Merge tag 'metag-v3.9-rc1-v4' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan...
[profile/ivi/kernel-x86-ivi.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/debugfs.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kmemcheck.h>
15 #include <linux/module.h>
16 #include <linux/percpu.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/hash.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/fs.h>
24
25 #include <asm/local.h>
26
27 static void update_pages_handler(struct work_struct *work);
28
29 /*
30  * The ring buffer header is special. We must manually up keep it.
31  */
32 int ring_buffer_print_entry_header(struct trace_seq *s)
33 {
34         int ret;
35
36         ret = trace_seq_printf(s, "# compressed entry header\n");
37         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
38         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
39         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
40         ret = trace_seq_printf(s, "\n");
41         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
42                                RINGBUF_TYPE_PADDING);
43         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
44                                RINGBUF_TYPE_TIME_EXTEND);
45         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
46                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47
48         return ret;
49 }
50
51 /*
52  * The ring buffer is made up of a list of pages. A separate list of pages is
53  * allocated for each CPU. A writer may only write to a buffer that is
54  * associated with the CPU it is currently executing on.  A reader may read
55  * from any per cpu buffer.
56  *
57  * The reader is special. For each per cpu buffer, the reader has its own
58  * reader page. When a reader has read the entire reader page, this reader
59  * page is swapped with another page in the ring buffer.
60  *
61  * Now, as long as the writer is off the reader page, the reader can do what
62  * ever it wants with that page. The writer will never write to that page
63  * again (as long as it is out of the ring buffer).
64  *
65  * Here's some silly ASCII art.
66  *
67  *   +------+
68  *   |reader|          RING BUFFER
69  *   |page  |
70  *   +------+        +---+   +---+   +---+
71  *                   |   |-->|   |-->|   |
72  *                   +---+   +---+   +---+
73  *                     ^               |
74  *                     |               |
75  *                     +---------------+
76  *
77  *
78  *   +------+
79  *   |reader|          RING BUFFER
80  *   |page  |------------------v
81  *   +------+        +---+   +---+   +---+
82  *                   |   |-->|   |-->|   |
83  *                   +---+   +---+   +---+
84  *                     ^               |
85  *                     |               |
86  *                     +---------------+
87  *
88  *
89  *   +------+
90  *   |reader|          RING BUFFER
91  *   |page  |------------------v
92  *   +------+        +---+   +---+   +---+
93  *      ^            |   |-->|   |-->|   |
94  *      |            +---+   +---+   +---+
95  *      |                              |
96  *      |                              |
97  *      +------------------------------+
98  *
99  *
100  *   +------+
101  *   |buffer|          RING BUFFER
102  *   |page  |------------------v
103  *   +------+        +---+   +---+   +---+
104  *      ^            |   |   |   |-->|   |
105  *      |   New      +---+   +---+   +---+
106  *      |  Reader------^               |
107  *      |   page                       |
108  *      +------------------------------+
109  *
110  *
111  * After we make this swap, the reader can hand this page off to the splice
112  * code and be done with it. It can even allocate a new page if it needs to
113  * and swap that into the ring buffer.
114  *
115  * We will be using cmpxchg soon to make all this lockless.
116  *
117  */
118
119 /*
120  * A fast way to enable or disable all ring buffers is to
121  * call tracing_on or tracing_off. Turning off the ring buffers
122  * prevents all ring buffers from being recorded to.
123  * Turning this switch on, makes it OK to write to the
124  * ring buffer, if the ring buffer is enabled itself.
125  *
126  * There's three layers that must be on in order to write
127  * to the ring buffer.
128  *
129  * 1) This global flag must be set.
130  * 2) The ring buffer must be enabled for recording.
131  * 3) The per cpu buffer must be enabled for recording.
132  *
133  * In case of an anomaly, this global flag has a bit set that
134  * will permantly disable all ring buffers.
135  */
136
137 /*
138  * Global flag to disable all recording to ring buffers
139  *  This has two bits: ON, DISABLED
140  *
141  *  ON   DISABLED
142  * ---- ----------
143  *   0      0        : ring buffers are off
144  *   1      0        : ring buffers are on
145  *   X      1        : ring buffers are permanently disabled
146  */
147
148 enum {
149         RB_BUFFERS_ON_BIT       = 0,
150         RB_BUFFERS_DISABLED_BIT = 1,
151 };
152
153 enum {
154         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
155         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
156 };
157
158 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
159
160 /* Used for individual buffers (after the counter) */
161 #define RB_BUFFER_OFF           (1 << 20)
162
163 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
164
165 /**
166  * tracing_off_permanent - permanently disable ring buffers
167  *
168  * This function, once called, will disable all ring buffers
169  * permanently.
170  */
171 void tracing_off_permanent(void)
172 {
173         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
174 }
175
176 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
177 #define RB_ALIGNMENT            4U
178 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
179 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
180
181 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
182 # define RB_FORCE_8BYTE_ALIGNMENT       0
183 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
184 #else
185 # define RB_FORCE_8BYTE_ALIGNMENT       1
186 # define RB_ARCH_ALIGNMENT              8U
187 #endif
188
189 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
190
191 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
192 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
193
194 enum {
195         RB_LEN_TIME_EXTEND = 8,
196         RB_LEN_TIME_STAMP = 16,
197 };
198
199 #define skip_time_extend(event) \
200         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
201
202 static inline int rb_null_event(struct ring_buffer_event *event)
203 {
204         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
205 }
206
207 static void rb_event_set_padding(struct ring_buffer_event *event)
208 {
209         /* padding has a NULL time_delta */
210         event->type_len = RINGBUF_TYPE_PADDING;
211         event->time_delta = 0;
212 }
213
214 static unsigned
215 rb_event_data_length(struct ring_buffer_event *event)
216 {
217         unsigned length;
218
219         if (event->type_len)
220                 length = event->type_len * RB_ALIGNMENT;
221         else
222                 length = event->array[0];
223         return length + RB_EVNT_HDR_SIZE;
224 }
225
226 /*
227  * Return the length of the given event. Will return
228  * the length of the time extend if the event is a
229  * time extend.
230  */
231 static inline unsigned
232 rb_event_length(struct ring_buffer_event *event)
233 {
234         switch (event->type_len) {
235         case RINGBUF_TYPE_PADDING:
236                 if (rb_null_event(event))
237                         /* undefined */
238                         return -1;
239                 return  event->array[0] + RB_EVNT_HDR_SIZE;
240
241         case RINGBUF_TYPE_TIME_EXTEND:
242                 return RB_LEN_TIME_EXTEND;
243
244         case RINGBUF_TYPE_TIME_STAMP:
245                 return RB_LEN_TIME_STAMP;
246
247         case RINGBUF_TYPE_DATA:
248                 return rb_event_data_length(event);
249         default:
250                 BUG();
251         }
252         /* not hit */
253         return 0;
254 }
255
256 /*
257  * Return total length of time extend and data,
258  *   or just the event length for all other events.
259  */
260 static inline unsigned
261 rb_event_ts_length(struct ring_buffer_event *event)
262 {
263         unsigned len = 0;
264
265         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
266                 /* time extends include the data event after it */
267                 len = RB_LEN_TIME_EXTEND;
268                 event = skip_time_extend(event);
269         }
270         return len + rb_event_length(event);
271 }
272
273 /**
274  * ring_buffer_event_length - return the length of the event
275  * @event: the event to get the length of
276  *
277  * Returns the size of the data load of a data event.
278  * If the event is something other than a data event, it
279  * returns the size of the event itself. With the exception
280  * of a TIME EXTEND, where it still returns the size of the
281  * data load of the data event after it.
282  */
283 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
284 {
285         unsigned length;
286
287         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
288                 event = skip_time_extend(event);
289
290         length = rb_event_length(event);
291         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
292                 return length;
293         length -= RB_EVNT_HDR_SIZE;
294         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
295                 length -= sizeof(event->array[0]);
296         return length;
297 }
298 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
299
300 /* inline for ring buffer fast paths */
301 static void *
302 rb_event_data(struct ring_buffer_event *event)
303 {
304         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
305                 event = skip_time_extend(event);
306         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
307         /* If length is in len field, then array[0] has the data */
308         if (event->type_len)
309                 return (void *)&event->array[0];
310         /* Otherwise length is in array[0] and array[1] has the data */
311         return (void *)&event->array[1];
312 }
313
314 /**
315  * ring_buffer_event_data - return the data of the event
316  * @event: the event to get the data from
317  */
318 void *ring_buffer_event_data(struct ring_buffer_event *event)
319 {
320         return rb_event_data(event);
321 }
322 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
323
324 #define for_each_buffer_cpu(buffer, cpu)                \
325         for_each_cpu(cpu, buffer->cpumask)
326
327 #define TS_SHIFT        27
328 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
329 #define TS_DELTA_TEST   (~TS_MASK)
330
331 /* Flag when events were overwritten */
332 #define RB_MISSED_EVENTS        (1 << 31)
333 /* Missed count stored at end */
334 #define RB_MISSED_STORED        (1 << 30)
335
336 struct buffer_data_page {
337         u64              time_stamp;    /* page time stamp */
338         local_t          commit;        /* write committed index */
339         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
340 };
341
342 /*
343  * Note, the buffer_page list must be first. The buffer pages
344  * are allocated in cache lines, which means that each buffer
345  * page will be at the beginning of a cache line, and thus
346  * the least significant bits will be zero. We use this to
347  * add flags in the list struct pointers, to make the ring buffer
348  * lockless.
349  */
350 struct buffer_page {
351         struct list_head list;          /* list of buffer pages */
352         local_t          write;         /* index for next write */
353         unsigned         read;          /* index for next read */
354         local_t          entries;       /* entries on this page */
355         unsigned long    real_end;      /* real end of data */
356         struct buffer_data_page *page;  /* Actual data page */
357 };
358
359 /*
360  * The buffer page counters, write and entries, must be reset
361  * atomically when crossing page boundaries. To synchronize this
362  * update, two counters are inserted into the number. One is
363  * the actual counter for the write position or count on the page.
364  *
365  * The other is a counter of updaters. Before an update happens
366  * the update partition of the counter is incremented. This will
367  * allow the updater to update the counter atomically.
368  *
369  * The counter is 20 bits, and the state data is 12.
370  */
371 #define RB_WRITE_MASK           0xfffff
372 #define RB_WRITE_INTCNT         (1 << 20)
373
374 static void rb_init_page(struct buffer_data_page *bpage)
375 {
376         local_set(&bpage->commit, 0);
377 }
378
379 /**
380  * ring_buffer_page_len - the size of data on the page.
381  * @page: The page to read
382  *
383  * Returns the amount of data on the page, including buffer page header.
384  */
385 size_t ring_buffer_page_len(void *page)
386 {
387         return local_read(&((struct buffer_data_page *)page)->commit)
388                 + BUF_PAGE_HDR_SIZE;
389 }
390
391 /*
392  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
393  * this issue out.
394  */
395 static void free_buffer_page(struct buffer_page *bpage)
396 {
397         free_page((unsigned long)bpage->page);
398         kfree(bpage);
399 }
400
401 /*
402  * We need to fit the time_stamp delta into 27 bits.
403  */
404 static inline int test_time_stamp(u64 delta)
405 {
406         if (delta & TS_DELTA_TEST)
407                 return 1;
408         return 0;
409 }
410
411 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
412
413 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
414 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
415
416 int ring_buffer_print_page_header(struct trace_seq *s)
417 {
418         struct buffer_data_page field;
419         int ret;
420
421         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
422                                "offset:0;\tsize:%u;\tsigned:%u;\n",
423                                (unsigned int)sizeof(field.time_stamp),
424                                (unsigned int)is_signed_type(u64));
425
426         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
427                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
428                                (unsigned int)offsetof(typeof(field), commit),
429                                (unsigned int)sizeof(field.commit),
430                                (unsigned int)is_signed_type(long));
431
432         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
433                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
434                                (unsigned int)offsetof(typeof(field), commit),
435                                1,
436                                (unsigned int)is_signed_type(long));
437
438         ret = trace_seq_printf(s, "\tfield: char data;\t"
439                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
440                                (unsigned int)offsetof(typeof(field), data),
441                                (unsigned int)BUF_PAGE_SIZE,
442                                (unsigned int)is_signed_type(char));
443
444         return ret;
445 }
446
447 /*
448  * head_page == tail_page && head == tail then buffer is empty.
449  */
450 struct ring_buffer_per_cpu {
451         int                             cpu;
452         atomic_t                        record_disabled;
453         struct ring_buffer              *buffer;
454         raw_spinlock_t                  reader_lock;    /* serialize readers */
455         arch_spinlock_t                 lock;
456         struct lock_class_key           lock_key;
457         unsigned int                    nr_pages;
458         struct list_head                *pages;
459         struct buffer_page              *head_page;     /* read from head */
460         struct buffer_page              *tail_page;     /* write to tail */
461         struct buffer_page              *commit_page;   /* committed pages */
462         struct buffer_page              *reader_page;
463         unsigned long                   lost_events;
464         unsigned long                   last_overrun;
465         local_t                         entries_bytes;
466         local_t                         entries;
467         local_t                         overrun;
468         local_t                         commit_overrun;
469         local_t                         dropped_events;
470         local_t                         committing;
471         local_t                         commits;
472         unsigned long                   read;
473         unsigned long                   read_bytes;
474         u64                             write_stamp;
475         u64                             read_stamp;
476         /* ring buffer pages to update, > 0 to add, < 0 to remove */
477         int                             nr_pages_to_update;
478         struct list_head                new_pages; /* new pages to add */
479         struct work_struct              update_pages_work;
480         struct completion               update_done;
481 };
482
483 struct ring_buffer {
484         unsigned                        flags;
485         int                             cpus;
486         atomic_t                        record_disabled;
487         atomic_t                        resize_disabled;
488         cpumask_var_t                   cpumask;
489
490         struct lock_class_key           *reader_lock_key;
491
492         struct mutex                    mutex;
493
494         struct ring_buffer_per_cpu      **buffers;
495
496 #ifdef CONFIG_HOTPLUG_CPU
497         struct notifier_block           cpu_notify;
498 #endif
499         u64                             (*clock)(void);
500 };
501
502 struct ring_buffer_iter {
503         struct ring_buffer_per_cpu      *cpu_buffer;
504         unsigned long                   head;
505         struct buffer_page              *head_page;
506         struct buffer_page              *cache_reader_page;
507         unsigned long                   cache_read;
508         u64                             read_stamp;
509 };
510
511 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
512 #define RB_WARN_ON(b, cond)                                             \
513         ({                                                              \
514                 int _____ret = unlikely(cond);                          \
515                 if (_____ret) {                                         \
516                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
517                                 struct ring_buffer_per_cpu *__b =       \
518                                         (void *)b;                      \
519                                 atomic_inc(&__b->buffer->record_disabled); \
520                         } else                                          \
521                                 atomic_inc(&b->record_disabled);        \
522                         WARN_ON(1);                                     \
523                 }                                                       \
524                 _____ret;                                               \
525         })
526
527 /* Up this if you want to test the TIME_EXTENTS and normalization */
528 #define DEBUG_SHIFT 0
529
530 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
531 {
532         /* shift to debug/test normalization and TIME_EXTENTS */
533         return buffer->clock() << DEBUG_SHIFT;
534 }
535
536 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
537 {
538         u64 time;
539
540         preempt_disable_notrace();
541         time = rb_time_stamp(buffer);
542         preempt_enable_no_resched_notrace();
543
544         return time;
545 }
546 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
547
548 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
549                                       int cpu, u64 *ts)
550 {
551         /* Just stupid testing the normalize function and deltas */
552         *ts >>= DEBUG_SHIFT;
553 }
554 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
555
556 /*
557  * Making the ring buffer lockless makes things tricky.
558  * Although writes only happen on the CPU that they are on,
559  * and they only need to worry about interrupts. Reads can
560  * happen on any CPU.
561  *
562  * The reader page is always off the ring buffer, but when the
563  * reader finishes with a page, it needs to swap its page with
564  * a new one from the buffer. The reader needs to take from
565  * the head (writes go to the tail). But if a writer is in overwrite
566  * mode and wraps, it must push the head page forward.
567  *
568  * Here lies the problem.
569  *
570  * The reader must be careful to replace only the head page, and
571  * not another one. As described at the top of the file in the
572  * ASCII art, the reader sets its old page to point to the next
573  * page after head. It then sets the page after head to point to
574  * the old reader page. But if the writer moves the head page
575  * during this operation, the reader could end up with the tail.
576  *
577  * We use cmpxchg to help prevent this race. We also do something
578  * special with the page before head. We set the LSB to 1.
579  *
580  * When the writer must push the page forward, it will clear the
581  * bit that points to the head page, move the head, and then set
582  * the bit that points to the new head page.
583  *
584  * We also don't want an interrupt coming in and moving the head
585  * page on another writer. Thus we use the second LSB to catch
586  * that too. Thus:
587  *
588  * head->list->prev->next        bit 1          bit 0
589  *                              -------        -------
590  * Normal page                     0              0
591  * Points to head page             0              1
592  * New head page                   1              0
593  *
594  * Note we can not trust the prev pointer of the head page, because:
595  *
596  * +----+       +-----+        +-----+
597  * |    |------>|  T  |---X--->|  N  |
598  * |    |<------|     |        |     |
599  * +----+       +-----+        +-----+
600  *   ^                           ^ |
601  *   |          +-----+          | |
602  *   +----------|  R  |----------+ |
603  *              |     |<-----------+
604  *              +-----+
605  *
606  * Key:  ---X-->  HEAD flag set in pointer
607  *         T      Tail page
608  *         R      Reader page
609  *         N      Next page
610  *
611  * (see __rb_reserve_next() to see where this happens)
612  *
613  *  What the above shows is that the reader just swapped out
614  *  the reader page with a page in the buffer, but before it
615  *  could make the new header point back to the new page added
616  *  it was preempted by a writer. The writer moved forward onto
617  *  the new page added by the reader and is about to move forward
618  *  again.
619  *
620  *  You can see, it is legitimate for the previous pointer of
621  *  the head (or any page) not to point back to itself. But only
622  *  temporarially.
623  */
624
625 #define RB_PAGE_NORMAL          0UL
626 #define RB_PAGE_HEAD            1UL
627 #define RB_PAGE_UPDATE          2UL
628
629
630 #define RB_FLAG_MASK            3UL
631
632 /* PAGE_MOVED is not part of the mask */
633 #define RB_PAGE_MOVED           4UL
634
635 /*
636  * rb_list_head - remove any bit
637  */
638 static struct list_head *rb_list_head(struct list_head *list)
639 {
640         unsigned long val = (unsigned long)list;
641
642         return (struct list_head *)(val & ~RB_FLAG_MASK);
643 }
644
645 /*
646  * rb_is_head_page - test if the given page is the head page
647  *
648  * Because the reader may move the head_page pointer, we can
649  * not trust what the head page is (it may be pointing to
650  * the reader page). But if the next page is a header page,
651  * its flags will be non zero.
652  */
653 static inline int
654 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
655                 struct buffer_page *page, struct list_head *list)
656 {
657         unsigned long val;
658
659         val = (unsigned long)list->next;
660
661         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
662                 return RB_PAGE_MOVED;
663
664         return val & RB_FLAG_MASK;
665 }
666
667 /*
668  * rb_is_reader_page
669  *
670  * The unique thing about the reader page, is that, if the
671  * writer is ever on it, the previous pointer never points
672  * back to the reader page.
673  */
674 static int rb_is_reader_page(struct buffer_page *page)
675 {
676         struct list_head *list = page->list.prev;
677
678         return rb_list_head(list->next) != &page->list;
679 }
680
681 /*
682  * rb_set_list_to_head - set a list_head to be pointing to head.
683  */
684 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
685                                 struct list_head *list)
686 {
687         unsigned long *ptr;
688
689         ptr = (unsigned long *)&list->next;
690         *ptr |= RB_PAGE_HEAD;
691         *ptr &= ~RB_PAGE_UPDATE;
692 }
693
694 /*
695  * rb_head_page_activate - sets up head page
696  */
697 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
698 {
699         struct buffer_page *head;
700
701         head = cpu_buffer->head_page;
702         if (!head)
703                 return;
704
705         /*
706          * Set the previous list pointer to have the HEAD flag.
707          */
708         rb_set_list_to_head(cpu_buffer, head->list.prev);
709 }
710
711 static void rb_list_head_clear(struct list_head *list)
712 {
713         unsigned long *ptr = (unsigned long *)&list->next;
714
715         *ptr &= ~RB_FLAG_MASK;
716 }
717
718 /*
719  * rb_head_page_dactivate - clears head page ptr (for free list)
720  */
721 static void
722 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
723 {
724         struct list_head *hd;
725
726         /* Go through the whole list and clear any pointers found. */
727         rb_list_head_clear(cpu_buffer->pages);
728
729         list_for_each(hd, cpu_buffer->pages)
730                 rb_list_head_clear(hd);
731 }
732
733 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
734                             struct buffer_page *head,
735                             struct buffer_page *prev,
736                             int old_flag, int new_flag)
737 {
738         struct list_head *list;
739         unsigned long val = (unsigned long)&head->list;
740         unsigned long ret;
741
742         list = &prev->list;
743
744         val &= ~RB_FLAG_MASK;
745
746         ret = cmpxchg((unsigned long *)&list->next,
747                       val | old_flag, val | new_flag);
748
749         /* check if the reader took the page */
750         if ((ret & ~RB_FLAG_MASK) != val)
751                 return RB_PAGE_MOVED;
752
753         return ret & RB_FLAG_MASK;
754 }
755
756 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
757                                    struct buffer_page *head,
758                                    struct buffer_page *prev,
759                                    int old_flag)
760 {
761         return rb_head_page_set(cpu_buffer, head, prev,
762                                 old_flag, RB_PAGE_UPDATE);
763 }
764
765 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
766                                  struct buffer_page *head,
767                                  struct buffer_page *prev,
768                                  int old_flag)
769 {
770         return rb_head_page_set(cpu_buffer, head, prev,
771                                 old_flag, RB_PAGE_HEAD);
772 }
773
774 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
775                                    struct buffer_page *head,
776                                    struct buffer_page *prev,
777                                    int old_flag)
778 {
779         return rb_head_page_set(cpu_buffer, head, prev,
780                                 old_flag, RB_PAGE_NORMAL);
781 }
782
783 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
784                                struct buffer_page **bpage)
785 {
786         struct list_head *p = rb_list_head((*bpage)->list.next);
787
788         *bpage = list_entry(p, struct buffer_page, list);
789 }
790
791 static struct buffer_page *
792 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
793 {
794         struct buffer_page *head;
795         struct buffer_page *page;
796         struct list_head *list;
797         int i;
798
799         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
800                 return NULL;
801
802         /* sanity check */
803         list = cpu_buffer->pages;
804         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
805                 return NULL;
806
807         page = head = cpu_buffer->head_page;
808         /*
809          * It is possible that the writer moves the header behind
810          * where we started, and we miss in one loop.
811          * A second loop should grab the header, but we'll do
812          * three loops just because I'm paranoid.
813          */
814         for (i = 0; i < 3; i++) {
815                 do {
816                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
817                                 cpu_buffer->head_page = page;
818                                 return page;
819                         }
820                         rb_inc_page(cpu_buffer, &page);
821                 } while (page != head);
822         }
823
824         RB_WARN_ON(cpu_buffer, 1);
825
826         return NULL;
827 }
828
829 static int rb_head_page_replace(struct buffer_page *old,
830                                 struct buffer_page *new)
831 {
832         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
833         unsigned long val;
834         unsigned long ret;
835
836         val = *ptr & ~RB_FLAG_MASK;
837         val |= RB_PAGE_HEAD;
838
839         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
840
841         return ret == val;
842 }
843
844 /*
845  * rb_tail_page_update - move the tail page forward
846  *
847  * Returns 1 if moved tail page, 0 if someone else did.
848  */
849 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
850                                struct buffer_page *tail_page,
851                                struct buffer_page *next_page)
852 {
853         struct buffer_page *old_tail;
854         unsigned long old_entries;
855         unsigned long old_write;
856         int ret = 0;
857
858         /*
859          * The tail page now needs to be moved forward.
860          *
861          * We need to reset the tail page, but without messing
862          * with possible erasing of data brought in by interrupts
863          * that have moved the tail page and are currently on it.
864          *
865          * We add a counter to the write field to denote this.
866          */
867         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
868         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
869
870         /*
871          * Just make sure we have seen our old_write and synchronize
872          * with any interrupts that come in.
873          */
874         barrier();
875
876         /*
877          * If the tail page is still the same as what we think
878          * it is, then it is up to us to update the tail
879          * pointer.
880          */
881         if (tail_page == cpu_buffer->tail_page) {
882                 /* Zero the write counter */
883                 unsigned long val = old_write & ~RB_WRITE_MASK;
884                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
885
886                 /*
887                  * This will only succeed if an interrupt did
888                  * not come in and change it. In which case, we
889                  * do not want to modify it.
890                  *
891                  * We add (void) to let the compiler know that we do not care
892                  * about the return value of these functions. We use the
893                  * cmpxchg to only update if an interrupt did not already
894                  * do it for us. If the cmpxchg fails, we don't care.
895                  */
896                 (void)local_cmpxchg(&next_page->write, old_write, val);
897                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
898
899                 /*
900                  * No need to worry about races with clearing out the commit.
901                  * it only can increment when a commit takes place. But that
902                  * only happens in the outer most nested commit.
903                  */
904                 local_set(&next_page->page->commit, 0);
905
906                 old_tail = cmpxchg(&cpu_buffer->tail_page,
907                                    tail_page, next_page);
908
909                 if (old_tail == tail_page)
910                         ret = 1;
911         }
912
913         return ret;
914 }
915
916 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
917                           struct buffer_page *bpage)
918 {
919         unsigned long val = (unsigned long)bpage;
920
921         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
922                 return 1;
923
924         return 0;
925 }
926
927 /**
928  * rb_check_list - make sure a pointer to a list has the last bits zero
929  */
930 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
931                          struct list_head *list)
932 {
933         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
934                 return 1;
935         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
936                 return 1;
937         return 0;
938 }
939
940 /**
941  * check_pages - integrity check of buffer pages
942  * @cpu_buffer: CPU buffer with pages to test
943  *
944  * As a safety measure we check to make sure the data pages have not
945  * been corrupted.
946  */
947 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
948 {
949         struct list_head *head = cpu_buffer->pages;
950         struct buffer_page *bpage, *tmp;
951
952         /* Reset the head page if it exists */
953         if (cpu_buffer->head_page)
954                 rb_set_head_page(cpu_buffer);
955
956         rb_head_page_deactivate(cpu_buffer);
957
958         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
959                 return -1;
960         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
961                 return -1;
962
963         if (rb_check_list(cpu_buffer, head))
964                 return -1;
965
966         list_for_each_entry_safe(bpage, tmp, head, list) {
967                 if (RB_WARN_ON(cpu_buffer,
968                                bpage->list.next->prev != &bpage->list))
969                         return -1;
970                 if (RB_WARN_ON(cpu_buffer,
971                                bpage->list.prev->next != &bpage->list))
972                         return -1;
973                 if (rb_check_list(cpu_buffer, &bpage->list))
974                         return -1;
975         }
976
977         rb_head_page_activate(cpu_buffer);
978
979         return 0;
980 }
981
982 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
983 {
984         int i;
985         struct buffer_page *bpage, *tmp;
986
987         for (i = 0; i < nr_pages; i++) {
988                 struct page *page;
989                 /*
990                  * __GFP_NORETRY flag makes sure that the allocation fails
991                  * gracefully without invoking oom-killer and the system is
992                  * not destabilized.
993                  */
994                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
995                                     GFP_KERNEL | __GFP_NORETRY,
996                                     cpu_to_node(cpu));
997                 if (!bpage)
998                         goto free_pages;
999
1000                 list_add(&bpage->list, pages);
1001
1002                 page = alloc_pages_node(cpu_to_node(cpu),
1003                                         GFP_KERNEL | __GFP_NORETRY, 0);
1004                 if (!page)
1005                         goto free_pages;
1006                 bpage->page = page_address(page);
1007                 rb_init_page(bpage->page);
1008         }
1009
1010         return 0;
1011
1012 free_pages:
1013         list_for_each_entry_safe(bpage, tmp, pages, list) {
1014                 list_del_init(&bpage->list);
1015                 free_buffer_page(bpage);
1016         }
1017
1018         return -ENOMEM;
1019 }
1020
1021 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1022                              unsigned nr_pages)
1023 {
1024         LIST_HEAD(pages);
1025
1026         WARN_ON(!nr_pages);
1027
1028         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1029                 return -ENOMEM;
1030
1031         /*
1032          * The ring buffer page list is a circular list that does not
1033          * start and end with a list head. All page list items point to
1034          * other pages.
1035          */
1036         cpu_buffer->pages = pages.next;
1037         list_del(&pages);
1038
1039         cpu_buffer->nr_pages = nr_pages;
1040
1041         rb_check_pages(cpu_buffer);
1042
1043         return 0;
1044 }
1045
1046 static struct ring_buffer_per_cpu *
1047 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1048 {
1049         struct ring_buffer_per_cpu *cpu_buffer;
1050         struct buffer_page *bpage;
1051         struct page *page;
1052         int ret;
1053
1054         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1055                                   GFP_KERNEL, cpu_to_node(cpu));
1056         if (!cpu_buffer)
1057                 return NULL;
1058
1059         cpu_buffer->cpu = cpu;
1060         cpu_buffer->buffer = buffer;
1061         raw_spin_lock_init(&cpu_buffer->reader_lock);
1062         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1063         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1064         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1065         init_completion(&cpu_buffer->update_done);
1066
1067         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1068                             GFP_KERNEL, cpu_to_node(cpu));
1069         if (!bpage)
1070                 goto fail_free_buffer;
1071
1072         rb_check_bpage(cpu_buffer, bpage);
1073
1074         cpu_buffer->reader_page = bpage;
1075         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1076         if (!page)
1077                 goto fail_free_reader;
1078         bpage->page = page_address(page);
1079         rb_init_page(bpage->page);
1080
1081         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1082         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1083
1084         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1085         if (ret < 0)
1086                 goto fail_free_reader;
1087
1088         cpu_buffer->head_page
1089                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1090         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1091
1092         rb_head_page_activate(cpu_buffer);
1093
1094         return cpu_buffer;
1095
1096  fail_free_reader:
1097         free_buffer_page(cpu_buffer->reader_page);
1098
1099  fail_free_buffer:
1100         kfree(cpu_buffer);
1101         return NULL;
1102 }
1103
1104 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1105 {
1106         struct list_head *head = cpu_buffer->pages;
1107         struct buffer_page *bpage, *tmp;
1108
1109         free_buffer_page(cpu_buffer->reader_page);
1110
1111         rb_head_page_deactivate(cpu_buffer);
1112
1113         if (head) {
1114                 list_for_each_entry_safe(bpage, tmp, head, list) {
1115                         list_del_init(&bpage->list);
1116                         free_buffer_page(bpage);
1117                 }
1118                 bpage = list_entry(head, struct buffer_page, list);
1119                 free_buffer_page(bpage);
1120         }
1121
1122         kfree(cpu_buffer);
1123 }
1124
1125 #ifdef CONFIG_HOTPLUG_CPU
1126 static int rb_cpu_notify(struct notifier_block *self,
1127                          unsigned long action, void *hcpu);
1128 #endif
1129
1130 /**
1131  * ring_buffer_alloc - allocate a new ring_buffer
1132  * @size: the size in bytes per cpu that is needed.
1133  * @flags: attributes to set for the ring buffer.
1134  *
1135  * Currently the only flag that is available is the RB_FL_OVERWRITE
1136  * flag. This flag means that the buffer will overwrite old data
1137  * when the buffer wraps. If this flag is not set, the buffer will
1138  * drop data when the tail hits the head.
1139  */
1140 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1141                                         struct lock_class_key *key)
1142 {
1143         struct ring_buffer *buffer;
1144         int bsize;
1145         int cpu, nr_pages;
1146
1147         /* keep it in its own cache line */
1148         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1149                          GFP_KERNEL);
1150         if (!buffer)
1151                 return NULL;
1152
1153         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1154                 goto fail_free_buffer;
1155
1156         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1157         buffer->flags = flags;
1158         buffer->clock = trace_clock_local;
1159         buffer->reader_lock_key = key;
1160
1161         /* need at least two pages */
1162         if (nr_pages < 2)
1163                 nr_pages = 2;
1164
1165         /*
1166          * In case of non-hotplug cpu, if the ring-buffer is allocated
1167          * in early initcall, it will not be notified of secondary cpus.
1168          * In that off case, we need to allocate for all possible cpus.
1169          */
1170 #ifdef CONFIG_HOTPLUG_CPU
1171         get_online_cpus();
1172         cpumask_copy(buffer->cpumask, cpu_online_mask);
1173 #else
1174         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1175 #endif
1176         buffer->cpus = nr_cpu_ids;
1177
1178         bsize = sizeof(void *) * nr_cpu_ids;
1179         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1180                                   GFP_KERNEL);
1181         if (!buffer->buffers)
1182                 goto fail_free_cpumask;
1183
1184         for_each_buffer_cpu(buffer, cpu) {
1185                 buffer->buffers[cpu] =
1186                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1187                 if (!buffer->buffers[cpu])
1188                         goto fail_free_buffers;
1189         }
1190
1191 #ifdef CONFIG_HOTPLUG_CPU
1192         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1193         buffer->cpu_notify.priority = 0;
1194         register_cpu_notifier(&buffer->cpu_notify);
1195 #endif
1196
1197         put_online_cpus();
1198         mutex_init(&buffer->mutex);
1199
1200         return buffer;
1201
1202  fail_free_buffers:
1203         for_each_buffer_cpu(buffer, cpu) {
1204                 if (buffer->buffers[cpu])
1205                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1206         }
1207         kfree(buffer->buffers);
1208
1209  fail_free_cpumask:
1210         free_cpumask_var(buffer->cpumask);
1211         put_online_cpus();
1212
1213  fail_free_buffer:
1214         kfree(buffer);
1215         return NULL;
1216 }
1217 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1218
1219 /**
1220  * ring_buffer_free - free a ring buffer.
1221  * @buffer: the buffer to free.
1222  */
1223 void
1224 ring_buffer_free(struct ring_buffer *buffer)
1225 {
1226         int cpu;
1227
1228         get_online_cpus();
1229
1230 #ifdef CONFIG_HOTPLUG_CPU
1231         unregister_cpu_notifier(&buffer->cpu_notify);
1232 #endif
1233
1234         for_each_buffer_cpu(buffer, cpu)
1235                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1236
1237         put_online_cpus();
1238
1239         kfree(buffer->buffers);
1240         free_cpumask_var(buffer->cpumask);
1241
1242         kfree(buffer);
1243 }
1244 EXPORT_SYMBOL_GPL(ring_buffer_free);
1245
1246 void ring_buffer_set_clock(struct ring_buffer *buffer,
1247                            u64 (*clock)(void))
1248 {
1249         buffer->clock = clock;
1250 }
1251
1252 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1253
1254 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1255 {
1256         return local_read(&bpage->entries) & RB_WRITE_MASK;
1257 }
1258
1259 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1260 {
1261         return local_read(&bpage->write) & RB_WRITE_MASK;
1262 }
1263
1264 static int
1265 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1266 {
1267         struct list_head *tail_page, *to_remove, *next_page;
1268         struct buffer_page *to_remove_page, *tmp_iter_page;
1269         struct buffer_page *last_page, *first_page;
1270         unsigned int nr_removed;
1271         unsigned long head_bit;
1272         int page_entries;
1273
1274         head_bit = 0;
1275
1276         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1277         atomic_inc(&cpu_buffer->record_disabled);
1278         /*
1279          * We don't race with the readers since we have acquired the reader
1280          * lock. We also don't race with writers after disabling recording.
1281          * This makes it easy to figure out the first and the last page to be
1282          * removed from the list. We unlink all the pages in between including
1283          * the first and last pages. This is done in a busy loop so that we
1284          * lose the least number of traces.
1285          * The pages are freed after we restart recording and unlock readers.
1286          */
1287         tail_page = &cpu_buffer->tail_page->list;
1288
1289         /*
1290          * tail page might be on reader page, we remove the next page
1291          * from the ring buffer
1292          */
1293         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1294                 tail_page = rb_list_head(tail_page->next);
1295         to_remove = tail_page;
1296
1297         /* start of pages to remove */
1298         first_page = list_entry(rb_list_head(to_remove->next),
1299                                 struct buffer_page, list);
1300
1301         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1302                 to_remove = rb_list_head(to_remove)->next;
1303                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1304         }
1305
1306         next_page = rb_list_head(to_remove)->next;
1307
1308         /*
1309          * Now we remove all pages between tail_page and next_page.
1310          * Make sure that we have head_bit value preserved for the
1311          * next page
1312          */
1313         tail_page->next = (struct list_head *)((unsigned long)next_page |
1314                                                 head_bit);
1315         next_page = rb_list_head(next_page);
1316         next_page->prev = tail_page;
1317
1318         /* make sure pages points to a valid page in the ring buffer */
1319         cpu_buffer->pages = next_page;
1320
1321         /* update head page */
1322         if (head_bit)
1323                 cpu_buffer->head_page = list_entry(next_page,
1324                                                 struct buffer_page, list);
1325
1326         /*
1327          * change read pointer to make sure any read iterators reset
1328          * themselves
1329          */
1330         cpu_buffer->read = 0;
1331
1332         /* pages are removed, resume tracing and then free the pages */
1333         atomic_dec(&cpu_buffer->record_disabled);
1334         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1335
1336         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1337
1338         /* last buffer page to remove */
1339         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1340                                 list);
1341         tmp_iter_page = first_page;
1342
1343         do {
1344                 to_remove_page = tmp_iter_page;
1345                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1346
1347                 /* update the counters */
1348                 page_entries = rb_page_entries(to_remove_page);
1349                 if (page_entries) {
1350                         /*
1351                          * If something was added to this page, it was full
1352                          * since it is not the tail page. So we deduct the
1353                          * bytes consumed in ring buffer from here.
1354                          * Increment overrun to account for the lost events.
1355                          */
1356                         local_add(page_entries, &cpu_buffer->overrun);
1357                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1358                 }
1359
1360                 /*
1361                  * We have already removed references to this list item, just
1362                  * free up the buffer_page and its page
1363                  */
1364                 free_buffer_page(to_remove_page);
1365                 nr_removed--;
1366
1367         } while (to_remove_page != last_page);
1368
1369         RB_WARN_ON(cpu_buffer, nr_removed);
1370
1371         return nr_removed == 0;
1372 }
1373
1374 static int
1375 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1376 {
1377         struct list_head *pages = &cpu_buffer->new_pages;
1378         int retries, success;
1379
1380         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1381         /*
1382          * We are holding the reader lock, so the reader page won't be swapped
1383          * in the ring buffer. Now we are racing with the writer trying to
1384          * move head page and the tail page.
1385          * We are going to adapt the reader page update process where:
1386          * 1. We first splice the start and end of list of new pages between
1387          *    the head page and its previous page.
1388          * 2. We cmpxchg the prev_page->next to point from head page to the
1389          *    start of new pages list.
1390          * 3. Finally, we update the head->prev to the end of new list.
1391          *
1392          * We will try this process 10 times, to make sure that we don't keep
1393          * spinning.
1394          */
1395         retries = 10;
1396         success = 0;
1397         while (retries--) {
1398                 struct list_head *head_page, *prev_page, *r;
1399                 struct list_head *last_page, *first_page;
1400                 struct list_head *head_page_with_bit;
1401
1402                 head_page = &rb_set_head_page(cpu_buffer)->list;
1403                 if (!head_page)
1404                         break;
1405                 prev_page = head_page->prev;
1406
1407                 first_page = pages->next;
1408                 last_page  = pages->prev;
1409
1410                 head_page_with_bit = (struct list_head *)
1411                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1412
1413                 last_page->next = head_page_with_bit;
1414                 first_page->prev = prev_page;
1415
1416                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1417
1418                 if (r == head_page_with_bit) {
1419                         /*
1420                          * yay, we replaced the page pointer to our new list,
1421                          * now, we just have to update to head page's prev
1422                          * pointer to point to end of list
1423                          */
1424                         head_page->prev = last_page;
1425                         success = 1;
1426                         break;
1427                 }
1428         }
1429
1430         if (success)
1431                 INIT_LIST_HEAD(pages);
1432         /*
1433          * If we weren't successful in adding in new pages, warn and stop
1434          * tracing
1435          */
1436         RB_WARN_ON(cpu_buffer, !success);
1437         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1438
1439         /* free pages if they weren't inserted */
1440         if (!success) {
1441                 struct buffer_page *bpage, *tmp;
1442                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1443                                          list) {
1444                         list_del_init(&bpage->list);
1445                         free_buffer_page(bpage);
1446                 }
1447         }
1448         return success;
1449 }
1450
1451 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1452 {
1453         int success;
1454
1455         if (cpu_buffer->nr_pages_to_update > 0)
1456                 success = rb_insert_pages(cpu_buffer);
1457         else
1458                 success = rb_remove_pages(cpu_buffer,
1459                                         -cpu_buffer->nr_pages_to_update);
1460
1461         if (success)
1462                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1463 }
1464
1465 static void update_pages_handler(struct work_struct *work)
1466 {
1467         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1468                         struct ring_buffer_per_cpu, update_pages_work);
1469         rb_update_pages(cpu_buffer);
1470         complete(&cpu_buffer->update_done);
1471 }
1472
1473 /**
1474  * ring_buffer_resize - resize the ring buffer
1475  * @buffer: the buffer to resize.
1476  * @size: the new size.
1477  *
1478  * Minimum size is 2 * BUF_PAGE_SIZE.
1479  *
1480  * Returns 0 on success and < 0 on failure.
1481  */
1482 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1483                         int cpu_id)
1484 {
1485         struct ring_buffer_per_cpu *cpu_buffer;
1486         unsigned nr_pages;
1487         int cpu, err = 0;
1488
1489         /*
1490          * Always succeed at resizing a non-existent buffer:
1491          */
1492         if (!buffer)
1493                 return size;
1494
1495         /* Make sure the requested buffer exists */
1496         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1497             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1498                 return size;
1499
1500         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1501         size *= BUF_PAGE_SIZE;
1502
1503         /* we need a minimum of two pages */
1504         if (size < BUF_PAGE_SIZE * 2)
1505                 size = BUF_PAGE_SIZE * 2;
1506
1507         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1508
1509         /*
1510          * Don't succeed if resizing is disabled, as a reader might be
1511          * manipulating the ring buffer and is expecting a sane state while
1512          * this is true.
1513          */
1514         if (atomic_read(&buffer->resize_disabled))
1515                 return -EBUSY;
1516
1517         /* prevent another thread from changing buffer sizes */
1518         mutex_lock(&buffer->mutex);
1519
1520         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1521                 /* calculate the pages to update */
1522                 for_each_buffer_cpu(buffer, cpu) {
1523                         cpu_buffer = buffer->buffers[cpu];
1524
1525                         cpu_buffer->nr_pages_to_update = nr_pages -
1526                                                         cpu_buffer->nr_pages;
1527                         /*
1528                          * nothing more to do for removing pages or no update
1529                          */
1530                         if (cpu_buffer->nr_pages_to_update <= 0)
1531                                 continue;
1532                         /*
1533                          * to add pages, make sure all new pages can be
1534                          * allocated without receiving ENOMEM
1535                          */
1536                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1537                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1538                                                 &cpu_buffer->new_pages, cpu)) {
1539                                 /* not enough memory for new pages */
1540                                 err = -ENOMEM;
1541                                 goto out_err;
1542                         }
1543                 }
1544
1545                 get_online_cpus();
1546                 /*
1547                  * Fire off all the required work handlers
1548                  * We can't schedule on offline CPUs, but it's not necessary
1549                  * since we can change their buffer sizes without any race.
1550                  */
1551                 for_each_buffer_cpu(buffer, cpu) {
1552                         cpu_buffer = buffer->buffers[cpu];
1553                         if (!cpu_buffer->nr_pages_to_update)
1554                                 continue;
1555
1556                         if (cpu_online(cpu))
1557                                 schedule_work_on(cpu,
1558                                                 &cpu_buffer->update_pages_work);
1559                         else
1560                                 rb_update_pages(cpu_buffer);
1561                 }
1562
1563                 /* wait for all the updates to complete */
1564                 for_each_buffer_cpu(buffer, cpu) {
1565                         cpu_buffer = buffer->buffers[cpu];
1566                         if (!cpu_buffer->nr_pages_to_update)
1567                                 continue;
1568
1569                         if (cpu_online(cpu))
1570                                 wait_for_completion(&cpu_buffer->update_done);
1571                         cpu_buffer->nr_pages_to_update = 0;
1572                 }
1573
1574                 put_online_cpus();
1575         } else {
1576                 /* Make sure this CPU has been intitialized */
1577                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1578                         goto out;
1579
1580                 cpu_buffer = buffer->buffers[cpu_id];
1581
1582                 if (nr_pages == cpu_buffer->nr_pages)
1583                         goto out;
1584
1585                 cpu_buffer->nr_pages_to_update = nr_pages -
1586                                                 cpu_buffer->nr_pages;
1587
1588                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1589                 if (cpu_buffer->nr_pages_to_update > 0 &&
1590                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1591                                             &cpu_buffer->new_pages, cpu_id)) {
1592                         err = -ENOMEM;
1593                         goto out_err;
1594                 }
1595
1596                 get_online_cpus();
1597
1598                 if (cpu_online(cpu_id)) {
1599                         schedule_work_on(cpu_id,
1600                                          &cpu_buffer->update_pages_work);
1601                         wait_for_completion(&cpu_buffer->update_done);
1602                 } else
1603                         rb_update_pages(cpu_buffer);
1604
1605                 cpu_buffer->nr_pages_to_update = 0;
1606                 put_online_cpus();
1607         }
1608
1609  out:
1610         /*
1611          * The ring buffer resize can happen with the ring buffer
1612          * enabled, so that the update disturbs the tracing as little
1613          * as possible. But if the buffer is disabled, we do not need
1614          * to worry about that, and we can take the time to verify
1615          * that the buffer is not corrupt.
1616          */
1617         if (atomic_read(&buffer->record_disabled)) {
1618                 atomic_inc(&buffer->record_disabled);
1619                 /*
1620                  * Even though the buffer was disabled, we must make sure
1621                  * that it is truly disabled before calling rb_check_pages.
1622                  * There could have been a race between checking
1623                  * record_disable and incrementing it.
1624                  */
1625                 synchronize_sched();
1626                 for_each_buffer_cpu(buffer, cpu) {
1627                         cpu_buffer = buffer->buffers[cpu];
1628                         rb_check_pages(cpu_buffer);
1629                 }
1630                 atomic_dec(&buffer->record_disabled);
1631         }
1632
1633         mutex_unlock(&buffer->mutex);
1634         return size;
1635
1636  out_err:
1637         for_each_buffer_cpu(buffer, cpu) {
1638                 struct buffer_page *bpage, *tmp;
1639
1640                 cpu_buffer = buffer->buffers[cpu];
1641                 cpu_buffer->nr_pages_to_update = 0;
1642
1643                 if (list_empty(&cpu_buffer->new_pages))
1644                         continue;
1645
1646                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1647                                         list) {
1648                         list_del_init(&bpage->list);
1649                         free_buffer_page(bpage);
1650                 }
1651         }
1652         mutex_unlock(&buffer->mutex);
1653         return err;
1654 }
1655 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1656
1657 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1658 {
1659         mutex_lock(&buffer->mutex);
1660         if (val)
1661                 buffer->flags |= RB_FL_OVERWRITE;
1662         else
1663                 buffer->flags &= ~RB_FL_OVERWRITE;
1664         mutex_unlock(&buffer->mutex);
1665 }
1666 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1667
1668 static inline void *
1669 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1670 {
1671         return bpage->data + index;
1672 }
1673
1674 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1675 {
1676         return bpage->page->data + index;
1677 }
1678
1679 static inline struct ring_buffer_event *
1680 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1681 {
1682         return __rb_page_index(cpu_buffer->reader_page,
1683                                cpu_buffer->reader_page->read);
1684 }
1685
1686 static inline struct ring_buffer_event *
1687 rb_iter_head_event(struct ring_buffer_iter *iter)
1688 {
1689         return __rb_page_index(iter->head_page, iter->head);
1690 }
1691
1692 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1693 {
1694         return local_read(&bpage->page->commit);
1695 }
1696
1697 /* Size is determined by what has been committed */
1698 static inline unsigned rb_page_size(struct buffer_page *bpage)
1699 {
1700         return rb_page_commit(bpage);
1701 }
1702
1703 static inline unsigned
1704 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1705 {
1706         return rb_page_commit(cpu_buffer->commit_page);
1707 }
1708
1709 static inline unsigned
1710 rb_event_index(struct ring_buffer_event *event)
1711 {
1712         unsigned long addr = (unsigned long)event;
1713
1714         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1715 }
1716
1717 static inline int
1718 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1719                    struct ring_buffer_event *event)
1720 {
1721         unsigned long addr = (unsigned long)event;
1722         unsigned long index;
1723
1724         index = rb_event_index(event);
1725         addr &= PAGE_MASK;
1726
1727         return cpu_buffer->commit_page->page == (void *)addr &&
1728                 rb_commit_index(cpu_buffer) == index;
1729 }
1730
1731 static void
1732 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1733 {
1734         unsigned long max_count;
1735
1736         /*
1737          * We only race with interrupts and NMIs on this CPU.
1738          * If we own the commit event, then we can commit
1739          * all others that interrupted us, since the interruptions
1740          * are in stack format (they finish before they come
1741          * back to us). This allows us to do a simple loop to
1742          * assign the commit to the tail.
1743          */
1744  again:
1745         max_count = cpu_buffer->nr_pages * 100;
1746
1747         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1748                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1749                         return;
1750                 if (RB_WARN_ON(cpu_buffer,
1751                                rb_is_reader_page(cpu_buffer->tail_page)))
1752                         return;
1753                 local_set(&cpu_buffer->commit_page->page->commit,
1754                           rb_page_write(cpu_buffer->commit_page));
1755                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1756                 cpu_buffer->write_stamp =
1757                         cpu_buffer->commit_page->page->time_stamp;
1758                 /* add barrier to keep gcc from optimizing too much */
1759                 barrier();
1760         }
1761         while (rb_commit_index(cpu_buffer) !=
1762                rb_page_write(cpu_buffer->commit_page)) {
1763
1764                 local_set(&cpu_buffer->commit_page->page->commit,
1765                           rb_page_write(cpu_buffer->commit_page));
1766                 RB_WARN_ON(cpu_buffer,
1767                            local_read(&cpu_buffer->commit_page->page->commit) &
1768                            ~RB_WRITE_MASK);
1769                 barrier();
1770         }
1771
1772         /* again, keep gcc from optimizing */
1773         barrier();
1774
1775         /*
1776          * If an interrupt came in just after the first while loop
1777          * and pushed the tail page forward, we will be left with
1778          * a dangling commit that will never go forward.
1779          */
1780         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1781                 goto again;
1782 }
1783
1784 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1785 {
1786         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1787         cpu_buffer->reader_page->read = 0;
1788 }
1789
1790 static void rb_inc_iter(struct ring_buffer_iter *iter)
1791 {
1792         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1793
1794         /*
1795          * The iterator could be on the reader page (it starts there).
1796          * But the head could have moved, since the reader was
1797          * found. Check for this case and assign the iterator
1798          * to the head page instead of next.
1799          */
1800         if (iter->head_page == cpu_buffer->reader_page)
1801                 iter->head_page = rb_set_head_page(cpu_buffer);
1802         else
1803                 rb_inc_page(cpu_buffer, &iter->head_page);
1804
1805         iter->read_stamp = iter->head_page->page->time_stamp;
1806         iter->head = 0;
1807 }
1808
1809 /* Slow path, do not inline */
1810 static noinline struct ring_buffer_event *
1811 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1812 {
1813         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1814
1815         /* Not the first event on the page? */
1816         if (rb_event_index(event)) {
1817                 event->time_delta = delta & TS_MASK;
1818                 event->array[0] = delta >> TS_SHIFT;
1819         } else {
1820                 /* nope, just zero it */
1821                 event->time_delta = 0;
1822                 event->array[0] = 0;
1823         }
1824
1825         return skip_time_extend(event);
1826 }
1827
1828 /**
1829  * rb_update_event - update event type and data
1830  * @event: the even to update
1831  * @type: the type of event
1832  * @length: the size of the event field in the ring buffer
1833  *
1834  * Update the type and data fields of the event. The length
1835  * is the actual size that is written to the ring buffer,
1836  * and with this, we can determine what to place into the
1837  * data field.
1838  */
1839 static void
1840 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1841                 struct ring_buffer_event *event, unsigned length,
1842                 int add_timestamp, u64 delta)
1843 {
1844         /* Only a commit updates the timestamp */
1845         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1846                 delta = 0;
1847
1848         /*
1849          * If we need to add a timestamp, then we
1850          * add it to the start of the resevered space.
1851          */
1852         if (unlikely(add_timestamp)) {
1853                 event = rb_add_time_stamp(event, delta);
1854                 length -= RB_LEN_TIME_EXTEND;
1855                 delta = 0;
1856         }
1857
1858         event->time_delta = delta;
1859         length -= RB_EVNT_HDR_SIZE;
1860         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1861                 event->type_len = 0;
1862                 event->array[0] = length;
1863         } else
1864                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1865 }
1866
1867 /*
1868  * rb_handle_head_page - writer hit the head page
1869  *
1870  * Returns: +1 to retry page
1871  *           0 to continue
1872  *          -1 on error
1873  */
1874 static int
1875 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1876                     struct buffer_page *tail_page,
1877                     struct buffer_page *next_page)
1878 {
1879         struct buffer_page *new_head;
1880         int entries;
1881         int type;
1882         int ret;
1883
1884         entries = rb_page_entries(next_page);
1885
1886         /*
1887          * The hard part is here. We need to move the head
1888          * forward, and protect against both readers on
1889          * other CPUs and writers coming in via interrupts.
1890          */
1891         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1892                                        RB_PAGE_HEAD);
1893
1894         /*
1895          * type can be one of four:
1896          *  NORMAL - an interrupt already moved it for us
1897          *  HEAD   - we are the first to get here.
1898          *  UPDATE - we are the interrupt interrupting
1899          *           a current move.
1900          *  MOVED  - a reader on another CPU moved the next
1901          *           pointer to its reader page. Give up
1902          *           and try again.
1903          */
1904
1905         switch (type) {
1906         case RB_PAGE_HEAD:
1907                 /*
1908                  * We changed the head to UPDATE, thus
1909                  * it is our responsibility to update
1910                  * the counters.
1911                  */
1912                 local_add(entries, &cpu_buffer->overrun);
1913                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1914
1915                 /*
1916                  * The entries will be zeroed out when we move the
1917                  * tail page.
1918                  */
1919
1920                 /* still more to do */
1921                 break;
1922
1923         case RB_PAGE_UPDATE:
1924                 /*
1925                  * This is an interrupt that interrupt the
1926                  * previous update. Still more to do.
1927                  */
1928                 break;
1929         case RB_PAGE_NORMAL:
1930                 /*
1931                  * An interrupt came in before the update
1932                  * and processed this for us.
1933                  * Nothing left to do.
1934                  */
1935                 return 1;
1936         case RB_PAGE_MOVED:
1937                 /*
1938                  * The reader is on another CPU and just did
1939                  * a swap with our next_page.
1940                  * Try again.
1941                  */
1942                 return 1;
1943         default:
1944                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1945                 return -1;
1946         }
1947
1948         /*
1949          * Now that we are here, the old head pointer is
1950          * set to UPDATE. This will keep the reader from
1951          * swapping the head page with the reader page.
1952          * The reader (on another CPU) will spin till
1953          * we are finished.
1954          *
1955          * We just need to protect against interrupts
1956          * doing the job. We will set the next pointer
1957          * to HEAD. After that, we set the old pointer
1958          * to NORMAL, but only if it was HEAD before.
1959          * otherwise we are an interrupt, and only
1960          * want the outer most commit to reset it.
1961          */
1962         new_head = next_page;
1963         rb_inc_page(cpu_buffer, &new_head);
1964
1965         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1966                                     RB_PAGE_NORMAL);
1967
1968         /*
1969          * Valid returns are:
1970          *  HEAD   - an interrupt came in and already set it.
1971          *  NORMAL - One of two things:
1972          *            1) We really set it.
1973          *            2) A bunch of interrupts came in and moved
1974          *               the page forward again.
1975          */
1976         switch (ret) {
1977         case RB_PAGE_HEAD:
1978         case RB_PAGE_NORMAL:
1979                 /* OK */
1980                 break;
1981         default:
1982                 RB_WARN_ON(cpu_buffer, 1);
1983                 return -1;
1984         }
1985
1986         /*
1987          * It is possible that an interrupt came in,
1988          * set the head up, then more interrupts came in
1989          * and moved it again. When we get back here,
1990          * the page would have been set to NORMAL but we
1991          * just set it back to HEAD.
1992          *
1993          * How do you detect this? Well, if that happened
1994          * the tail page would have moved.
1995          */
1996         if (ret == RB_PAGE_NORMAL) {
1997                 /*
1998                  * If the tail had moved passed next, then we need
1999                  * to reset the pointer.
2000                  */
2001                 if (cpu_buffer->tail_page != tail_page &&
2002                     cpu_buffer->tail_page != next_page)
2003                         rb_head_page_set_normal(cpu_buffer, new_head,
2004                                                 next_page,
2005                                                 RB_PAGE_HEAD);
2006         }
2007
2008         /*
2009          * If this was the outer most commit (the one that
2010          * changed the original pointer from HEAD to UPDATE),
2011          * then it is up to us to reset it to NORMAL.
2012          */
2013         if (type == RB_PAGE_HEAD) {
2014                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2015                                               tail_page,
2016                                               RB_PAGE_UPDATE);
2017                 if (RB_WARN_ON(cpu_buffer,
2018                                ret != RB_PAGE_UPDATE))
2019                         return -1;
2020         }
2021
2022         return 0;
2023 }
2024
2025 static unsigned rb_calculate_event_length(unsigned length)
2026 {
2027         struct ring_buffer_event event; /* Used only for sizeof array */
2028
2029         /* zero length can cause confusions */
2030         if (!length)
2031                 length = 1;
2032
2033         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2034                 length += sizeof(event.array[0]);
2035
2036         length += RB_EVNT_HDR_SIZE;
2037         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2038
2039         return length;
2040 }
2041
2042 static inline void
2043 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2044               struct buffer_page *tail_page,
2045               unsigned long tail, unsigned long length)
2046 {
2047         struct ring_buffer_event *event;
2048
2049         /*
2050          * Only the event that crossed the page boundary
2051          * must fill the old tail_page with padding.
2052          */
2053         if (tail >= BUF_PAGE_SIZE) {
2054                 /*
2055                  * If the page was filled, then we still need
2056                  * to update the real_end. Reset it to zero
2057                  * and the reader will ignore it.
2058                  */
2059                 if (tail == BUF_PAGE_SIZE)
2060                         tail_page->real_end = 0;
2061
2062                 local_sub(length, &tail_page->write);
2063                 return;
2064         }
2065
2066         event = __rb_page_index(tail_page, tail);
2067         kmemcheck_annotate_bitfield(event, bitfield);
2068
2069         /* account for padding bytes */
2070         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2071
2072         /*
2073          * Save the original length to the meta data.
2074          * This will be used by the reader to add lost event
2075          * counter.
2076          */
2077         tail_page->real_end = tail;
2078
2079         /*
2080          * If this event is bigger than the minimum size, then
2081          * we need to be careful that we don't subtract the
2082          * write counter enough to allow another writer to slip
2083          * in on this page.
2084          * We put in a discarded commit instead, to make sure
2085          * that this space is not used again.
2086          *
2087          * If we are less than the minimum size, we don't need to
2088          * worry about it.
2089          */
2090         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2091                 /* No room for any events */
2092
2093                 /* Mark the rest of the page with padding */
2094                 rb_event_set_padding(event);
2095
2096                 /* Set the write back to the previous setting */
2097                 local_sub(length, &tail_page->write);
2098                 return;
2099         }
2100
2101         /* Put in a discarded event */
2102         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2103         event->type_len = RINGBUF_TYPE_PADDING;
2104         /* time delta must be non zero */
2105         event->time_delta = 1;
2106
2107         /* Set write to end of buffer */
2108         length = (tail + length) - BUF_PAGE_SIZE;
2109         local_sub(length, &tail_page->write);
2110 }
2111
2112 /*
2113  * This is the slow path, force gcc not to inline it.
2114  */
2115 static noinline struct ring_buffer_event *
2116 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2117              unsigned long length, unsigned long tail,
2118              struct buffer_page *tail_page, u64 ts)
2119 {
2120         struct buffer_page *commit_page = cpu_buffer->commit_page;
2121         struct ring_buffer *buffer = cpu_buffer->buffer;
2122         struct buffer_page *next_page;
2123         int ret;
2124
2125         next_page = tail_page;
2126
2127         rb_inc_page(cpu_buffer, &next_page);
2128
2129         /*
2130          * If for some reason, we had an interrupt storm that made
2131          * it all the way around the buffer, bail, and warn
2132          * about it.
2133          */
2134         if (unlikely(next_page == commit_page)) {
2135                 local_inc(&cpu_buffer->commit_overrun);
2136                 goto out_reset;
2137         }
2138
2139         /*
2140          * This is where the fun begins!
2141          *
2142          * We are fighting against races between a reader that
2143          * could be on another CPU trying to swap its reader
2144          * page with the buffer head.
2145          *
2146          * We are also fighting against interrupts coming in and
2147          * moving the head or tail on us as well.
2148          *
2149          * If the next page is the head page then we have filled
2150          * the buffer, unless the commit page is still on the
2151          * reader page.
2152          */
2153         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2154
2155                 /*
2156                  * If the commit is not on the reader page, then
2157                  * move the header page.
2158                  */
2159                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2160                         /*
2161                          * If we are not in overwrite mode,
2162                          * this is easy, just stop here.
2163                          */
2164                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2165                                 local_inc(&cpu_buffer->dropped_events);
2166                                 goto out_reset;
2167                         }
2168
2169                         ret = rb_handle_head_page(cpu_buffer,
2170                                                   tail_page,
2171                                                   next_page);
2172                         if (ret < 0)
2173                                 goto out_reset;
2174                         if (ret)
2175                                 goto out_again;
2176                 } else {
2177                         /*
2178                          * We need to be careful here too. The
2179                          * commit page could still be on the reader
2180                          * page. We could have a small buffer, and
2181                          * have filled up the buffer with events
2182                          * from interrupts and such, and wrapped.
2183                          *
2184                          * Note, if the tail page is also the on the
2185                          * reader_page, we let it move out.
2186                          */
2187                         if (unlikely((cpu_buffer->commit_page !=
2188                                       cpu_buffer->tail_page) &&
2189                                      (cpu_buffer->commit_page ==
2190                                       cpu_buffer->reader_page))) {
2191                                 local_inc(&cpu_buffer->commit_overrun);
2192                                 goto out_reset;
2193                         }
2194                 }
2195         }
2196
2197         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2198         if (ret) {
2199                 /*
2200                  * Nested commits always have zero deltas, so
2201                  * just reread the time stamp
2202                  */
2203                 ts = rb_time_stamp(buffer);
2204                 next_page->page->time_stamp = ts;
2205         }
2206
2207  out_again:
2208
2209         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2210
2211         /* fail and let the caller try again */
2212         return ERR_PTR(-EAGAIN);
2213
2214  out_reset:
2215         /* reset write */
2216         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2217
2218         return NULL;
2219 }
2220
2221 static struct ring_buffer_event *
2222 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2223                   unsigned long length, u64 ts,
2224                   u64 delta, int add_timestamp)
2225 {
2226         struct buffer_page *tail_page;
2227         struct ring_buffer_event *event;
2228         unsigned long tail, write;
2229
2230         /*
2231          * If the time delta since the last event is too big to
2232          * hold in the time field of the event, then we append a
2233          * TIME EXTEND event ahead of the data event.
2234          */
2235         if (unlikely(add_timestamp))
2236                 length += RB_LEN_TIME_EXTEND;
2237
2238         tail_page = cpu_buffer->tail_page;
2239         write = local_add_return(length, &tail_page->write);
2240
2241         /* set write to only the index of the write */
2242         write &= RB_WRITE_MASK;
2243         tail = write - length;
2244
2245         /* See if we shot pass the end of this buffer page */
2246         if (unlikely(write > BUF_PAGE_SIZE))
2247                 return rb_move_tail(cpu_buffer, length, tail,
2248                                     tail_page, ts);
2249
2250         /* We reserved something on the buffer */
2251
2252         event = __rb_page_index(tail_page, tail);
2253         kmemcheck_annotate_bitfield(event, bitfield);
2254         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2255
2256         local_inc(&tail_page->entries);
2257
2258         /*
2259          * If this is the first commit on the page, then update
2260          * its timestamp.
2261          */
2262         if (!tail)
2263                 tail_page->page->time_stamp = ts;
2264
2265         /* account for these added bytes */
2266         local_add(length, &cpu_buffer->entries_bytes);
2267
2268         return event;
2269 }
2270
2271 static inline int
2272 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2273                   struct ring_buffer_event *event)
2274 {
2275         unsigned long new_index, old_index;
2276         struct buffer_page *bpage;
2277         unsigned long index;
2278         unsigned long addr;
2279
2280         new_index = rb_event_index(event);
2281         old_index = new_index + rb_event_ts_length(event);
2282         addr = (unsigned long)event;
2283         addr &= PAGE_MASK;
2284
2285         bpage = cpu_buffer->tail_page;
2286
2287         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2288                 unsigned long write_mask =
2289                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2290                 unsigned long event_length = rb_event_length(event);
2291                 /*
2292                  * This is on the tail page. It is possible that
2293                  * a write could come in and move the tail page
2294                  * and write to the next page. That is fine
2295                  * because we just shorten what is on this page.
2296                  */
2297                 old_index += write_mask;
2298                 new_index += write_mask;
2299                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2300                 if (index == old_index) {
2301                         /* update counters */
2302                         local_sub(event_length, &cpu_buffer->entries_bytes);
2303                         return 1;
2304                 }
2305         }
2306
2307         /* could not discard */
2308         return 0;
2309 }
2310
2311 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2312 {
2313         local_inc(&cpu_buffer->committing);
2314         local_inc(&cpu_buffer->commits);
2315 }
2316
2317 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2318 {
2319         unsigned long commits;
2320
2321         if (RB_WARN_ON(cpu_buffer,
2322                        !local_read(&cpu_buffer->committing)))
2323                 return;
2324
2325  again:
2326         commits = local_read(&cpu_buffer->commits);
2327         /* synchronize with interrupts */
2328         barrier();
2329         if (local_read(&cpu_buffer->committing) == 1)
2330                 rb_set_commit_to_write(cpu_buffer);
2331
2332         local_dec(&cpu_buffer->committing);
2333
2334         /* synchronize with interrupts */
2335         barrier();
2336
2337         /*
2338          * Need to account for interrupts coming in between the
2339          * updating of the commit page and the clearing of the
2340          * committing counter.
2341          */
2342         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2343             !local_read(&cpu_buffer->committing)) {
2344                 local_inc(&cpu_buffer->committing);
2345                 goto again;
2346         }
2347 }
2348
2349 static struct ring_buffer_event *
2350 rb_reserve_next_event(struct ring_buffer *buffer,
2351                       struct ring_buffer_per_cpu *cpu_buffer,
2352                       unsigned long length)
2353 {
2354         struct ring_buffer_event *event;
2355         u64 ts, delta;
2356         int nr_loops = 0;
2357         int add_timestamp;
2358         u64 diff;
2359
2360         rb_start_commit(cpu_buffer);
2361
2362 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2363         /*
2364          * Due to the ability to swap a cpu buffer from a buffer
2365          * it is possible it was swapped before we committed.
2366          * (committing stops a swap). We check for it here and
2367          * if it happened, we have to fail the write.
2368          */
2369         barrier();
2370         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2371                 local_dec(&cpu_buffer->committing);
2372                 local_dec(&cpu_buffer->commits);
2373                 return NULL;
2374         }
2375 #endif
2376
2377         length = rb_calculate_event_length(length);
2378  again:
2379         add_timestamp = 0;
2380         delta = 0;
2381
2382         /*
2383          * We allow for interrupts to reenter here and do a trace.
2384          * If one does, it will cause this original code to loop
2385          * back here. Even with heavy interrupts happening, this
2386          * should only happen a few times in a row. If this happens
2387          * 1000 times in a row, there must be either an interrupt
2388          * storm or we have something buggy.
2389          * Bail!
2390          */
2391         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2392                 goto out_fail;
2393
2394         ts = rb_time_stamp(cpu_buffer->buffer);
2395         diff = ts - cpu_buffer->write_stamp;
2396
2397         /* make sure this diff is calculated here */
2398         barrier();
2399
2400         /* Did the write stamp get updated already? */
2401         if (likely(ts >= cpu_buffer->write_stamp)) {
2402                 delta = diff;
2403                 if (unlikely(test_time_stamp(delta))) {
2404                         int local_clock_stable = 1;
2405 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2406                         local_clock_stable = sched_clock_stable;
2407 #endif
2408                         WARN_ONCE(delta > (1ULL << 59),
2409                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2410                                   (unsigned long long)delta,
2411                                   (unsigned long long)ts,
2412                                   (unsigned long long)cpu_buffer->write_stamp,
2413                                   local_clock_stable ? "" :
2414                                   "If you just came from a suspend/resume,\n"
2415                                   "please switch to the trace global clock:\n"
2416                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2417                         add_timestamp = 1;
2418                 }
2419         }
2420
2421         event = __rb_reserve_next(cpu_buffer, length, ts,
2422                                   delta, add_timestamp);
2423         if (unlikely(PTR_ERR(event) == -EAGAIN))
2424                 goto again;
2425
2426         if (!event)
2427                 goto out_fail;
2428
2429         return event;
2430
2431  out_fail:
2432         rb_end_commit(cpu_buffer);
2433         return NULL;
2434 }
2435
2436 #ifdef CONFIG_TRACING
2437
2438 /*
2439  * The lock and unlock are done within a preempt disable section.
2440  * The current_context per_cpu variable can only be modified
2441  * by the current task between lock and unlock. But it can
2442  * be modified more than once via an interrupt. To pass this
2443  * information from the lock to the unlock without having to
2444  * access the 'in_interrupt()' functions again (which do show
2445  * a bit of overhead in something as critical as function tracing,
2446  * we use a bitmask trick.
2447  *
2448  *  bit 0 =  NMI context
2449  *  bit 1 =  IRQ context
2450  *  bit 2 =  SoftIRQ context
2451  *  bit 3 =  normal context.
2452  *
2453  * This works because this is the order of contexts that can
2454  * preempt other contexts. A SoftIRQ never preempts an IRQ
2455  * context.
2456  *
2457  * When the context is determined, the corresponding bit is
2458  * checked and set (if it was set, then a recursion of that context
2459  * happened).
2460  *
2461  * On unlock, we need to clear this bit. To do so, just subtract
2462  * 1 from the current_context and AND it to itself.
2463  *
2464  * (binary)
2465  *  101 - 1 = 100
2466  *  101 & 100 = 100 (clearing bit zero)
2467  *
2468  *  1010 - 1 = 1001
2469  *  1010 & 1001 = 1000 (clearing bit 1)
2470  *
2471  * The least significant bit can be cleared this way, and it
2472  * just so happens that it is the same bit corresponding to
2473  * the current context.
2474  */
2475 static DEFINE_PER_CPU(unsigned int, current_context);
2476
2477 static __always_inline int trace_recursive_lock(void)
2478 {
2479         unsigned int val = this_cpu_read(current_context);
2480         int bit;
2481
2482         if (in_interrupt()) {
2483                 if (in_nmi())
2484                         bit = 0;
2485                 else if (in_irq())
2486                         bit = 1;
2487                 else
2488                         bit = 2;
2489         } else
2490                 bit = 3;
2491
2492         if (unlikely(val & (1 << bit)))
2493                 return 1;
2494
2495         val |= (1 << bit);
2496         this_cpu_write(current_context, val);
2497
2498         return 0;
2499 }
2500
2501 static __always_inline void trace_recursive_unlock(void)
2502 {
2503         unsigned int val = this_cpu_read(current_context);
2504
2505         val--;
2506         val &= this_cpu_read(current_context);
2507         this_cpu_write(current_context, val);
2508 }
2509
2510 #else
2511
2512 #define trace_recursive_lock()          (0)
2513 #define trace_recursive_unlock()        do { } while (0)
2514
2515 #endif
2516
2517 /**
2518  * ring_buffer_lock_reserve - reserve a part of the buffer
2519  * @buffer: the ring buffer to reserve from
2520  * @length: the length of the data to reserve (excluding event header)
2521  *
2522  * Returns a reseverd event on the ring buffer to copy directly to.
2523  * The user of this interface will need to get the body to write into
2524  * and can use the ring_buffer_event_data() interface.
2525  *
2526  * The length is the length of the data needed, not the event length
2527  * which also includes the event header.
2528  *
2529  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2530  * If NULL is returned, then nothing has been allocated or locked.
2531  */
2532 struct ring_buffer_event *
2533 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2534 {
2535         struct ring_buffer_per_cpu *cpu_buffer;
2536         struct ring_buffer_event *event;
2537         int cpu;
2538
2539         if (ring_buffer_flags != RB_BUFFERS_ON)
2540                 return NULL;
2541
2542         /* If we are tracing schedule, we don't want to recurse */
2543         preempt_disable_notrace();
2544
2545         if (atomic_read(&buffer->record_disabled))
2546                 goto out_nocheck;
2547
2548         if (trace_recursive_lock())
2549                 goto out_nocheck;
2550
2551         cpu = raw_smp_processor_id();
2552
2553         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2554                 goto out;
2555
2556         cpu_buffer = buffer->buffers[cpu];
2557
2558         if (atomic_read(&cpu_buffer->record_disabled))
2559                 goto out;
2560
2561         if (length > BUF_MAX_DATA_SIZE)
2562                 goto out;
2563
2564         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2565         if (!event)
2566                 goto out;
2567
2568         return event;
2569
2570  out:
2571         trace_recursive_unlock();
2572
2573  out_nocheck:
2574         preempt_enable_notrace();
2575         return NULL;
2576 }
2577 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2578
2579 static void
2580 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2581                       struct ring_buffer_event *event)
2582 {
2583         u64 delta;
2584
2585         /*
2586          * The event first in the commit queue updates the
2587          * time stamp.
2588          */
2589         if (rb_event_is_commit(cpu_buffer, event)) {
2590                 /*
2591                  * A commit event that is first on a page
2592                  * updates the write timestamp with the page stamp
2593                  */
2594                 if (!rb_event_index(event))
2595                         cpu_buffer->write_stamp =
2596                                 cpu_buffer->commit_page->page->time_stamp;
2597                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2598                         delta = event->array[0];
2599                         delta <<= TS_SHIFT;
2600                         delta += event->time_delta;
2601                         cpu_buffer->write_stamp += delta;
2602                 } else
2603                         cpu_buffer->write_stamp += event->time_delta;
2604         }
2605 }
2606
2607 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2608                       struct ring_buffer_event *event)
2609 {
2610         local_inc(&cpu_buffer->entries);
2611         rb_update_write_stamp(cpu_buffer, event);
2612         rb_end_commit(cpu_buffer);
2613 }
2614
2615 /**
2616  * ring_buffer_unlock_commit - commit a reserved
2617  * @buffer: The buffer to commit to
2618  * @event: The event pointer to commit.
2619  *
2620  * This commits the data to the ring buffer, and releases any locks held.
2621  *
2622  * Must be paired with ring_buffer_lock_reserve.
2623  */
2624 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2625                               struct ring_buffer_event *event)
2626 {
2627         struct ring_buffer_per_cpu *cpu_buffer;
2628         int cpu = raw_smp_processor_id();
2629
2630         cpu_buffer = buffer->buffers[cpu];
2631
2632         rb_commit(cpu_buffer, event);
2633
2634         trace_recursive_unlock();
2635
2636         preempt_enable_notrace();
2637
2638         return 0;
2639 }
2640 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2641
2642 static inline void rb_event_discard(struct ring_buffer_event *event)
2643 {
2644         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2645                 event = skip_time_extend(event);
2646
2647         /* array[0] holds the actual length for the discarded event */
2648         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2649         event->type_len = RINGBUF_TYPE_PADDING;
2650         /* time delta must be non zero */
2651         if (!event->time_delta)
2652                 event->time_delta = 1;
2653 }
2654
2655 /*
2656  * Decrement the entries to the page that an event is on.
2657  * The event does not even need to exist, only the pointer
2658  * to the page it is on. This may only be called before the commit
2659  * takes place.
2660  */
2661 static inline void
2662 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2663                    struct ring_buffer_event *event)
2664 {
2665         unsigned long addr = (unsigned long)event;
2666         struct buffer_page *bpage = cpu_buffer->commit_page;
2667         struct buffer_page *start;
2668
2669         addr &= PAGE_MASK;
2670
2671         /* Do the likely case first */
2672         if (likely(bpage->page == (void *)addr)) {
2673                 local_dec(&bpage->entries);
2674                 return;
2675         }
2676
2677         /*
2678          * Because the commit page may be on the reader page we
2679          * start with the next page and check the end loop there.
2680          */
2681         rb_inc_page(cpu_buffer, &bpage);
2682         start = bpage;
2683         do {
2684                 if (bpage->page == (void *)addr) {
2685                         local_dec(&bpage->entries);
2686                         return;
2687                 }
2688                 rb_inc_page(cpu_buffer, &bpage);
2689         } while (bpage != start);
2690
2691         /* commit not part of this buffer?? */
2692         RB_WARN_ON(cpu_buffer, 1);
2693 }
2694
2695 /**
2696  * ring_buffer_commit_discard - discard an event that has not been committed
2697  * @buffer: the ring buffer
2698  * @event: non committed event to discard
2699  *
2700  * Sometimes an event that is in the ring buffer needs to be ignored.
2701  * This function lets the user discard an event in the ring buffer
2702  * and then that event will not be read later.
2703  *
2704  * This function only works if it is called before the the item has been
2705  * committed. It will try to free the event from the ring buffer
2706  * if another event has not been added behind it.
2707  *
2708  * If another event has been added behind it, it will set the event
2709  * up as discarded, and perform the commit.
2710  *
2711  * If this function is called, do not call ring_buffer_unlock_commit on
2712  * the event.
2713  */
2714 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2715                                 struct ring_buffer_event *event)
2716 {
2717         struct ring_buffer_per_cpu *cpu_buffer;
2718         int cpu;
2719
2720         /* The event is discarded regardless */
2721         rb_event_discard(event);
2722
2723         cpu = smp_processor_id();
2724         cpu_buffer = buffer->buffers[cpu];
2725
2726         /*
2727          * This must only be called if the event has not been
2728          * committed yet. Thus we can assume that preemption
2729          * is still disabled.
2730          */
2731         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2732
2733         rb_decrement_entry(cpu_buffer, event);
2734         if (rb_try_to_discard(cpu_buffer, event))
2735                 goto out;
2736
2737         /*
2738          * The commit is still visible by the reader, so we
2739          * must still update the timestamp.
2740          */
2741         rb_update_write_stamp(cpu_buffer, event);
2742  out:
2743         rb_end_commit(cpu_buffer);
2744
2745         trace_recursive_unlock();
2746
2747         preempt_enable_notrace();
2748
2749 }
2750 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2751
2752 /**
2753  * ring_buffer_write - write data to the buffer without reserving
2754  * @buffer: The ring buffer to write to.
2755  * @length: The length of the data being written (excluding the event header)
2756  * @data: The data to write to the buffer.
2757  *
2758  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2759  * one function. If you already have the data to write to the buffer, it
2760  * may be easier to simply call this function.
2761  *
2762  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2763  * and not the length of the event which would hold the header.
2764  */
2765 int ring_buffer_write(struct ring_buffer *buffer,
2766                       unsigned long length,
2767                       void *data)
2768 {
2769         struct ring_buffer_per_cpu *cpu_buffer;
2770         struct ring_buffer_event *event;
2771         void *body;
2772         int ret = -EBUSY;
2773         int cpu;
2774
2775         if (ring_buffer_flags != RB_BUFFERS_ON)
2776                 return -EBUSY;
2777
2778         preempt_disable_notrace();
2779
2780         if (atomic_read(&buffer->record_disabled))
2781                 goto out;
2782
2783         cpu = raw_smp_processor_id();
2784
2785         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2786                 goto out;
2787
2788         cpu_buffer = buffer->buffers[cpu];
2789
2790         if (atomic_read(&cpu_buffer->record_disabled))
2791                 goto out;
2792
2793         if (length > BUF_MAX_DATA_SIZE)
2794                 goto out;
2795
2796         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2797         if (!event)
2798                 goto out;
2799
2800         body = rb_event_data(event);
2801
2802         memcpy(body, data, length);
2803
2804         rb_commit(cpu_buffer, event);
2805
2806         ret = 0;
2807  out:
2808         preempt_enable_notrace();
2809
2810         return ret;
2811 }
2812 EXPORT_SYMBOL_GPL(ring_buffer_write);
2813
2814 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2815 {
2816         struct buffer_page *reader = cpu_buffer->reader_page;
2817         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2818         struct buffer_page *commit = cpu_buffer->commit_page;
2819
2820         /* In case of error, head will be NULL */
2821         if (unlikely(!head))
2822                 return 1;
2823
2824         return reader->read == rb_page_commit(reader) &&
2825                 (commit == reader ||
2826                  (commit == head &&
2827                   head->read == rb_page_commit(commit)));
2828 }
2829
2830 /**
2831  * ring_buffer_record_disable - stop all writes into the buffer
2832  * @buffer: The ring buffer to stop writes to.
2833  *
2834  * This prevents all writes to the buffer. Any attempt to write
2835  * to the buffer after this will fail and return NULL.
2836  *
2837  * The caller should call synchronize_sched() after this.
2838  */
2839 void ring_buffer_record_disable(struct ring_buffer *buffer)
2840 {
2841         atomic_inc(&buffer->record_disabled);
2842 }
2843 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2844
2845 /**
2846  * ring_buffer_record_enable - enable writes to the buffer
2847  * @buffer: The ring buffer to enable writes
2848  *
2849  * Note, multiple disables will need the same number of enables
2850  * to truly enable the writing (much like preempt_disable).
2851  */
2852 void ring_buffer_record_enable(struct ring_buffer *buffer)
2853 {
2854         atomic_dec(&buffer->record_disabled);
2855 }
2856 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2857
2858 /**
2859  * ring_buffer_record_off - stop all writes into the buffer
2860  * @buffer: The ring buffer to stop writes to.
2861  *
2862  * This prevents all writes to the buffer. Any attempt to write
2863  * to the buffer after this will fail and return NULL.
2864  *
2865  * This is different than ring_buffer_record_disable() as
2866  * it works like an on/off switch, where as the disable() version
2867  * must be paired with a enable().
2868  */
2869 void ring_buffer_record_off(struct ring_buffer *buffer)
2870 {
2871         unsigned int rd;
2872         unsigned int new_rd;
2873
2874         do {
2875                 rd = atomic_read(&buffer->record_disabled);
2876                 new_rd = rd | RB_BUFFER_OFF;
2877         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2878 }
2879 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2880
2881 /**
2882  * ring_buffer_record_on - restart writes into the buffer
2883  * @buffer: The ring buffer to start writes to.
2884  *
2885  * This enables all writes to the buffer that was disabled by
2886  * ring_buffer_record_off().
2887  *
2888  * This is different than ring_buffer_record_enable() as
2889  * it works like an on/off switch, where as the enable() version
2890  * must be paired with a disable().
2891  */
2892 void ring_buffer_record_on(struct ring_buffer *buffer)
2893 {
2894         unsigned int rd;
2895         unsigned int new_rd;
2896
2897         do {
2898                 rd = atomic_read(&buffer->record_disabled);
2899                 new_rd = rd & ~RB_BUFFER_OFF;
2900         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2901 }
2902 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2903
2904 /**
2905  * ring_buffer_record_is_on - return true if the ring buffer can write
2906  * @buffer: The ring buffer to see if write is enabled
2907  *
2908  * Returns true if the ring buffer is in a state that it accepts writes.
2909  */
2910 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2911 {
2912         return !atomic_read(&buffer->record_disabled);
2913 }
2914
2915 /**
2916  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2917  * @buffer: The ring buffer to stop writes to.
2918  * @cpu: The CPU buffer to stop
2919  *
2920  * This prevents all writes to the buffer. Any attempt to write
2921  * to the buffer after this will fail and return NULL.
2922  *
2923  * The caller should call synchronize_sched() after this.
2924  */
2925 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2926 {
2927         struct ring_buffer_per_cpu *cpu_buffer;
2928
2929         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2930                 return;
2931
2932         cpu_buffer = buffer->buffers[cpu];
2933         atomic_inc(&cpu_buffer->record_disabled);
2934 }
2935 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2936
2937 /**
2938  * ring_buffer_record_enable_cpu - enable writes to the buffer
2939  * @buffer: The ring buffer to enable writes
2940  * @cpu: The CPU to enable.
2941  *
2942  * Note, multiple disables will need the same number of enables
2943  * to truly enable the writing (much like preempt_disable).
2944  */
2945 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2946 {
2947         struct ring_buffer_per_cpu *cpu_buffer;
2948
2949         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2950                 return;
2951
2952         cpu_buffer = buffer->buffers[cpu];
2953         atomic_dec(&cpu_buffer->record_disabled);
2954 }
2955 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2956
2957 /*
2958  * The total entries in the ring buffer is the running counter
2959  * of entries entered into the ring buffer, minus the sum of
2960  * the entries read from the ring buffer and the number of
2961  * entries that were overwritten.
2962  */
2963 static inline unsigned long
2964 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2965 {
2966         return local_read(&cpu_buffer->entries) -
2967                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2968 }
2969
2970 /**
2971  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2972  * @buffer: The ring buffer
2973  * @cpu: The per CPU buffer to read from.
2974  */
2975 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2976 {
2977         unsigned long flags;
2978         struct ring_buffer_per_cpu *cpu_buffer;
2979         struct buffer_page *bpage;
2980         u64 ret = 0;
2981
2982         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2983                 return 0;
2984
2985         cpu_buffer = buffer->buffers[cpu];
2986         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2987         /*
2988          * if the tail is on reader_page, oldest time stamp is on the reader
2989          * page
2990          */
2991         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2992                 bpage = cpu_buffer->reader_page;
2993         else
2994                 bpage = rb_set_head_page(cpu_buffer);
2995         if (bpage)
2996                 ret = bpage->page->time_stamp;
2997         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2998
2999         return ret;
3000 }
3001 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3002
3003 /**
3004  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3005  * @buffer: The ring buffer
3006  * @cpu: The per CPU buffer to read from.
3007  */
3008 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3009 {
3010         struct ring_buffer_per_cpu *cpu_buffer;
3011         unsigned long ret;
3012
3013         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3014                 return 0;
3015
3016         cpu_buffer = buffer->buffers[cpu];
3017         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3018
3019         return ret;
3020 }
3021 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3022
3023 /**
3024  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3025  * @buffer: The ring buffer
3026  * @cpu: The per CPU buffer to get the entries from.
3027  */
3028 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3029 {
3030         struct ring_buffer_per_cpu *cpu_buffer;
3031
3032         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3033                 return 0;
3034
3035         cpu_buffer = buffer->buffers[cpu];
3036
3037         return rb_num_of_entries(cpu_buffer);
3038 }
3039 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3040
3041 /**
3042  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3043  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3044  * @buffer: The ring buffer
3045  * @cpu: The per CPU buffer to get the number of overruns from
3046  */
3047 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3048 {
3049         struct ring_buffer_per_cpu *cpu_buffer;
3050         unsigned long ret;
3051
3052         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3053                 return 0;
3054
3055         cpu_buffer = buffer->buffers[cpu];
3056         ret = local_read(&cpu_buffer->overrun);
3057
3058         return ret;
3059 }
3060 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3061
3062 /**
3063  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3064  * commits failing due to the buffer wrapping around while there are uncommitted
3065  * events, such as during an interrupt storm.
3066  * @buffer: The ring buffer
3067  * @cpu: The per CPU buffer to get the number of overruns from
3068  */
3069 unsigned long
3070 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3071 {
3072         struct ring_buffer_per_cpu *cpu_buffer;
3073         unsigned long ret;
3074
3075         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3076                 return 0;
3077
3078         cpu_buffer = buffer->buffers[cpu];
3079         ret = local_read(&cpu_buffer->commit_overrun);
3080
3081         return ret;
3082 }
3083 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3084
3085 /**
3086  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3087  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3088  * @buffer: The ring buffer
3089  * @cpu: The per CPU buffer to get the number of overruns from
3090  */
3091 unsigned long
3092 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3093 {
3094         struct ring_buffer_per_cpu *cpu_buffer;
3095         unsigned long ret;
3096
3097         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3098                 return 0;
3099
3100         cpu_buffer = buffer->buffers[cpu];
3101         ret = local_read(&cpu_buffer->dropped_events);
3102
3103         return ret;
3104 }
3105 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3106
3107 /**
3108  * ring_buffer_read_events_cpu - get the number of events successfully read
3109  * @buffer: The ring buffer
3110  * @cpu: The per CPU buffer to get the number of events read
3111  */
3112 unsigned long
3113 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3114 {
3115         struct ring_buffer_per_cpu *cpu_buffer;
3116
3117         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3118                 return 0;
3119
3120         cpu_buffer = buffer->buffers[cpu];
3121         return cpu_buffer->read;
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3124
3125 /**
3126  * ring_buffer_entries - get the number of entries in a buffer
3127  * @buffer: The ring buffer
3128  *
3129  * Returns the total number of entries in the ring buffer
3130  * (all CPU entries)
3131  */
3132 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3133 {
3134         struct ring_buffer_per_cpu *cpu_buffer;
3135         unsigned long entries = 0;
3136         int cpu;
3137
3138         /* if you care about this being correct, lock the buffer */
3139         for_each_buffer_cpu(buffer, cpu) {
3140                 cpu_buffer = buffer->buffers[cpu];
3141                 entries += rb_num_of_entries(cpu_buffer);
3142         }
3143
3144         return entries;
3145 }
3146 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3147
3148 /**
3149  * ring_buffer_overruns - get the number of overruns in buffer
3150  * @buffer: The ring buffer
3151  *
3152  * Returns the total number of overruns in the ring buffer
3153  * (all CPU entries)
3154  */
3155 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3156 {
3157         struct ring_buffer_per_cpu *cpu_buffer;
3158         unsigned long overruns = 0;
3159         int cpu;
3160
3161         /* if you care about this being correct, lock the buffer */
3162         for_each_buffer_cpu(buffer, cpu) {
3163                 cpu_buffer = buffer->buffers[cpu];
3164                 overruns += local_read(&cpu_buffer->overrun);
3165         }
3166
3167         return overruns;
3168 }
3169 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3170
3171 static void rb_iter_reset(struct ring_buffer_iter *iter)
3172 {
3173         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3174
3175         /* Iterator usage is expected to have record disabled */
3176         if (list_empty(&cpu_buffer->reader_page->list)) {
3177                 iter->head_page = rb_set_head_page(cpu_buffer);
3178                 if (unlikely(!iter->head_page))
3179                         return;
3180                 iter->head = iter->head_page->read;
3181         } else {
3182                 iter->head_page = cpu_buffer->reader_page;
3183                 iter->head = cpu_buffer->reader_page->read;
3184         }
3185         if (iter->head)
3186                 iter->read_stamp = cpu_buffer->read_stamp;
3187         else
3188                 iter->read_stamp = iter->head_page->page->time_stamp;
3189         iter->cache_reader_page = cpu_buffer->reader_page;
3190         iter->cache_read = cpu_buffer->read;
3191 }
3192
3193 /**
3194  * ring_buffer_iter_reset - reset an iterator
3195  * @iter: The iterator to reset
3196  *
3197  * Resets the iterator, so that it will start from the beginning
3198  * again.
3199  */
3200 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3201 {
3202         struct ring_buffer_per_cpu *cpu_buffer;
3203         unsigned long flags;
3204
3205         if (!iter)
3206                 return;
3207
3208         cpu_buffer = iter->cpu_buffer;
3209
3210         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3211         rb_iter_reset(iter);
3212         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3213 }
3214 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3215
3216 /**
3217  * ring_buffer_iter_empty - check if an iterator has no more to read
3218  * @iter: The iterator to check
3219  */
3220 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3221 {
3222         struct ring_buffer_per_cpu *cpu_buffer;
3223
3224         cpu_buffer = iter->cpu_buffer;
3225
3226         return iter->head_page == cpu_buffer->commit_page &&
3227                 iter->head == rb_commit_index(cpu_buffer);
3228 }
3229 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3230
3231 static void
3232 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3233                      struct ring_buffer_event *event)
3234 {
3235         u64 delta;
3236
3237         switch (event->type_len) {
3238         case RINGBUF_TYPE_PADDING:
3239                 return;
3240
3241         case RINGBUF_TYPE_TIME_EXTEND:
3242                 delta = event->array[0];
3243                 delta <<= TS_SHIFT;
3244                 delta += event->time_delta;
3245                 cpu_buffer->read_stamp += delta;
3246                 return;
3247
3248         case RINGBUF_TYPE_TIME_STAMP:
3249                 /* FIXME: not implemented */
3250                 return;
3251
3252         case RINGBUF_TYPE_DATA:
3253                 cpu_buffer->read_stamp += event->time_delta;
3254                 return;
3255
3256         default:
3257                 BUG();
3258         }
3259         return;
3260 }
3261
3262 static void
3263 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3264                           struct ring_buffer_event *event)
3265 {
3266         u64 delta;
3267
3268         switch (event->type_len) {
3269         case RINGBUF_TYPE_PADDING:
3270                 return;
3271
3272         case RINGBUF_TYPE_TIME_EXTEND:
3273                 delta = event->array[0];
3274                 delta <<= TS_SHIFT;
3275                 delta += event->time_delta;
3276                 iter->read_stamp += delta;
3277                 return;
3278
3279         case RINGBUF_TYPE_TIME_STAMP:
3280                 /* FIXME: not implemented */
3281                 return;
3282
3283         case RINGBUF_TYPE_DATA:
3284                 iter->read_stamp += event->time_delta;
3285                 return;
3286
3287         default:
3288                 BUG();
3289         }
3290         return;
3291 }
3292
3293 static struct buffer_page *
3294 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3295 {
3296         struct buffer_page *reader = NULL;
3297         unsigned long overwrite;
3298         unsigned long flags;
3299         int nr_loops = 0;
3300         int ret;
3301
3302         local_irq_save(flags);
3303         arch_spin_lock(&cpu_buffer->lock);
3304
3305  again:
3306         /*
3307          * This should normally only loop twice. But because the
3308          * start of the reader inserts an empty page, it causes
3309          * a case where we will loop three times. There should be no
3310          * reason to loop four times (that I know of).
3311          */
3312         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3313                 reader = NULL;
3314                 goto out;
3315         }
3316
3317         reader = cpu_buffer->reader_page;
3318
3319         /* If there's more to read, return this page */
3320         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3321                 goto out;
3322
3323         /* Never should we have an index greater than the size */
3324         if (RB_WARN_ON(cpu_buffer,
3325                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3326                 goto out;
3327
3328         /* check if we caught up to the tail */
3329         reader = NULL;
3330         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3331                 goto out;
3332
3333         /* Don't bother swapping if the ring buffer is empty */
3334         if (rb_num_of_entries(cpu_buffer) == 0)
3335                 goto out;
3336
3337         /*
3338          * Reset the reader page to size zero.
3339          */
3340         local_set(&cpu_buffer->reader_page->write, 0);
3341         local_set(&cpu_buffer->reader_page->entries, 0);
3342         local_set(&cpu_buffer->reader_page->page->commit, 0);
3343         cpu_buffer->reader_page->real_end = 0;
3344
3345  spin:
3346         /*
3347          * Splice the empty reader page into the list around the head.
3348          */
3349         reader = rb_set_head_page(cpu_buffer);
3350         if (!reader)
3351                 goto out;
3352         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3353         cpu_buffer->reader_page->list.prev = reader->list.prev;
3354
3355         /*
3356          * cpu_buffer->pages just needs to point to the buffer, it
3357          *  has no specific buffer page to point to. Lets move it out
3358          *  of our way so we don't accidentally swap it.
3359          */
3360         cpu_buffer->pages = reader->list.prev;
3361
3362         /* The reader page will be pointing to the new head */
3363         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3364
3365         /*
3366          * We want to make sure we read the overruns after we set up our
3367          * pointers to the next object. The writer side does a
3368          * cmpxchg to cross pages which acts as the mb on the writer
3369          * side. Note, the reader will constantly fail the swap
3370          * while the writer is updating the pointers, so this
3371          * guarantees that the overwrite recorded here is the one we
3372          * want to compare with the last_overrun.
3373          */
3374         smp_mb();
3375         overwrite = local_read(&(cpu_buffer->overrun));
3376
3377         /*
3378          * Here's the tricky part.
3379          *
3380          * We need to move the pointer past the header page.
3381          * But we can only do that if a writer is not currently
3382          * moving it. The page before the header page has the
3383          * flag bit '1' set if it is pointing to the page we want.
3384          * but if the writer is in the process of moving it
3385          * than it will be '2' or already moved '0'.
3386          */
3387
3388         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3389
3390         /*
3391          * If we did not convert it, then we must try again.
3392          */
3393         if (!ret)
3394                 goto spin;
3395
3396         /*
3397          * Yeah! We succeeded in replacing the page.
3398          *
3399          * Now make the new head point back to the reader page.
3400          */
3401         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3402         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3403
3404         /* Finally update the reader page to the new head */
3405         cpu_buffer->reader_page = reader;
3406         rb_reset_reader_page(cpu_buffer);
3407
3408         if (overwrite != cpu_buffer->last_overrun) {
3409                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3410                 cpu_buffer->last_overrun = overwrite;
3411         }
3412
3413         goto again;
3414
3415  out:
3416         arch_spin_unlock(&cpu_buffer->lock);
3417         local_irq_restore(flags);
3418
3419         return reader;
3420 }
3421
3422 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3423 {
3424         struct ring_buffer_event *event;
3425         struct buffer_page *reader;
3426         unsigned length;
3427
3428         reader = rb_get_reader_page(cpu_buffer);
3429
3430         /* This function should not be called when buffer is empty */
3431         if (RB_WARN_ON(cpu_buffer, !reader))
3432                 return;
3433
3434         event = rb_reader_event(cpu_buffer);
3435
3436         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3437                 cpu_buffer->read++;
3438
3439         rb_update_read_stamp(cpu_buffer, event);
3440
3441         length = rb_event_length(event);
3442         cpu_buffer->reader_page->read += length;
3443 }
3444
3445 static void rb_advance_iter(struct ring_buffer_iter *iter)
3446 {
3447         struct ring_buffer_per_cpu *cpu_buffer;
3448         struct ring_buffer_event *event;
3449         unsigned length;
3450
3451         cpu_buffer = iter->cpu_buffer;
3452
3453         /*
3454          * Check if we are at the end of the buffer.
3455          */
3456         if (iter->head >= rb_page_size(iter->head_page)) {
3457                 /* discarded commits can make the page empty */
3458                 if (iter->head_page == cpu_buffer->commit_page)
3459                         return;
3460                 rb_inc_iter(iter);
3461                 return;
3462         }
3463
3464         event = rb_iter_head_event(iter);
3465
3466         length = rb_event_length(event);
3467
3468         /*
3469          * This should not be called to advance the header if we are
3470          * at the tail of the buffer.
3471          */
3472         if (RB_WARN_ON(cpu_buffer,
3473                        (iter->head_page == cpu_buffer->commit_page) &&
3474                        (iter->head + length > rb_commit_index(cpu_buffer))))
3475                 return;
3476
3477         rb_update_iter_read_stamp(iter, event);
3478
3479         iter->head += length;
3480
3481         /* check for end of page padding */
3482         if ((iter->head >= rb_page_size(iter->head_page)) &&
3483             (iter->head_page != cpu_buffer->commit_page))
3484                 rb_inc_iter(iter);
3485 }
3486
3487 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3488 {
3489         return cpu_buffer->lost_events;
3490 }
3491
3492 static struct ring_buffer_event *
3493 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3494                unsigned long *lost_events)
3495 {
3496         struct ring_buffer_event *event;
3497         struct buffer_page *reader;
3498         int nr_loops = 0;
3499
3500  again:
3501         /*
3502          * We repeat when a time extend is encountered.
3503          * Since the time extend is always attached to a data event,
3504          * we should never loop more than once.
3505          * (We never hit the following condition more than twice).
3506          */
3507         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3508                 return NULL;
3509
3510         reader = rb_get_reader_page(cpu_buffer);
3511         if (!reader)
3512                 return NULL;
3513
3514         event = rb_reader_event(cpu_buffer);
3515
3516         switch (event->type_len) {
3517         case RINGBUF_TYPE_PADDING:
3518                 if (rb_null_event(event))
3519                         RB_WARN_ON(cpu_buffer, 1);
3520                 /*
3521                  * Because the writer could be discarding every
3522                  * event it creates (which would probably be bad)
3523                  * if we were to go back to "again" then we may never
3524                  * catch up, and will trigger the warn on, or lock
3525                  * the box. Return the padding, and we will release
3526                  * the current locks, and try again.
3527                  */
3528                 return event;
3529
3530         case RINGBUF_TYPE_TIME_EXTEND:
3531                 /* Internal data, OK to advance */
3532                 rb_advance_reader(cpu_buffer);
3533                 goto again;
3534
3535         case RINGBUF_TYPE_TIME_STAMP:
3536                 /* FIXME: not implemented */
3537                 rb_advance_reader(cpu_buffer);
3538                 goto again;
3539
3540         case RINGBUF_TYPE_DATA:
3541                 if (ts) {
3542                         *ts = cpu_buffer->read_stamp + event->time_delta;
3543                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3544                                                          cpu_buffer->cpu, ts);
3545                 }
3546                 if (lost_events)
3547                         *lost_events = rb_lost_events(cpu_buffer);
3548                 return event;
3549
3550         default:
3551                 BUG();
3552         }
3553
3554         return NULL;
3555 }
3556 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3557
3558 static struct ring_buffer_event *
3559 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3560 {
3561         struct ring_buffer *buffer;
3562         struct ring_buffer_per_cpu *cpu_buffer;
3563         struct ring_buffer_event *event;
3564         int nr_loops = 0;
3565
3566         cpu_buffer = iter->cpu_buffer;
3567         buffer = cpu_buffer->buffer;
3568
3569         /*
3570          * Check if someone performed a consuming read to
3571          * the buffer. A consuming read invalidates the iterator
3572          * and we need to reset the iterator in this case.
3573          */
3574         if (unlikely(iter->cache_read != cpu_buffer->read ||
3575                      iter->cache_reader_page != cpu_buffer->reader_page))
3576                 rb_iter_reset(iter);
3577
3578  again:
3579         if (ring_buffer_iter_empty(iter))
3580                 return NULL;
3581
3582         /*
3583          * We repeat when a time extend is encountered.
3584          * Since the time extend is always attached to a data event,
3585          * we should never loop more than once.
3586          * (We never hit the following condition more than twice).
3587          */
3588         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3589                 return NULL;
3590
3591         if (rb_per_cpu_empty(cpu_buffer))
3592                 return NULL;
3593
3594         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3595                 rb_inc_iter(iter);
3596                 goto again;
3597         }
3598
3599         event = rb_iter_head_event(iter);
3600
3601         switch (event->type_len) {
3602         case RINGBUF_TYPE_PADDING:
3603                 if (rb_null_event(event)) {
3604                         rb_inc_iter(iter);
3605                         goto again;
3606                 }
3607                 rb_advance_iter(iter);
3608                 return event;
3609
3610         case RINGBUF_TYPE_TIME_EXTEND:
3611                 /* Internal data, OK to advance */
3612                 rb_advance_iter(iter);
3613                 goto again;
3614
3615         case RINGBUF_TYPE_TIME_STAMP:
3616                 /* FIXME: not implemented */
3617                 rb_advance_iter(iter);
3618                 goto again;
3619
3620         case RINGBUF_TYPE_DATA:
3621                 if (ts) {
3622                         *ts = iter->read_stamp + event->time_delta;
3623                         ring_buffer_normalize_time_stamp(buffer,
3624                                                          cpu_buffer->cpu, ts);
3625                 }
3626                 return event;
3627
3628         default:
3629                 BUG();
3630         }
3631
3632         return NULL;
3633 }
3634 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3635
3636 static inline int rb_ok_to_lock(void)
3637 {
3638         /*
3639          * If an NMI die dumps out the content of the ring buffer
3640          * do not grab locks. We also permanently disable the ring
3641          * buffer too. A one time deal is all you get from reading
3642          * the ring buffer from an NMI.
3643          */
3644         if (likely(!in_nmi()))
3645                 return 1;
3646
3647         tracing_off_permanent();
3648         return 0;
3649 }
3650
3651 /**
3652  * ring_buffer_peek - peek at the next event to be read
3653  * @buffer: The ring buffer to read
3654  * @cpu: The cpu to peak at
3655  * @ts: The timestamp counter of this event.
3656  * @lost_events: a variable to store if events were lost (may be NULL)
3657  *
3658  * This will return the event that will be read next, but does
3659  * not consume the data.
3660  */
3661 struct ring_buffer_event *
3662 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3663                  unsigned long *lost_events)
3664 {
3665         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3666         struct ring_buffer_event *event;
3667         unsigned long flags;
3668         int dolock;
3669
3670         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3671                 return NULL;
3672
3673         dolock = rb_ok_to_lock();
3674  again:
3675         local_irq_save(flags);
3676         if (dolock)
3677                 raw_spin_lock(&cpu_buffer->reader_lock);
3678         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3679         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3680                 rb_advance_reader(cpu_buffer);
3681         if (dolock)
3682                 raw_spin_unlock(&cpu_buffer->reader_lock);
3683         local_irq_restore(flags);
3684
3685         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3686                 goto again;
3687
3688         return event;
3689 }
3690
3691 /**
3692  * ring_buffer_iter_peek - peek at the next event to be read
3693  * @iter: The ring buffer iterator
3694  * @ts: The timestamp counter of this event.
3695  *
3696  * This will return the event that will be read next, but does
3697  * not increment the iterator.
3698  */
3699 struct ring_buffer_event *
3700 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3701 {
3702         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3703         struct ring_buffer_event *event;
3704         unsigned long flags;
3705
3706  again:
3707         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3708         event = rb_iter_peek(iter, ts);
3709         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3710
3711         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3712                 goto again;
3713
3714         return event;
3715 }
3716
3717 /**
3718  * ring_buffer_consume - return an event and consume it
3719  * @buffer: The ring buffer to get the next event from
3720  * @cpu: the cpu to read the buffer from
3721  * @ts: a variable to store the timestamp (may be NULL)
3722  * @lost_events: a variable to store if events were lost (may be NULL)
3723  *
3724  * Returns the next event in the ring buffer, and that event is consumed.
3725  * Meaning, that sequential reads will keep returning a different event,
3726  * and eventually empty the ring buffer if the producer is slower.
3727  */
3728 struct ring_buffer_event *
3729 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3730                     unsigned long *lost_events)
3731 {
3732         struct ring_buffer_per_cpu *cpu_buffer;
3733         struct ring_buffer_event *event = NULL;
3734         unsigned long flags;
3735         int dolock;
3736
3737         dolock = rb_ok_to_lock();
3738
3739  again:
3740         /* might be called in atomic */
3741         preempt_disable();
3742
3743         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3744                 goto out;
3745
3746         cpu_buffer = buffer->buffers[cpu];
3747         local_irq_save(flags);
3748         if (dolock)
3749                 raw_spin_lock(&cpu_buffer->reader_lock);
3750
3751         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3752         if (event) {
3753                 cpu_buffer->lost_events = 0;
3754                 rb_advance_reader(cpu_buffer);
3755         }
3756
3757         if (dolock)
3758                 raw_spin_unlock(&cpu_buffer->reader_lock);
3759         local_irq_restore(flags);
3760
3761  out:
3762         preempt_enable();
3763
3764         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3765                 goto again;
3766
3767         return event;
3768 }
3769 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3770
3771 /**
3772  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3773  * @buffer: The ring buffer to read from
3774  * @cpu: The cpu buffer to iterate over
3775  *
3776  * This performs the initial preparations necessary to iterate
3777  * through the buffer.  Memory is allocated, buffer recording
3778  * is disabled, and the iterator pointer is returned to the caller.
3779  *
3780  * Disabling buffer recordng prevents the reading from being
3781  * corrupted. This is not a consuming read, so a producer is not
3782  * expected.
3783  *
3784  * After a sequence of ring_buffer_read_prepare calls, the user is
3785  * expected to make at least one call to ring_buffer_prepare_sync.
3786  * Afterwards, ring_buffer_read_start is invoked to get things going
3787  * for real.
3788  *
3789  * This overall must be paired with ring_buffer_finish.
3790  */
3791 struct ring_buffer_iter *
3792 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3793 {
3794         struct ring_buffer_per_cpu *cpu_buffer;
3795         struct ring_buffer_iter *iter;
3796
3797         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3798                 return NULL;
3799
3800         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3801         if (!iter)
3802                 return NULL;
3803
3804         cpu_buffer = buffer->buffers[cpu];
3805
3806         iter->cpu_buffer = cpu_buffer;
3807
3808         atomic_inc(&buffer->resize_disabled);
3809         atomic_inc(&cpu_buffer->record_disabled);
3810
3811         return iter;
3812 }
3813 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3814
3815 /**
3816  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3817  *
3818  * All previously invoked ring_buffer_read_prepare calls to prepare
3819  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3820  * calls on those iterators are allowed.
3821  */
3822 void
3823 ring_buffer_read_prepare_sync(void)
3824 {
3825         synchronize_sched();
3826 }
3827 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3828
3829 /**
3830  * ring_buffer_read_start - start a non consuming read of the buffer
3831  * @iter: The iterator returned by ring_buffer_read_prepare
3832  *
3833  * This finalizes the startup of an iteration through the buffer.
3834  * The iterator comes from a call to ring_buffer_read_prepare and
3835  * an intervening ring_buffer_read_prepare_sync must have been
3836  * performed.
3837  *
3838  * Must be paired with ring_buffer_finish.
3839  */
3840 void
3841 ring_buffer_read_start(struct ring_buffer_iter *iter)
3842 {
3843         struct ring_buffer_per_cpu *cpu_buffer;
3844         unsigned long flags;
3845
3846         if (!iter)
3847                 return;
3848
3849         cpu_buffer = iter->cpu_buffer;
3850
3851         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3852         arch_spin_lock(&cpu_buffer->lock);
3853         rb_iter_reset(iter);
3854         arch_spin_unlock(&cpu_buffer->lock);
3855         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3856 }
3857 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3858
3859 /**
3860  * ring_buffer_finish - finish reading the iterator of the buffer
3861  * @iter: The iterator retrieved by ring_buffer_start
3862  *
3863  * This re-enables the recording to the buffer, and frees the
3864  * iterator.
3865  */
3866 void
3867 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3868 {
3869         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3870         unsigned long flags;
3871
3872         /*
3873          * Ring buffer is disabled from recording, here's a good place
3874          * to check the integrity of the ring buffer.
3875          * Must prevent readers from trying to read, as the check
3876          * clears the HEAD page and readers require it.
3877          */
3878         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3879         rb_check_pages(cpu_buffer);
3880         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3881
3882         atomic_dec(&cpu_buffer->record_disabled);
3883         atomic_dec(&cpu_buffer->buffer->resize_disabled);
3884         kfree(iter);
3885 }
3886 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3887
3888 /**
3889  * ring_buffer_read - read the next item in the ring buffer by the iterator
3890  * @iter: The ring buffer iterator
3891  * @ts: The time stamp of the event read.
3892  *
3893  * This reads the next event in the ring buffer and increments the iterator.
3894  */
3895 struct ring_buffer_event *
3896 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3897 {
3898         struct ring_buffer_event *event;
3899         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3900         unsigned long flags;
3901
3902         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3903  again:
3904         event = rb_iter_peek(iter, ts);
3905         if (!event)
3906                 goto out;
3907
3908         if (event->type_len == RINGBUF_TYPE_PADDING)
3909                 goto again;
3910
3911         rb_advance_iter(iter);
3912  out:
3913         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3914
3915         return event;
3916 }
3917 EXPORT_SYMBOL_GPL(ring_buffer_read);
3918
3919 /**
3920  * ring_buffer_size - return the size of the ring buffer (in bytes)
3921  * @buffer: The ring buffer.
3922  */
3923 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3924 {
3925         /*
3926          * Earlier, this method returned
3927          *      BUF_PAGE_SIZE * buffer->nr_pages
3928          * Since the nr_pages field is now removed, we have converted this to
3929          * return the per cpu buffer value.
3930          */
3931         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3932                 return 0;
3933
3934         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3935 }
3936 EXPORT_SYMBOL_GPL(ring_buffer_size);
3937
3938 static void
3939 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3940 {
3941         rb_head_page_deactivate(cpu_buffer);
3942
3943         cpu_buffer->head_page
3944                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3945         local_set(&cpu_buffer->head_page->write, 0);
3946         local_set(&cpu_buffer->head_page->entries, 0);
3947         local_set(&cpu_buffer->head_page->page->commit, 0);
3948
3949         cpu_buffer->head_page->read = 0;
3950
3951         cpu_buffer->tail_page = cpu_buffer->head_page;
3952         cpu_buffer->commit_page = cpu_buffer->head_page;
3953
3954         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3955         INIT_LIST_HEAD(&cpu_buffer->new_pages);
3956         local_set(&cpu_buffer->reader_page->write, 0);
3957         local_set(&cpu_buffer->reader_page->entries, 0);
3958         local_set(&cpu_buffer->reader_page->page->commit, 0);
3959         cpu_buffer->reader_page->read = 0;
3960
3961         local_set(&cpu_buffer->entries_bytes, 0);
3962         local_set(&cpu_buffer->overrun, 0);
3963         local_set(&cpu_buffer->commit_overrun, 0);
3964         local_set(&cpu_buffer->dropped_events, 0);
3965         local_set(&cpu_buffer->entries, 0);
3966         local_set(&cpu_buffer->committing, 0);
3967         local_set(&cpu_buffer->commits, 0);
3968         cpu_buffer->read = 0;
3969         cpu_buffer->read_bytes = 0;
3970
3971         cpu_buffer->write_stamp = 0;
3972         cpu_buffer->read_stamp = 0;
3973
3974         cpu_buffer->lost_events = 0;
3975         cpu_buffer->last_overrun = 0;
3976
3977         rb_head_page_activate(cpu_buffer);
3978 }
3979
3980 /**
3981  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3982  * @buffer: The ring buffer to reset a per cpu buffer of
3983  * @cpu: The CPU buffer to be reset
3984  */
3985 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3986 {
3987         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3988         unsigned long flags;
3989
3990         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3991                 return;
3992
3993         atomic_inc(&buffer->resize_disabled);
3994         atomic_inc(&cpu_buffer->record_disabled);
3995
3996         /* Make sure all commits have finished */
3997         synchronize_sched();
3998
3999         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4000
4001         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4002                 goto out;
4003
4004         arch_spin_lock(&cpu_buffer->lock);
4005
4006         rb_reset_cpu(cpu_buffer);
4007
4008         arch_spin_unlock(&cpu_buffer->lock);
4009
4010  out:
4011         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4012
4013         atomic_dec(&cpu_buffer->record_disabled);
4014         atomic_dec(&buffer->resize_disabled);
4015 }
4016 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4017
4018 /**
4019  * ring_buffer_reset - reset a ring buffer
4020  * @buffer: The ring buffer to reset all cpu buffers
4021  */
4022 void ring_buffer_reset(struct ring_buffer *buffer)
4023 {
4024         int cpu;
4025
4026         for_each_buffer_cpu(buffer, cpu)
4027                 ring_buffer_reset_cpu(buffer, cpu);
4028 }
4029 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4030
4031 /**
4032  * rind_buffer_empty - is the ring buffer empty?
4033  * @buffer: The ring buffer to test
4034  */
4035 int ring_buffer_empty(struct ring_buffer *buffer)
4036 {
4037         struct ring_buffer_per_cpu *cpu_buffer;
4038         unsigned long flags;
4039         int dolock;
4040         int cpu;
4041         int ret;
4042
4043         dolock = rb_ok_to_lock();
4044
4045         /* yes this is racy, but if you don't like the race, lock the buffer */
4046         for_each_buffer_cpu(buffer, cpu) {
4047                 cpu_buffer = buffer->buffers[cpu];
4048                 local_irq_save(flags);
4049                 if (dolock)
4050                         raw_spin_lock(&cpu_buffer->reader_lock);
4051                 ret = rb_per_cpu_empty(cpu_buffer);
4052                 if (dolock)
4053                         raw_spin_unlock(&cpu_buffer->reader_lock);
4054                 local_irq_restore(flags);
4055
4056                 if (!ret)
4057                         return 0;
4058         }
4059
4060         return 1;
4061 }
4062 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4063
4064 /**
4065  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4066  * @buffer: The ring buffer
4067  * @cpu: The CPU buffer to test
4068  */
4069 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4070 {
4071         struct ring_buffer_per_cpu *cpu_buffer;
4072         unsigned long flags;
4073         int dolock;
4074         int ret;
4075
4076         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4077                 return 1;
4078
4079         dolock = rb_ok_to_lock();
4080
4081         cpu_buffer = buffer->buffers[cpu];
4082         local_irq_save(flags);
4083         if (dolock)
4084                 raw_spin_lock(&cpu_buffer->reader_lock);
4085         ret = rb_per_cpu_empty(cpu_buffer);
4086         if (dolock)
4087                 raw_spin_unlock(&cpu_buffer->reader_lock);
4088         local_irq_restore(flags);
4089
4090         return ret;
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4093
4094 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4095 /**
4096  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4097  * @buffer_a: One buffer to swap with
4098  * @buffer_b: The other buffer to swap with
4099  *
4100  * This function is useful for tracers that want to take a "snapshot"
4101  * of a CPU buffer and has another back up buffer lying around.
4102  * it is expected that the tracer handles the cpu buffer not being
4103  * used at the moment.
4104  */
4105 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4106                          struct ring_buffer *buffer_b, int cpu)
4107 {
4108         struct ring_buffer_per_cpu *cpu_buffer_a;
4109         struct ring_buffer_per_cpu *cpu_buffer_b;
4110         int ret = -EINVAL;
4111
4112         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4113             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4114                 goto out;
4115
4116         cpu_buffer_a = buffer_a->buffers[cpu];
4117         cpu_buffer_b = buffer_b->buffers[cpu];
4118
4119         /* At least make sure the two buffers are somewhat the same */
4120         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4121                 goto out;
4122
4123         ret = -EAGAIN;
4124
4125         if (ring_buffer_flags != RB_BUFFERS_ON)
4126                 goto out;
4127
4128         if (atomic_read(&buffer_a->record_disabled))
4129                 goto out;
4130
4131         if (atomic_read(&buffer_b->record_disabled))
4132                 goto out;
4133
4134         if (atomic_read(&cpu_buffer_a->record_disabled))
4135                 goto out;
4136
4137         if (atomic_read(&cpu_buffer_b->record_disabled))
4138                 goto out;
4139
4140         /*
4141          * We can't do a synchronize_sched here because this
4142          * function can be called in atomic context.
4143          * Normally this will be called from the same CPU as cpu.
4144          * If not it's up to the caller to protect this.
4145          */
4146         atomic_inc(&cpu_buffer_a->record_disabled);
4147         atomic_inc(&cpu_buffer_b->record_disabled);
4148
4149         ret = -EBUSY;
4150         if (local_read(&cpu_buffer_a->committing))
4151                 goto out_dec;
4152         if (local_read(&cpu_buffer_b->committing))
4153                 goto out_dec;
4154
4155         buffer_a->buffers[cpu] = cpu_buffer_b;
4156         buffer_b->buffers[cpu] = cpu_buffer_a;
4157
4158         cpu_buffer_b->buffer = buffer_a;
4159         cpu_buffer_a->buffer = buffer_b;
4160
4161         ret = 0;
4162
4163 out_dec:
4164         atomic_dec(&cpu_buffer_a->record_disabled);
4165         atomic_dec(&cpu_buffer_b->record_disabled);
4166 out:
4167         return ret;
4168 }
4169 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4170 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4171
4172 /**
4173  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4174  * @buffer: the buffer to allocate for.
4175  *
4176  * This function is used in conjunction with ring_buffer_read_page.
4177  * When reading a full page from the ring buffer, these functions
4178  * can be used to speed up the process. The calling function should
4179  * allocate a few pages first with this function. Then when it
4180  * needs to get pages from the ring buffer, it passes the result
4181  * of this function into ring_buffer_read_page, which will swap
4182  * the page that was allocated, with the read page of the buffer.
4183  *
4184  * Returns:
4185  *  The page allocated, or NULL on error.
4186  */
4187 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4188 {
4189         struct buffer_data_page *bpage;
4190         struct page *page;
4191
4192         page = alloc_pages_node(cpu_to_node(cpu),
4193                                 GFP_KERNEL | __GFP_NORETRY, 0);
4194         if (!page)
4195                 return NULL;
4196
4197         bpage = page_address(page);
4198
4199         rb_init_page(bpage);
4200
4201         return bpage;
4202 }
4203 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4204
4205 /**
4206  * ring_buffer_free_read_page - free an allocated read page
4207  * @buffer: the buffer the page was allocate for
4208  * @data: the page to free
4209  *
4210  * Free a page allocated from ring_buffer_alloc_read_page.
4211  */
4212 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4213 {
4214         free_page((unsigned long)data);
4215 }
4216 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4217
4218 /**
4219  * ring_buffer_read_page - extract a page from the ring buffer
4220  * @buffer: buffer to extract from
4221  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4222  * @len: amount to extract
4223  * @cpu: the cpu of the buffer to extract
4224  * @full: should the extraction only happen when the page is full.
4225  *
4226  * This function will pull out a page from the ring buffer and consume it.
4227  * @data_page must be the address of the variable that was returned
4228  * from ring_buffer_alloc_read_page. This is because the page might be used
4229  * to swap with a page in the ring buffer.
4230  *
4231  * for example:
4232  *      rpage = ring_buffer_alloc_read_page(buffer);
4233  *      if (!rpage)
4234  *              return error;
4235  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4236  *      if (ret >= 0)
4237  *              process_page(rpage, ret);
4238  *
4239  * When @full is set, the function will not return true unless
4240  * the writer is off the reader page.
4241  *
4242  * Note: it is up to the calling functions to handle sleeps and wakeups.
4243  *  The ring buffer can be used anywhere in the kernel and can not
4244  *  blindly call wake_up. The layer that uses the ring buffer must be
4245  *  responsible for that.
4246  *
4247  * Returns:
4248  *  >=0 if data has been transferred, returns the offset of consumed data.
4249  *  <0 if no data has been transferred.
4250  */
4251 int ring_buffer_read_page(struct ring_buffer *buffer,
4252                           void **data_page, size_t len, int cpu, int full)
4253 {
4254         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4255         struct ring_buffer_event *event;
4256         struct buffer_data_page *bpage;
4257         struct buffer_page *reader;
4258         unsigned long missed_events;
4259         unsigned long flags;
4260         unsigned int commit;
4261         unsigned int read;
4262         u64 save_timestamp;
4263         int ret = -1;
4264
4265         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4266                 goto out;
4267
4268         /*
4269          * If len is not big enough to hold the page header, then
4270          * we can not copy anything.
4271          */
4272         if (len <= BUF_PAGE_HDR_SIZE)
4273                 goto out;
4274
4275         len -= BUF_PAGE_HDR_SIZE;
4276
4277         if (!data_page)
4278                 goto out;
4279
4280         bpage = *data_page;
4281         if (!bpage)
4282                 goto out;
4283
4284         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4285
4286         reader = rb_get_reader_page(cpu_buffer);
4287         if (!reader)
4288                 goto out_unlock;
4289
4290         event = rb_reader_event(cpu_buffer);
4291
4292         read = reader->read;
4293         commit = rb_page_commit(reader);
4294
4295         /* Check if any events were dropped */
4296         missed_events = cpu_buffer->lost_events;
4297
4298         /*
4299          * If this page has been partially read or
4300          * if len is not big enough to read the rest of the page or
4301          * a writer is still on the page, then
4302          * we must copy the data from the page to the buffer.
4303          * Otherwise, we can simply swap the page with the one passed in.
4304          */
4305         if (read || (len < (commit - read)) ||
4306             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4307                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4308                 unsigned int rpos = read;
4309                 unsigned int pos = 0;
4310                 unsigned int size;
4311
4312                 if (full)
4313                         goto out_unlock;
4314
4315                 if (len > (commit - read))
4316                         len = (commit - read);
4317
4318                 /* Always keep the time extend and data together */
4319                 size = rb_event_ts_length(event);
4320
4321                 if (len < size)
4322                         goto out_unlock;
4323
4324                 /* save the current timestamp, since the user will need it */
4325                 save_timestamp = cpu_buffer->read_stamp;
4326
4327                 /* Need to copy one event at a time */
4328                 do {
4329                         /* We need the size of one event, because
4330                          * rb_advance_reader only advances by one event,
4331                          * whereas rb_event_ts_length may include the size of
4332                          * one or two events.
4333                          * We have already ensured there's enough space if this
4334                          * is a time extend. */
4335                         size = rb_event_length(event);
4336                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4337
4338                         len -= size;
4339
4340                         rb_advance_reader(cpu_buffer);
4341                         rpos = reader->read;
4342                         pos += size;
4343
4344                         if (rpos >= commit)
4345                                 break;
4346
4347                         event = rb_reader_event(cpu_buffer);
4348                         /* Always keep the time extend and data together */
4349                         size = rb_event_ts_length(event);
4350                 } while (len >= size);
4351
4352                 /* update bpage */
4353                 local_set(&bpage->commit, pos);
4354                 bpage->time_stamp = save_timestamp;
4355
4356                 /* we copied everything to the beginning */
4357                 read = 0;
4358         } else {
4359                 /* update the entry counter */
4360                 cpu_buffer->read += rb_page_entries(reader);
4361                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4362
4363                 /* swap the pages */
4364                 rb_init_page(bpage);
4365                 bpage = reader->page;
4366                 reader->page = *data_page;
4367                 local_set(&reader->write, 0);
4368                 local_set(&reader->entries, 0);
4369                 reader->read = 0;
4370                 *data_page = bpage;
4371
4372                 /*
4373                  * Use the real_end for the data size,
4374                  * This gives us a chance to store the lost events
4375                  * on the page.
4376                  */
4377                 if (reader->real_end)
4378                         local_set(&bpage->commit, reader->real_end);
4379         }
4380         ret = read;
4381
4382         cpu_buffer->lost_events = 0;
4383
4384         commit = local_read(&bpage->commit);
4385         /*
4386          * Set a flag in the commit field if we lost events
4387          */
4388         if (missed_events) {
4389                 /* If there is room at the end of the page to save the
4390                  * missed events, then record it there.
4391                  */
4392                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4393                         memcpy(&bpage->data[commit], &missed_events,
4394                                sizeof(missed_events));
4395                         local_add(RB_MISSED_STORED, &bpage->commit);
4396                         commit += sizeof(missed_events);
4397                 }
4398                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4399         }
4400
4401         /*
4402          * This page may be off to user land. Zero it out here.
4403          */
4404         if (commit < BUF_PAGE_SIZE)
4405                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4406
4407  out_unlock:
4408         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4409
4410  out:
4411         return ret;
4412 }
4413 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4414
4415 #ifdef CONFIG_HOTPLUG_CPU
4416 static int rb_cpu_notify(struct notifier_block *self,
4417                          unsigned long action, void *hcpu)
4418 {
4419         struct ring_buffer *buffer =
4420                 container_of(self, struct ring_buffer, cpu_notify);
4421         long cpu = (long)hcpu;
4422         int cpu_i, nr_pages_same;
4423         unsigned int nr_pages;
4424
4425         switch (action) {
4426         case CPU_UP_PREPARE:
4427         case CPU_UP_PREPARE_FROZEN:
4428                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4429                         return NOTIFY_OK;
4430
4431                 nr_pages = 0;
4432                 nr_pages_same = 1;
4433                 /* check if all cpu sizes are same */
4434                 for_each_buffer_cpu(buffer, cpu_i) {
4435                         /* fill in the size from first enabled cpu */
4436                         if (nr_pages == 0)
4437                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4438                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4439                                 nr_pages_same = 0;
4440                                 break;
4441                         }
4442                 }
4443                 /* allocate minimum pages, user can later expand it */
4444                 if (!nr_pages_same)
4445                         nr_pages = 2;
4446                 buffer->buffers[cpu] =
4447                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4448                 if (!buffer->buffers[cpu]) {
4449                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4450                              cpu);
4451                         return NOTIFY_OK;
4452                 }
4453                 smp_wmb();
4454                 cpumask_set_cpu(cpu, buffer->cpumask);
4455                 break;
4456         case CPU_DOWN_PREPARE:
4457         case CPU_DOWN_PREPARE_FROZEN:
4458                 /*
4459                  * Do nothing.
4460                  *  If we were to free the buffer, then the user would
4461                  *  lose any trace that was in the buffer.
4462                  */
4463                 break;
4464         default:
4465                 break;
4466         }
4467         return NOTIFY_OK;
4468 }
4469 #endif