule_work_on()
1763                          * on PREEMPT_RT.
1764                          */
1765                         preempt_enable();
1766                         schedule_work_on(cpu_id,
1767                                          &cpu_buffer->update_pages_work);
1768                         wait_for_completion(&cpu_buffer->update_done);
1769                         preempt_disable();
1770                 }
1771                 preempt_enable();
1772
1773                 cpu_buffer->nr_pages_to_update = 0;
1774                 put_online_cpus();
1775         }
1776
1777  out:
1778         /*
1779          * The ring buffer resize can happen with the ring buffer
1780          * enabled, so that the update disturbs the tracing as little
1781          * as possible. But if the buffer is disabled, we do not need
1782          * to worry about that, and we can take the time to verify
1783          * that the buffer is not corrupt.
1784          */
1785         if (atomic_read(&buffer->record_disabled)) {
1786                 atomic_inc(&buffer->record_disabled);
1787                 /*
1788                  * Even though the buffer was disabled, we must make sure
1789                  * that it is truly disabled before calling rb_check_pages.
1790                  * There could have been a race between checking
1791                  * record_disable and incrementing it.
1792                  */
1793                 synchronize_sched();
1794                 for_each_buffer_cpu(buffer, cpu) {
1795                         cpu_buffer = buffer->buffers[cpu];
1796                         rb_check_pages(cpu_buffer);
1797                 }
1798                 atomic_dec(&buffer->record_disabled);
1799         }
1800
1801         mutex_unlock(&buffer->mutex);
1802         return size;
1803
1804  out_err:
1805         for_each_buffer_cpu(buffer, cpu) {
1806                 struct buffer_page *bpage, *tmp;
1807
1808                 cpu_buffer = buffer->buffers[cpu];
1809                 cpu_buffer->nr_pages_to_update = 0;
1810
1811                 if (list_empty(&cpu_buffer->new_pages))
1812                         continue;
1813
1814                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1815                                         list) {
1816                         list_del_init(&bpage->list);
1817                         free_buffer_page(bpage);
1818                 }
1819         }
1820         mutex_unlock(&buffer->mutex);
1821         return err;
1822 }
1823 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1824
1825 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1826 {
1827         mutex_lock(&buffer->mutex);
1828         if (val)
1829                 buffer->flags |= RB_FL_OVERWRITE;
1830         else
1831                 buffer->flags &= ~RB_FL_OVERWRITE;
1832         mutex_unlock(&buffer->mutex);
1833 }
1834 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1835
1836 static inline void *
1837 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1838 {
1839         return bpage->data + index;
1840 }
1841
1842 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1843 {
1844         return bpage->page->data + index;
1845 }
1846
1847 static inline struct ring_buffer_event *
1848 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1849 {
1850         return __rb_page_index(cpu_buffer->reader_page,
1851                                cpu_buffer->reader_page->read);
1852 }
1853
1854 static inline struct ring_buffer_event *
1855 rb_iter_head_event(struct ring_buffer_iter *iter)
1856 {
1857         return __rb_page_index(iter->head_page, iter->head);
1858 }
1859
1860 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1861 {
1862         return local_read(&bpage->page->commit);
1863 }
1864
1865 /* Size is determined by what has been committed */
1866 static inline unsigned rb_page_size(struct buffer_page *bpage)
1867 {
1868         return rb_page_commit(bpage);
1869 }
1870
1871 static inline unsigned
1872 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1873 {
1874         return rb_page_commit(cpu_buffer->commit_page);
1875 }
1876
1877 static inline unsigned
1878 rb_event_index(struct ring_buffer_event *event)
1879 {
1880         unsigned long addr = (unsigned long)event;
1881
1882         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1883 }
1884
1885 static inline int
1886 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1887                    struct ring_buffer_event *event)
1888 {
1889         unsigned long addr = (unsigned long)event;
1890         unsigned long index;
1891
1892         index = rb_event_index(event);
1893         addr &= PAGE_MASK;
1894
1895         return cpu_buffer->commit_page->page == (void *)addr &&
1896                 rb_commit_index(cpu_buffer) == index;
1897 }
1898
1899 static void
1900 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1901 {
1902         unsigned long max_count;
1903
1904         /*
1905          * We only race with interrupts and NMIs on this CPU.
1906          * If we own the commit event, then we can commit
1907          * all others that interrupted us, since the interruptions
1908          * are in stack format (they finish before they come
1909          * back to us). This allows us to do a simple loop to
1910          * assign the commit to the tail.
1911          */
1912  again:
1913         max_count = cpu_buffer->nr_pages * 100;
1914
1915         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1916                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1917                         return;
1918                 if (RB_WARN_ON(cpu_buffer,
1919                                rb_is_reader_page(cpu_buffer->tail_page)))
1920                         return;
1921                 local_set(&cpu_buffer->commit_page->page->commit,
1922                           rb_page_write(cpu_buffer->commit_page));
1923                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1924                 cpu_buffer->write_stamp =
1925                         cpu_buffer->commit_page->page->time_stamp;
1926                 /* add barrier to keep gcc from optimizing too much */
1927                 barrier();
1928         }
1929         while (rb_commit_index(cpu_buffer) !=
1930                rb_page_write(cpu_buffer->commit_page)) {
1931
1932                 local_set(&cpu_buffer->commit_page->page->commit,
1933                           rb_page_write(cpu_buffer->commit_page));
1934                 RB_WARN_ON(cpu_buffer,
1935                            local_read(&cpu_buffer->commit_page->page->commit) &
1936                            ~RB_WRITE_MASK);
1937                 barrier();
1938         }
1939
1940         /* again, keep gcc from optimizing */
1941         barrier();
1942
1943         /*
1944          * If an interrupt came in just after the first while loop
1945          * and pushed the tail page forward, we will be left with
1946          * a dangling commit that will never go forward.
1947          */
1948         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1949                 goto again;
1950 }
1951
1952 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1953 {
1954         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1955         cpu_buffer->reader_page->read = 0;
1956 }
1957
1958 static void rb_inc_iter(struct ring_buffer_iter *iter)
1959 {
1960         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1961
1962         /*
1963          * The iterator could be on the reader page (it starts there).
1964          * But the head could have moved, since the reader was
1965          * found. Check for this case and assign the iterator
1966          * to the head page instead of next.
1967          */
1968         if (iter->head_page == cpu_buffer->reader_page)
1969                 iter->head_page = rb_set_head_page(cpu_buffer);
1970         else
1971                 rb_inc_page(cpu_buffer, &iter->head_page);
1972
1973         iter->read_stamp = iter->head_page->page->time_stamp;
1974         iter->head = 0;
1975 }
1976
1977 /* Slow path, do not inline */
1978 static noinline struct ring_buffer_event *
1979 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1980 {
1981         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1982
1983         /* Not the first event on the page? */
1984         if (rb_event_index(event)) {
1985                 event->time_delta = delta & TS_MASK;
1986                 event->array[0] = delta >> TS_SHIFT;
1987         } else {
1988                 /* nope, just zero it */
1989                 event->time_delta = 0;
1990                 event->array[0] = 0;
1991         }
1992
1993         return skip_time_extend(event);
1994 }
1995
1996 /**
1997  * rb_update_event - update event type and data
1998  * @event: the event to update
1999  * @type: the type of event
2000  * @length: the size of the event field in the ring buffer
2001  *
2002  * Update the type and data fields of the event. The length
2003  * is the actual size that is written to the ring buffer,
2004  * and with this, we can determine what to place into the
2005  * data field.
2006  */
2007 static void
2008 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2009                 struct ring_buffer_event *event, unsigned length,
2010                 int add_timestamp, u64 delta)
2011 {
2012         /* Only a commit updates the timestamp */
2013         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2014                 delta = 0;
2015
2016         /*
2017          * If we need to add a timestamp, then we
2018          * add it to the start of the resevered space.
2019          */
2020         if (unlikely(add_timestamp)) {
2021                 event = rb_add_time_stamp(event, delta);
2022                 length -= RB_LEN_TIME_EXTEND;
2023                 delta = 0;
2024         }
2025
2026         event->time_delta = delta;
2027         length -= RB_EVNT_HDR_SIZE;
2028         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2029                 event->type_len = 0;
2030                 event->array[0] = length;
2031         } else
2032                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2033 }
2034
2035 /*
2036  * rb_handle_head_page - writer hit the head page
2037  *
2038  * Returns: +1 to retry page
2039  *           0 to continue
2040  *          -1 on error
2041  */
2042 static int
2043 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2044                     struct buffer_page *tail_page,
2045                     struct buffer_page *next_page)
2046 {
2047         struct buffer_page *new_head;
2048         int entries;
2049         int type;
2050         int ret;
2051
2052         entries = rb_page_entries(next_page);
2053
2054         /*
2055          * The hard part is here. We need to move the head
2056          * forward, and protect against both readers on
2057          * other CPUs and writers coming in via interrupts.
2058          */
2059         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2060                                        RB_PAGE_HEAD);
2061
2062         /*
2063          * type can be one of four:
2064          *  NORMAL - an interrupt already moved it for us
2065          *  HEAD   - we are the first to get here.
2066          *  UPDATE - we are the interrupt interrupting
2067          *           a current move.
2068          *  MOVED  - a reader on another CPU moved the next
2069          *           pointer to its reader page. Give up
2070          *           and try again.
2071          */
2072
2073         switch (type) {
2074         case RB_PAGE_HEAD:
2075                 /*
2076                  * We changed the head to UPDATE, thus
2077                  * it is our responsibility to update
2078                  * the counters.
2079                  */
2080                 local_add(entries, &cpu_buffer->overrun);
2081                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2082
2083                 /*
2084                  * The entries will be zeroed out when we move the
2085                  * tail page.
2086                  */
2087
2088                 /* still more to do */
2089                 break;
2090
2091         case RB_PAGE_UPDATE:
2092                 /*
2093                  * This is an interrupt that interrupt the
2094                  * previous update. Still more to do.
2095                  */
2096                 break;
2097         case RB_PAGE_NORMAL:
2098                 /*
2099                  * An interrupt came in before the update
2100                  * and processed this for us.
2101                  * Nothing left to do.
2102                  */
2103                 return 1;
2104         case RB_PAGE_MOVED:
2105                 /*
2106                  * The reader is on another CPU and just did
2107                  * a swap with our next_page.
2108                  * Try again.
2109                  */
2110                 return 1;
2111         default:
2112                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2113                 return -1;
2114         }
2115
2116         /*
2117          * Now that we are here, the old head pointer is
2118          * set to UPDATE. This will keep the reader from
2119          * swapping the head page with the reader page.
2120          * The reader (on another CPU) will spin till
2121          * we are finished.
2122          *
2123          * We just need to protect against interrupts
2124          * doing the job. We will set the next pointer
2125          * to HEAD. After that, we set the old pointer
2126          * to NORMAL, but only if it was HEAD before.
2127          * otherwise we are an interrupt, and only
2128          * want the outer most commit to reset it.
2129          */
2130         new_head = next_page;
2131         rb_inc_page(cpu_buffer, &new_head);
2132
2133         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2134                                     RB_PAGE_NORMAL);
2135
2136         /*
2137          * Valid returns are:
2138          *  HEAD   - an interrupt came in and already set it.
2139          *  NORMAL - One of two things:
2140          *            1) We really set it.
2141          *            2) A bunch of interrupts came in and moved
2142          *               the page forward again.
2143          */
2144         switch (ret) {
2145         case RB_PAGE_HEAD:
2146         case RB_PAGE_NORMAL:
2147                 /* OK */
2148                 break;
2149         default:
2150                 RB_WARN_ON(cpu_buffer, 1);
2151                 return -1;
2152         }
2153
2154         /*
2155          * It is possible that an interrupt came in,
2156          * set the head up, then more interrupts came in
2157          * and moved it again. When we get back here,
2158          * the page would have been set to NORMAL but we
2159          * just set it back to HEAD.
2160          *
2161          * How do you detect this? Well, if that happened
2162          * the tail page would have moved.
2163          */
2164         if (ret == RB_PAGE_NORMAL) {
2165                 /*
2166                  * If the tail had moved passed next, then we need
2167                  * to reset the pointer.
2168                  */
2169                 if (cpu_buffer->tail_page != tail_page &&
2170                     cpu_buffer->tail_page != next_page)
2171                         rb_head_page_set_normal(cpu_buffer, new_head,
2172                                                 next_page,
2173                                                 RB_PAGE_HEAD);
2174         }
2175
2176         /*
2177          * If this was the outer most commit (the one that
2178          * changed the original pointer from HEAD to UPDATE),
2179          * then it is up to us to reset it to NORMAL.
2180          */
2181         if (type == RB_PAGE_HEAD) {
2182                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2183                                               tail_page,
2184                                               RB_PAGE_UPDATE);
2185                 if (RB_WARN_ON(cpu_buffer,
2186                                ret != RB_PAGE_UPDATE))
2187                         return -1;
2188         }
2189
2190         return 0;
2191 }
2192
2193 static unsigned rb_calculate_event_length(unsigned length)
2194 {
2195         struct ring_buffer_event event; /* Used only for sizeof array */
2196
2197         /* zero length can cause confusions */
2198         if (!length)
2199                 length = 1;
2200
2201         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2202                 length += sizeof(event.array[0]);
2203
2204         length += RB_EVNT_HDR_SIZE;
2205         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2206
2207         return length;
2208 }
2209
2210 static inline void
2211 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2212               struct buffer_page *tail_page,
2213               unsigned long tail, unsigned long length)
2214 {
2215         struct ring_buffer_event *event;
2216
2217         /*
2218          * Only the event that crossed the page boundary
2219          * must fill the old tail_page with padding.
2220          */
2221         if (tail >= BUF_PAGE_SIZE) {
2222                 /*
2223                  * If the page was filled, then we still need
2224                  * to update the real_end. Reset it to zero
2225                  * and the reader will ignore it.
2226                  */
2227                 if (tail == BUF_PAGE_SIZE)
2228                         tail_page->real_end = 0;
2229
2230                 local_sub(length, &tail_page->write);
2231                 return;
2232         }
2233
2234         event = __rb_page_index(tail_page, tail);
2235         kmemcheck_annotate_bitfield(event, bitfield);
2236
2237         /* account for padding bytes */
2238         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2239
2240         /*
2241          * Save the original length to the meta data.
2242          * This will be used by the reader to add lost event
2243          * counter.
2244          */
2245         tail_page->real_end = tail;
2246
2247         /*
2248          * If this event is bigger than the minimum size, then
2249          * we need to be careful that we don't subtract the
2250          * write counter enough to allow another writer to slip
2251          * in on this page.
2252          * We put in a discarded commit instead, to make sure
2253          * that this space is not used again.
2254          *
2255          * If we are less than the minimum size, we don't need to
2256          * worry about it.
2257          */
2258         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2259                 /* No room for any events */
2260
2261                 /* Mark the rest of the page with padding */
2262                 rb_event_set_padding(event);
2263
2264                 /* Set the write back to the previous setting */
2265                 local_sub(length, &tail_page->write);
2266                 return;
2267         }
2268
2269         /* Put in a discarded event */
2270         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2271         event->type_len = RINGBUF_TYPE_PADDING;
2272         /* time delta must be non zero */
2273         event->time_delta = 1;
2274
2275         /* Set write to end of buffer */
2276         length = (tail + length) - BUF_PAGE_SIZE;
2277         local_sub(length, &tail_page->write);
2278 }
2279
2280 /*
2281  * This is the slow path, force gcc not to inline it.
2282  */
2283 static noinline struct ring_buffer_event *
2284 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2285              unsigned long length, unsigned long tail,
2286              struct buffer_page *tail_page, u64 ts)
2287 {
2288         struct buffer_page *commit_page = cpu_buffer->commit_page;
2289         struct ring_buffer *buffer = cpu_buffer->buffer;
2290         struct buffer_page *next_page;
2291         int ret;
2292
2293         next_page = tail_page;
2294
2295         rb_inc_page(cpu_buffer, &next_page);
2296
2297         /*
2298          * If for some reason, we had an interrupt storm that made
2299          * it all the way around the buffer, bail, and warn
2300          * about it.
2301          */
2302         if (unlikely(next_page == commit_page)) {
2303                 local_inc(&cpu_buffer->commit_overrun);
2304                 goto out_reset;
2305         }
2306
2307         /*
2308          * This is where the fun begins!
2309          *
2310          * We are fighting against races between a reader that
2311          * could be on another CPU trying to swap its reader
2312          * page with the buffer head.
2313          *
2314          * We are also fighting against interrupts coming in and
2315          * moving the head or tail on us as well.
2316          *
2317          * If the next page is the head page then we have filled
2318          * the buffer, unless the commit page is still on the
2319          * reader page.
2320          */
2321         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2322
2323                 /*
2324                  * If the commit is not on the reader page, then
2325                  * move the header page.
2326                  */
2327                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2328                         /*
2329                          * If we are not in overwrite mode,
2330                          * this is easy, just stop here.
2331                          */
2332                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2333                                 local_inc(&cpu_buffer->dropped_events);
2334                                 goto out_reset;
2335                         }
2336
2337                         ret = rb_handle_head_page(cpu_buffer,
2338                                                   tail_page,
2339                                                   next_page);
2340                         if (ret < 0)
2341                                 goto out_reset;
2342                         if (ret)
2343                                 goto out_again;
2344                 } else {
2345                         /*
2346                          * We need to be careful here too. The
2347                          * commit page could still be on the reader
2348                          * page. We could have a small buffer, and
2349                          * have filled up the buffer with events
2350                          * from interrupts and such, and wrapped.
2351                          *
2352                          * Note, if the tail page is also the on the
2353                          * reader_page, we let it move out.
2354                          */
2355                         if (unlikely((cpu_buffer->commit_page !=
2356                                       cpu_buffer->tail_page) &&
2357                                      (cpu_buffer->commit_page ==
2358                                       cpu_buffer->reader_page))) {
2359                                 local_inc(&cpu_buffer->commit_overrun);
2360                                 goto out_reset;
2361                         }
2362                 }
2363         }
2364
2365         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2366         if (ret) {
2367                 /*
2368                  * Nested commits always have zero deltas, so
2369                  * just reread the time stamp
2370                  */
2371                 ts = rb_time_stamp(buffer);
2372                 next_page->page->time_stamp = ts;
2373         }
2374
2375  out_again:
2376
2377         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2378
2379         /* fail and let the caller try again */
2380         return ERR_PTR(-EAGAIN);
2381
2382  out_reset:
2383         /* reset write */
2384         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2385
2386         return NULL;
2387 }
2388
2389 static struct ring_buffer_event *
2390 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2391                   unsigned long length, u64 ts,
2392                   u64 delta, int add_timestamp)
2393 {
2394         struct buffer_page *tail_page;
2395         struct ring_buffer_event *event;
2396         unsigned long tail, write;
2397
2398         /*
2399          * If the time delta since the last event is too big to
2400          * hold in the time field of the event, then we append a
2401          * TIME EXTEND event ahead of the data event.
2402          */
2403         if (unlikely(add_timestamp))
2404                 length += RB_LEN_TIME_EXTEND;
2405
2406         tail_page = cpu_buffer->tail_page;
2407         write = local_add_return(length, &tail_page->write);
2408
2409         /* set write to only the index of the write */
2410         write &= RB_WRITE_MASK;
2411         tail = write - length;
2412
2413         /*
2414          * If this is the first commit on the page, then it has the same
2415          * timestamp as the page itself.
2416          */
2417         if (!tail)
2418                 delta = 0;
2419
2420         /* See if we shot pass the end of this buffer page */
2421         if (unlikely(write > BUF_PAGE_SIZE))
2422                 return rb_move_tail(cpu_buffer, length, tail,
2423                                     tail_page, ts);
2424
2425         /* We reserved something on the buffer */
2426
2427         event = __rb_page_index(tail_page, tail);
2428         kmemcheck_annotate_bitfield(event, bitfield);
2429         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2430
2431         local_inc(&tail_page->entries);
2432
2433         /*
2434          * If this is the first commit on the page, then update
2435          * its timestamp.
2436          */
2437         if (!tail)
2438                 tail_page->page->time_stamp = ts;
2439
2440         /* account for these added bytes */
2441         local_add(length, &cpu_buffer->entries_bytes);
2442
2443         return event;
2444 }
2445
2446 static inline int
2447 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2448                   struct ring_buffer_event *event)
2449 {
2450         unsigned long new_index, old_index;
2451         struct buffer_page *bpage;
2452         unsigned long index;
2453         unsigned long addr;
2454
2455         new_index = rb_event_index(event);
2456         old_index = new_index + rb_event_ts_length(event);
2457         addr = (unsigned long)event;
2458         addr &= PAGE_MASK;
2459
2460         bpage = cpu_buffer->tail_page;
2461
2462         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2463                 unsigned long write_mask =
2464                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2465                 unsigned long event_length = rb_event_length(event);
2466                 /*
2467                  * This is on the tail page. It is possible that
2468                  * a write could come in and move the tail page
2469                  * and write to the next page. That is fine
2470                  * because we just shorten what is on this page.
2471                  */
2472                 old_index += write_mask;
2473                 new_index += write_mask;
2474                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2475                 if (index == old_index) {
2476                         /* update counters */
2477                         local_sub(event_length, &cpu_buffer->entries_bytes);
2478                         return 1;
2479                 }
2480         }
2481
2482         /* could not discard */
2483         return 0;
2484 }
2485
2486 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2487 {
2488         local_inc(&cpu_buffer->committing);
2489         local_inc(&cpu_buffer->commits);
2490 }
2491
2492 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2493 {
2494         unsigned long commits;
2495
2496         if (RB_WARN_ON(cpu_buffer,
2497                        !local_read(&cpu_buffer->committing)))
2498                 return;
2499
2500  again:
2501         commits = local_read(&cpu_buffer->commits);
2502         /* synchronize with interrupts */
2503         barrier();
2504         if (local_read(&cpu_buffer->committing) == 1)
2505                 rb_set_commit_to_write(cpu_buffer);
2506
2507         local_dec(&cpu_buffer->committing);
2508
2509         /* synchronize with interrupts */
2510         barrier();
2511
2512         /*
2513          * Need to account for interrupts coming in between the
2514          * updating of the commit page and the clearing of the
2515          * committing counter.
2516          */
2517         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2518             !local_read(&cpu_buffer->committing)) {
2519                 local_inc(&cpu_buffer->committing);
2520                 goto again;
2521         }
2522 }
2523
2524 static struct ring_buffer_event *
2525 rb_reserve_next_event(struct ring_buffer *buffer,
2526                       struct ring_buffer_per_cpu *cpu_buffer,
2527                       unsigned long length)
2528 {
2529         struct ring_buffer_event *event;
2530         u64 ts, delta;
2531         int nr_loops = 0;
2532         int add_timestamp;
2533         u64 diff;
2534
2535         rb_start_commit(cpu_buffer);
2536
2537 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2538         /*
2539          * Due to the ability to swap a cpu buffer from a buffer
2540          * it is possible it was swapped before we committed.
2541          * (committing stops a swap). We check for it here and
2542          * if it happened, we have to fail the write.
2543          */
2544         barrier();
2545         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2546                 local_dec(&cpu_buffer->committing);
2547                 local_dec(&cpu_buffer->commits);
2548                 return NULL;
2549         }
2550 #endif
2551
2552         length = rb_calculate_event_length(length);
2553  again:
2554         add_timestamp = 0;
2555         delta = 0;
2556
2557         /*
2558          * We allow for interrupts to reenter here and do a trace.
2559          * If one does, it will cause this original code to loop
2560          * back here. Even with heavy interrupts happening, this
2561          * should only happen a few times in a row. If this happens
2562          * 1000 times in a row, there must be either an interrupt
2563          * storm or we have something buggy.
2564          * Bail!
2565          */
2566         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2567                 goto out_fail;
2568
2569         ts = rb_time_stamp(cpu_buffer->buffer);
2570         diff = ts - cpu_buffer->write_stamp;
2571
2572         /* make sure this diff is calculated here */
2573         barrier();
2574
2575         /* Did the write stamp get updated already? */
2576         if (likely(ts >= cpu_buffer->write_stamp)) {
2577                 delta = diff;
2578                 if (unlikely(test_time_stamp(delta))) {
2579                         int local_clock_stable = 1;
2580 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2581                         local_clock_stable = sched_clock_stable();
2582 #endif
2583                         WARN_ONCE(delta > (1ULL << 59),
2584                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2585                                   (unsigned long long)delta,
2586                                   (unsigned long long)ts,
2587                                   (unsigned long long)cpu_buffer->write_stamp,
2588                                   local_clock_stable ? "" :
2589                                   "If you just came from a suspend/resume,\n"
2590                                   "please switch to the trace global clock:\n"
2591                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2592                         add_timestamp = 1;
2593                 }
2594         }
2595
2596         event = __rb_reserve_next(cpu_buffer, length, ts,
2597                                   delta, add_timestamp);
2598         if (unlikely(PTR_ERR(event) == -EAGAIN))
2599                 goto again;
2600
2601         if (!event)
2602                 goto out_fail;
2603
2604         return event;
2605
2606  out_fail:
2607         rb_end_commit(cpu_buffer);
2608         return NULL;
2609 }
2610
2611 #ifdef CONFIG_TRACING
2612
2613 /*
2614  * The lock and unlock are done within a preempt disable section.
2615  * The current_context per_cpu variable can only be modified
2616  * by the current task between lock and unlock. But it can
2617  * be modified more than once via an interrupt. To pass this
2618  * information from the lock to the unlock without having to
2619  * access the 'in_interrupt()' functions again (which do show
2620  * a bit of overhead in something as critical as function tracing,
2621  * we use a bitmask trick.
2622  *
2623  *  bit 0 =  NMI context
2624  *  bit 1 =  IRQ context
2625  *  bit 2 =  SoftIRQ context
2626  *  bit 3 =  normal context.
2627  *
2628  * This works because this is the order of contexts that can
2629  * preempt other contexts. A SoftIRQ never preempts an IRQ
2630  * context.
2631  *
2632  * When the context is determined, the corresponding bit is
2633  * checked and set (if it was set, then a recursion of that context
2634  * happened).
2635  *
2636  * On unlock, we need to clear this bit. To do so, just subtract
2637  * 1 from the current_context and AND it to itself.
2638  *
2639  * (binary)
2640  *  101 - 1 = 100
2641  *  101 & 100 = 100 (clearing bit zero)
2642  *
2643  *  1010 - 1 = 1001
2644  *  1010 & 1001 = 1000 (clearing bit 1)
2645  *
2646  * The least significant bit can be cleared this way, and it
2647  * just so happens that it is the same bit corresponding to
2648  * the current context.
2649  */
2650 static DEFINE_PER_CPU(unsigned int, current_context);
2651
2652 static __always_inline int trace_recursive_lock(void)
2653 {
2654         unsigned int val = this_cpu_read(current_context);
2655         int bit;
2656
2657         if (in_interrupt()) {
2658                 if (in_nmi())
2659                         bit = 0;
2660                 else if (in_irq())
2661                         bit = 1;
2662                 else
2663                         bit = 2;
2664         } else
2665                 bit = 3;
2666
2667         if (unlikely(val & (1 << bit)))
2668                 return 1;
2669
2670         val |= (1 << bit);
2671         this_cpu_write(current_context, val);
2672
2673         return 0;
2674 }
2675
2676 static __always_inline void trace_recursive_unlock(void)
2677 {
2678         unsigned int val = this_cpu_read(current_context);
2679
2680         val--;
2681         val &= this_cpu_read(current_context);
2682         this_cpu_write(current_context, val);
2683 }
2684
2685 #else
2686
2687 #define trace_recursive_lock()          (0)
2688 #define trace_recursive_unlock()        do { } while (0)
2689
2690 #endif
2691
2692 /**
2693  * ring_buffer_lock_reserve - reserve a part of the buffer
2694  * @buffer: the ring buffer to reserve from
2695  * @length: the length of the data to reserve (excluding event header)
2696  *
2697  * Returns a reseverd event on the ring buffer to copy directly to.
2698  * The user of this interface will need to get the body to write into
2699  * and can use the ring_buffer_event_data() interface.
2700  *
2701  * The length is the length of the data needed, not the event length
2702  * which also includes the event header.
2703  *
2704  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2705  * If NULL is returned, then nothing has been allocated or locked.
2706  */
2707 struct ring_buffer_event *
2708 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2709 {
2710         struct ring_buffer_per_cpu *cpu_buffer;
2711         struct ring_buffer_event *event;
2712         int cpu;
2713
2714         if (ring_buffer_flags != RB_BUFFERS_ON)
2715                 return NULL;
2716
2717         /* If we are tracing schedule, we don't want to recurse */
2718         preempt_disable_notrace();
2719
2720         if (atomic_read(&buffer->record_disabled))
2721                 goto out_nocheck;
2722
2723         if (trace_recursive_lock())
2724                 goto out_nocheck;
2725
2726         cpu = raw_smp_processor_id();
2727
2728         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2729                 goto out;
2730
2731         cpu_buffer = buffer->buffers[cpu];
2732
2733         if (atomic_read(&cpu_buffer->record_disabled))
2734                 goto out;
2735
2736         if (length > BUF_MAX_DATA_SIZE)
2737                 goto out;
2738
2739         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2740         if (!event)
2741                 goto out;
2742
2743         return event;
2744
2745  out:
2746         trace_recursive_unlock();
2747
2748  out_nocheck:
2749         preempt_enable_notrace();
2750         return NULL;
2751 }
2752 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2753
2754 static void
2755 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2756                       struct ring_buffer_event *event)
2757 {
2758         u64 delta;
2759
2760         /*
2761          * The event first in the commit queue updates the
2762          * time stamp.
2763          */
2764         if (rb_event_is_commit(cpu_buffer, event)) {
2765                 /*
2766                  * A commit event that is first on a page
2767                  * updates the write timestamp with the page stamp
2768                  */
2769                 if (!rb_event_index(event))
2770                         cpu_buffer->write_stamp =
2771                                 cpu_buffer->commit_page->page->time_stamp;
2772                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2773                         delta = event->array[0];
2774                         delta <<= TS_SHIFT;
2775                         delta += event->time_delta;
2776                         cpu_buffer->write_stamp += delta;
2777                 } else
2778                         cpu_buffer->write_stamp += event->time_delta;
2779         }
2780 }
2781
2782 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2783                       struct ring_buffer_event *event)
2784 {
2785         local_inc(&cpu_buffer->entries);
2786         rb_update_write_stamp(cpu_buffer, event);
2787         rb_end_commit(cpu_buffer);
2788 }
2789
2790 static __always_inline void
2791 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2792 {
2793         if (buffer->irq_work.waiters_pending) {
2794                 buffer->irq_work.waiters_pending = false;
2795                 /* irq_work_queue() supplies it's own memory barriers */
2796                 irq_work_queue(&buffer->irq_work.work);
2797         }
2798
2799         if (cpu_buffer->irq_work.waiters_pending) {
2800                 cpu_buffer->irq_work.waiters_pending = false;
2801                 /* irq_work_queue() supplies it's own memory barriers */
2802                 irq_work_queue(&cpu_buffer->irq_work.work);
2803         }
2804 }
2805
2806 /**
2807  * ring_buffer_unlock_commit - commit a reserved
2808  * @buffer: The buffer to commit to
2809  * @event: The event pointer to commit.
2810  *
2811  * This commits the data to the ring buffer, and releases any locks held.
2812  *
2813  * Must be paired with ring_buffer_lock_reserve.
2814  */
2815 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2816                               struct ring_buffer_event *event)
2817 {
2818         struct ring_buffer_per_cpu *cpu_buffer;
2819         int cpu = raw_smp_processor_id();
2820
2821         cpu_buffer = buffer->buffers[cpu];
2822
2823         rb_commit(cpu_buffer, event);
2824
2825         rb_wakeups(buffer, cpu_buffer);
2826
2827         trace_recursive_unlock();
2828
2829         preempt_enable_notrace();
2830
2831         return 0;
2832 }
2833 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2834
2835 static inline void rb_event_discard(struct ring_buffer_event *event)
2836 {
2837         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2838                 event = skip_time_extend(event);
2839
2840         /* array[0] holds the actual length for the discarded event */
2841         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2842         event->type_len = RINGBUF_TYPE_PADDING;
2843         /* time delta must be non zero */
2844         if (!event->time_delta)
2845                 event->time_delta = 1;
2846 }
2847
2848 /*
2849  * Decrement the entries to the page that an event is on.
2850  * The event does not even need to exist, only the pointer
2851  * to the page it is on. This may only be called before the commit
2852  * takes place.
2853  */
2854 static inline void
2855 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2856                    struct ring_buffer_event *event)
2857 {
2858         unsigned long addr = (unsigned long)event;
2859         struct buffer_page *bpage = cpu_buffer->commit_page;
2860         struct buffer_page *start;
2861
2862         addr &= PAGE_MASK;
2863
2864         /* Do the likely case first */
2865         if (likely(bpage->page == (void *)addr)) {
2866                 local_dec(&bpage->entries);
2867                 return;
2868         }
2869
2870         /*
2871          * Because the commit page may be on the reader page we
2872          * start with the next page and check the end loop there.
2873          */
2874         rb_inc_page(cpu_buffer, &bpage);
2875         start = bpage;
2876         do {
2877                 if (bpage->page == (void *)addr) {
2878                         local_dec(&bpage->entries);
2879                         return;
2880                 }
2881                 rb_inc_page(cpu_buffer, &bpage);
2882         } while (bpage != start);
2883
2884         /* commit not part of this buffer?? */
2885         RB_WARN_ON(cpu_buffer, 1);
2886 }
2887
2888 /**
2889  * ring_buffer_commit_discard - discard an event that has not been committed
2890  * @buffer: the ring buffer
2891  * @event: non committed event to discard
2892  *
2893  * Sometimes an event that is in the ring buffer needs to be ignored.
2894  * This function lets the user discard an event in the ring buffer
2895  * and then that event will not be read later.
2896  *
2897  * This function only works if it is called before the the item has been
2898  * committed. It will try to free the event from the ring buffer
2899  * if another event has not been added behind it.
2900  *
2901  * If another event has been added behind it, it will set the event
2902  * up as discarded, and perform the commit.
2903  *
2904  * If this function is called, do not call ring_buffer_unlock_commit on
2905  * the event.
2906  */
2907 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2908                                 struct ring_buffer_event *event)
2909 {
2910         struct ring_buffer_per_cpu *cpu_buffer;
2911         int cpu;
2912
2913         /* The event is discarded regardless */
2914         rb_event_discard(event);
2915
2916         cpu = smp_processor_id();
2917         cpu_buffer = buffer->buffers[cpu];
2918
2919         /*
2920          * This must only be called if the event has not been
2921          * committed yet. Thus we can assume that preemption
2922          * is still disabled.
2923          */
2924         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2925
2926         rb_decrement_entry(cpu_buffer, event);
2927         if (rb_try_to_discard(cpu_buffer, event))
2928                 goto out;
2929
2930         /*
2931          * The commit is still visible by the reader, so we
2932          * must still update the timestamp.
2933          */
2934         rb_update_write_stamp(cpu_buffer, event);
2935  out:
2936         rb_end_commit(cpu_buffer);
2937
2938         trace_recursive_unlock();
2939
2940         preempt_enable_notrace();
2941
2942 }
2943 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2944
2945 /**
2946  * ring_buffer_write - write data to the buffer without reserving
2947  * @buffer: The ring buffer to write to.
2948  * @length: The length of the data being written (excluding the event header)
2949  * @data: The data to write to the buffer.
2950  *
2951  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2952  * one function. If you already have the data to write to the buffer, it
2953  * may be easier to simply call this function.
2954  *
2955  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2956  * and not the length of the event which would hold the header.
2957  */
2958 int ring_buffer_write(struct ring_buffer *buffer,
2959                       unsigned long length,
2960                       void *data)
2961 {
2962         struct ring_buffer_per_cpu *cpu_buffer;
2963         struct ring_buffer_event *event;
2964         void *body;
2965         int ret = -EBUSY;
2966         int cpu;
2967
2968         if (ring_buffer_flags != RB_BUFFERS_ON)
2969                 return -EBUSY;
2970
2971         preempt_disable_notrace();
2972
2973         if (atomic_read(&buffer->record_disabled))
2974                 goto out;
2975
2976         cpu = raw_smp_processor_id();
2977
2978         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2979                 goto out;
2980
2981         cpu_buffer = buffer->buffers[cpu];
2982
2983         if (atomic_read(&cpu_buffer->record_disabled))
2984                 goto out;
2985
2986         if (length > BUF_MAX_DATA_SIZE)
2987                 goto out;
2988
2989         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2990         if (!event)
2991                 goto out;
2992
2993         body = rb_event_data(event);
2994
2995         memcpy(body, data, length);
2996
2997         rb_commit(cpu_buffer, event);
2998
2999         rb_wakeups(buffer, cpu_buffer);
3000
3001         ret = 0;
3002  out:
3003         preempt_enable_notrace();
3004
3005         return ret;
3006 }
3007 EXPORT_SYMBOL_GPL(ring_buffer_write);
3008
3009 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3010 {
3011         struct buffer_page *reader = cpu_buffer->reader_page;
3012         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3013         struct buffer_page *commit = cpu_buffer->commit_page;
3014
3015         /* In case of error, head will be NULL */
3016         if (unlikely(!head))
3017                 return 1;
3018
3019         return reader->read == rb_page_commit(reader) &&
3020                 (commit == reader ||
3021                  (commit == head &&
3022                   head->read == rb_page_commit(commit)));
3023 }
3024
3025 /**
3026  * ring_buffer_record_disable - stop all writes into the buffer
3027  * @buffer: The ring buffer to stop writes to.
3028  *
3029  * This prevents all writes to the buffer. Any attempt to write
3030  * to the buffer after this will fail and return NULL.
3031  *
3032  * The caller should call synchronize_sched() after this.
3033  */
3034 void ring_buffer_record_disable(struct ring_buffer *buffer)
3035 {
3036         atomic_inc(&buffer->record_disabled);
3037 }
3038 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3039
3040 /**
3041  * ring_buffer_record_enable - enable writes to the buffer
3042  * @buffer: The ring buffer to enable writes
3043  *
3044  * Note, multiple disables will need the same number of enables
3045  * to truly enable the writing (much like preempt_disable).
3046  */
3047 void ring_buffer_record_enable(struct ring_buffer *buffer)
3048 {
3049         atomic_dec(&buffer->record_disabled);
3050 }
3051 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3052
3053 /**
3054  * ring_buffer_record_off - stop all writes into the buffer
3055  * @buffer: The ring buffer to stop writes to.
3056  *
3057  * This prevents all writes to the buffer. Any attempt to write
3058  * to the buffer after this will fail and return NULL.
3059  *
3060  * This is different than ring_buffer_record_disable() as
3061  * it works like an on/off switch, where as the disable() version
3062  * must be paired with a enable().
3063  */
3064 void ring_buffer_record_off(struct ring_buffer *buffer)
3065 {
3066         unsigned int rd;
3067         unsigned int new_rd;
3068
3069         do {
3070                 rd = atomic_read(&buffer->record_disabled);
3071                 new_rd = rd | RB_BUFFER_OFF;
3072         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3073 }
3074 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3075
3076 /**
3077  * ring_buffer_record_on - restart writes into the buffer
3078  * @buffer: The ring buffer to start writes to.
3079  *
3080  * This enables all writes to the buffer that was disabled by
3081  * ring_buffer_record_off().
3082  *
3083  * This is different than ring_buffer_record_enable() as
3084  * it works like an on/off switch, where as the enable() version
3085  * must be paired with a disable().
3086  */
3087 void ring_buffer_record_on(struct ring_buffer *buffer)
3088 {
3089         unsigned int rd;
3090         unsigned int new_rd;
3091
3092         do {
3093                 rd = atomic_read(&buffer->record_disabled);
3094                 new_rd = rd & ~RB_BUFFER_OFF;
3095         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3096 }
3097 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3098
3099 /**
3100  * ring_buffer_record_is_on - return true if the ring buffer can write
3101  * @buffer: The ring buffer to see if write is enabled
3102  *
3103  * Returns true if the ring buffer is in a state that it accepts writes.
3104  */
3105 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3106 {
3107         return !atomic_read(&buffer->record_disabled);
3108 }
3109
3110 /**
3111  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3112  * @buffer: The ring buffer to stop writes to.
3113  * @cpu: The CPU buffer to stop
3114  *
3115  * This prevents all writes to the buffer. Any attempt to write
3116  * to the buffer after this will fail and return NULL.
3117  *
3118  * The caller should call synchronize_sched() after this.
3119  */
3120 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3121 {
3122         struct ring_buffer_per_cpu *cpu_buffer;
3123
3124         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3125                 return;
3126
3127         cpu_buffer = buffer->buffers[cpu];
3128         atomic_inc(&cpu_buffer->record_disabled);
3129 }
3130 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3131
3132 /**
3133  * ring_buffer_record_enable_cpu - enable writes to the buffer
3134  * @buffer: The ring buffer to enable writes
3135  * @cpu: The CPU to enable.
3136  *
3137  * Note, multiple disables will need the same number of enables
3138  * to truly enable the writing (much like preempt_disable).
3139  */
3140 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3141 {
3142         struct ring_buffer_per_cpu *cpu_buffer;
3143
3144         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3145                 return;
3146
3147         cpu_buffer = buffer->buffers[cpu];
3148         atomic_dec(&cpu_buffer->record_disabled);
3149 }
3150 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3151
3152 /*
3153  * The total entries in the ring buffer is the running counter
3154  * of entries entered into the ring buffer, minus the sum of
3155  * the entries read from the ring buffer and the number of
3156  * entries that were overwritten.
3157  */
3158 static inline unsigned long
3159 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3160 {
3161         return local_read(&cpu_buffer->entries) -
3162                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3163 }
3164
3165 /**
3166  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3167  * @buffer: The ring buffer
3168  * @cpu: The per CPU buffer to read from.
3169  */
3170 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3171 {
3172         unsigned long flags;
3173         struct ring_buffer_per_cpu *cpu_buffer;
3174         struct buffer_page *bpage;
3175         u64 ret = 0;
3176
3177         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3178                 return 0;
3179
3180         cpu_buffer = buffer->buffers[cpu];
3181         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3182         /*
3183          * if the tail is on reader_page, oldest time stamp is on the reader
3184          * page
3185          */
3186         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3187                 bpage = cpu_buffer->reader_page;
3188         else
3189                 bpage = rb_set_head_page(cpu_buffer);
3190         if (bpage)
3191                 ret = bpage->page->time_stamp;
3192         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3193
3194         return ret;
3195 }
3196 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3197
3198 /**
3199  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3200  * @buffer: The ring buffer
3201  * @cpu: The per CPU buffer to read from.
3202  */
3203 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3204 {
3205         struct ring_buffer_per_cpu *cpu_buffer;
3206         unsigned long ret;
3207
3208         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3209                 return 0;
3210
3211         cpu_buffer = buffer->buffers[cpu];
3212         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3213
3214         return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3217
3218 /**
3219  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3220  * @buffer: The ring buffer
3221  * @cpu: The per CPU buffer to get the entries from.
3222  */
3223 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3224 {
3225         struct ring_buffer_per_cpu *cpu_buffer;
3226
3227         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228                 return 0;
3229
3230         cpu_buffer = buffer->buffers[cpu];
3231
3232         return rb_num_of_entries(cpu_buffer);
3233 }
3234 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3235
3236 /**
3237  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3238  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3239  * @buffer: The ring buffer
3240  * @cpu: The per CPU buffer to get the number of overruns from
3241  */
3242 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3243 {
3244         struct ring_buffer_per_cpu *cpu_buffer;
3245         unsigned long ret;
3246
3247         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3248                 return 0;
3249
3250         cpu_buffer = buffer->buffers[cpu];
3251         ret = local_read(&cpu_buffer->overrun);
3252
3253         return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3256
3257 /**
3258  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3259  * commits failing due to the buffer wrapping around while there are uncommitted
3260  * events, such as during an interrupt storm.
3261  * @buffer: The ring buffer
3262  * @cpu: The per CPU buffer to get the number of overruns from
3263  */
3264 unsigned long
3265 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3266 {
3267         struct ring_buffer_per_cpu *cpu_buffer;
3268         unsigned long ret;
3269
3270         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3271                 return 0;
3272
3273         cpu_buffer = buffer->buffers[cpu];
3274         ret = local_read(&cpu_buffer->commit_overrun);
3275
3276         return ret;
3277 }
3278 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3279
3280 /**
3281  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3282  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3283  * @buffer: The ring buffer
3284  * @cpu: The per CPU buffer to get the number of overruns from
3285  */
3286 unsigned long
3287 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3288 {
3289         struct ring_buffer_per_cpu *cpu_buffer;
3290         unsigned long ret;
3291
3292         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3293                 return 0;
3294
3295         cpu_buffer = buffer->buffers[cpu];
3296         ret = local_read(&cpu_buffer->dropped_events);
3297
3298         return ret;
3299 }
3300 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3301
3302 /**
3303  * ring_buffer_read_events_cpu - get the number of events successfully read
3304  * @buffer: The ring buffer
3305  * @cpu: The per CPU buffer to get the number of events read
3306  */
3307 unsigned long
3308 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3309 {
3310         struct ring_buffer_per_cpu *cpu_buffer;
3311
3312         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3313                 return 0;
3314
3315         cpu_buffer = buffer->buffers[cpu];
3316         return cpu_buffer->read;
3317 }
3318 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3319
3320 /**
3321  * ring_buffer_entries - get the number of entries in a buffer
3322  * @buffer: The ring buffer
3323  *
3324  * Returns the total number of entries in the ring buffer
3325  * (all CPU entries)
3326  */
3327 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3328 {
3329         struct ring_buffer_per_cpu *cpu_buffer;
3330         unsigned long entries = 0;
3331         int cpu;
3332
3333         /* if you care about this being correct, lock the buffer */
3334         for_each_buffer_cpu(buffer, cpu) {
3335                 cpu_buffer = buffer->buffers[cpu];
3336                 entries += rb_num_of_entries(cpu_buffer);
3337         }
3338
3339         return entries;
3340 }
3341 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3342
3343 /**
3344  * ring_buffer_overruns - get the number of overruns in buffer
3345  * @buffer: The ring buffer
3346  *
3347  * Returns the total number of overruns in the ring buffer
3348  * (all CPU entries)
3349  */
3350 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3351 {
3352         struct ring_buffer_per_cpu *cpu_buffer;
3353         unsigned long overruns = 0;
3354         int cpu;
3355
3356         /* if you care about this being correct, lock the buffer */
3357         for_each_buffer_cpu(buffer, cpu) {
3358                 cpu_buffer = buffer->buffers[cpu];
3359                 overruns += local_read(&cpu_buffer->overrun);
3360         }
3361
3362         return overruns;
3363 }
3364 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3365
3366 static void rb_iter_reset(struct ring_buffer_iter *iter)
3367 {
3368         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3369
3370         /* Iterator usage is expected to have record disabled */
3371         iter->head_page = cpu_buffer->reader_page;
3372         iter->head = cpu_buffer->reader_page->read;
3373
3374         iter->cache_reader_page = iter->head_page;
3375         iter->cache_read = cpu_buffer->read;
3376
3377         if (iter->head)
3378                 iter->read_stamp = cpu_buffer->read_stamp;
3379         else
3380                 iter->read_stamp = iter->head_page->page->time_stamp;
3381 }
3382
3383 /**
3384  * ring_buffer_iter_reset - reset an iterator
3385  * @iter: The iterator to reset
3386  *
3387  * Resets the iterator, so that it will start from the beginning
3388  * again.
3389  */
3390 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3391 {
3392         struct ring_buffer_per_cpu *cpu_buffer;
3393         unsigned long flags;
3394
3395         if (!iter)
3396                 return;
3397
3398         cpu_buffer = iter->cpu_buffer;
3399
3400         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3401         rb_iter_reset(iter);
3402         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3403 }
3404 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3405
3406 /**
3407  * ring_buffer_iter_empty - check if an iterator has no more to read
3408  * @iter: The iterator to check
3409  */
3410 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3411 {
3412         struct ring_buffer_per_cpu *cpu_buffer;
3413
3414         cpu_buffer = iter->cpu_buffer;
3415
3416         return iter->head_page == cpu_buffer->commit_page &&
3417                 iter->head == rb_commit_index(cpu_buffer);
3418 }
3419 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3420
3421 static void
3422 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3423                      struct ring_buffer_event *event)
3424 {
3425         u64 delta;
3426
3427         switch (event->type_len) {
3428         case RINGBUF_TYPE_PADDING:
3429                 return;
3430
3431         case RINGBUF_TYPE_TIME_EXTEND:
3432                 delta = event->array[0];
3433                 delta <<= TS_SHIFT;
3434                 delta += event->time_delta;
3435                 cpu_buffer->read_stamp += delta;
3436                 return;
3437
3438         case RINGBUF_TYPE_TIME_STAMP:
3439                 /* FIXME: not implemented */
3440                 return;
3441
3442         case RINGBUF_TYPE_DATA:
3443                 cpu_buffer->read_stamp += event->time_delta;
3444                 return;
3445
3446         default:
3447                 BUG();
3448         }
3449         return;
3450 }
3451
3452 static void
3453 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3454                           struct ring_buffer_event *event)
3455 {
3456         u64 delta;
3457
3458         switch (event->type_len) {
3459         case RINGBUF_TYPE_PADDING:
3460                 return;
3461
3462         case RINGBUF_TYPE_TIME_EXTEND:
3463                 delta = event->array[0];
3464                 delta <<= TS_SHIFT;
3465                 delta += event->time_delta;
3466                 iter->read_stamp += delta;
3467                 return;
3468
3469         case RINGBUF_TYPE_TIME_STAMP:
3470                 /* FIXME: not implemented */
3471                 return;
3472
3473         case RINGBUF_TYPE_DATA:
3474                 iter->read_stamp += event->time_delta;
3475                 return;
3476
3477         default:
3478                 BUG();
3479         }
3480         return;
3481 }
3482
3483 static struct buffer_page *
3484 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3485 {
3486         struct buffer_page *reader = NULL;
3487         unsigned long overwrite;
3488         unsigned long flags;
3489         int nr_loops = 0;
3490         int ret;
3491
3492         local_irq_save(flags);
3493         arch_spin_lock(&cpu_buffer->lock);
3494
3495  again:
3496         /*
3497          * This should normally only loop twice. But because the
3498          * start of the reader inserts an empty page, it causes
3499          * a case where we will loop three times. There should be no
3500          * reason to loop four times (that I know of).
3501          */
3502         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3503                 reader = NULL;
3504                 goto out;
3505         }
3506
3507         reader = cpu_buffer->reader_page;
3508
3509         /* If there's more to read, return this page */
3510         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3511                 goto out;
3512
3513         /* Never should we have an index greater than the size */
3514         if (RB_WARN_ON(cpu_buffer,
3515                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3516                 goto out;
3517
3518         /* check if we caught up to the tail */
3519         reader = NULL;
3520         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3521                 goto out;
3522
3523         /* Don't bother swapping if the ring buffer is empty */
3524         if (rb_num_of_entries(cpu_buffer) == 0)
3525                 goto out;
3526
3527         /*
3528          * Reset the reader page to size zero.
3529          */
3530         local_set(&cpu_buffer->reader_page->write, 0);
3531         local_set(&cpu_buffer->reader_page->entries, 0);
3532         local_set(&cpu_buffer->reader_page->page->commit, 0);
3533         cpu_buffer->reader_page->real_end = 0;
3534
3535  spin:
3536         /*
3537          * Splice the empty reader page into the list around the head.
3538          */
3539         reader = rb_set_head_page(cpu_buffer);
3540         if (!reader)
3541                 goto out;
3542         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3543         cpu_buffer->reader_page->list.prev = reader->list.prev;
3544
3545         /*
3546          * cpu_buffer->pages just needs to point to the buffer, it
3547          *  has no specific buffer page to point to. Lets move it out
3548          *  of our way so we don't accidentally swap it.
3549          */
3550         cpu_buffer->pages = reader->list.prev;
3551
3552         /* The reader page will be pointing to the new head */
3553         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3554
3555         /*
3556          * We want to make sure we read the overruns after we set up our
3557          * pointers to the next object. The writer side does a
3558          * cmpxchg to cross pages which acts as the mb on the writer
3559          * side. Note, the reader will constantly fail the swap
3560          * while the writer is updating the pointers, so this
3561          * guarantees that the overwrite recorded here is the one we
3562          * want to compare with the last_overrun.
3563          */
3564         smp_mb();
3565         overwrite = local_read(&(cpu_buffer->overrun));
3566
3567         /*
3568          * Here's the tricky part.
3569          *
3570          * We need to move the pointer past the header page.
3571          * But we can only do that if a writer is not currently
3572          * moving it. The page before the header page has the
3573          * flag bit '1' set if it is pointing to the page we want.
3574          * but if the writer is in the process of moving it
3575          * than it will be '2' or already moved '0'.
3576          */
3577
3578         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3579
3580         /*
3581          * If we did not convert it, then we must try again.
3582          */
3583         if (!ret)
3584                 goto spin;
3585
3586         /*
3587          * Yeah! We succeeded in replacing the page.
3588          *
3589          * Now make the new head point back to the reader page.
3590          */
3591         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3592         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3593
3594         /* Finally update the reader page to the new head */
3595         cpu_buffer->reader_page = reader;
3596         rb_reset_reader_page(cpu_buffer);
3597
3598         if (overwrite != cpu_buffer->last_overrun) {
3599                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3600                 cpu_buffer->last_overrun = overwrite;
3601         }
3602
3603         goto again;
3604
3605  out:
3606         arch_spin_unlock(&cpu_buffer->lock);
3607         local_irq_restore(flags);
3608
3609         return reader;
3610 }
3611
3612 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3613 {
3614         struct ring_buffer_event *event;
3615         struct buffer_page *reader;
3616         unsigned length;
3617
3618         reader = rb_get_reader_page(cpu_buffer);
3619
3620         /* This function should not be called when buffer is empty */
3621         if (RB_WARN_ON(cpu_buffer, !reader))
3622                 return;
3623
3624         event = rb_reader_event(cpu_buffer);
3625
3626         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3627                 cpu_buffer->read++;
3628
3629         rb_update_read_stamp(cpu_buffer, event);
3630
3631         length = rb_event_length(event);
3632         cpu_buffer->reader_page->read += length;
3633 }
3634
3635 static void rb_advance_iter(struct ring_buffer_iter *iter)
3636 {
3637         struct ring_buffer_per_cpu *cpu_buffer;
3638         struct ring_buffer_event *event;
3639         unsigned length;
3640
3641         cpu_buffer = iter->cpu_buffer;
3642
3643         /*
3644          * Check if we are at the end of the buffer.
3645          */
3646         if (iter->head >= rb_page_size(iter->head_page)) {
3647                 /* discarded commits can make the page empty */
3648                 if (iter->head_page == cpu_buffer->commit_page)
3649                         return;
3650                 rb_inc_iter(iter);
3651                 return;
3652         }
3653
3654         event = rb_iter_head_event(iter);
3655
3656         length = rb_event_length(event);
3657
3658         /*
3659          * This should not be called to advance the header if we are
3660          * at the tail of the buffer.
3661          */
3662         if (RB_WARN_ON(cpu_buffer,
3663                        (iter->head_page == cpu_buffer->commit_page) &&
3664                        (iter->head + length > rb_commit_index(cpu_buffer))))
3665                 return;
3666
3667         rb_update_iter_read_stamp(iter, event);
3668
3669         iter->head += length;
3670
3671         /* check for end of page padding */
3672         if ((iter->head >= rb_page_size(iter->head_page)) &&
3673             (iter->head_page != cpu_buffer->commit_page))
3674                 rb_inc_iter(iter);
3675 }
3676
3677 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3678 {
3679         return cpu_buffer->lost_events;
3680 }
3681
3682 static struct ring_buffer_event *
3683 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3684                unsigned long *lost_events)
3685 {
3686         struct ring_buffer_event *event;
3687         struct buffer_page *reader;
3688         int nr_loops = 0;
3689
3690  again:
3691         /*
3692          * We repeat when a time extend is encountered.
3693          * Since the time extend is always attached to a data event,
3694          * we should never loop more than once.
3695          * (We never hit the following condition more than twice).
3696          */
3697         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3698                 return NULL;
3699
3700         reader = rb_get_reader_page(cpu_buffer);
3701         if (!reader)
3702                 return NULL;
3703
3704         event = rb_reader_event(cpu_buffer);
3705
3706         switch (event->type_len) {
3707         case RINGBUF_TYPE_PADDING:
3708                 if (rb_null_event(event))
3709                         RB_WARN_ON(cpu_buffer, 1);
3710                 /*
3711                  * Because the writer could be discarding every
3712                  * event it creates (which would probably be bad)
3713                  * if we were to go back to "again" then we may never
3714                  * catch up, and will trigger the warn on, or lock
3715                  * the box. Return the padding, and we will release
3716                  * the current locks, and try again.
3717                  */
3718                 return event;
3719
3720         case RINGBUF_TYPE_TIME_EXTEND:
3721                 /* Internal data, OK to advance */
3722                 rb_advance_reader(cpu_buffer);
3723                 goto again;
3724
3725         case RINGBUF_TYPE_TIME_STAMP:
3726                 /* FIXME: not implemented */
3727                 rb_advance_reader(cpu_buffer);
3728                 goto again;
3729
3730         case RINGBUF_TYPE_DATA:
3731                 if (ts) {
3732                         *ts = cpu_buffer->read_stamp + event->time_delta;
3733                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3734                                                          cpu_buffer->cpu, ts);
3735                 }
3736                 if (lost_events)
3737                         *lost_events = rb_lost_events(cpu_buffer);
3738                 return event;
3739
3740         default:
3741                 BUG();
3742         }
3743
3744         return NULL;
3745 }
3746 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3747
3748 static struct ring_buffer_event *
3749 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3750 {
3751         struct ring_buffer *buffer;
3752         struct ring_buffer_per_cpu *cpu_buffer;
3753         struct ring_buffer_event *event;
3754         int nr_loops = 0;
3755
3756         cpu_buffer = iter->cpu_buffer;
3757         buffer = cpu_buffer->buffer;
3758
3759         /*
3760          * Check if someone performed a consuming read to
3761          * the buffer. A consuming read invalidates the iterator
3762          * and we need to reset the iterator in this case.
3763          */
3764         if (unlikely(iter->cache_read != cpu_buffer->read ||
3765                      iter->cache_reader_page != cpu_buffer->reader_page))
3766                 rb_iter_reset(iter);
3767
3768  again:
3769         if (ring_buffer_iter_empty(iter))
3770                 return NULL;
3771
3772         /*
3773          * We repeat when a time extend is encountered or we hit
3774          * the end of the page. Since the time extend is always attached
3775          * to a data event, we should never loop more than three times.
3776          * Once for going to next page, once on time extend, and
3777          * finally once to get the event.
3778          * (We never hit the following condition more than thrice).
3779          */
3780         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3781                 return NULL;
3782
3783         if (rb_per_cpu_empty(cpu_buffer))
3784                 return NULL;
3785
3786         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3787                 rb_inc_iter(iter);
3788                 goto again;
3789         }
3790
3791         event = rb_iter_head_event(iter);
3792
3793         switch (event->type_len) {
3794         case RINGBUF_TYPE_PADDING:
3795                 if (rb_null_event(event)) {
3796                         rb_inc_iter(iter);
3797                         goto again;
3798                 }
3799                 rb_advance_iter(iter);
3800                 return event;
3801
3802         case RINGBUF_TYPE_TIME_EXTEND:
3803                 /* Internal data, OK to advance */
3804                 rb_advance_iter(iter);
3805                 goto again;
3806
3807         case RINGBUF_TYPE_TIME_STAMP:
3808                 /* FIXME: not implemented */
3809                 rb_advance_iter(iter);
3810                 goto again;
3811
3812         case RINGBUF_TYPE_DATA:
3813                 if (ts) {
3814                         *ts = iter->read_stamp + event->time_delta;
3815                         ring_buffer_normalize_time_stamp(buffer,
3816                                                          cpu_buffer->cpu, ts);
3817                 }
3818                 return event;
3819
3820         default:
3821                 BUG();
3822         }
3823
3824         return NULL;
3825 }
3826 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3827
3828 static inline int rb_ok_to_lock(void)
3829 {
3830         /*
3831          * If an NMI die dumps out the content of the ring buffer
3832          * do not grab locks. We also permanently disable the ring
3833          * buffer too. A one time deal is all you get from reading
3834          * the ring buffer from an NMI.
3835          */
3836         if (likely(!in_nmi()))
3837                 return 1;
3838
3839         tracing_off_permanent();
3840         return 0;
3841 }
3842
3843 /**
3844  * ring_buffer_peek - peek at the next event to be read
3845  * @buffer: The ring buffer to read
3846  * @cpu: The cpu to peak at
3847  * @ts: The timestamp counter of this event.
3848  * @lost_events: a variable to store if events were lost (may be NULL)
3849  *
3850  * This will return the event that will be read next, but does
3851  * not consume the data.
3852  */
3853 struct ring_buffer_event *
3854 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3855                  unsigned long *lost_events)
3856 {
3857         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3858         struct ring_buffer_event *event;
3859         unsigned long flags;
3860         int dolock;
3861
3862         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3863                 return NULL;
3864
3865         dolock = rb_ok_to_lock();
3866  again:
3867         local_irq_save(flags);
3868         if (dolock)
3869                 raw_spin_lock(&cpu_buffer->reader_lock);
3870         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3871         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3872                 rb_advance_reader(cpu_buffer);
3873         if (dolock)
3874                 raw_spin_unlock(&cpu_buffer->reader_lock);
3875         local_irq_restore(flags);
3876
3877         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3878                 goto again;
3879
3880         return event;
3881 }
3882
3883 /**
3884  * ring_buffer_iter_peek - peek at the next event to be read
3885  * @iter: The ring buffer iterator
3886  * @ts: The timestamp counter of this event.
3887  *
3888  * This will return the event that will be read next, but does
3889  * not increment the iterator.
3890  */
3891 struct ring_buffer_event *
3892 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3893 {
3894         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3895         struct ring_buffer_event *event;
3896         unsigned long flags;
3897
3898  again:
3899         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3900         event = rb_iter_peek(iter, ts);
3901         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3902
3903         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3904                 goto again;
3905
3906         return event;
3907 }
3908
3909 /**
3910  * ring_buffer_consume - return an event and consume it
3911  * @buffer: The ring buffer to get the next event from
3912  * @cpu: the cpu to read the buffer from
3913  * @ts: a variable to store the timestamp (may be NULL)
3914  * @lost_events: a variable to store if events were lost (may be NULL)
3915  *
3916  * Returns the next event in the ring buffer, and that event is consumed.
3917  * Meaning, that sequential reads will keep returning a different event,
3918  * and eventually empty the ring buffer if the producer is slower.
3919  */
3920 struct ring_buffer_event *
3921 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3922                     unsigned long *lost_events)
3923 {
3924         struct ring_buffer_per_cpu *cpu_buffer;
3925         struct ring_buffer_event *event = NULL;
3926         unsigned long flags;
3927         int dolock;
3928
3929         dolock = rb_ok_to_lock();
3930
3931  again:
3932         /* might be called in atomic */
3933         preempt_disable();
3934
3935         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3936                 goto out;
3937
3938         cpu_buffer = buffer->buffers[cpu];
3939         local_irq_save(flags);
3940         if (dolock)
3941                 raw_spin_lock(&cpu_buffer->reader_lock);
3942
3943         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3944         if (event) {
3945                 cpu_buffer->lost_events = 0;
3946                 rb_advance_reader(cpu_buffer);
3947         }
3948
3949         if (dolock)
3950                 raw_spin_unlock(&cpu_buffer->reader_lock);
3951         local_irq_restore(flags);
3952
3953  out:
3954         preempt_enable();
3955
3956         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3957                 goto again;
3958
3959         return event;
3960 }
3961 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3962
3963 /**
3964  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3965  * @buffer: The ring buffer to read from
3966  * @cpu: The cpu buffer to iterate over
3967  *
3968  * This performs the initial preparations necessary to iterate
3969  * through the buffer.  Memory is allocated, buffer recording
3970  * is disabled, and the iterator pointer is returned to the caller.
3971  *
3972  * Disabling buffer recordng prevents the reading from being
3973  * corrupted. This is not a consuming read, so a producer is not
3974  * expected.
3975  *
3976  * After a sequence of ring_buffer_read_prepare calls, the user is
3977  * expected to make at least one call to ring_buffer_read_prepare_sync.
3978  * Afterwards, ring_buffer_read_start is invoked to get things going
3979  * for real.
3980  *
3981  * This overall must be paired with ring_buffer_read_finish.
3982  */
3983 struct ring_buffer_iter *
3984 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3985 {
3986         struct ring_buffer_per_cpu *cpu_buffer;
3987         struct ring_buffer_iter *iter;
3988
3989         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3990                 return NULL;
3991
3992         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3993         if (!iter)
3994                 return NULL;
3995
3996         cpu_buffer = buffer->buffers[cpu];
3997
3998         iter->cpu_buffer = cpu_buffer;
3999
4000         atomic_inc(&buffer->resize_disabled);
4001         atomic_inc(&cpu_buffer->record_disabled);
4002
4003         return iter;
4004 }
4005 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4006
4007 /**
4008  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4009  *
4010  * All previously invoked ring_buffer_read_prepare calls to prepare
4011  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4012  * calls on those iterators are allowed.
4013  */
4014 void
4015 ring_buffer_read_prepare_sync(void)
4016 {
4017         synchronize_sched();
4018 }
4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4020
4021 /**
4022  * ring_buffer_read_start - start a non consuming read of the buffer
4023  * @iter: The iterator returned by ring_buffer_read_prepare
4024  *
4025  * This finalizes the startup of an iteration through the buffer.
4026  * The iterator comes from a call to ring_buffer_read_prepare and
4027  * an intervening ring_buffer_read_prepare_sync must have been
4028  * performed.
4029  *
4030  * Must be paired with ring_buffer_read_finish.
4031  */
4032 void
4033 ring_buffer_read_start(struct ring_buffer_iter *iter)
4034 {
4035         struct ring_buffer_per_cpu *cpu_buffer;
4036         unsigned long flags;
4037
4038         if (!iter)
4039                 return;
4040
4041         cpu_buffer = iter->cpu_buffer;
4042
4043         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4044         arch_spin_lock(&cpu_buffer->lock);
4045         rb_iter_reset(iter);
4046         arch_spin_unlock(&cpu_buffer->lock);
4047         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4048 }
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4050
4051 /**
4052  * ring_buffer_read_finish - finish reading the iterator of the buffer
4053  * @iter: The iterator retrieved by ring_buffer_start
4054  *
4055  * This re-enables the recording to the buffer, and frees the
4056  * iterator.
4057  */
4058 void
4059 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4060 {
4061         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4062         unsigned long flags;
4063
4064         /*
4065          * Ring buffer is disabled from recording, here's a good place
4066          * to check the integrity of the ring buffer.
4067          * Must prevent readers from trying to read, as the check
4068          * clears the HEAD page and readers require it.
4069          */
4070         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4071         rb_check_pages(cpu_buffer);
4072         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4073
4074         atomic_dec(&cpu_buffer->record_disabled);
4075         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4076         kfree(iter);
4077 }
4078 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4079
4080 /**
4081  * ring_buffer_read - read the next item in the ring buffer by the iterator
4082  * @iter: The ring buffer iterator
4083  * @ts: The time stamp of the event read.
4084  *
4085  * This reads the next event in the ring buffer and increments the iterator.
4086  */
4087 struct ring_buffer_event *
4088 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4089 {
4090         struct ring_buffer_event *event;
4091         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4092         unsigned long flags;
4093
4094         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4095  again:
4096         event = rb_iter_peek(iter, ts);
4097         if (!event)
4098                 goto out;
4099
4100         if (event->type_len == RINGBUF_TYPE_PADDING)
4101                 goto again;
4102
4103         rb_advance_iter(iter);
4104  out:
4105         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4106
4107         return event;
4108 }
4109 EXPORT_SYMBOL_GPL(ring_buffer_read);
4110
4111 /**
4112  * ring_buffer_size - return the size of the ring buffer (in bytes)
4113  * @buffer: The ring buffer.
4114  */
4115 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4116 {
4117         /*
4118          * Earlier, this method returned
4119          *      BUF_PAGE_SIZE * buffer->nr_pages
4120          * Since the nr_pages field is now removed, we have converted this to
4121          * return the per cpu buffer value.
4122          */
4123         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4124                 return 0;
4125
4126         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4127 }
4128 EXPORT_SYMBOL_GPL(ring_buffer_size);
4129
4130 static void
4131 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4132 {
4133         rb_head_page_deactivate(cpu_buffer);
4134
4135         cpu_buffer->head_page
4136                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4137         local_set(&cpu_buffer->head_page->write, 0);
4138         local_set(&cpu_buffer->head_page->entries, 0);
4139         local_set(&cpu_buffer->head_page->page->commit, 0);
4140
4141         cpu_buffer->head_page->read = 0;
4142
4143         cpu_buffer->tail_page = cpu_buffer->head_page;
4144         cpu_buffer->commit_page = cpu_buffer->head_page;
4145
4146         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4147         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4148         local_set(&cpu_buffer->reader_page->write, 0);
4149         local_set(&cpu_buffer->reader_page->entries, 0);
4150         local_set(&cpu_buffer->reader_page->page->commit, 0);
4151         cpu_buffer->reader_page->read = 0;
4152
4153         local_set(&cpu_buffer->entries_bytes, 0);
4154         local_set(&cpu_buffer->overrun, 0);
4155         local_set(&cpu_buffer->commit_overrun, 0);
4156         local_set(&cpu_buffer->dropped_events, 0);
4157         local_set(&cpu_buffer->entries, 0);
4158         local_set(&cpu_buffer->committing, 0);
4159         local_set(&cpu_buffer->commits, 0);
4160         cpu_buffer->read = 0;
4161         cpu_buffer->read_bytes = 0;
4162
4163         cpu_buffer->write_stamp = 0;
4164         cpu_buffer->read_stamp = 0;
4165
4166         cpu_buffer->lost_events = 0;
4167         cpu_buffer->last_overrun = 0;
4168
4169         rb_head_page_activate(cpu_buffer);
4170 }
4171
4172 /**
4173  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4174  * @buffer: The ring buffer to reset a per cpu buffer of
4175  * @cpu: The CPU buffer to be reset
4176  */
4177 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4178 {
4179         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4180         unsigned long flags;
4181
4182         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4183                 return;
4184
4185         atomic_inc(&buffer->resize_disabled);
4186         atomic_inc(&cpu_buffer->record_disabled);
4187
4188         /* Make sure all commits have finished */
4189         synchronize_sched();
4190
4191         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4192
4193         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4194                 goto out;
4195
4196         arch_spin_lock(&cpu_buffer->lock);
4197
4198         rb_reset_cpu(cpu_buffer);
4199
4200         arch_spin_unlock(&cpu_buffer->lock);
4201
4202  out:
4203         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4204
4205         atomic_dec(&cpu_buffer->record_disabled);
4206         atomic_dec(&buffer->resize_disabled);
4207 }
4208 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4209
4210 /**
4211  * ring_buffer_reset - reset a ring buffer
4212  * @buffer: The ring buffer to reset all cpu buffers
4213  */
4214 void ring_buffer_reset(struct ring_buffer *buffer)
4215 {
4216         int cpu;
4217
4218         for_each_buffer_cpu(buffer, cpu)
4219                 ring_buffer_reset_cpu(buffer, cpu);
4220 }
4221 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4222
4223 /**
4224  * rind_buffer_empty - is the ring buffer empty?
4225  * @buffer: The ring buffer to test
4226  */
4227 int ring_buffer_empty(struct ring_buffer *buffer)
4228 {
4229         struct ring_buffer_per_cpu *cpu_buffer;
4230         unsigned long flags;
4231         int dolock;
4232         int cpu;
4233         int ret;
4234
4235         dolock = rb_ok_to_lock();
4236
4237         /* yes this is racy, but if you don't like the race, lock the buffer */
4238         for_each_buffer_cpu(buffer, cpu) {
4239                 cpu_buffer = buffer->buffers[cpu];
4240                 local_irq_save(flags);
4241                 if (dolock)
4242                         raw_spin_lock(&cpu_buffer->reader_lock);
4243                 ret = rb_per_cpu_empty(cpu_buffer);
4244                 if (dolock)
4245                         raw_spin_unlock(&cpu_buffer->reader_lock);
4246                 local_irq_restore(flags);
4247
4248                 if (!ret)
4249                         return 0;
4250         }
4251
4252         return 1;
4253 }
4254 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4255
4256 /**
4257  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4258  * @buffer: The ring buffer
4259  * @cpu: The CPU buffer to test
4260  */
4261 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4262 {
4263         struct ring_buffer_per_cpu *cpu_buffer;
4264         unsigned long flags;
4265         int dolock;
4266         int ret;
4267
4268         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4269                 return 1;
4270
4271         dolock = rb_ok_to_lock();
4272
4273         cpu_buffer = buffer->buffers[cpu];
4274         local_irq_save(flags);
4275         if (dolock)
4276                 raw_spin_lock(&cpu_buffer->reader_lock);
4277         ret = rb_per_cpu_empty(cpu_buffer);
4278         if (dolock)
4279                 raw_spin_unlock(&cpu_buffer->reader_lock);
4280         local_irq_restore(flags);
4281
4282         return ret;
4283 }
4284 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4285
4286 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4287 /**
4288  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4289  * @buffer_a: One buffer to swap with
4290  * @buffer_b: The other buffer to swap with
4291  *
4292  * This function is useful for tracers that want to take a "snapshot"
4293  * of a CPU buffer and has another back up buffer lying around.
4294  * it is expected that the tracer handles the cpu buffer not being
4295  * used at the moment.
4296  */
4297 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4298                          struct ring_buffer *buffer_b, int cpu)
4299 {
4300         struct ring_buffer_per_cpu *cpu_buffer_a;
4301         struct ring_buffer_per_cpu *cpu_buffer_b;
4302         int ret = -EINVAL;
4303
4304         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4305             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4306                 goto out;
4307
4308         cpu_buffer_a = buffer_a->buffers[cpu];
4309         cpu_buffer_b = buffer_b->buffers[cpu];
4310
4311         /* At least make sure the two buffers are somewhat the same */
4312         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4313                 goto out;
4314
4315         ret = -EAGAIN;
4316
4317         if (ring_buffer_flags != RB_BUFFERS_ON)
4318                 goto out;
4319
4320         if (atomic_read(&buffer_a->record_disabled))
4321                 goto out;
4322
4323         if (atomic_read(&buffer_b->record_disabled))
4324                 goto out;
4325
4326         if (atomic_read(&cpu_buffer_a->record_disabled))
4327                 goto out;
4328
4329         if (atomic_read(&cpu_buffer_b->record_disabled))
4330                 goto out;
4331
4332         /*
4333          * We can't do a synchronize_sched here because this
4334          * function can be called in atomic context.
4335          * Normally this will be called from the same CPU as cpu.
4336          * If not it's up to the caller to protect this.
4337          */
4338         atomic_inc(&cpu_buffer_a->record_disabled);
4339         atomic_inc(&cpu_buffer_b->record_disabled);
4340
4341         ret = -EBUSY;
4342         if (local_read(&cpu_buffer_a->committing))
4343                 goto out_dec;
4344         if (local_read(&cpu_buffer_b->committing))
4345                 goto out_dec;
4346
4347         buffer_a->buffers[cpu] = cpu_buffer_b;
4348         buffer_b->buffers[cpu] = cpu_buffer_a;
4349
4350         cpu_buffer_b->buffer = buffer_a;
4351         cpu_buffer_a->buffer = buffer_b;
4352
4353         ret = 0;
4354
4355 out_dec:
4356         atomic_dec(&cpu_buffer_a->record_disabled);
4357         atomic_dec(&cpu_buffer_b->record_disabled);
4358 out:
4359         return ret;
4360 }
4361 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4362 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4363
4364 /**
4365  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4366  * @buffer: the buffer to allocate for.
4367  * @cpu: the cpu buffer to allocate.
4368  *
4369  * This function is used in conjunction with ring_buffer_read_page.
4370  * When reading a full page from the ring buffer, these functions
4371  * can be used to speed up the process. The calling function should
4372  * allocate a few pages first with this function. Then when it
4373  * needs to get pages from the ring buffer, it passes the result
4374  * of this function into ring_buffer_read_page, which will swap
4375  * the page that was allocated, with the read page of the buffer.
4376  *
4377  * Returns:
4378  *  The page allocated, or NULL on error.
4379  */
4380 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4381 {
4382         struct buffer_data_page *bpage;
4383         struct page *page;
4384
4385         page = alloc_pages_node(cpu_to_node(cpu),
4386                                 GFP_KERNEL | __GFP_NORETRY, 0);
4387         if (!page)
4388                 return NULL;
4389
4390         bpage = page_address(page);
4391
4392         rb_init_page(bpage);
4393
4394         return bpage;
4395 }
4396 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4397
4398 /**
4399  * ring_buffer_free_read_page - free an allocated read page
4400  * @buffer: the buffer the page was allocate for
4401  * @data: the page to free
4402  *
4403  * Free a page allocated from ring_buffer_alloc_read_page.
4404  */
4405 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4406 {
4407         free_page((unsigned long)data);
4408 }
4409 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4410
4411 /**
4412  * ring_buffer_read_page - extract a page from the ring buffer
4413  * @buffer: buffer to extract from
4414  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4415  * @len: amount to extract
4416  * @cpu: the cpu of the buffer to extract
4417  * @full: should the extraction only happen when the page is full.
4418  *
4419  * This function will pull out a page from the ring buffer and consume it.
4420  * @data_page must be the address of the variable that was returned
4421  * from ring_buffer_alloc_read_page. This is because the page might be used
4422  * to swap with a page in the ring buffer.
4423  *
4424  * for example:
4425  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4426  *      if (!rpage)
4427  *              return error;
4428  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4429  *      if (ret >= 0)
4430  *              process_page(rpage, ret);
4431  *
4432  * When @full is set, the function will not return true unless
4433  * the writer is off the reader page.
4434  *
4435  * Note: it is up to the calling functions to handle sleeps and wakeups.
4436  *  The ring buffer can be used anywhere in the kernel and can not
4437  *  blindly call wake_up. The layer that uses the ring buffer must be
4438  *  responsible for that.
4439  *
4440  * Returns:
4441  *  >=0 if data has been transferred, returns the offset of consumed data.
4442  *  <0 if no data has been transferred.
4443  */
4444 int ring_buffer_read_page(struct ring_buffer *buffer,
4445                           void **data_page, size_t len, int cpu, int full)
4446 {
4447         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4448         struct ring_buffer_event *event;
4449         struct buffer_data_page *bpage;
4450         struct buffer_page *reader;
4451         unsigned long missed_events;
4452         unsigned long flags;
4453         unsigned int commit;
4454         unsigned int read;
4455         u64 save_timestamp;
4456         int ret = -1;
4457
4458         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4459                 goto out;
4460
4461         /*
4462          * If len is not big enough to hold the page header, then
4463          * we can not copy anything.
4464          */
4465         if (len <= BUF_PAGE_HDR_SIZE)
4466                 goto out;
4467
4468         len -= BUF_PAGE_HDR_SIZE;
4469
4470         if (!data_page)
4471                 goto out;
4472
4473         bpage = *data_page;
4474         if (!bpage)
4475                 goto out;
4476
4477         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4478
4479         reader = rb_get_reader_page(cpu_buffer);
4480         if (!reader)
4481                 goto out_unlock;
4482
4483         event = rb_reader_event(cpu_buffer);
4484
4485         read = reader->read;
4486         commit = rb_page_commit(reader);
4487
4488         /* Check if any events were dropped */
4489         missed_events = cpu_buffer->lost_events;
4490
4491         /*
4492          * If this page has been partially read or
4493          * if len is not big enough to read the rest of the page or
4494          * a writer is still on the page, then
4495          * we must copy the data from the page to the buffer.
4496          * Otherwise, we can simply swap the page with the one passed in.
4497          */
4498         if (read || (len < (commit - read)) ||
4499             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4500                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4501                 unsigned int rpos = read;
4502                 unsigned int pos = 0;
4503                 unsigned int size;
4504
4505                 if (full)
4506                         goto out_unlock;
4507
4508                 if (len > (commit - read))
4509                         len = (commit - read);
4510
4511                 /* Always keep the time extend and data together */
4512                 size = rb_event_ts_length(event);
4513
4514                 if (len < size)
4515                         goto out_unlock;
4516
4517                 /* save the current timestamp, since the user will need it */
4518                 save_timestamp = cpu_buffer->read_stamp;
4519
4520                 /* Need to copy one event at a time */
4521                 do {
4522                         /* We need the size of one event, because
4523                          * rb_advance_reader only advances by one event,
4524                          * whereas rb_event_ts_length may include the size of
4525                          * one or two events.
4526                          * We have already ensured there's enough space if this
4527                          * is a time extend. */
4528                         size = rb_event_length(event);
4529                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4530
4531                         len -= size;
4532
4533                         rb_advance_reader(cpu_buffer);
4534                         rpos = reader->read;
4535                         pos += size;
4536
4537                         if (rpos >= commit)
4538                                 break;
4539
4540                         event = rb_reader_event(cpu_buffer);
4541                         /* Always keep the time extend and data together */
4542                         size = rb_event_ts_length(event);
4543                 } while (len >= size);
4544
4545                 /* update bpage */
4546                 local_set(&bpage->commit, pos);
4547                 bpage->time_stamp = save_timestamp;
4548
4549                 /* we copied everything to the beginning */
4550                 read = 0;
4551         } else {
4552                 /* update the entry counter */
4553                 cpu_buffer->read += rb_page_entries(reader);
4554                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4555
4556                 /* swap the pages */
4557                 rb_init_page(bpage);
4558                 bpage = reader->page;
4559                 reader->page = *data_page;
4560                 local_set(&reader->write, 0);
4561                 local_set(&reader->entries, 0);
4562                 reader->read = 0;
4563                 *data_page = bpage;
4564
4565                 /*
4566                  * Use the real_end for the data size,
4567                  * This gives us a chance to store the lost events
4568                  * on the page.
4569                  */
4570                 if (reader->real_end)
4571                         local_set(&bpage->commit, reader->real_end);
4572         }
4573         ret = read;
4574
4575         cpu_buffer->lost_events = 0;
4576
4577         commit = local_read(&bpage->commit);
4578         /*
4579          * Set a flag in the commit field if we lost events
4580          */
4581         if (missed_events) {
4582                 /* If there is room at the end of the page to save the
4583                  * missed events, then record it there.
4584                  */
4585                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4586                         memcpy(&bpage->data[commit], &missed_events,
4587                                sizeof(missed_events));
4588                         local_add(RB_MISSED_STORED, &bpage->commit);
4589                         commit += sizeof(missed_events);
4590                 }
4591                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4592         }
4593
4594         /*
4595          * This page may be off to user land. Zero it out here.
4596          */
4597         if (commit < BUF_PAGE_SIZE)
4598                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4599
4600  out_unlock:
4601         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4602
4603  out:
4604         return ret;
4605 }
4606 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4607
4608 #ifdef CONFIG_HOTPLUG_CPU
4609 static int rb_cpu_notify(struct notifier_block *self,
4610                          unsigned long action, void *hcpu)
4611 {
4612         struct ring_buffer *buffer =
4613                 container_of(self, struct ring_buffer, cpu_notify);
4614         long cpu = (long)hcpu;
4615         int cpu_i, nr_pages_same;
4616         unsigned int nr_pages;
4617
4618         switch (action) {
4619         case CPU_UP_PREPARE:
4620         case CPU_UP_PREPARE_FROZEN:
4621                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4622                         return NOTIFY_OK;
4623
4624                 nr_pages = 0;
4625                 nr_pages_same = 1;
4626                 /* check if all cpu sizes are same */
4627                 for_each_buffer_cpu(buffer, cpu_i) {
4628                         /* fill in the size from first enabled cpu */
4629                         if (nr_pages == 0)
4630                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4631                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4632                                 nr_pages_same = 0;
4633                                 break;
4634                         }
4635                 }
4636                 /* allocate minimum pages, user can later expand it */
4637                 if (!nr_pages_same)
4638                         nr_pages = 2;
4639                 buffer->buffers[cpu] =
4640                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4641                 if (!buffer->buffers[cpu]) {
4642                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4643                              cpu);
4644                         return NOTIFY_OK;
4645                 }
4646                 smp_wmb();
4647                 cpumask_set_cpu(cpu, buffer->cpumask);
4648                 break;
4649         case CPU_DOWN_PREPARE:
4650         case CPU_DOWN_PREPARE_FROZEN:
4651                 /*
4652                  * Do nothing.
4653                  *  If we were to free the buffer, then the user would
4654                  *  lose any trace that was in the buffer.
4655                  */
4656                 break;
4657         default:
4658                 break;
4659         }
4660         return NOTIFY_OK;
4661 }
4662 #endif
4663
4664 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4665 /*
4666  * This is a basic integrity check of the ring buffer.
4667  * Late in the boot cycle this test will run when configured in.
4668  * It will kick off a thread per CPU that will go into a loop
4669  * writing to the per cpu ring buffer various sizes of data.
4670  * Some of the data will be large items, some small.
4671  *
4672  * Another thread is created that goes into a spin, sending out
4673  * IPIs to the other CPUs to also write into the ring buffer.
4674  * this is to test the nesting ability of the buffer.
4675  *
4676  * Basic stats are recorded and reported. If something in the
4677  * ring buffer should happen that's not expected, a big warning
4678  * is displayed and all ring buffers are disabled.
4679  */
4680 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4681
4682 struct rb_test_data {
4683         struct ring_buffer      *buffer;
4684         unsigned long           events;
4685         unsigned long           bytes_written;
4686         unsigned long           bytes_alloc;
4687         unsigned long           bytes_dropped;
4688         unsigned long           events_nested;
4689         unsigned long           bytes_written_nested;
4690         unsigned long           bytes_alloc_nested;
4691         unsigned long           bytes_dropped_nested;
4692         int                     min_size_nested;
4693         int                     max_size_nested;
4694         int                     max_size;
4695         int                     min_size;
4696         int                     cpu;
4697         int                     cnt;
4698 };
4699
4700 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4701
4702 /* 1 meg per cpu */
4703 #define RB_TEST_BUFFER_SIZE     1048576
4704
4705 static char rb_string[] __initdata =
4706         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4707         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4708         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4709
4710 static bool rb_test_started __initdata;
4711
4712 struct rb_item {
4713         int size;
4714         char str[];
4715 };
4716
4717 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4718 {
4719         struct ring_buffer_event *event;
4720         struct rb_item *item;
4721         bool started;
4722         int event_len;
4723         int size;
4724         int len;
4725         int cnt;
4726
4727         /* Have nested writes different that what is written */
4728         cnt = data->cnt + (nested ? 27 : 0);
4729
4730         /* Multiply cnt by ~e, to make some unique increment */
4731         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4732
4733         len = size + sizeof(struct rb_item);
4734
4735         started = rb_test_started;
4736         /* read rb_test_started before checking buffer enabled */
4737         smp_rmb();
4738
4739         event = ring_buffer_lock_reserve(data->buffer, len);
4740         if (!event) {
4741                 /* Ignore dropped events before test starts. */
4742                 if (started) {
4743                         if (nested)
4744                                 data->bytes_dropped += len;
4745                         else
4746                                 data->bytes_dropped_nested += len;
4747                 }
4748                 return len;
4749         }
4750
4751         event_len = ring_buffer_event_length(event);
4752
4753         if (RB_WARN_ON(data->buffer, event_len < len))
4754                 goto out;
4755
4756         item = ring_buffer_event_data(event);
4757         item->size = size;
4758         memcpy(item->str, rb_string, size);
4759
4760         if (nested) {
4761                 data->bytes_alloc_nested += event_len;
4762                 data->bytes_written_nested += len;
4763                 data->events_nested++;
4764                 if (!data->min_size_nested || len < data->min_size_nested)
4765                         data->min_size_nested = len;
4766                 if (len > data->max_size_nested)
4767                         data->max_size_nested = len;
4768         } else {
4769                 data->bytes_alloc += event_len;
4770                 data->bytes_written += len;
4771                 data->events++;
4772                 if (!data->min_size || len < data->min_size)
4773                         data->max_size = len;
4774                 if (len > data->max_size)
4775                         data->max_size = len;
4776         }
4777
4778  out:
4779         ring_buffer_unlock_commit(data->buffer, event);
4780
4781         return 0;
4782 }
4783
4784 static __init int rb_test(void *arg)
4785 {
4786         struct rb_test_data *data = arg;
4787
4788         while (!kthread_should_stop()) {
4789                 rb_write_something(data, false);
4790                 data->cnt++;
4791
4792                 set_current_state(TASK_INTERRUPTIBLE);
4793                 /* Now sleep between a min of 100-300us and a max of 1ms */
4794                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4795         }
4796
4797         return 0;
4798 }
4799
4800 static __init void rb_ipi(void *ignore)
4801 {
4802         struct rb_test_data *data;
4803         int cpu = smp_processor_id();
4804
4805         data = &rb_data[cpu];
4806         rb_write_something(data, true);
4807 }
4808
4809 static __init int rb_hammer_test(void *arg)
4810 {
4811         while (!kthread_should_stop()) {
4812
4813                 /* Send an IPI to all cpus to write data! */
4814                 smp_call_function(rb_ipi, NULL, 1);
4815                 /* No sleep, but for non preempt, let others run */
4816                 schedule();
4817         }
4818
4819         return 0;
4820 }
4821
4822 static __init int test_ringbuffer(void)
4823 {
4824         struct task_struct *rb_hammer;
4825         struct ring_buffer *buffer;
4826         int cpu;
4827         int ret = 0;
4828
4829         pr_info("Running ring buffer tests...\n");
4830
4831         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4832         if (WARN_ON(!buffer))
4833                 return 0;
4834
4835         /* Disable buffer so that threads can't write to it yet */
4836         ring_buffer_record_off(buffer);
4837
4838         for_each_online_cpu(cpu) {
4839                 rb_data[cpu].buffer = buffer;
4840                 rb_data[cpu].cpu = cpu;
4841                 rb_data[cpu].cnt = cpu;
4842                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4843                                                  "rbtester/%d", cpu);
4844                 if (WARN_ON(!rb_threads[cpu])) {
4845                         pr_cont("FAILED\n");
4846                         ret = -1;
4847                         goto out_free;
4848                 }
4849
4850                 kthread_bind(rb_threads[cpu], cpu);
4851                 wake_up_process(rb_threads[cpu]);
4852         }
4853
4854         /* Now create the rb hammer! */
4855         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4856         if (WARN_ON(!rb_hammer)) {
4857                 pr_cont("FAILED\n");
4858                 ret = -1;
4859                 goto out_free;
4860         }
4861
4862         ring_buffer_record_on(buffer);
4863         /*
4864          * Show buffer is enabled before setting rb_test_started.
4865          * Yes there's a small race window where events could be
4866          * dropped and the thread wont catch it. But when a ring
4867          * buffer gets enabled, there will always be some kind of
4868          * delay before other CPUs see it. Thus, we don't care about
4869          * those dropped events. We care about events dropped after
4870          * the threads see that the buffer is active.
4871          */
4872         smp_wmb();
4873         rb_test_started = true;
4874
4875         set_current_state(TASK_INTERRUPTIBLE);
4876         /* Just run for 10 seconds */;
4877         schedule_timeout(10 * HZ);
4878
4879         kthread_stop(rb_hammer);
4880
4881  out_free:
4882         for_each_online_cpu(cpu) {
4883                 if (!rb_threads[cpu])
4884                         break;
4885                 kthread_stop(rb_threads[cpu]);
4886         }
4887         if (ret) {
4888                 ring_buffer_free(buffer);
4889                 return ret;
4890         }
4891
4892         /* Report! */
4893         pr_info("finished\n");
4894         for_each_online_cpu(cpu) {
4895                 struct ring_buffer_event *event;
4896                 struct rb_test_data *data = &rb_data[cpu];
4897                 struct rb_item *item;
4898                 unsigned long total_events;
4899                 unsigned long total_dropped;
4900                 unsigned long total_written;
4901                 unsigned long total_alloc;
4902                 unsigned long total_read = 0;
4903                 unsigned long total_size = 0;
4904                 unsigned long total_len = 0;
4905                 unsigned long total_lost = 0;
4906                 unsigned long lost;
4907                 int big_event_size;
4908                 int small_event_size;
4909
4910                 ret = -1;
4911
4912                 total_events = data->events + data->events_nested;
4913                 total_written = data->bytes_written + data->bytes_written_nested;
4914                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4915                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4916
4917                 big_event_size = data->max_size + data->max_size_nested;
4918                 small_event_size = data->min_size + data->min_size_nested;
4919
4920                 pr_info("CPU %d:\n", cpu);
4921                 pr_info("              events:    %ld\n", total_events);
4922                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4923                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4924                 pr_info("       written bytes:    %ld\n", total_written);
4925                 pr_info("       biggest event:    %d\n", big_event_size);
4926                 pr_info("      smallest event:    %d\n", small_event_size);
4927
4928                 if (RB_WARN_ON(buffer, total_dropped))
4929                         break;
4930
4931                 ret = 0;
4932
4933                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4934                         total_lost += lost;
4935                         item = ring_buffer_event_data(event);
4936                         total_len += ring_buffer_event_length(event);
4937                         total_size += item->size + sizeof(struct rb_item);
4938                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4939                                 pr_info("FAILED!\n");
4940                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4941                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4942                                 RB_WARN_ON(buffer, 1);
4943                                 ret = -1;
4944                                 break;
4945                         }
4946                         total_read++;
4947                 }
4948                 if (ret)
4949                         break;
4950
4951                 ret = -1;
4952
4953                 pr_info("         read events:   %ld\n", total_read);
4954                 pr_info("         lost events:   %ld\n", total_lost);
4955                 pr_info("        total events:   %ld\n", total_lost + total_read);
4956                 pr_info("  recorded len bytes:   %ld\n", total_len);
4957                 pr_info(" recorded size bytes:   %ld\n", total_size);
4958                 if (total_lost)
4959                         pr_info(" With dropped events, record len and size may not match\n"
4960                                 " alloced and written from above\n");
4961                 if (!total_lost) {
4962                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4963                                        total_size != total_written))
4964                                 break;
4965                 }
4966                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4967                         break;
4968
4969                 ret = 0;
4970         }
4971         if (!ret)
4972                 pr_info("Ring buffer PASSED!\n");
4973
4974         ring_buffer_free(buffer);
4975         return 0;
4976 }
4977
4978 late_initcall(test_ringbuffer);
4979 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */