serial: imx: restore handshaking irq for imx1
[platform/kernel/linux-rpi.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h>      /* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         trace_seq_puts(s, "# compressed entry header\n");
38         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40         trace_seq_puts(s, "\tarray       :   32 bits\n");
41         trace_seq_putc(s, '\n');
42         trace_seq_printf(s, "\tpadding     : type == %d\n",
43                          RINGBUF_TYPE_PADDING);
44         trace_seq_printf(s, "\ttime_extend : type == %d\n",
45                          RINGBUF_TYPE_TIME_EXTEND);
46         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47                          RINGBUF_TYPE_TIME_STAMP);
48         trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return !trace_seq_has_overflowed(s);
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF           (1 << 20)
124
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT            4U
129 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
131
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT       0
134 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
135 #else
136 # define RB_FORCE_8BYTE_ALIGNMENT       1
137 # define RB_ARCH_ALIGNMENT              8U
138 #endif
139
140 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
141
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
144
145 enum {
146         RB_LEN_TIME_EXTEND = 8,
147         RB_LEN_TIME_STAMP =  8,
148 };
149
150 #define skip_time_extend(event) \
151         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152
153 #define extended_time(event) \
154         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155
156 static inline int rb_null_event(struct ring_buffer_event *event)
157 {
158         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
159 }
160
161 static void rb_event_set_padding(struct ring_buffer_event *event)
162 {
163         /* padding has a NULL time_delta */
164         event->type_len = RINGBUF_TYPE_PADDING;
165         event->time_delta = 0;
166 }
167
168 static unsigned
169 rb_event_data_length(struct ring_buffer_event *event)
170 {
171         unsigned length;
172
173         if (event->type_len)
174                 length = event->type_len * RB_ALIGNMENT;
175         else
176                 length = event->array[0];
177         return length + RB_EVNT_HDR_SIZE;
178 }
179
180 /*
181  * Return the length of the given event. Will return
182  * the length of the time extend if the event is a
183  * time extend.
184  */
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event *event)
187 {
188         switch (event->type_len) {
189         case RINGBUF_TYPE_PADDING:
190                 if (rb_null_event(event))
191                         /* undefined */
192                         return -1;
193                 return  event->array[0] + RB_EVNT_HDR_SIZE;
194
195         case RINGBUF_TYPE_TIME_EXTEND:
196                 return RB_LEN_TIME_EXTEND;
197
198         case RINGBUF_TYPE_TIME_STAMP:
199                 return RB_LEN_TIME_STAMP;
200
201         case RINGBUF_TYPE_DATA:
202                 return rb_event_data_length(event);
203         default:
204                 BUG();
205         }
206         /* not hit */
207         return 0;
208 }
209
210 /*
211  * Return total length of time extend and data,
212  *   or just the event length for all other events.
213  */
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event *event)
216 {
217         unsigned len = 0;
218
219         if (extended_time(event)) {
220                 /* time extends include the data event after it */
221                 len = RB_LEN_TIME_EXTEND;
222                 event = skip_time_extend(event);
223         }
224         return len + rb_event_length(event);
225 }
226
227 /**
228  * ring_buffer_event_length - return the length of the event
229  * @event: the event to get the length of
230  *
231  * Returns the size of the data load of a data event.
232  * If the event is something other than a data event, it
233  * returns the size of the event itself. With the exception
234  * of a TIME EXTEND, where it still returns the size of the
235  * data load of the data event after it.
236  */
237 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
238 {
239         unsigned length;
240
241         if (extended_time(event))
242                 event = skip_time_extend(event);
243
244         length = rb_event_length(event);
245         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
246                 return length;
247         length -= RB_EVNT_HDR_SIZE;
248         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249                 length -= sizeof(event->array[0]);
250         return length;
251 }
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
253
254 /* inline for ring buffer fast paths */
255 static __always_inline void *
256 rb_event_data(struct ring_buffer_event *event)
257 {
258         if (extended_time(event))
259                 event = skip_time_extend(event);
260         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
261         /* If length is in len field, then array[0] has the data */
262         if (event->type_len)
263                 return (void *)&event->array[0];
264         /* Otherwise length is in array[0] and array[1] has the data */
265         return (void *)&event->array[1];
266 }
267
268 /**
269  * ring_buffer_event_data - return the data of the event
270  * @event: the event to get the data from
271  */
272 void *ring_buffer_event_data(struct ring_buffer_event *event)
273 {
274         return rb_event_data(event);
275 }
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
277
278 #define for_each_buffer_cpu(buffer, cpu)                \
279         for_each_cpu(cpu, buffer->cpumask)
280
281 #define TS_SHIFT        27
282 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST   (~TS_MASK)
284
285 /**
286  * ring_buffer_event_time_stamp - return the event's extended timestamp
287  * @event: the event to get the timestamp of
288  *
289  * Returns the extended timestamp associated with a data event.
290  * An extended time_stamp is a 64-bit timestamp represented
291  * internally in a special way that makes the best use of space
292  * contained within a ring buffer event.  This function decodes
293  * it and maps it to a straight u64 value.
294  */
295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
296 {
297         u64 ts;
298
299         ts = event->array[0];
300         ts <<= TS_SHIFT;
301         ts += event->time_delta;
302
303         return ts;
304 }
305
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS        (1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED        (1 << 30)
310
311 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
312
313 struct buffer_data_page {
314         u64              time_stamp;    /* page time stamp */
315         local_t          commit;        /* write committed index */
316         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
317 };
318
319 /*
320  * Note, the buffer_page list must be first. The buffer pages
321  * are allocated in cache lines, which means that each buffer
322  * page will be at the beginning of a cache line, and thus
323  * the least significant bits will be zero. We use this to
324  * add flags in the list struct pointers, to make the ring buffer
325  * lockless.
326  */
327 struct buffer_page {
328         struct list_head list;          /* list of buffer pages */
329         local_t          write;         /* index for next write */
330         unsigned         read;          /* index for next read */
331         local_t          entries;       /* entries on this page */
332         unsigned long    real_end;      /* real end of data */
333         struct buffer_data_page *page;  /* Actual data page */
334 };
335
336 /*
337  * The buffer page counters, write and entries, must be reset
338  * atomically when crossing page boundaries. To synchronize this
339  * update, two counters are inserted into the number. One is
340  * the actual counter for the write position or count on the page.
341  *
342  * The other is a counter of updaters. Before an update happens
343  * the update partition of the counter is incremented. This will
344  * allow the updater to update the counter atomically.
345  *
346  * The counter is 20 bits, and the state data is 12.
347  */
348 #define RB_WRITE_MASK           0xfffff
349 #define RB_WRITE_INTCNT         (1 << 20)
350
351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353         local_set(&bpage->commit, 0);
354 }
355
356 /**
357  * ring_buffer_page_len - the size of data on the page.
358  * @page: The page to read
359  *
360  * Returns the amount of data on the page, including buffer page header.
361  */
362 size_t ring_buffer_page_len(void *page)
363 {
364         struct buffer_data_page *bpage = page;
365
366         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
367                 + BUF_PAGE_HDR_SIZE;
368 }
369
370 /*
371  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
372  * this issue out.
373  */
374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376         free_page((unsigned long)bpage->page);
377         kfree(bpage);
378 }
379
380 /*
381  * We need to fit the time_stamp delta into 27 bits.
382  */
383 static inline int test_time_stamp(u64 delta)
384 {
385         if (delta & TS_DELTA_TEST)
386                 return 1;
387         return 0;
388 }
389
390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
391
392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
394
395 int ring_buffer_print_page_header(struct trace_seq *s)
396 {
397         struct buffer_data_page field;
398
399         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400                          "offset:0;\tsize:%u;\tsigned:%u;\n",
401                          (unsigned int)sizeof(field.time_stamp),
402                          (unsigned int)is_signed_type(u64));
403
404         trace_seq_printf(s, "\tfield: local_t commit;\t"
405                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
406                          (unsigned int)offsetof(typeof(field), commit),
407                          (unsigned int)sizeof(field.commit),
408                          (unsigned int)is_signed_type(long));
409
410         trace_seq_printf(s, "\tfield: int overwrite;\t"
411                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
412                          (unsigned int)offsetof(typeof(field), commit),
413                          1,
414                          (unsigned int)is_signed_type(long));
415
416         trace_seq_printf(s, "\tfield: char data;\t"
417                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
418                          (unsigned int)offsetof(typeof(field), data),
419                          (unsigned int)BUF_PAGE_SIZE,
420                          (unsigned int)is_signed_type(char));
421
422         return !trace_seq_has_overflowed(s);
423 }
424
425 struct rb_irq_work {
426         struct irq_work                 work;
427         wait_queue_head_t               waiters;
428         wait_queue_head_t               full_waiters;
429         bool                            waiters_pending;
430         bool                            full_waiters_pending;
431         bool                            wakeup_full;
432 };
433
434 /*
435  * Structure to hold event state and handle nested events.
436  */
437 struct rb_event_info {
438         u64                     ts;
439         u64                     delta;
440         unsigned long           length;
441         struct buffer_page      *tail_page;
442         int                     add_timestamp;
443 };
444
445 /*
446  * Used for which event context the event is in.
447  *  NMI     = 0
448  *  IRQ     = 1
449  *  SOFTIRQ = 2
450  *  NORMAL  = 3
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455         RB_CTX_NMI,
456         RB_CTX_IRQ,
457         RB_CTX_SOFTIRQ,
458         RB_CTX_NORMAL,
459         RB_CTX_MAX
460 };
461
462 /*
463  * head_page == tail_page && head == tail then buffer is empty.
464  */
465 struct ring_buffer_per_cpu {
466         int                             cpu;
467         atomic_t                        record_disabled;
468         struct ring_buffer              *buffer;
469         raw_spinlock_t                  reader_lock;    /* serialize readers */
470         arch_spinlock_t                 lock;
471         struct lock_class_key           lock_key;
472         struct buffer_data_page         *free_page;
473         unsigned long                   nr_pages;
474         unsigned int                    current_context;
475         struct list_head                *pages;
476         struct buffer_page              *head_page;     /* read from head */
477         struct buffer_page              *tail_page;     /* write to tail */
478         struct buffer_page              *commit_page;   /* committed pages */
479         struct buffer_page              *reader_page;
480         unsigned long                   lost_events;
481         unsigned long                   last_overrun;
482         unsigned long                   nest;
483         local_t                         entries_bytes;
484         local_t                         entries;
485         local_t                         overrun;
486         local_t                         commit_overrun;
487         local_t                         dropped_events;
488         local_t                         committing;
489         local_t                         commits;
490         unsigned long                   read;
491         unsigned long                   read_bytes;
492         u64                             write_stamp;
493         u64                             read_stamp;
494         /* ring buffer pages to update, > 0 to add, < 0 to remove */
495         long                            nr_pages_to_update;
496         struct list_head                new_pages; /* new pages to add */
497         struct work_struct              update_pages_work;
498         struct completion               update_done;
499
500         struct rb_irq_work              irq_work;
501 };
502
503 struct ring_buffer {
504         unsigned                        flags;
505         int                             cpus;
506         atomic_t                        record_disabled;
507         atomic_t                        resize_disabled;
508         cpumask_var_t                   cpumask;
509
510         struct lock_class_key           *reader_lock_key;
511
512         struct mutex                    mutex;
513
514         struct ring_buffer_per_cpu      **buffers;
515
516         struct hlist_node               node;
517         u64                             (*clock)(void);
518
519         struct rb_irq_work              irq_work;
520         bool                            time_stamp_abs;
521 };
522
523 struct ring_buffer_iter {
524         struct ring_buffer_per_cpu      *cpu_buffer;
525         unsigned long                   head;
526         struct buffer_page              *head_page;
527         struct buffer_page              *cache_reader_page;
528         unsigned long                   cache_read;
529         u64                             read_stamp;
530 };
531
532 /*
533  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
534  *
535  * Schedules a delayed work to wake up any task that is blocked on the
536  * ring buffer waiters queue.
537  */
538 static void rb_wake_up_waiters(struct irq_work *work)
539 {
540         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
541
542         wake_up_all(&rbwork->waiters);
543         if (rbwork->wakeup_full) {
544                 rbwork->wakeup_full = false;
545                 wake_up_all(&rbwork->full_waiters);
546         }
547 }
548
549 /**
550  * ring_buffer_wait - wait for input to the ring buffer
551  * @buffer: buffer to wait on
552  * @cpu: the cpu buffer to wait on
553  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
554  *
555  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
556  * as data is added to any of the @buffer's cpu buffers. Otherwise
557  * it will wait for data to be added to a specific cpu buffer.
558  */
559 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
560 {
561         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
562         DEFINE_WAIT(wait);
563         struct rb_irq_work *work;
564         int ret = 0;
565
566         /*
567          * Depending on what the caller is waiting for, either any
568          * data in any cpu buffer, or a specific buffer, put the
569          * caller on the appropriate wait queue.
570          */
571         if (cpu == RING_BUFFER_ALL_CPUS) {
572                 work = &buffer->irq_work;
573                 /* Full only makes sense on per cpu reads */
574                 full = false;
575         } else {
576                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
577                         return -ENODEV;
578                 cpu_buffer = buffer->buffers[cpu];
579                 work = &cpu_buffer->irq_work;
580         }
581
582
583         while (true) {
584                 if (full)
585                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
586                 else
587                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
588
589                 /*
590                  * The events can happen in critical sections where
591                  * checking a work queue can cause deadlocks.
592                  * After adding a task to the queue, this flag is set
593                  * only to notify events to try to wake up the queue
594                  * using irq_work.
595                  *
596                  * We don't clear it even if the buffer is no longer
597                  * empty. The flag only causes the next event to run
598                  * irq_work to do the work queue wake up. The worse
599                  * that can happen if we race with !trace_empty() is that
600                  * an event will cause an irq_work to try to wake up
601                  * an empty queue.
602                  *
603                  * There's no reason to protect this flag either, as
604                  * the work queue and irq_work logic will do the necessary
605                  * synchronization for the wake ups. The only thing
606                  * that is necessary is that the wake up happens after
607                  * a task has been queued. It's OK for spurious wake ups.
608                  */
609                 if (full)
610                         work->full_waiters_pending = true;
611                 else
612                         work->waiters_pending = true;
613
614                 if (signal_pending(current)) {
615                         ret = -EINTR;
616                         break;
617                 }
618
619                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
620                         break;
621
622                 if (cpu != RING_BUFFER_ALL_CPUS &&
623                     !ring_buffer_empty_cpu(buffer, cpu)) {
624                         unsigned long flags;
625                         bool pagebusy;
626
627                         if (!full)
628                                 break;
629
630                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
631                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
632                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
633
634                         if (!pagebusy)
635                                 break;
636                 }
637
638                 schedule();
639         }
640
641         if (full)
642                 finish_wait(&work->full_waiters, &wait);
643         else
644                 finish_wait(&work->waiters, &wait);
645
646         return ret;
647 }
648
649 /**
650  * ring_buffer_poll_wait - poll on buffer input
651  * @buffer: buffer to wait on
652  * @cpu: the cpu buffer to wait on
653  * @filp: the file descriptor
654  * @poll_table: The poll descriptor
655  *
656  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
657  * as data is added to any of the @buffer's cpu buffers. Otherwise
658  * it will wait for data to be added to a specific cpu buffer.
659  *
660  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
661  * zero otherwise.
662  */
663 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
664                           struct file *filp, poll_table *poll_table)
665 {
666         struct ring_buffer_per_cpu *cpu_buffer;
667         struct rb_irq_work *work;
668
669         if (cpu == RING_BUFFER_ALL_CPUS)
670                 work = &buffer->irq_work;
671         else {
672                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
673                         return -EINVAL;
674
675                 cpu_buffer = buffer->buffers[cpu];
676                 work = &cpu_buffer->irq_work;
677         }
678
679         poll_wait(filp, &work->waiters, poll_table);
680         work->waiters_pending = true;
681         /*
682          * There's a tight race between setting the waiters_pending and
683          * checking if the ring buffer is empty.  Once the waiters_pending bit
684          * is set, the next event will wake the task up, but we can get stuck
685          * if there's only a single event in.
686          *
687          * FIXME: Ideally, we need a memory barrier on the writer side as well,
688          * but adding a memory barrier to all events will cause too much of a
689          * performance hit in the fast path.  We only need a memory barrier when
690          * the buffer goes from empty to having content.  But as this race is
691          * extremely small, and it's not a problem if another event comes in, we
692          * will fix it later.
693          */
694         smp_mb();
695
696         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
697             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
698                 return EPOLLIN | EPOLLRDNORM;
699         return 0;
700 }
701
702 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
703 #define RB_WARN_ON(b, cond)                                             \
704         ({                                                              \
705                 int _____ret = unlikely(cond);                          \
706                 if (_____ret) {                                         \
707                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
708                                 struct ring_buffer_per_cpu *__b =       \
709                                         (void *)b;                      \
710                                 atomic_inc(&__b->buffer->record_disabled); \
711                         } else                                          \
712                                 atomic_inc(&b->record_disabled);        \
713                         WARN_ON(1);                                     \
714                 }                                                       \
715                 _____ret;                                               \
716         })
717
718 /* Up this if you want to test the TIME_EXTENTS and normalization */
719 #define DEBUG_SHIFT 0
720
721 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
722 {
723         /* shift to debug/test normalization and TIME_EXTENTS */
724         return buffer->clock() << DEBUG_SHIFT;
725 }
726
727 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
728 {
729         u64 time;
730
731         preempt_disable_notrace();
732         time = rb_time_stamp(buffer);
733         preempt_enable_no_resched_notrace();
734
735         return time;
736 }
737 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
738
739 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
740                                       int cpu, u64 *ts)
741 {
742         /* Just stupid testing the normalize function and deltas */
743         *ts >>= DEBUG_SHIFT;
744 }
745 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
746
747 /*
748  * Making the ring buffer lockless makes things tricky.
749  * Although writes only happen on the CPU that they are on,
750  * and they only need to worry about interrupts. Reads can
751  * happen on any CPU.
752  *
753  * The reader page is always off the ring buffer, but when the
754  * reader finishes with a page, it needs to swap its page with
755  * a new one from the buffer. The reader needs to take from
756  * the head (writes go to the tail). But if a writer is in overwrite
757  * mode and wraps, it must push the head page forward.
758  *
759  * Here lies the problem.
760  *
761  * The reader must be careful to replace only the head page, and
762  * not another one. As described at the top of the file in the
763  * ASCII art, the reader sets its old page to point to the next
764  * page after head. It then sets the page after head to point to
765  * the old reader page. But if the writer moves the head page
766  * during this operation, the reader could end up with the tail.
767  *
768  * We use cmpxchg to help prevent this race. We also do something
769  * special with the page before head. We set the LSB to 1.
770  *
771  * When the writer must push the page forward, it will clear the
772  * bit that points to the head page, move the head, and then set
773  * the bit that points to the new head page.
774  *
775  * We also don't want an interrupt coming in and moving the head
776  * page on another writer. Thus we use the second LSB to catch
777  * that too. Thus:
778  *
779  * head->list->prev->next        bit 1          bit 0
780  *                              -------        -------
781  * Normal page                     0              0
782  * Points to head page             0              1
783  * New head page                   1              0
784  *
785  * Note we can not trust the prev pointer of the head page, because:
786  *
787  * +----+       +-----+        +-----+
788  * |    |------>|  T  |---X--->|  N  |
789  * |    |<------|     |        |     |
790  * +----+       +-----+        +-----+
791  *   ^                           ^ |
792  *   |          +-----+          | |
793  *   +----------|  R  |----------+ |
794  *              |     |<-----------+
795  *              +-----+
796  *
797  * Key:  ---X-->  HEAD flag set in pointer
798  *         T      Tail page
799  *         R      Reader page
800  *         N      Next page
801  *
802  * (see __rb_reserve_next() to see where this happens)
803  *
804  *  What the above shows is that the reader just swapped out
805  *  the reader page with a page in the buffer, but before it
806  *  could make the new header point back to the new page added
807  *  it was preempted by a writer. The writer moved forward onto
808  *  the new page added by the reader and is about to move forward
809  *  again.
810  *
811  *  You can see, it is legitimate for the previous pointer of
812  *  the head (or any page) not to point back to itself. But only
813  *  temporarily.
814  */
815
816 #define RB_PAGE_NORMAL          0UL
817 #define RB_PAGE_HEAD            1UL
818 #define RB_PAGE_UPDATE          2UL
819
820
821 #define RB_FLAG_MASK            3UL
822
823 /* PAGE_MOVED is not part of the mask */
824 #define RB_PAGE_MOVED           4UL
825
826 /*
827  * rb_list_head - remove any bit
828  */
829 static struct list_head *rb_list_head(struct list_head *list)
830 {
831         unsigned long val = (unsigned long)list;
832
833         return (struct list_head *)(val & ~RB_FLAG_MASK);
834 }
835
836 /*
837  * rb_is_head_page - test if the given page is the head page
838  *
839  * Because the reader may move the head_page pointer, we can
840  * not trust what the head page is (it may be pointing to
841  * the reader page). But if the next page is a header page,
842  * its flags will be non zero.
843  */
844 static inline int
845 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
846                 struct buffer_page *page, struct list_head *list)
847 {
848         unsigned long val;
849
850         val = (unsigned long)list->next;
851
852         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
853                 return RB_PAGE_MOVED;
854
855         return val & RB_FLAG_MASK;
856 }
857
858 /*
859  * rb_is_reader_page
860  *
861  * The unique thing about the reader page, is that, if the
862  * writer is ever on it, the previous pointer never points
863  * back to the reader page.
864  */
865 static bool rb_is_reader_page(struct buffer_page *page)
866 {
867         struct list_head *list = page->list.prev;
868
869         return rb_list_head(list->next) != &page->list;
870 }
871
872 /*
873  * rb_set_list_to_head - set a list_head to be pointing to head.
874  */
875 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
876                                 struct list_head *list)
877 {
878         unsigned long *ptr;
879
880         ptr = (unsigned long *)&list->next;
881         *ptr |= RB_PAGE_HEAD;
882         *ptr &= ~RB_PAGE_UPDATE;
883 }
884
885 /*
886  * rb_head_page_activate - sets up head page
887  */
888 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
889 {
890         struct buffer_page *head;
891
892         head = cpu_buffer->head_page;
893         if (!head)
894                 return;
895
896         /*
897          * Set the previous list pointer to have the HEAD flag.
898          */
899         rb_set_list_to_head(cpu_buffer, head->list.prev);
900 }
901
902 static void rb_list_head_clear(struct list_head *list)
903 {
904         unsigned long *ptr = (unsigned long *)&list->next;
905
906         *ptr &= ~RB_FLAG_MASK;
907 }
908
909 /*
910  * rb_head_page_deactivate - clears head page ptr (for free list)
911  */
912 static void
913 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
914 {
915         struct list_head *hd;
916
917         /* Go through the whole list and clear any pointers found. */
918         rb_list_head_clear(cpu_buffer->pages);
919
920         list_for_each(hd, cpu_buffer->pages)
921                 rb_list_head_clear(hd);
922 }
923
924 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
925                             struct buffer_page *head,
926                             struct buffer_page *prev,
927                             int old_flag, int new_flag)
928 {
929         struct list_head *list;
930         unsigned long val = (unsigned long)&head->list;
931         unsigned long ret;
932
933         list = &prev->list;
934
935         val &= ~RB_FLAG_MASK;
936
937         ret = cmpxchg((unsigned long *)&list->next,
938                       val | old_flag, val | new_flag);
939
940         /* check if the reader took the page */
941         if ((ret & ~RB_FLAG_MASK) != val)
942                 return RB_PAGE_MOVED;
943
944         return ret & RB_FLAG_MASK;
945 }
946
947 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
948                                    struct buffer_page *head,
949                                    struct buffer_page *prev,
950                                    int old_flag)
951 {
952         return rb_head_page_set(cpu_buffer, head, prev,
953                                 old_flag, RB_PAGE_UPDATE);
954 }
955
956 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
957                                  struct buffer_page *head,
958                                  struct buffer_page *prev,
959                                  int old_flag)
960 {
961         return rb_head_page_set(cpu_buffer, head, prev,
962                                 old_flag, RB_PAGE_HEAD);
963 }
964
965 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
966                                    struct buffer_page *head,
967                                    struct buffer_page *prev,
968                                    int old_flag)
969 {
970         return rb_head_page_set(cpu_buffer, head, prev,
971                                 old_flag, RB_PAGE_NORMAL);
972 }
973
974 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
975                                struct buffer_page **bpage)
976 {
977         struct list_head *p = rb_list_head((*bpage)->list.next);
978
979         *bpage = list_entry(p, struct buffer_page, list);
980 }
981
982 static struct buffer_page *
983 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
984 {
985         struct buffer_page *head;
986         struct buffer_page *page;
987         struct list_head *list;
988         int i;
989
990         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
991                 return NULL;
992
993         /* sanity check */
994         list = cpu_buffer->pages;
995         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
996                 return NULL;
997
998         page = head = cpu_buffer->head_page;
999         /*
1000          * It is possible that the writer moves the header behind
1001          * where we started, and we miss in one loop.
1002          * A second loop should grab the header, but we'll do
1003          * three loops just because I'm paranoid.
1004          */
1005         for (i = 0; i < 3; i++) {
1006                 do {
1007                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1008                                 cpu_buffer->head_page = page;
1009                                 return page;
1010                         }
1011                         rb_inc_page(cpu_buffer, &page);
1012                 } while (page != head);
1013         }
1014
1015         RB_WARN_ON(cpu_buffer, 1);
1016
1017         return NULL;
1018 }
1019
1020 static int rb_head_page_replace(struct buffer_page *old,
1021                                 struct buffer_page *new)
1022 {
1023         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1024         unsigned long val;
1025         unsigned long ret;
1026
1027         val = *ptr & ~RB_FLAG_MASK;
1028         val |= RB_PAGE_HEAD;
1029
1030         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1031
1032         return ret == val;
1033 }
1034
1035 /*
1036  * rb_tail_page_update - move the tail page forward
1037  */
1038 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1039                                struct buffer_page *tail_page,
1040                                struct buffer_page *next_page)
1041 {
1042         unsigned long old_entries;
1043         unsigned long old_write;
1044
1045         /*
1046          * The tail page now needs to be moved forward.
1047          *
1048          * We need to reset the tail page, but without messing
1049          * with possible erasing of data brought in by interrupts
1050          * that have moved the tail page and are currently on it.
1051          *
1052          * We add a counter to the write field to denote this.
1053          */
1054         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1055         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1056
1057         /*
1058          * Just make sure we have seen our old_write and synchronize
1059          * with any interrupts that come in.
1060          */
1061         barrier();
1062
1063         /*
1064          * If the tail page is still the same as what we think
1065          * it is, then it is up to us to update the tail
1066          * pointer.
1067          */
1068         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1069                 /* Zero the write counter */
1070                 unsigned long val = old_write & ~RB_WRITE_MASK;
1071                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1072
1073                 /*
1074                  * This will only succeed if an interrupt did
1075                  * not come in and change it. In which case, we
1076                  * do not want to modify it.
1077                  *
1078                  * We add (void) to let the compiler know that we do not care
1079                  * about the return value of these functions. We use the
1080                  * cmpxchg to only update if an interrupt did not already
1081                  * do it for us. If the cmpxchg fails, we don't care.
1082                  */
1083                 (void)local_cmpxchg(&next_page->write, old_write, val);
1084                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1085
1086                 /*
1087                  * No need to worry about races with clearing out the commit.
1088                  * it only can increment when a commit takes place. But that
1089                  * only happens in the outer most nested commit.
1090                  */
1091                 local_set(&next_page->page->commit, 0);
1092
1093                 /* Again, either we update tail_page or an interrupt does */
1094                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1095         }
1096 }
1097
1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099                           struct buffer_page *bpage)
1100 {
1101         unsigned long val = (unsigned long)bpage;
1102
1103         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104                 return 1;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * rb_check_list - make sure a pointer to a list has the last bits zero
1111  */
1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113                          struct list_head *list)
1114 {
1115         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116                 return 1;
1117         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118                 return 1;
1119         return 0;
1120 }
1121
1122 /**
1123  * rb_check_pages - integrity check of buffer pages
1124  * @cpu_buffer: CPU buffer with pages to test
1125  *
1126  * As a safety measure we check to make sure the data pages have not
1127  * been corrupted.
1128  */
1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131         struct list_head *head = cpu_buffer->pages;
1132         struct buffer_page *bpage, *tmp;
1133
1134         /* Reset the head page if it exists */
1135         if (cpu_buffer->head_page)
1136                 rb_set_head_page(cpu_buffer);
1137
1138         rb_head_page_deactivate(cpu_buffer);
1139
1140         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141                 return -1;
1142         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143                 return -1;
1144
1145         if (rb_check_list(cpu_buffer, head))
1146                 return -1;
1147
1148         list_for_each_entry_safe(bpage, tmp, head, list) {
1149                 if (RB_WARN_ON(cpu_buffer,
1150                                bpage->list.next->prev != &bpage->list))
1151                         return -1;
1152                 if (RB_WARN_ON(cpu_buffer,
1153                                bpage->list.prev->next != &bpage->list))
1154                         return -1;
1155                 if (rb_check_list(cpu_buffer, &bpage->list))
1156                         return -1;
1157         }
1158
1159         rb_head_page_activate(cpu_buffer);
1160
1161         return 0;
1162 }
1163
1164 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1165 {
1166         struct buffer_page *bpage, *tmp;
1167         bool user_thread = current->mm != NULL;
1168         gfp_t mflags;
1169         long i;
1170
1171         /*
1172          * Check if the available memory is there first.
1173          * Note, si_mem_available() only gives us a rough estimate of available
1174          * memory. It may not be accurate. But we don't care, we just want
1175          * to prevent doing any allocation when it is obvious that it is
1176          * not going to succeed.
1177          */
1178         i = si_mem_available();
1179         if (i < nr_pages)
1180                 return -ENOMEM;
1181
1182         /*
1183          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1184          * gracefully without invoking oom-killer and the system is not
1185          * destabilized.
1186          */
1187         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1188
1189         /*
1190          * If a user thread allocates too much, and si_mem_available()
1191          * reports there's enough memory, even though there is not.
1192          * Make sure the OOM killer kills this thread. This can happen
1193          * even with RETRY_MAYFAIL because another task may be doing
1194          * an allocation after this task has taken all memory.
1195          * This is the task the OOM killer needs to take out during this
1196          * loop, even if it was triggered by an allocation somewhere else.
1197          */
1198         if (user_thread)
1199                 set_current_oom_origin();
1200         for (i = 0; i < nr_pages; i++) {
1201                 struct page *page;
1202
1203                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1204                                     mflags, cpu_to_node(cpu));
1205                 if (!bpage)
1206                         goto free_pages;
1207
1208                 list_add(&bpage->list, pages);
1209
1210                 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1211                 if (!page)
1212                         goto free_pages;
1213                 bpage->page = page_address(page);
1214                 rb_init_page(bpage->page);
1215
1216                 if (user_thread && fatal_signal_pending(current))
1217                         goto free_pages;
1218         }
1219         if (user_thread)
1220                 clear_current_oom_origin();
1221
1222         return 0;
1223
1224 free_pages:
1225         list_for_each_entry_safe(bpage, tmp, pages, list) {
1226                 list_del_init(&bpage->list);
1227                 free_buffer_page(bpage);
1228         }
1229         if (user_thread)
1230                 clear_current_oom_origin();
1231
1232         return -ENOMEM;
1233 }
1234
1235 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1236                              unsigned long nr_pages)
1237 {
1238         LIST_HEAD(pages);
1239
1240         WARN_ON(!nr_pages);
1241
1242         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1243                 return -ENOMEM;
1244
1245         /*
1246          * The ring buffer page list is a circular list that does not
1247          * start and end with a list head. All page list items point to
1248          * other pages.
1249          */
1250         cpu_buffer->pages = pages.next;
1251         list_del(&pages);
1252
1253         cpu_buffer->nr_pages = nr_pages;
1254
1255         rb_check_pages(cpu_buffer);
1256
1257         return 0;
1258 }
1259
1260 static struct ring_buffer_per_cpu *
1261 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1262 {
1263         struct ring_buffer_per_cpu *cpu_buffer;
1264         struct buffer_page *bpage;
1265         struct page *page;
1266         int ret;
1267
1268         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1269                                   GFP_KERNEL, cpu_to_node(cpu));
1270         if (!cpu_buffer)
1271                 return NULL;
1272
1273         cpu_buffer->cpu = cpu;
1274         cpu_buffer->buffer = buffer;
1275         raw_spin_lock_init(&cpu_buffer->reader_lock);
1276         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1277         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1278         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1279         init_completion(&cpu_buffer->update_done);
1280         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1281         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1282         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1283
1284         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1285                             GFP_KERNEL, cpu_to_node(cpu));
1286         if (!bpage)
1287                 goto fail_free_buffer;
1288
1289         rb_check_bpage(cpu_buffer, bpage);
1290
1291         cpu_buffer->reader_page = bpage;
1292         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1293         if (!page)
1294                 goto fail_free_reader;
1295         bpage->page = page_address(page);
1296         rb_init_page(bpage->page);
1297
1298         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1299         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1300
1301         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1302         if (ret < 0)
1303                 goto fail_free_reader;
1304
1305         cpu_buffer->head_page
1306                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1307         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1308
1309         rb_head_page_activate(cpu_buffer);
1310
1311         return cpu_buffer;
1312
1313  fail_free_reader:
1314         free_buffer_page(cpu_buffer->reader_page);
1315
1316  fail_free_buffer:
1317         kfree(cpu_buffer);
1318         return NULL;
1319 }
1320
1321 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1322 {
1323         struct list_head *head = cpu_buffer->pages;
1324         struct buffer_page *bpage, *tmp;
1325
1326         free_buffer_page(cpu_buffer->reader_page);
1327
1328         rb_head_page_deactivate(cpu_buffer);
1329
1330         if (head) {
1331                 list_for_each_entry_safe(bpage, tmp, head, list) {
1332                         list_del_init(&bpage->list);
1333                         free_buffer_page(bpage);
1334                 }
1335                 bpage = list_entry(head, struct buffer_page, list);
1336                 free_buffer_page(bpage);
1337         }
1338
1339         kfree(cpu_buffer);
1340 }
1341
1342 /**
1343  * __ring_buffer_alloc - allocate a new ring_buffer
1344  * @size: the size in bytes per cpu that is needed.
1345  * @flags: attributes to set for the ring buffer.
1346  *
1347  * Currently the only flag that is available is the RB_FL_OVERWRITE
1348  * flag. This flag means that the buffer will overwrite old data
1349  * when the buffer wraps. If this flag is not set, the buffer will
1350  * drop data when the tail hits the head.
1351  */
1352 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1353                                         struct lock_class_key *key)
1354 {
1355         struct ring_buffer *buffer;
1356         long nr_pages;
1357         int bsize;
1358         int cpu;
1359         int ret;
1360
1361         /* keep it in its own cache line */
1362         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1363                          GFP_KERNEL);
1364         if (!buffer)
1365                 return NULL;
1366
1367         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1368                 goto fail_free_buffer;
1369
1370         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1371         buffer->flags = flags;
1372         buffer->clock = trace_clock_local;
1373         buffer->reader_lock_key = key;
1374
1375         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1376         init_waitqueue_head(&buffer->irq_work.waiters);
1377
1378         /* need at least two pages */
1379         if (nr_pages < 2)
1380                 nr_pages = 2;
1381
1382         buffer->cpus = nr_cpu_ids;
1383
1384         bsize = sizeof(void *) * nr_cpu_ids;
1385         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1386                                   GFP_KERNEL);
1387         if (!buffer->buffers)
1388                 goto fail_free_cpumask;
1389
1390         cpu = raw_smp_processor_id();
1391         cpumask_set_cpu(cpu, buffer->cpumask);
1392         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1393         if (!buffer->buffers[cpu])
1394                 goto fail_free_buffers;
1395
1396         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1397         if (ret < 0)
1398                 goto fail_free_buffers;
1399
1400         mutex_init(&buffer->mutex);
1401
1402         return buffer;
1403
1404  fail_free_buffers:
1405         for_each_buffer_cpu(buffer, cpu) {
1406                 if (buffer->buffers[cpu])
1407                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1408         }
1409         kfree(buffer->buffers);
1410
1411  fail_free_cpumask:
1412         free_cpumask_var(buffer->cpumask);
1413
1414  fail_free_buffer:
1415         kfree(buffer);
1416         return NULL;
1417 }
1418 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1419
1420 /**
1421  * ring_buffer_free - free a ring buffer.
1422  * @buffer: the buffer to free.
1423  */
1424 void
1425 ring_buffer_free(struct ring_buffer *buffer)
1426 {
1427         int cpu;
1428
1429         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1430
1431         for_each_buffer_cpu(buffer, cpu)
1432                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1433
1434         kfree(buffer->buffers);
1435         free_cpumask_var(buffer->cpumask);
1436
1437         kfree(buffer);
1438 }
1439 EXPORT_SYMBOL_GPL(ring_buffer_free);
1440
1441 void ring_buffer_set_clock(struct ring_buffer *buffer,
1442                            u64 (*clock)(void))
1443 {
1444         buffer->clock = clock;
1445 }
1446
1447 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1448 {
1449         buffer->time_stamp_abs = abs;
1450 }
1451
1452 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1453 {
1454         return buffer->time_stamp_abs;
1455 }
1456
1457 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1458
1459 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1460 {
1461         return local_read(&bpage->entries) & RB_WRITE_MASK;
1462 }
1463
1464 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1465 {
1466         return local_read(&bpage->write) & RB_WRITE_MASK;
1467 }
1468
1469 static int
1470 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1471 {
1472         struct list_head *tail_page, *to_remove, *next_page;
1473         struct buffer_page *to_remove_page, *tmp_iter_page;
1474         struct buffer_page *last_page, *first_page;
1475         unsigned long nr_removed;
1476         unsigned long head_bit;
1477         int page_entries;
1478
1479         head_bit = 0;
1480
1481         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1482         atomic_inc(&cpu_buffer->record_disabled);
1483         /*
1484          * We don't race with the readers since we have acquired the reader
1485          * lock. We also don't race with writers after disabling recording.
1486          * This makes it easy to figure out the first and the last page to be
1487          * removed from the list. We unlink all the pages in between including
1488          * the first and last pages. This is done in a busy loop so that we
1489          * lose the least number of traces.
1490          * The pages are freed after we restart recording and unlock readers.
1491          */
1492         tail_page = &cpu_buffer->tail_page->list;
1493
1494         /*
1495          * tail page might be on reader page, we remove the next page
1496          * from the ring buffer
1497          */
1498         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1499                 tail_page = rb_list_head(tail_page->next);
1500         to_remove = tail_page;
1501
1502         /* start of pages to remove */
1503         first_page = list_entry(rb_list_head(to_remove->next),
1504                                 struct buffer_page, list);
1505
1506         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1507                 to_remove = rb_list_head(to_remove)->next;
1508                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1509         }
1510
1511         next_page = rb_list_head(to_remove)->next;
1512
1513         /*
1514          * Now we remove all pages between tail_page and next_page.
1515          * Make sure that we have head_bit value preserved for the
1516          * next page
1517          */
1518         tail_page->next = (struct list_head *)((unsigned long)next_page |
1519                                                 head_bit);
1520         next_page = rb_list_head(next_page);
1521         next_page->prev = tail_page;
1522
1523         /* make sure pages points to a valid page in the ring buffer */
1524         cpu_buffer->pages = next_page;
1525
1526         /* update head page */
1527         if (head_bit)
1528                 cpu_buffer->head_page = list_entry(next_page,
1529                                                 struct buffer_page, list);
1530
1531         /*
1532          * change read pointer to make sure any read iterators reset
1533          * themselves
1534          */
1535         cpu_buffer->read = 0;
1536
1537         /* pages are removed, resume tracing and then free the pages */
1538         atomic_dec(&cpu_buffer->record_disabled);
1539         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1540
1541         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1542
1543         /* last buffer page to remove */
1544         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1545                                 list);
1546         tmp_iter_page = first_page;
1547
1548         do {
1549                 to_remove_page = tmp_iter_page;
1550                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1551
1552                 /* update the counters */
1553                 page_entries = rb_page_entries(to_remove_page);
1554                 if (page_entries) {
1555                         /*
1556                          * If something was added to this page, it was full
1557                          * since it is not the tail page. So we deduct the
1558                          * bytes consumed in ring buffer from here.
1559                          * Increment overrun to account for the lost events.
1560                          */
1561                         local_add(page_entries, &cpu_buffer->overrun);
1562                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1563                 }
1564
1565                 /*
1566                  * We have already removed references to this list item, just
1567                  * free up the buffer_page and its page
1568                  */
1569                 free_buffer_page(to_remove_page);
1570                 nr_removed--;
1571
1572         } while (to_remove_page != last_page);
1573
1574         RB_WARN_ON(cpu_buffer, nr_removed);
1575
1576         return nr_removed == 0;
1577 }
1578
1579 static int
1580 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1581 {
1582         struct list_head *pages = &cpu_buffer->new_pages;
1583         int retries, success;
1584
1585         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1586         /*
1587          * We are holding the reader lock, so the reader page won't be swapped
1588          * in the ring buffer. Now we are racing with the writer trying to
1589          * move head page and the tail page.
1590          * We are going to adapt the reader page update process where:
1591          * 1. We first splice the start and end of list of new pages between
1592          *    the head page and its previous page.
1593          * 2. We cmpxchg the prev_page->next to point from head page to the
1594          *    start of new pages list.
1595          * 3. Finally, we update the head->prev to the end of new list.
1596          *
1597          * We will try this process 10 times, to make sure that we don't keep
1598          * spinning.
1599          */
1600         retries = 10;
1601         success = 0;
1602         while (retries--) {
1603                 struct list_head *head_page, *prev_page, *r;
1604                 struct list_head *last_page, *first_page;
1605                 struct list_head *head_page_with_bit;
1606
1607                 head_page = &rb_set_head_page(cpu_buffer)->list;
1608                 if (!head_page)
1609                         break;
1610                 prev_page = head_page->prev;
1611
1612                 first_page = pages->next;
1613                 last_page  = pages->prev;
1614
1615                 head_page_with_bit = (struct list_head *)
1616                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1617
1618                 last_page->next = head_page_with_bit;
1619                 first_page->prev = prev_page;
1620
1621                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1622
1623                 if (r == head_page_with_bit) {
1624                         /*
1625                          * yay, we replaced the page pointer to our new list,
1626                          * now, we just have to update to head page's prev
1627                          * pointer to point to end of list
1628                          */
1629                         head_page->prev = last_page;
1630                         success = 1;
1631                         break;
1632                 }
1633         }
1634
1635         if (success)
1636                 INIT_LIST_HEAD(pages);
1637         /*
1638          * If we weren't successful in adding in new pages, warn and stop
1639          * tracing
1640          */
1641         RB_WARN_ON(cpu_buffer, !success);
1642         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1643
1644         /* free pages if they weren't inserted */
1645         if (!success) {
1646                 struct buffer_page *bpage, *tmp;
1647                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1648                                          list) {
1649                         list_del_init(&bpage->list);
1650                         free_buffer_page(bpage);
1651                 }
1652         }
1653         return success;
1654 }
1655
1656 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1657 {
1658         int success;
1659
1660         if (cpu_buffer->nr_pages_to_update > 0)
1661                 success = rb_insert_pages(cpu_buffer);
1662         else
1663                 success = rb_remove_pages(cpu_buffer,
1664                                         -cpu_buffer->nr_pages_to_update);
1665
1666         if (success)
1667                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1668 }
1669
1670 static void update_pages_handler(struct work_struct *work)
1671 {
1672         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1673                         struct ring_buffer_per_cpu, update_pages_work);
1674         rb_update_pages(cpu_buffer);
1675         complete(&cpu_buffer->update_done);
1676 }
1677
1678 /**
1679  * ring_buffer_resize - resize the ring buffer
1680  * @buffer: the buffer to resize.
1681  * @size: the new size.
1682  * @cpu_id: the cpu buffer to resize
1683  *
1684  * Minimum size is 2 * BUF_PAGE_SIZE.
1685  *
1686  * Returns 0 on success and < 0 on failure.
1687  */
1688 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1689                         int cpu_id)
1690 {
1691         struct ring_buffer_per_cpu *cpu_buffer;
1692         unsigned long nr_pages;
1693         int cpu, err = 0;
1694
1695         /*
1696          * Always succeed at resizing a non-existent buffer:
1697          */
1698         if (!buffer)
1699                 return size;
1700
1701         /* Make sure the requested buffer exists */
1702         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1703             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1704                 return size;
1705
1706         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1707
1708         /* we need a minimum of two pages */
1709         if (nr_pages < 2)
1710                 nr_pages = 2;
1711
1712         size = nr_pages * BUF_PAGE_SIZE;
1713
1714         /*
1715          * Don't succeed if resizing is disabled, as a reader might be
1716          * manipulating the ring buffer and is expecting a sane state while
1717          * this is true.
1718          */
1719         if (atomic_read(&buffer->resize_disabled))
1720                 return -EBUSY;
1721
1722         /* prevent another thread from changing buffer sizes */
1723         mutex_lock(&buffer->mutex);
1724
1725         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1726                 /* calculate the pages to update */
1727                 for_each_buffer_cpu(buffer, cpu) {
1728                         cpu_buffer = buffer->buffers[cpu];
1729
1730                         cpu_buffer->nr_pages_to_update = nr_pages -
1731                                                         cpu_buffer->nr_pages;
1732                         /*
1733                          * nothing more to do for removing pages or no update
1734                          */
1735                         if (cpu_buffer->nr_pages_to_update <= 0)
1736                                 continue;
1737                         /*
1738                          * to add pages, make sure all new pages can be
1739                          * allocated without receiving ENOMEM
1740                          */
1741                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1742                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1743                                                 &cpu_buffer->new_pages, cpu)) {
1744                                 /* not enough memory for new pages */
1745                                 err = -ENOMEM;
1746                                 goto out_err;
1747                         }
1748                 }
1749
1750                 get_online_cpus();
1751                 /*
1752                  * Fire off all the required work handlers
1753                  * We can't schedule on offline CPUs, but it's not necessary
1754                  * since we can change their buffer sizes without any race.
1755                  */
1756                 for_each_buffer_cpu(buffer, cpu) {
1757                         cpu_buffer = buffer->buffers[cpu];
1758                         if (!cpu_buffer->nr_pages_to_update)
1759                                 continue;
1760
1761                         /* Can't run something on an offline CPU. */
1762                         if (!cpu_online(cpu)) {
1763                                 rb_update_pages(cpu_buffer);
1764                                 cpu_buffer->nr_pages_to_update = 0;
1765                         } else {
1766                                 schedule_work_on(cpu,
1767                                                 &cpu_buffer->update_pages_work);
1768                         }
1769                 }
1770
1771                 /* wait for all the updates to complete */
1772                 for_each_buffer_cpu(buffer, cpu) {
1773                         cpu_buffer = buffer->buffers[cpu];
1774                         if (!cpu_buffer->nr_pages_to_update)
1775                                 continue;
1776
1777                         if (cpu_online(cpu))
1778                                 wait_for_completion(&cpu_buffer->update_done);
1779                         cpu_buffer->nr_pages_to_update = 0;
1780                 }
1781
1782                 put_online_cpus();
1783         } else {
1784                 /* Make sure this CPU has been initialized */
1785                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1786                         goto out;
1787
1788                 cpu_buffer = buffer->buffers[cpu_id];
1789
1790                 if (nr_pages == cpu_buffer->nr_pages)
1791                         goto out;
1792
1793                 cpu_buffer->nr_pages_to_update = nr_pages -
1794                                                 cpu_buffer->nr_pages;
1795
1796                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1797                 if (cpu_buffer->nr_pages_to_update > 0 &&
1798                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1799                                             &cpu_buffer->new_pages, cpu_id)) {
1800                         err = -ENOMEM;
1801                         goto out_err;
1802                 }
1803
1804                 get_online_cpus();
1805
1806                 /* Can't run something on an offline CPU. */
1807                 if (!cpu_online(cpu_id))
1808                         rb_update_pages(cpu_buffer);
1809                 else {
1810                         schedule_work_on(cpu_id,
1811                                          &cpu_buffer->update_pages_work);
1812                         wait_for_completion(&cpu_buffer->update_done);
1813                 }
1814
1815                 cpu_buffer->nr_pages_to_update = 0;
1816                 put_online_cpus();
1817         }
1818
1819  out:
1820         /*
1821          * The ring buffer resize can happen with the ring buffer
1822          * enabled, so that the update disturbs the tracing as little
1823          * as possible. But if the buffer is disabled, we do not need
1824          * to worry about that, and we can take the time to verify
1825          * that the buffer is not corrupt.
1826          */
1827         if (atomic_read(&buffer->record_disabled)) {
1828                 atomic_inc(&buffer->record_disabled);
1829                 /*
1830                  * Even though the buffer was disabled, we must make sure
1831                  * that it is truly disabled before calling rb_check_pages.
1832                  * There could have been a race between checking
1833                  * record_disable and incrementing it.
1834                  */
1835                 synchronize_sched();
1836                 for_each_buffer_cpu(buffer, cpu) {
1837                         cpu_buffer = buffer->buffers[cpu];
1838                         rb_check_pages(cpu_buffer);
1839                 }
1840                 atomic_dec(&buffer->record_disabled);
1841         }
1842
1843         mutex_unlock(&buffer->mutex);
1844         return size;
1845
1846  out_err:
1847         for_each_buffer_cpu(buffer, cpu) {
1848                 struct buffer_page *bpage, *tmp;
1849
1850                 cpu_buffer = buffer->buffers[cpu];
1851                 cpu_buffer->nr_pages_to_update = 0;
1852
1853                 if (list_empty(&cpu_buffer->new_pages))
1854                         continue;
1855
1856                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1857                                         list) {
1858                         list_del_init(&bpage->list);
1859                         free_buffer_page(bpage);
1860                 }
1861         }
1862         mutex_unlock(&buffer->mutex);
1863         return err;
1864 }
1865 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1866
1867 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1868 {
1869         mutex_lock(&buffer->mutex);
1870         if (val)
1871                 buffer->flags |= RB_FL_OVERWRITE;
1872         else
1873                 buffer->flags &= ~RB_FL_OVERWRITE;
1874         mutex_unlock(&buffer->mutex);
1875 }
1876 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1877
1878 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1879 {
1880         return bpage->page->data + index;
1881 }
1882
1883 static __always_inline struct ring_buffer_event *
1884 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1885 {
1886         return __rb_page_index(cpu_buffer->reader_page,
1887                                cpu_buffer->reader_page->read);
1888 }
1889
1890 static __always_inline struct ring_buffer_event *
1891 rb_iter_head_event(struct ring_buffer_iter *iter)
1892 {
1893         return __rb_page_index(iter->head_page, iter->head);
1894 }
1895
1896 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1897 {
1898         return local_read(&bpage->page->commit);
1899 }
1900
1901 /* Size is determined by what has been committed */
1902 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1903 {
1904         return rb_page_commit(bpage);
1905 }
1906
1907 static __always_inline unsigned
1908 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1909 {
1910         return rb_page_commit(cpu_buffer->commit_page);
1911 }
1912
1913 static __always_inline unsigned
1914 rb_event_index(struct ring_buffer_event *event)
1915 {
1916         unsigned long addr = (unsigned long)event;
1917
1918         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1919 }
1920
1921 static void rb_inc_iter(struct ring_buffer_iter *iter)
1922 {
1923         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1924
1925         /*
1926          * The iterator could be on the reader page (it starts there).
1927          * But the head could have moved, since the reader was
1928          * found. Check for this case and assign the iterator
1929          * to the head page instead of next.
1930          */
1931         if (iter->head_page == cpu_buffer->reader_page)
1932                 iter->head_page = rb_set_head_page(cpu_buffer);
1933         else
1934                 rb_inc_page(cpu_buffer, &iter->head_page);
1935
1936         iter->read_stamp = iter->head_page->page->time_stamp;
1937         iter->head = 0;
1938 }
1939
1940 /*
1941  * rb_handle_head_page - writer hit the head page
1942  *
1943  * Returns: +1 to retry page
1944  *           0 to continue
1945  *          -1 on error
1946  */
1947 static int
1948 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1949                     struct buffer_page *tail_page,
1950                     struct buffer_page *next_page)
1951 {
1952         struct buffer_page *new_head;
1953         int entries;
1954         int type;
1955         int ret;
1956
1957         entries = rb_page_entries(next_page);
1958
1959         /*
1960          * The hard part is here. We need to move the head
1961          * forward, and protect against both readers on
1962          * other CPUs and writers coming in via interrupts.
1963          */
1964         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1965                                        RB_PAGE_HEAD);
1966
1967         /*
1968          * type can be one of four:
1969          *  NORMAL - an interrupt already moved it for us
1970          *  HEAD   - we are the first to get here.
1971          *  UPDATE - we are the interrupt interrupting
1972          *           a current move.
1973          *  MOVED  - a reader on another CPU moved the next
1974          *           pointer to its reader page. Give up
1975          *           and try again.
1976          */
1977
1978         switch (type) {
1979         case RB_PAGE_HEAD:
1980                 /*
1981                  * We changed the head to UPDATE, thus
1982                  * it is our responsibility to update
1983                  * the counters.
1984                  */
1985                 local_add(entries, &cpu_buffer->overrun);
1986                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1987
1988                 /*
1989                  * The entries will be zeroed out when we move the
1990                  * tail page.
1991                  */
1992
1993                 /* still more to do */
1994                 break;
1995
1996         case RB_PAGE_UPDATE:
1997                 /*
1998                  * This is an interrupt that interrupt the
1999                  * previous update. Still more to do.
2000                  */
2001                 break;
2002         case RB_PAGE_NORMAL:
2003                 /*
2004                  * An interrupt came in before the update
2005                  * and processed this for us.
2006                  * Nothing left to do.
2007                  */
2008                 return 1;
2009         case RB_PAGE_MOVED:
2010                 /*
2011                  * The reader is on another CPU and just did
2012                  * a swap with our next_page.
2013                  * Try again.
2014                  */
2015                 return 1;
2016         default:
2017                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2018                 return -1;
2019         }
2020
2021         /*
2022          * Now that we are here, the old head pointer is
2023          * set to UPDATE. This will keep the reader from
2024          * swapping the head page with the reader page.
2025          * The reader (on another CPU) will spin till
2026          * we are finished.
2027          *
2028          * We just need to protect against interrupts
2029          * doing the job. We will set the next pointer
2030          * to HEAD. After that, we set the old pointer
2031          * to NORMAL, but only if it was HEAD before.
2032          * otherwise we are an interrupt, and only
2033          * want the outer most commit to reset it.
2034          */
2035         new_head = next_page;
2036         rb_inc_page(cpu_buffer, &new_head);
2037
2038         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2039                                     RB_PAGE_NORMAL);
2040
2041         /*
2042          * Valid returns are:
2043          *  HEAD   - an interrupt came in and already set it.
2044          *  NORMAL - One of two things:
2045          *            1) We really set it.
2046          *            2) A bunch of interrupts came in and moved
2047          *               the page forward again.
2048          */
2049         switch (ret) {
2050         case RB_PAGE_HEAD:
2051         case RB_PAGE_NORMAL:
2052                 /* OK */
2053                 break;
2054         default:
2055                 RB_WARN_ON(cpu_buffer, 1);
2056                 return -1;
2057         }
2058
2059         /*
2060          * It is possible that an interrupt came in,
2061          * set the head up, then more interrupts came in
2062          * and moved it again. When we get back here,
2063          * the page would have been set to NORMAL but we
2064          * just set it back to HEAD.
2065          *
2066          * How do you detect this? Well, if that happened
2067          * the tail page would have moved.
2068          */
2069         if (ret == RB_PAGE_NORMAL) {
2070                 struct buffer_page *buffer_tail_page;
2071
2072                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2073                 /*
2074                  * If the tail had moved passed next, then we need
2075                  * to reset the pointer.
2076                  */
2077                 if (buffer_tail_page != tail_page &&
2078                     buffer_tail_page != next_page)
2079                         rb_head_page_set_normal(cpu_buffer, new_head,
2080                                                 next_page,
2081                                                 RB_PAGE_HEAD);
2082         }
2083
2084         /*
2085          * If this was the outer most commit (the one that
2086          * changed the original pointer from HEAD to UPDATE),
2087          * then it is up to us to reset it to NORMAL.
2088          */
2089         if (type == RB_PAGE_HEAD) {
2090                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2091                                               tail_page,
2092                                               RB_PAGE_UPDATE);
2093                 if (RB_WARN_ON(cpu_buffer,
2094                                ret != RB_PAGE_UPDATE))
2095                         return -1;
2096         }
2097
2098         return 0;
2099 }
2100
2101 static inline void
2102 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2103               unsigned long tail, struct rb_event_info *info)
2104 {
2105         struct buffer_page *tail_page = info->tail_page;
2106         struct ring_buffer_event *event;
2107         unsigned long length = info->length;
2108
2109         /*
2110          * Only the event that crossed the page boundary
2111          * must fill the old tail_page with padding.
2112          */
2113         if (tail >= BUF_PAGE_SIZE) {
2114                 /*
2115                  * If the page was filled, then we still need
2116                  * to update the real_end. Reset it to zero
2117                  * and the reader will ignore it.
2118                  */
2119                 if (tail == BUF_PAGE_SIZE)
2120                         tail_page->real_end = 0;
2121
2122                 local_sub(length, &tail_page->write);
2123                 return;
2124         }
2125
2126         event = __rb_page_index(tail_page, tail);
2127
2128         /* account for padding bytes */
2129         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2130
2131         /*
2132          * Save the original length to the meta data.
2133          * This will be used by the reader to add lost event
2134          * counter.
2135          */
2136         tail_page->real_end = tail;
2137
2138         /*
2139          * If this event is bigger than the minimum size, then
2140          * we need to be careful that we don't subtract the
2141          * write counter enough to allow another writer to slip
2142          * in on this page.
2143          * We put in a discarded commit instead, to make sure
2144          * that this space is not used again.
2145          *
2146          * If we are less than the minimum size, we don't need to
2147          * worry about it.
2148          */
2149         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2150                 /* No room for any events */
2151
2152                 /* Mark the rest of the page with padding */
2153                 rb_event_set_padding(event);
2154
2155                 /* Set the write back to the previous setting */
2156                 local_sub(length, &tail_page->write);
2157                 return;
2158         }
2159
2160         /* Put in a discarded event */
2161         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2162         event->type_len = RINGBUF_TYPE_PADDING;
2163         /* time delta must be non zero */
2164         event->time_delta = 1;
2165
2166         /* Set write to end of buffer */
2167         length = (tail + length) - BUF_PAGE_SIZE;
2168         local_sub(length, &tail_page->write);
2169 }
2170
2171 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2172
2173 /*
2174  * This is the slow path, force gcc not to inline it.
2175  */
2176 static noinline struct ring_buffer_event *
2177 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2178              unsigned long tail, struct rb_event_info *info)
2179 {
2180         struct buffer_page *tail_page = info->tail_page;
2181         struct buffer_page *commit_page = cpu_buffer->commit_page;
2182         struct ring_buffer *buffer = cpu_buffer->buffer;
2183         struct buffer_page *next_page;
2184         int ret;
2185
2186         next_page = tail_page;
2187
2188         rb_inc_page(cpu_buffer, &next_page);
2189
2190         /*
2191          * If for some reason, we had an interrupt storm that made
2192          * it all the way around the buffer, bail, and warn
2193          * about it.
2194          */
2195         if (unlikely(next_page == commit_page)) {
2196                 local_inc(&cpu_buffer->commit_overrun);
2197                 goto out_reset;
2198         }
2199
2200         /*
2201          * This is where the fun begins!
2202          *
2203          * We are fighting against races between a reader that
2204          * could be on another CPU trying to swap its reader
2205          * page with the buffer head.
2206          *
2207          * We are also fighting against interrupts coming in and
2208          * moving the head or tail on us as well.
2209          *
2210          * If the next page is the head page then we have filled
2211          * the buffer, unless the commit page is still on the
2212          * reader page.
2213          */
2214         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2215
2216                 /*
2217                  * If the commit is not on the reader page, then
2218                  * move the header page.
2219                  */
2220                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2221                         /*
2222                          * If we are not in overwrite mode,
2223                          * this is easy, just stop here.
2224                          */
2225                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2226                                 local_inc(&cpu_buffer->dropped_events);
2227                                 goto out_reset;
2228                         }
2229
2230                         ret = rb_handle_head_page(cpu_buffer,
2231                                                   tail_page,
2232                                                   next_page);
2233                         if (ret < 0)
2234                                 goto out_reset;
2235                         if (ret)
2236                                 goto out_again;
2237                 } else {
2238                         /*
2239                          * We need to be careful here too. The
2240                          * commit page could still be on the reader
2241                          * page. We could have a small buffer, and
2242                          * have filled up the buffer with events
2243                          * from interrupts and such, and wrapped.
2244                          *
2245                          * Note, if the tail page is also the on the
2246                          * reader_page, we let it move out.
2247                          */
2248                         if (unlikely((cpu_buffer->commit_page !=
2249                                       cpu_buffer->tail_page) &&
2250                                      (cpu_buffer->commit_page ==
2251                                       cpu_buffer->reader_page))) {
2252                                 local_inc(&cpu_buffer->commit_overrun);
2253                                 goto out_reset;
2254                         }
2255                 }
2256         }
2257
2258         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2259
2260  out_again:
2261
2262         rb_reset_tail(cpu_buffer, tail, info);
2263
2264         /* Commit what we have for now. */
2265         rb_end_commit(cpu_buffer);
2266         /* rb_end_commit() decs committing */
2267         local_inc(&cpu_buffer->committing);
2268
2269         /* fail and let the caller try again */
2270         return ERR_PTR(-EAGAIN);
2271
2272  out_reset:
2273         /* reset write */
2274         rb_reset_tail(cpu_buffer, tail, info);
2275
2276         return NULL;
2277 }
2278
2279 /* Slow path, do not inline */
2280 static noinline struct ring_buffer_event *
2281 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2282 {
2283         if (abs)
2284                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2285         else
2286                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2287
2288         /* Not the first event on the page, or not delta? */
2289         if (abs || rb_event_index(event)) {
2290                 event->time_delta = delta & TS_MASK;
2291                 event->array[0] = delta >> TS_SHIFT;
2292         } else {
2293                 /* nope, just zero it */
2294                 event->time_delta = 0;
2295                 event->array[0] = 0;
2296         }
2297
2298         return skip_time_extend(event);
2299 }
2300
2301 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2302                                      struct ring_buffer_event *event);
2303
2304 /**
2305  * rb_update_event - update event type and data
2306  * @event: the event to update
2307  * @type: the type of event
2308  * @length: the size of the event field in the ring buffer
2309  *
2310  * Update the type and data fields of the event. The length
2311  * is the actual size that is written to the ring buffer,
2312  * and with this, we can determine what to place into the
2313  * data field.
2314  */
2315 static void
2316 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2317                 struct ring_buffer_event *event,
2318                 struct rb_event_info *info)
2319 {
2320         unsigned length = info->length;
2321         u64 delta = info->delta;
2322
2323         /* Only a commit updates the timestamp */
2324         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2325                 delta = 0;
2326
2327         /*
2328          * If we need to add a timestamp, then we
2329          * add it to the start of the reserved space.
2330          */
2331         if (unlikely(info->add_timestamp)) {
2332                 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2333
2334                 event = rb_add_time_stamp(event, info->delta, abs);
2335                 length -= RB_LEN_TIME_EXTEND;
2336                 delta = 0;
2337         }
2338
2339         event->time_delta = delta;
2340         length -= RB_EVNT_HDR_SIZE;
2341         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2342                 event->type_len = 0;
2343                 event->array[0] = length;
2344         } else
2345                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2346 }
2347
2348 static unsigned rb_calculate_event_length(unsigned length)
2349 {
2350         struct ring_buffer_event event; /* Used only for sizeof array */
2351
2352         /* zero length can cause confusions */
2353         if (!length)
2354                 length++;
2355
2356         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2357                 length += sizeof(event.array[0]);
2358
2359         length += RB_EVNT_HDR_SIZE;
2360         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2361
2362         /*
2363          * In case the time delta is larger than the 27 bits for it
2364          * in the header, we need to add a timestamp. If another
2365          * event comes in when trying to discard this one to increase
2366          * the length, then the timestamp will be added in the allocated
2367          * space of this event. If length is bigger than the size needed
2368          * for the TIME_EXTEND, then padding has to be used. The events
2369          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2370          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2371          * As length is a multiple of 4, we only need to worry if it
2372          * is 12 (RB_LEN_TIME_EXTEND + 4).
2373          */
2374         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2375                 length += RB_ALIGNMENT;
2376
2377         return length;
2378 }
2379
2380 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2381 static inline bool sched_clock_stable(void)
2382 {
2383         return true;
2384 }
2385 #endif
2386
2387 static inline int
2388 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2389                   struct ring_buffer_event *event)
2390 {
2391         unsigned long new_index, old_index;
2392         struct buffer_page *bpage;
2393         unsigned long index;
2394         unsigned long addr;
2395
2396         new_index = rb_event_index(event);
2397         old_index = new_index + rb_event_ts_length(event);
2398         addr = (unsigned long)event;
2399         addr &= PAGE_MASK;
2400
2401         bpage = READ_ONCE(cpu_buffer->tail_page);
2402
2403         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2404                 unsigned long write_mask =
2405                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2406                 unsigned long event_length = rb_event_length(event);
2407                 /*
2408                  * This is on the tail page. It is possible that
2409                  * a write could come in and move the tail page
2410                  * and write to the next page. That is fine
2411                  * because we just shorten what is on this page.
2412                  */
2413                 old_index += write_mask;
2414                 new_index += write_mask;
2415                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2416                 if (index == old_index) {
2417                         /* update counters */
2418                         local_sub(event_length, &cpu_buffer->entries_bytes);
2419                         return 1;
2420                 }
2421         }
2422
2423         /* could not discard */
2424         return 0;
2425 }
2426
2427 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2428 {
2429         local_inc(&cpu_buffer->committing);
2430         local_inc(&cpu_buffer->commits);
2431 }
2432
2433 static __always_inline void
2434 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2435 {
2436         unsigned long max_count;
2437
2438         /*
2439          * We only race with interrupts and NMIs on this CPU.
2440          * If we own the commit event, then we can commit
2441          * all others that interrupted us, since the interruptions
2442          * are in stack format (they finish before they come
2443          * back to us). This allows us to do a simple loop to
2444          * assign the commit to the tail.
2445          */
2446  again:
2447         max_count = cpu_buffer->nr_pages * 100;
2448
2449         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2450                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2451                         return;
2452                 if (RB_WARN_ON(cpu_buffer,
2453                                rb_is_reader_page(cpu_buffer->tail_page)))
2454                         return;
2455                 local_set(&cpu_buffer->commit_page->page->commit,
2456                           rb_page_write(cpu_buffer->commit_page));
2457                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2458                 /* Only update the write stamp if the page has an event */
2459                 if (rb_page_write(cpu_buffer->commit_page))
2460                         cpu_buffer->write_stamp =
2461                                 cpu_buffer->commit_page->page->time_stamp;
2462                 /* add barrier to keep gcc from optimizing too much */
2463                 barrier();
2464         }
2465         while (rb_commit_index(cpu_buffer) !=
2466                rb_page_write(cpu_buffer->commit_page)) {
2467
2468                 local_set(&cpu_buffer->commit_page->page->commit,
2469                           rb_page_write(cpu_buffer->commit_page));
2470                 RB_WARN_ON(cpu_buffer,
2471                            local_read(&cpu_buffer->commit_page->page->commit) &
2472                            ~RB_WRITE_MASK);
2473                 barrier();
2474         }
2475
2476         /* again, keep gcc from optimizing */
2477         barrier();
2478
2479         /*
2480          * If an interrupt came in just after the first while loop
2481          * and pushed the tail page forward, we will be left with
2482          * a dangling commit that will never go forward.
2483          */
2484         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2485                 goto again;
2486 }
2487
2488 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2489 {
2490         unsigned long commits;
2491
2492         if (RB_WARN_ON(cpu_buffer,
2493                        !local_read(&cpu_buffer->committing)))
2494                 return;
2495
2496  again:
2497         commits = local_read(&cpu_buffer->commits);
2498         /* synchronize with interrupts */
2499         barrier();
2500         if (local_read(&cpu_buffer->committing) == 1)
2501                 rb_set_commit_to_write(cpu_buffer);
2502
2503         local_dec(&cpu_buffer->committing);
2504
2505         /* synchronize with interrupts */
2506         barrier();
2507
2508         /*
2509          * Need to account for interrupts coming in between the
2510          * updating of the commit page and the clearing of the
2511          * committing counter.
2512          */
2513         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2514             !local_read(&cpu_buffer->committing)) {
2515                 local_inc(&cpu_buffer->committing);
2516                 goto again;
2517         }
2518 }
2519
2520 static inline void rb_event_discard(struct ring_buffer_event *event)
2521 {
2522         if (extended_time(event))
2523                 event = skip_time_extend(event);
2524
2525         /* array[0] holds the actual length for the discarded event */
2526         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2527         event->type_len = RINGBUF_TYPE_PADDING;
2528         /* time delta must be non zero */
2529         if (!event->time_delta)
2530                 event->time_delta = 1;
2531 }
2532
2533 static __always_inline bool
2534 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2535                    struct ring_buffer_event *event)
2536 {
2537         unsigned long addr = (unsigned long)event;
2538         unsigned long index;
2539
2540         index = rb_event_index(event);
2541         addr &= PAGE_MASK;
2542
2543         return cpu_buffer->commit_page->page == (void *)addr &&
2544                 rb_commit_index(cpu_buffer) == index;
2545 }
2546
2547 static __always_inline void
2548 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2549                       struct ring_buffer_event *event)
2550 {
2551         u64 delta;
2552
2553         /*
2554          * The event first in the commit queue updates the
2555          * time stamp.
2556          */
2557         if (rb_event_is_commit(cpu_buffer, event)) {
2558                 /*
2559                  * A commit event that is first on a page
2560                  * updates the write timestamp with the page stamp
2561                  */
2562                 if (!rb_event_index(event))
2563                         cpu_buffer->write_stamp =
2564                                 cpu_buffer->commit_page->page->time_stamp;
2565                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2566                         delta = ring_buffer_event_time_stamp(event);
2567                         cpu_buffer->write_stamp += delta;
2568                 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2569                         delta = ring_buffer_event_time_stamp(event);
2570                         cpu_buffer->write_stamp = delta;
2571                 } else
2572                         cpu_buffer->write_stamp += event->time_delta;
2573         }
2574 }
2575
2576 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2577                       struct ring_buffer_event *event)
2578 {
2579         local_inc(&cpu_buffer->entries);
2580         rb_update_write_stamp(cpu_buffer, event);
2581         rb_end_commit(cpu_buffer);
2582 }
2583
2584 static __always_inline void
2585 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2586 {
2587         bool pagebusy;
2588
2589         if (buffer->irq_work.waiters_pending) {
2590                 buffer->irq_work.waiters_pending = false;
2591                 /* irq_work_queue() supplies it's own memory barriers */
2592                 irq_work_queue(&buffer->irq_work.work);
2593         }
2594
2595         if (cpu_buffer->irq_work.waiters_pending) {
2596                 cpu_buffer->irq_work.waiters_pending = false;
2597                 /* irq_work_queue() supplies it's own memory barriers */
2598                 irq_work_queue(&cpu_buffer->irq_work.work);
2599         }
2600
2601         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2602
2603         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2604                 cpu_buffer->irq_work.wakeup_full = true;
2605                 cpu_buffer->irq_work.full_waiters_pending = false;
2606                 /* irq_work_queue() supplies it's own memory barriers */
2607                 irq_work_queue(&cpu_buffer->irq_work.work);
2608         }
2609 }
2610
2611 /*
2612  * The lock and unlock are done within a preempt disable section.
2613  * The current_context per_cpu variable can only be modified
2614  * by the current task between lock and unlock. But it can
2615  * be modified more than once via an interrupt. To pass this
2616  * information from the lock to the unlock without having to
2617  * access the 'in_interrupt()' functions again (which do show
2618  * a bit of overhead in something as critical as function tracing,
2619  * we use a bitmask trick.
2620  *
2621  *  bit 0 =  NMI context
2622  *  bit 1 =  IRQ context
2623  *  bit 2 =  SoftIRQ context
2624  *  bit 3 =  normal context.
2625  *
2626  * This works because this is the order of contexts that can
2627  * preempt other contexts. A SoftIRQ never preempts an IRQ
2628  * context.
2629  *
2630  * When the context is determined, the corresponding bit is
2631  * checked and set (if it was set, then a recursion of that context
2632  * happened).
2633  *
2634  * On unlock, we need to clear this bit. To do so, just subtract
2635  * 1 from the current_context and AND it to itself.
2636  *
2637  * (binary)
2638  *  101 - 1 = 100
2639  *  101 & 100 = 100 (clearing bit zero)
2640  *
2641  *  1010 - 1 = 1001
2642  *  1010 & 1001 = 1000 (clearing bit 1)
2643  *
2644  * The least significant bit can be cleared this way, and it
2645  * just so happens that it is the same bit corresponding to
2646  * the current context.
2647  */
2648
2649 static __always_inline int
2650 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2651 {
2652         unsigned int val = cpu_buffer->current_context;
2653         unsigned long pc = preempt_count();
2654         int bit;
2655
2656         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2657                 bit = RB_CTX_NORMAL;
2658         else
2659                 bit = pc & NMI_MASK ? RB_CTX_NMI :
2660                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2661
2662         if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2663                 return 1;
2664
2665         val |= (1 << (bit + cpu_buffer->nest));
2666         cpu_buffer->current_context = val;
2667
2668         return 0;
2669 }
2670
2671 static __always_inline void
2672 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2673 {
2674         cpu_buffer->current_context &=
2675                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2676 }
2677
2678 /* The recursive locking above uses 4 bits */
2679 #define NESTED_BITS 4
2680
2681 /**
2682  * ring_buffer_nest_start - Allow to trace while nested
2683  * @buffer: The ring buffer to modify
2684  *
2685  * The ring buffer has a safety mechanism to prevent recursion.
2686  * But there may be a case where a trace needs to be done while
2687  * tracing something else. In this case, calling this function
2688  * will allow this function to nest within a currently active
2689  * ring_buffer_lock_reserve().
2690  *
2691  * Call this function before calling another ring_buffer_lock_reserve() and
2692  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2693  */
2694 void ring_buffer_nest_start(struct ring_buffer *buffer)
2695 {
2696         struct ring_buffer_per_cpu *cpu_buffer;
2697         int cpu;
2698
2699         /* Enabled by ring_buffer_nest_end() */
2700         preempt_disable_notrace();
2701         cpu = raw_smp_processor_id();
2702         cpu_buffer = buffer->buffers[cpu];
2703         /* This is the shift value for the above recursive locking */
2704         cpu_buffer->nest += NESTED_BITS;
2705 }
2706
2707 /**
2708  * ring_buffer_nest_end - Allow to trace while nested
2709  * @buffer: The ring buffer to modify
2710  *
2711  * Must be called after ring_buffer_nest_start() and after the
2712  * ring_buffer_unlock_commit().
2713  */
2714 void ring_buffer_nest_end(struct ring_buffer *buffer)
2715 {
2716         struct ring_buffer_per_cpu *cpu_buffer;
2717         int cpu;
2718
2719         /* disabled by ring_buffer_nest_start() */
2720         cpu = raw_smp_processor_id();
2721         cpu_buffer = buffer->buffers[cpu];
2722         /* This is the shift value for the above recursive locking */
2723         cpu_buffer->nest -= NESTED_BITS;
2724         preempt_enable_notrace();
2725 }
2726
2727 /**
2728  * ring_buffer_unlock_commit - commit a reserved
2729  * @buffer: The buffer to commit to
2730  * @event: The event pointer to commit.
2731  *
2732  * This commits the data to the ring buffer, and releases any locks held.
2733  *
2734  * Must be paired with ring_buffer_lock_reserve.
2735  */
2736 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2737                               struct ring_buffer_event *event)
2738 {
2739         struct ring_buffer_per_cpu *cpu_buffer;
2740         int cpu = raw_smp_processor_id();
2741
2742         cpu_buffer = buffer->buffers[cpu];
2743
2744         rb_commit(cpu_buffer, event);
2745
2746         rb_wakeups(buffer, cpu_buffer);
2747
2748         trace_recursive_unlock(cpu_buffer);
2749
2750         preempt_enable_notrace();
2751
2752         return 0;
2753 }
2754 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2755
2756 static noinline void
2757 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2758                     struct rb_event_info *info)
2759 {
2760         WARN_ONCE(info->delta > (1ULL << 59),
2761                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2762                   (unsigned long long)info->delta,
2763                   (unsigned long long)info->ts,
2764                   (unsigned long long)cpu_buffer->write_stamp,
2765                   sched_clock_stable() ? "" :
2766                   "If you just came from a suspend/resume,\n"
2767                   "please switch to the trace global clock:\n"
2768                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2769                   "or add trace_clock=global to the kernel command line\n");
2770         info->add_timestamp = 1;
2771 }
2772
2773 static struct ring_buffer_event *
2774 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2775                   struct rb_event_info *info)
2776 {
2777         struct ring_buffer_event *event;
2778         struct buffer_page *tail_page;
2779         unsigned long tail, write;
2780
2781         /*
2782          * If the time delta since the last event is too big to
2783          * hold in the time field of the event, then we append a
2784          * TIME EXTEND event ahead of the data event.
2785          */
2786         if (unlikely(info->add_timestamp))
2787                 info->length += RB_LEN_TIME_EXTEND;
2788
2789         /* Don't let the compiler play games with cpu_buffer->tail_page */
2790         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2791         write = local_add_return(info->length, &tail_page->write);
2792
2793         /* set write to only the index of the write */
2794         write &= RB_WRITE_MASK;
2795         tail = write - info->length;
2796
2797         /*
2798          * If this is the first commit on the page, then it has the same
2799          * timestamp as the page itself.
2800          */
2801         if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2802                 info->delta = 0;
2803
2804         /* See if we shot pass the end of this buffer page */
2805         if (unlikely(write > BUF_PAGE_SIZE))
2806                 return rb_move_tail(cpu_buffer, tail, info);
2807
2808         /* We reserved something on the buffer */
2809
2810         event = __rb_page_index(tail_page, tail);
2811         rb_update_event(cpu_buffer, event, info);
2812
2813         local_inc(&tail_page->entries);
2814
2815         /*
2816          * If this is the first commit on the page, then update
2817          * its timestamp.
2818          */
2819         if (!tail)
2820                 tail_page->page->time_stamp = info->ts;
2821
2822         /* account for these added bytes */
2823         local_add(info->length, &cpu_buffer->entries_bytes);
2824
2825         return event;
2826 }
2827
2828 static __always_inline struct ring_buffer_event *
2829 rb_reserve_next_event(struct ring_buffer *buffer,
2830                       struct ring_buffer_per_cpu *cpu_buffer,
2831                       unsigned long length)
2832 {
2833         struct ring_buffer_event *event;
2834         struct rb_event_info info;
2835         int nr_loops = 0;
2836         u64 diff;
2837
2838         rb_start_commit(cpu_buffer);
2839
2840 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2841         /*
2842          * Due to the ability to swap a cpu buffer from a buffer
2843          * it is possible it was swapped before we committed.
2844          * (committing stops a swap). We check for it here and
2845          * if it happened, we have to fail the write.
2846          */
2847         barrier();
2848         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2849                 local_dec(&cpu_buffer->committing);
2850                 local_dec(&cpu_buffer->commits);
2851                 return NULL;
2852         }
2853 #endif
2854
2855         info.length = rb_calculate_event_length(length);
2856  again:
2857         info.add_timestamp = 0;
2858         info.delta = 0;
2859
2860         /*
2861          * We allow for interrupts to reenter here and do a trace.
2862          * If one does, it will cause this original code to loop
2863          * back here. Even with heavy interrupts happening, this
2864          * should only happen a few times in a row. If this happens
2865          * 1000 times in a row, there must be either an interrupt
2866          * storm or we have something buggy.
2867          * Bail!
2868          */
2869         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2870                 goto out_fail;
2871
2872         info.ts = rb_time_stamp(cpu_buffer->buffer);
2873         diff = info.ts - cpu_buffer->write_stamp;
2874
2875         /* make sure this diff is calculated here */
2876         barrier();
2877
2878         if (ring_buffer_time_stamp_abs(buffer)) {
2879                 info.delta = info.ts;
2880                 rb_handle_timestamp(cpu_buffer, &info);
2881         } else /* Did the write stamp get updated already? */
2882                 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2883                 info.delta = diff;
2884                 if (unlikely(test_time_stamp(info.delta)))
2885                         rb_handle_timestamp(cpu_buffer, &info);
2886         }
2887
2888         event = __rb_reserve_next(cpu_buffer, &info);
2889
2890         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2891                 if (info.add_timestamp)
2892                         info.length -= RB_LEN_TIME_EXTEND;
2893                 goto again;
2894         }
2895
2896         if (!event)
2897                 goto out_fail;
2898
2899         return event;
2900
2901  out_fail:
2902         rb_end_commit(cpu_buffer);
2903         return NULL;
2904 }
2905
2906 /**
2907  * ring_buffer_lock_reserve - reserve a part of the buffer
2908  * @buffer: the ring buffer to reserve from
2909  * @length: the length of the data to reserve (excluding event header)
2910  *
2911  * Returns a reserved event on the ring buffer to copy directly to.
2912  * The user of this interface will need to get the body to write into
2913  * and can use the ring_buffer_event_data() interface.
2914  *
2915  * The length is the length of the data needed, not the event length
2916  * which also includes the event header.
2917  *
2918  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2919  * If NULL is returned, then nothing has been allocated or locked.
2920  */
2921 struct ring_buffer_event *
2922 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2923 {
2924         struct ring_buffer_per_cpu *cpu_buffer;
2925         struct ring_buffer_event *event;
2926         int cpu;
2927
2928         /* If we are tracing schedule, we don't want to recurse */
2929         preempt_disable_notrace();
2930
2931         if (unlikely(atomic_read(&buffer->record_disabled)))
2932                 goto out;
2933
2934         cpu = raw_smp_processor_id();
2935
2936         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2937                 goto out;
2938
2939         cpu_buffer = buffer->buffers[cpu];
2940
2941         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2942                 goto out;
2943
2944         if (unlikely(length > BUF_MAX_DATA_SIZE))
2945                 goto out;
2946
2947         if (unlikely(trace_recursive_lock(cpu_buffer)))
2948                 goto out;
2949
2950         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2951         if (!event)
2952                 goto out_unlock;
2953
2954         return event;
2955
2956  out_unlock:
2957         trace_recursive_unlock(cpu_buffer);
2958  out:
2959         preempt_enable_notrace();
2960         return NULL;
2961 }
2962 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2963
2964 /*
2965  * Decrement the entries to the page that an event is on.
2966  * The event does not even need to exist, only the pointer
2967  * to the page it is on. This may only be called before the commit
2968  * takes place.
2969  */
2970 static inline void
2971 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2972                    struct ring_buffer_event *event)
2973 {
2974         unsigned long addr = (unsigned long)event;
2975         struct buffer_page *bpage = cpu_buffer->commit_page;
2976         struct buffer_page *start;
2977
2978         addr &= PAGE_MASK;
2979
2980         /* Do the likely case first */
2981         if (likely(bpage->page == (void *)addr)) {
2982                 local_dec(&bpage->entries);
2983                 return;
2984         }
2985
2986         /*
2987          * Because the commit page may be on the reader page we
2988          * start with the next page and check the end loop there.
2989          */
2990         rb_inc_page(cpu_buffer, &bpage);
2991         start = bpage;
2992         do {
2993                 if (bpage->page == (void *)addr) {
2994                         local_dec(&bpage->entries);
2995                         return;
2996                 }
2997                 rb_inc_page(cpu_buffer, &bpage);
2998         } while (bpage != start);
2999
3000         /* commit not part of this buffer?? */
3001         RB_WARN_ON(cpu_buffer, 1);
3002 }
3003
3004 /**
3005  * ring_buffer_commit_discard - discard an event that has not been committed
3006  * @buffer: the ring buffer
3007  * @event: non committed event to discard
3008  *
3009  * Sometimes an event that is in the ring buffer needs to be ignored.
3010  * This function lets the user discard an event in the ring buffer
3011  * and then that event will not be read later.
3012  *
3013  * This function only works if it is called before the item has been
3014  * committed. It will try to free the event from the ring buffer
3015  * if another event has not been added behind it.
3016  *
3017  * If another event has been added behind it, it will set the event
3018  * up as discarded, and perform the commit.
3019  *
3020  * If this function is called, do not call ring_buffer_unlock_commit on
3021  * the event.
3022  */
3023 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3024                                 struct ring_buffer_event *event)
3025 {
3026         struct ring_buffer_per_cpu *cpu_buffer;
3027         int cpu;
3028
3029         /* The event is discarded regardless */
3030         rb_event_discard(event);
3031
3032         cpu = smp_processor_id();
3033         cpu_buffer = buffer->buffers[cpu];
3034
3035         /*
3036          * This must only be called if the event has not been
3037          * committed yet. Thus we can assume that preemption
3038          * is still disabled.
3039          */
3040         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3041
3042         rb_decrement_entry(cpu_buffer, event);
3043         if (rb_try_to_discard(cpu_buffer, event))
3044                 goto out;
3045
3046         /*
3047          * The commit is still visible by the reader, so we
3048          * must still update the timestamp.
3049          */
3050         rb_update_write_stamp(cpu_buffer, event);
3051  out:
3052         rb_end_commit(cpu_buffer);
3053
3054         trace_recursive_unlock(cpu_buffer);
3055
3056         preempt_enable_notrace();
3057
3058 }
3059 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3060
3061 /**
3062  * ring_buffer_write - write data to the buffer without reserving
3063  * @buffer: The ring buffer to write to.
3064  * @length: The length of the data being written (excluding the event header)
3065  * @data: The data to write to the buffer.
3066  *
3067  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3068  * one function. If you already have the data to write to the buffer, it
3069  * may be easier to simply call this function.
3070  *
3071  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3072  * and not the length of the event which would hold the header.
3073  */
3074 int ring_buffer_write(struct ring_buffer *buffer,
3075                       unsigned long length,
3076                       void *data)
3077 {
3078         struct ring_buffer_per_cpu *cpu_buffer;
3079         struct ring_buffer_event *event;
3080         void *body;
3081         int ret = -EBUSY;
3082         int cpu;
3083
3084         preempt_disable_notrace();
3085
3086         if (atomic_read(&buffer->record_disabled))
3087                 goto out;
3088
3089         cpu = raw_smp_processor_id();
3090
3091         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3092                 goto out;
3093
3094         cpu_buffer = buffer->buffers[cpu];
3095
3096         if (atomic_read(&cpu_buffer->record_disabled))
3097                 goto out;
3098
3099         if (length > BUF_MAX_DATA_SIZE)
3100                 goto out;
3101
3102         if (unlikely(trace_recursive_lock(cpu_buffer)))
3103                 goto out;
3104
3105         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3106         if (!event)
3107                 goto out_unlock;
3108
3109         body = rb_event_data(event);
3110
3111         memcpy(body, data, length);
3112
3113         rb_commit(cpu_buffer, event);
3114
3115         rb_wakeups(buffer, cpu_buffer);
3116
3117         ret = 0;
3118
3119  out_unlock:
3120         trace_recursive_unlock(cpu_buffer);
3121
3122  out:
3123         preempt_enable_notrace();
3124
3125         return ret;
3126 }
3127 EXPORT_SYMBOL_GPL(ring_buffer_write);
3128
3129 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3130 {
3131         struct buffer_page *reader = cpu_buffer->reader_page;
3132         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3133         struct buffer_page *commit = cpu_buffer->commit_page;
3134
3135         /* In case of error, head will be NULL */
3136         if (unlikely(!head))
3137                 return true;
3138
3139         return reader->read == rb_page_commit(reader) &&
3140                 (commit == reader ||
3141                  (commit == head &&
3142                   head->read == rb_page_commit(commit)));
3143 }
3144
3145 /**
3146  * ring_buffer_record_disable - stop all writes into the buffer
3147  * @buffer: The ring buffer to stop writes to.
3148  *
3149  * This prevents all writes to the buffer. Any attempt to write
3150  * to the buffer after this will fail and return NULL.
3151  *
3152  * The caller should call synchronize_sched() after this.
3153  */
3154 void ring_buffer_record_disable(struct ring_buffer *buffer)
3155 {
3156         atomic_inc(&buffer->record_disabled);
3157 }
3158 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3159
3160 /**
3161  * ring_buffer_record_enable - enable writes to the buffer
3162  * @buffer: The ring buffer to enable writes
3163  *
3164  * Note, multiple disables will need the same number of enables
3165  * to truly enable the writing (much like preempt_disable).
3166  */
3167 void ring_buffer_record_enable(struct ring_buffer *buffer)
3168 {
3169         atomic_dec(&buffer->record_disabled);
3170 }
3171 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3172
3173 /**
3174  * ring_buffer_record_off - stop all writes into the buffer
3175  * @buffer: The ring buffer to stop writes to.
3176  *
3177  * This prevents all writes to the buffer. Any attempt to write
3178  * to the buffer after this will fail and return NULL.
3179  *
3180  * This is different than ring_buffer_record_disable() as
3181  * it works like an on/off switch, where as the disable() version
3182  * must be paired with a enable().
3183  */
3184 void ring_buffer_record_off(struct ring_buffer *buffer)
3185 {
3186         unsigned int rd;
3187         unsigned int new_rd;
3188
3189         do {
3190                 rd = atomic_read(&buffer->record_disabled);
3191                 new_rd = rd | RB_BUFFER_OFF;
3192         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3193 }
3194 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3195
3196 /**
3197  * ring_buffer_record_on - restart writes into the buffer
3198  * @buffer: The ring buffer to start writes to.
3199  *
3200  * This enables all writes to the buffer that was disabled by
3201  * ring_buffer_record_off().
3202  *
3203  * This is different than ring_buffer_record_enable() as
3204  * it works like an on/off switch, where as the enable() version
3205  * must be paired with a disable().
3206  */
3207 void ring_buffer_record_on(struct ring_buffer *buffer)
3208 {
3209         unsigned int rd;
3210         unsigned int new_rd;
3211
3212         do {
3213                 rd = atomic_read(&buffer->record_disabled);
3214                 new_rd = rd & ~RB_BUFFER_OFF;
3215         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3216 }
3217 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3218
3219 /**
3220  * ring_buffer_record_is_on - return true if the ring buffer can write
3221  * @buffer: The ring buffer to see if write is enabled
3222  *
3223  * Returns true if the ring buffer is in a state that it accepts writes.
3224  */
3225 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3226 {
3227         return !atomic_read(&buffer->record_disabled);
3228 }
3229
3230 /**
3231  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3232  * @buffer: The ring buffer to see if write is set enabled
3233  *
3234  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3235  * Note that this does NOT mean it is in a writable state.
3236  *
3237  * It may return true when the ring buffer has been disabled by
3238  * ring_buffer_record_disable(), as that is a temporary disabling of
3239  * the ring buffer.
3240  */
3241 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3242 {
3243         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3244 }
3245
3246 /**
3247  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3248  * @buffer: The ring buffer to stop writes to.
3249  * @cpu: The CPU buffer to stop
3250  *
3251  * This prevents all writes to the buffer. Any attempt to write
3252  * to the buffer after this will fail and return NULL.
3253  *
3254  * The caller should call synchronize_sched() after this.
3255  */
3256 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3257 {
3258         struct ring_buffer_per_cpu *cpu_buffer;
3259
3260         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261                 return;
3262
3263         cpu_buffer = buffer->buffers[cpu];
3264         atomic_inc(&cpu_buffer->record_disabled);
3265 }
3266 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3267
3268 /**
3269  * ring_buffer_record_enable_cpu - enable writes to the buffer
3270  * @buffer: The ring buffer to enable writes
3271  * @cpu: The CPU to enable.
3272  *
3273  * Note, multiple disables will need the same number of enables
3274  * to truly enable the writing (much like preempt_disable).
3275  */
3276 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278         struct ring_buffer_per_cpu *cpu_buffer;
3279
3280         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3281                 return;
3282
3283         cpu_buffer = buffer->buffers[cpu];
3284         atomic_dec(&cpu_buffer->record_disabled);
3285 }
3286 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3287
3288 /*
3289  * The total entries in the ring buffer is the running counter
3290  * of entries entered into the ring buffer, minus the sum of
3291  * the entries read from the ring buffer and the number of
3292  * entries that were overwritten.
3293  */
3294 static inline unsigned long
3295 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3296 {
3297         return local_read(&cpu_buffer->entries) -
3298                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3299 }
3300
3301 /**
3302  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3303  * @buffer: The ring buffer
3304  * @cpu: The per CPU buffer to read from.
3305  */
3306 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3307 {
3308         unsigned long flags;
3309         struct ring_buffer_per_cpu *cpu_buffer;
3310         struct buffer_page *bpage;
3311         u64 ret = 0;
3312
3313         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3314                 return 0;
3315
3316         cpu_buffer = buffer->buffers[cpu];
3317         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3318         /*
3319          * if the tail is on reader_page, oldest time stamp is on the reader
3320          * page
3321          */
3322         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3323                 bpage = cpu_buffer->reader_page;
3324         else
3325                 bpage = rb_set_head_page(cpu_buffer);
3326         if (bpage)
3327                 ret = bpage->page->time_stamp;
3328         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3329
3330         return ret;
3331 }
3332 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3333
3334 /**
3335  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3336  * @buffer: The ring buffer
3337  * @cpu: The per CPU buffer to read from.
3338  */
3339 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3340 {
3341         struct ring_buffer_per_cpu *cpu_buffer;
3342         unsigned long ret;
3343
3344         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3345                 return 0;
3346
3347         cpu_buffer = buffer->buffers[cpu];
3348         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3349
3350         return ret;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3353
3354 /**
3355  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3356  * @buffer: The ring buffer
3357  * @cpu: The per CPU buffer to get the entries from.
3358  */
3359 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3360 {
3361         struct ring_buffer_per_cpu *cpu_buffer;
3362
3363         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3364                 return 0;
3365
3366         cpu_buffer = buffer->buffers[cpu];
3367
3368         return rb_num_of_entries(cpu_buffer);
3369 }
3370 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3371
3372 /**
3373  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3374  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3375  * @buffer: The ring buffer
3376  * @cpu: The per CPU buffer to get the number of overruns from
3377  */
3378 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3379 {
3380         struct ring_buffer_per_cpu *cpu_buffer;
3381         unsigned long ret;
3382
3383         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3384                 return 0;
3385
3386         cpu_buffer = buffer->buffers[cpu];
3387         ret = local_read(&cpu_buffer->overrun);
3388
3389         return ret;
3390 }
3391 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3392
3393 /**
3394  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3395  * commits failing due to the buffer wrapping around while there are uncommitted
3396  * events, such as during an interrupt storm.
3397  * @buffer: The ring buffer
3398  * @cpu: The per CPU buffer to get the number of overruns from
3399  */
3400 unsigned long
3401 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3402 {
3403         struct ring_buffer_per_cpu *cpu_buffer;
3404         unsigned long ret;
3405
3406         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3407                 return 0;
3408
3409         cpu_buffer = buffer->buffers[cpu];
3410         ret = local_read(&cpu_buffer->commit_overrun);
3411
3412         return ret;
3413 }
3414 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3415
3416 /**
3417  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3418  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3419  * @buffer: The ring buffer
3420  * @cpu: The per CPU buffer to get the number of overruns from
3421  */
3422 unsigned long
3423 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3424 {
3425         struct ring_buffer_per_cpu *cpu_buffer;
3426         unsigned long ret;
3427
3428         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3429                 return 0;
3430
3431         cpu_buffer = buffer->buffers[cpu];
3432         ret = local_read(&cpu_buffer->dropped_events);
3433
3434         return ret;
3435 }
3436 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3437
3438 /**
3439  * ring_buffer_read_events_cpu - get the number of events successfully read
3440  * @buffer: The ring buffer
3441  * @cpu: The per CPU buffer to get the number of events read
3442  */
3443 unsigned long
3444 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3445 {
3446         struct ring_buffer_per_cpu *cpu_buffer;
3447
3448         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3449                 return 0;
3450
3451         cpu_buffer = buffer->buffers[cpu];
3452         return cpu_buffer->read;
3453 }
3454 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3455
3456 /**
3457  * ring_buffer_entries - get the number of entries in a buffer
3458  * @buffer: The ring buffer
3459  *
3460  * Returns the total number of entries in the ring buffer
3461  * (all CPU entries)
3462  */
3463 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3464 {
3465         struct ring_buffer_per_cpu *cpu_buffer;
3466         unsigned long entries = 0;
3467         int cpu;
3468
3469         /* if you care about this being correct, lock the buffer */
3470         for_each_buffer_cpu(buffer, cpu) {
3471                 cpu_buffer = buffer->buffers[cpu];
3472                 entries += rb_num_of_entries(cpu_buffer);
3473         }
3474
3475         return entries;
3476 }
3477 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3478
3479 /**
3480  * ring_buffer_overruns - get the number of overruns in buffer
3481  * @buffer: The ring buffer
3482  *
3483  * Returns the total number of overruns in the ring buffer
3484  * (all CPU entries)
3485  */
3486 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3487 {
3488         struct ring_buffer_per_cpu *cpu_buffer;
3489         unsigned long overruns = 0;
3490         int cpu;
3491
3492         /* if you care about this being correct, lock the buffer */
3493         for_each_buffer_cpu(buffer, cpu) {
3494                 cpu_buffer = buffer->buffers[cpu];
3495                 overruns += local_read(&cpu_buffer->overrun);
3496         }
3497
3498         return overruns;
3499 }
3500 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3501
3502 static void rb_iter_reset(struct ring_buffer_iter *iter)
3503 {
3504         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3505
3506         /* Iterator usage is expected to have record disabled */
3507         iter->head_page = cpu_buffer->reader_page;
3508         iter->head = cpu_buffer->reader_page->read;
3509
3510         iter->cache_reader_page = iter->head_page;
3511         iter->cache_read = cpu_buffer->read;
3512
3513         if (iter->head)
3514                 iter->read_stamp = cpu_buffer->read_stamp;
3515         else
3516                 iter->read_stamp = iter->head_page->page->time_stamp;
3517 }
3518
3519 /**
3520  * ring_buffer_iter_reset - reset an iterator
3521  * @iter: The iterator to reset
3522  *
3523  * Resets the iterator, so that it will start from the beginning
3524  * again.
3525  */
3526 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3527 {
3528         struct ring_buffer_per_cpu *cpu_buffer;
3529         unsigned long flags;
3530
3531         if (!iter)
3532                 return;
3533
3534         cpu_buffer = iter->cpu_buffer;
3535
3536         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3537         rb_iter_reset(iter);
3538         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3539 }
3540 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3541
3542 /**
3543  * ring_buffer_iter_empty - check if an iterator has no more to read
3544  * @iter: The iterator to check
3545  */
3546 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3547 {
3548         struct ring_buffer_per_cpu *cpu_buffer;
3549         struct buffer_page *reader;
3550         struct buffer_page *head_page;
3551         struct buffer_page *commit_page;
3552         unsigned commit;
3553
3554         cpu_buffer = iter->cpu_buffer;
3555
3556         /* Remember, trace recording is off when iterator is in use */
3557         reader = cpu_buffer->reader_page;
3558         head_page = cpu_buffer->head_page;
3559         commit_page = cpu_buffer->commit_page;
3560         commit = rb_page_commit(commit_page);
3561
3562         return ((iter->head_page == commit_page && iter->head == commit) ||
3563                 (iter->head_page == reader && commit_page == head_page &&
3564                  head_page->read == commit &&
3565                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3566 }
3567 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3568
3569 static void
3570 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3571                      struct ring_buffer_event *event)
3572 {
3573         u64 delta;
3574
3575         switch (event->type_len) {
3576         case RINGBUF_TYPE_PADDING:
3577                 return;
3578
3579         case RINGBUF_TYPE_TIME_EXTEND:
3580                 delta = ring_buffer_event_time_stamp(event);
3581                 cpu_buffer->read_stamp += delta;
3582                 return;
3583
3584         case RINGBUF_TYPE_TIME_STAMP:
3585                 delta = ring_buffer_event_time_stamp(event);
3586                 cpu_buffer->read_stamp = delta;
3587                 return;
3588
3589         case RINGBUF_TYPE_DATA:
3590                 cpu_buffer->read_stamp += event->time_delta;
3591                 return;
3592
3593         default:
3594                 BUG();
3595         }
3596         return;
3597 }
3598
3599 static void
3600 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3601                           struct ring_buffer_event *event)
3602 {
3603         u64 delta;
3604
3605         switch (event->type_len) {
3606         case RINGBUF_TYPE_PADDING:
3607                 return;
3608
3609         case RINGBUF_TYPE_TIME_EXTEND:
3610                 delta = ring_buffer_event_time_stamp(event);
3611                 iter->read_stamp += delta;
3612                 return;
3613
3614         case RINGBUF_TYPE_TIME_STAMP:
3615                 delta = ring_buffer_event_time_stamp(event);
3616                 iter->read_stamp = delta;
3617                 return;
3618
3619         case RINGBUF_TYPE_DATA:
3620                 iter->read_stamp += event->time_delta;
3621                 return;
3622
3623         default:
3624                 BUG();
3625         }
3626         return;
3627 }
3628
3629 static struct buffer_page *
3630 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3631 {
3632         struct buffer_page *reader = NULL;
3633         unsigned long overwrite;
3634         unsigned long flags;
3635         int nr_loops = 0;
3636         int ret;
3637
3638         local_irq_save(flags);
3639         arch_spin_lock(&cpu_buffer->lock);
3640
3641  again:
3642         /*
3643          * This should normally only loop twice. But because the
3644          * start of the reader inserts an empty page, it causes
3645          * a case where we will loop three times. There should be no
3646          * reason to loop four times (that I know of).
3647          */
3648         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3649                 reader = NULL;
3650                 goto out;
3651         }
3652
3653         reader = cpu_buffer->reader_page;
3654
3655         /* If there's more to read, return this page */
3656         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3657                 goto out;
3658
3659         /* Never should we have an index greater than the size */
3660         if (RB_WARN_ON(cpu_buffer,
3661                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3662                 goto out;
3663
3664         /* check if we caught up to the tail */
3665         reader = NULL;
3666         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3667                 goto out;
3668
3669         /* Don't bother swapping if the ring buffer is empty */
3670         if (rb_num_of_entries(cpu_buffer) == 0)
3671                 goto out;
3672
3673         /*
3674          * Reset the reader page to size zero.
3675          */
3676         local_set(&cpu_buffer->reader_page->write, 0);
3677         local_set(&cpu_buffer->reader_page->entries, 0);
3678         local_set(&cpu_buffer->reader_page->page->commit, 0);
3679         cpu_buffer->reader_page->real_end = 0;
3680
3681  spin:
3682         /*
3683          * Splice the empty reader page into the list around the head.
3684          */
3685         reader = rb_set_head_page(cpu_buffer);
3686         if (!reader)
3687                 goto out;
3688         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3689         cpu_buffer->reader_page->list.prev = reader->list.prev;
3690
3691         /*
3692          * cpu_buffer->pages just needs to point to the buffer, it
3693          *  has no specific buffer page to point to. Lets move it out
3694          *  of our way so we don't accidentally swap it.
3695          */
3696         cpu_buffer->pages = reader->list.prev;
3697
3698         /* The reader page will be pointing to the new head */
3699         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3700
3701         /*
3702          * We want to make sure we read the overruns after we set up our
3703          * pointers to the next object. The writer side does a
3704          * cmpxchg to cross pages which acts as the mb on the writer
3705          * side. Note, the reader will constantly fail the swap
3706          * while the writer is updating the pointers, so this
3707          * guarantees that the overwrite recorded here is the one we
3708          * want to compare with the last_overrun.
3709          */
3710         smp_mb();
3711         overwrite = local_read(&(cpu_buffer->overrun));
3712
3713         /*
3714          * Here's the tricky part.
3715          *
3716          * We need to move the pointer past the header page.
3717          * But we can only do that if a writer is not currently
3718          * moving it. The page before the header page has the
3719          * flag bit '1' set if it is pointing to the page we want.
3720          * but if the writer is in the process of moving it
3721          * than it will be '2' or already moved '0'.
3722          */
3723
3724         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3725
3726         /*
3727          * If we did not convert it, then we must try again.
3728          */
3729         if (!ret)
3730                 goto spin;
3731
3732         /*
3733          * Yeah! We succeeded in replacing the page.
3734          *
3735          * Now make the new head point back to the reader page.
3736          */
3737         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3738         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3739
3740         /* Finally update the reader page to the new head */
3741         cpu_buffer->reader_page = reader;
3742         cpu_buffer->reader_page->read = 0;
3743
3744         if (overwrite != cpu_buffer->last_overrun) {
3745                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3746                 cpu_buffer->last_overrun = overwrite;
3747         }
3748
3749         goto again;
3750
3751  out:
3752         /* Update the read_stamp on the first event */
3753         if (reader && reader->read == 0)
3754                 cpu_buffer->read_stamp = reader->page->time_stamp;
3755
3756         arch_spin_unlock(&cpu_buffer->lock);
3757         local_irq_restore(flags);
3758
3759         return reader;
3760 }
3761
3762 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3763 {
3764         struct ring_buffer_event *event;
3765         struct buffer_page *reader;
3766         unsigned length;
3767
3768         reader = rb_get_reader_page(cpu_buffer);
3769
3770         /* This function should not be called when buffer is empty */
3771         if (RB_WARN_ON(cpu_buffer, !reader))
3772                 return;
3773
3774         event = rb_reader_event(cpu_buffer);
3775
3776         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3777                 cpu_buffer->read++;
3778
3779         rb_update_read_stamp(cpu_buffer, event);
3780
3781         length = rb_event_length(event);
3782         cpu_buffer->reader_page->read += length;
3783 }
3784
3785 static void rb_advance_iter(struct ring_buffer_iter *iter)
3786 {
3787         struct ring_buffer_per_cpu *cpu_buffer;
3788         struct ring_buffer_event *event;
3789         unsigned length;
3790
3791         cpu_buffer = iter->cpu_buffer;
3792
3793         /*
3794          * Check if we are at the end of the buffer.
3795          */
3796         if (iter->head >= rb_page_size(iter->head_page)) {
3797                 /* discarded commits can make the page empty */
3798                 if (iter->head_page == cpu_buffer->commit_page)
3799                         return;
3800                 rb_inc_iter(iter);
3801                 return;
3802         }
3803
3804         event = rb_iter_head_event(iter);
3805
3806         length = rb_event_length(event);
3807
3808         /*
3809          * This should not be called to advance the header if we are
3810          * at the tail of the buffer.
3811          */
3812         if (RB_WARN_ON(cpu_buffer,
3813                        (iter->head_page == cpu_buffer->commit_page) &&
3814                        (iter->head + length > rb_commit_index(cpu_buffer))))
3815                 return;
3816
3817         rb_update_iter_read_stamp(iter, event);
3818
3819         iter->head += length;
3820
3821         /* check for end of page padding */
3822         if ((iter->head >= rb_page_size(iter->head_page)) &&
3823             (iter->head_page != cpu_buffer->commit_page))
3824                 rb_inc_iter(iter);
3825 }
3826
3827 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3828 {
3829         return cpu_buffer->lost_events;
3830 }
3831
3832 static struct ring_buffer_event *
3833 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3834                unsigned long *lost_events)
3835 {
3836         struct ring_buffer_event *event;
3837         struct buffer_page *reader;
3838         int nr_loops = 0;
3839
3840         if (ts)
3841                 *ts = 0;
3842  again:
3843         /*
3844          * We repeat when a time extend is encountered.
3845          * Since the time extend is always attached to a data event,
3846          * we should never loop more than once.
3847          * (We never hit the following condition more than twice).
3848          */
3849         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3850                 return NULL;
3851
3852         reader = rb_get_reader_page(cpu_buffer);
3853         if (!reader)
3854                 return NULL;
3855
3856         event = rb_reader_event(cpu_buffer);
3857
3858         switch (event->type_len) {
3859         case RINGBUF_TYPE_PADDING:
3860                 if (rb_null_event(event))
3861                         RB_WARN_ON(cpu_buffer, 1);
3862                 /*
3863                  * Because the writer could be discarding every
3864                  * event it creates (which would probably be bad)
3865                  * if we were to go back to "again" then we may never
3866                  * catch up, and will trigger the warn on, or lock
3867                  * the box. Return the padding, and we will release
3868                  * the current locks, and try again.
3869                  */
3870                 return event;
3871
3872         case RINGBUF_TYPE_TIME_EXTEND:
3873                 /* Internal data, OK to advance */
3874                 rb_advance_reader(cpu_buffer);
3875                 goto again;
3876
3877         case RINGBUF_TYPE_TIME_STAMP:
3878                 if (ts) {
3879                         *ts = ring_buffer_event_time_stamp(event);
3880                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3881                                                          cpu_buffer->cpu, ts);
3882                 }
3883                 /* Internal data, OK to advance */
3884                 rb_advance_reader(cpu_buffer);
3885                 goto again;
3886
3887         case RINGBUF_TYPE_DATA:
3888                 if (ts && !(*ts)) {
3889                         *ts = cpu_buffer->read_stamp + event->time_delta;
3890                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3891                                                          cpu_buffer->cpu, ts);
3892                 }
3893                 if (lost_events)
3894                         *lost_events = rb_lost_events(cpu_buffer);
3895                 return event;
3896
3897         default:
3898                 BUG();
3899         }
3900
3901         return NULL;
3902 }
3903 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3904
3905 static struct ring_buffer_event *
3906 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3907 {
3908         struct ring_buffer *buffer;
3909         struct ring_buffer_per_cpu *cpu_buffer;
3910         struct ring_buffer_event *event;
3911         int nr_loops = 0;
3912
3913         if (ts)
3914                 *ts = 0;
3915
3916         cpu_buffer = iter->cpu_buffer;
3917         buffer = cpu_buffer->buffer;
3918
3919         /*
3920          * Check if someone performed a consuming read to
3921          * the buffer. A consuming read invalidates the iterator
3922          * and we need to reset the iterator in this case.
3923          */
3924         if (unlikely(iter->cache_read != cpu_buffer->read ||
3925                      iter->cache_reader_page != cpu_buffer->reader_page))
3926                 rb_iter_reset(iter);
3927
3928  again:
3929         if (ring_buffer_iter_empty(iter))
3930                 return NULL;
3931
3932         /*
3933          * We repeat when a time extend is encountered or we hit
3934          * the end of the page. Since the time extend is always attached
3935          * to a data event, we should never loop more than three times.
3936          * Once for going to next page, once on time extend, and
3937          * finally once to get the event.
3938          * (We never hit the following condition more than thrice).
3939          */
3940         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3941                 return NULL;
3942
3943         if (rb_per_cpu_empty(cpu_buffer))
3944                 return NULL;
3945
3946         if (iter->head >= rb_page_size(iter->head_page)) {
3947                 rb_inc_iter(iter);
3948                 goto again;
3949         }
3950
3951         event = rb_iter_head_event(iter);
3952
3953         switch (event->type_len) {
3954         case RINGBUF_TYPE_PADDING:
3955                 if (rb_null_event(event)) {
3956                         rb_inc_iter(iter);
3957                         goto again;
3958                 }
3959                 rb_advance_iter(iter);
3960                 return event;
3961
3962         case RINGBUF_TYPE_TIME_EXTEND:
3963                 /* Internal data, OK to advance */
3964                 rb_advance_iter(iter);
3965                 goto again;
3966
3967         case RINGBUF_TYPE_TIME_STAMP:
3968                 if (ts) {
3969                         *ts = ring_buffer_event_time_stamp(event);
3970                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3971                                                          cpu_buffer->cpu, ts);
3972                 }
3973                 /* Internal data, OK to advance */
3974                 rb_advance_iter(iter);
3975                 goto again;
3976
3977         case RINGBUF_TYPE_DATA:
3978                 if (ts && !(*ts)) {
3979                         *ts = iter->read_stamp + event->time_delta;
3980                         ring_buffer_normalize_time_stamp(buffer,
3981                                                          cpu_buffer->cpu, ts);
3982                 }
3983                 return event;
3984
3985         default:
3986                 BUG();
3987         }
3988
3989         return NULL;
3990 }
3991 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3992
3993 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3994 {
3995         if (likely(!in_nmi())) {
3996                 raw_spin_lock(&cpu_buffer->reader_lock);
3997                 return true;
3998         }
3999
4000         /*
4001          * If an NMI die dumps out the content of the ring buffer
4002          * trylock must be used to prevent a deadlock if the NMI
4003          * preempted a task that holds the ring buffer locks. If
4004          * we get the lock then all is fine, if not, then continue
4005          * to do the read, but this can corrupt the ring buffer,
4006          * so it must be permanently disabled from future writes.
4007          * Reading from NMI is a oneshot deal.
4008          */
4009         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4010                 return true;
4011
4012         /* Continue without locking, but disable the ring buffer */
4013         atomic_inc(&cpu_buffer->record_disabled);
4014         return false;
4015 }
4016
4017 static inline void
4018 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4019 {
4020         if (likely(locked))
4021                 raw_spin_unlock(&cpu_buffer->reader_lock);
4022         return;
4023 }
4024
4025 /**
4026  * ring_buffer_peek - peek at the next event to be read
4027  * @buffer: The ring buffer to read
4028  * @cpu: The cpu to peak at
4029  * @ts: The timestamp counter of this event.
4030  * @lost_events: a variable to store if events were lost (may be NULL)
4031  *
4032  * This will return the event that will be read next, but does
4033  * not consume the data.
4034  */
4035 struct ring_buffer_event *
4036 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4037                  unsigned long *lost_events)
4038 {
4039         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4040         struct ring_buffer_event *event;
4041         unsigned long flags;
4042         bool dolock;
4043
4044         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4045                 return NULL;
4046
4047  again:
4048         local_irq_save(flags);
4049         dolock = rb_reader_lock(cpu_buffer);
4050         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4051         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4052                 rb_advance_reader(cpu_buffer);
4053         rb_reader_unlock(cpu_buffer, dolock);
4054         local_irq_restore(flags);
4055
4056         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4057                 goto again;
4058
4059         return event;
4060 }
4061
4062 /**
4063  * ring_buffer_iter_peek - peek at the next event to be read
4064  * @iter: The ring buffer iterator
4065  * @ts: The timestamp counter of this event.
4066  *
4067  * This will return the event that will be read next, but does
4068  * not increment the iterator.
4069  */
4070 struct ring_buffer_event *
4071 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4072 {
4073         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4074         struct ring_buffer_event *event;
4075         unsigned long flags;
4076
4077  again:
4078         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4079         event = rb_iter_peek(iter, ts);
4080         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4081
4082         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4083                 goto again;
4084
4085         return event;
4086 }
4087
4088 /**
4089  * ring_buffer_consume - return an event and consume it
4090  * @buffer: The ring buffer to get the next event from
4091  * @cpu: the cpu to read the buffer from
4092  * @ts: a variable to store the timestamp (may be NULL)
4093  * @lost_events: a variable to store if events were lost (may be NULL)
4094  *
4095  * Returns the next event in the ring buffer, and that event is consumed.
4096  * Meaning, that sequential reads will keep returning a different event,
4097  * and eventually empty the ring buffer if the producer is slower.
4098  */
4099 struct ring_buffer_event *
4100 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4101                     unsigned long *lost_events)
4102 {
4103         struct ring_buffer_per_cpu *cpu_buffer;
4104         struct ring_buffer_event *event = NULL;
4105         unsigned long flags;
4106         bool dolock;
4107
4108  again:
4109         /* might be called in atomic */
4110         preempt_disable();
4111
4112         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4113                 goto out;
4114
4115         cpu_buffer = buffer->buffers[cpu];
4116         local_irq_save(flags);
4117         dolock = rb_reader_lock(cpu_buffer);
4118
4119         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4120         if (event) {
4121                 cpu_buffer->lost_events = 0;
4122                 rb_advance_reader(cpu_buffer);
4123         }
4124
4125         rb_reader_unlock(cpu_buffer, dolock);
4126         local_irq_restore(flags);
4127
4128  out:
4129         preempt_enable();
4130
4131         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4132                 goto again;
4133
4134         return event;
4135 }
4136 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4137
4138 /**
4139  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4140  * @buffer: The ring buffer to read from
4141  * @cpu: The cpu buffer to iterate over
4142  *
4143  * This performs the initial preparations necessary to iterate
4144  * through the buffer.  Memory is allocated, buffer recording
4145  * is disabled, and the iterator pointer is returned to the caller.
4146  *
4147  * Disabling buffer recording prevents the reading from being
4148  * corrupted. This is not a consuming read, so a producer is not
4149  * expected.
4150  *
4151  * After a sequence of ring_buffer_read_prepare calls, the user is
4152  * expected to make at least one call to ring_buffer_read_prepare_sync.
4153  * Afterwards, ring_buffer_read_start is invoked to get things going
4154  * for real.
4155  *
4156  * This overall must be paired with ring_buffer_read_finish.
4157  */
4158 struct ring_buffer_iter *
4159 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4160 {
4161         struct ring_buffer_per_cpu *cpu_buffer;
4162         struct ring_buffer_iter *iter;
4163
4164         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4165                 return NULL;
4166
4167         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4168         if (!iter)
4169                 return NULL;
4170
4171         cpu_buffer = buffer->buffers[cpu];
4172
4173         iter->cpu_buffer = cpu_buffer;
4174
4175         atomic_inc(&buffer->resize_disabled);
4176         atomic_inc(&cpu_buffer->record_disabled);
4177
4178         return iter;
4179 }
4180 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4181
4182 /**
4183  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4184  *
4185  * All previously invoked ring_buffer_read_prepare calls to prepare
4186  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4187  * calls on those iterators are allowed.
4188  */
4189 void
4190 ring_buffer_read_prepare_sync(void)
4191 {
4192         synchronize_sched();
4193 }
4194 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4195
4196 /**
4197  * ring_buffer_read_start - start a non consuming read of the buffer
4198  * @iter: The iterator returned by ring_buffer_read_prepare
4199  *
4200  * This finalizes the startup of an iteration through the buffer.
4201  * The iterator comes from a call to ring_buffer_read_prepare and
4202  * an intervening ring_buffer_read_prepare_sync must have been
4203  * performed.
4204  *
4205  * Must be paired with ring_buffer_read_finish.
4206  */
4207 void
4208 ring_buffer_read_start(struct ring_buffer_iter *iter)
4209 {
4210         struct ring_buffer_per_cpu *cpu_buffer;
4211         unsigned long flags;
4212
4213         if (!iter)
4214                 return;
4215
4216         cpu_buffer = iter->cpu_buffer;
4217
4218         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4219         arch_spin_lock(&cpu_buffer->lock);
4220         rb_iter_reset(iter);
4221         arch_spin_unlock(&cpu_buffer->lock);
4222         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4223 }
4224 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4225
4226 /**
4227  * ring_buffer_read_finish - finish reading the iterator of the buffer
4228  * @iter: The iterator retrieved by ring_buffer_start
4229  *
4230  * This re-enables the recording to the buffer, and frees the
4231  * iterator.
4232  */
4233 void
4234 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4235 {
4236         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4237         unsigned long flags;
4238
4239         /*
4240          * Ring buffer is disabled from recording, here's a good place
4241          * to check the integrity of the ring buffer.
4242          * Must prevent readers from trying to read, as the check
4243          * clears the HEAD page and readers require it.
4244          */
4245         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4246         rb_check_pages(cpu_buffer);
4247         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4248
4249         atomic_dec(&cpu_buffer->record_disabled);
4250         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4251         kfree(iter);
4252 }
4253 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4254
4255 /**
4256  * ring_buffer_read - read the next item in the ring buffer by the iterator
4257  * @iter: The ring buffer iterator
4258  * @ts: The time stamp of the event read.
4259  *
4260  * This reads the next event in the ring buffer and increments the iterator.
4261  */
4262 struct ring_buffer_event *
4263 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4264 {
4265         struct ring_buffer_event *event;
4266         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4267         unsigned long flags;
4268
4269         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4270  again:
4271         event = rb_iter_peek(iter, ts);
4272         if (!event)
4273                 goto out;
4274
4275         if (event->type_len == RINGBUF_TYPE_PADDING)
4276                 goto again;
4277
4278         rb_advance_iter(iter);
4279  out:
4280         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4281
4282         return event;
4283 }
4284 EXPORT_SYMBOL_GPL(ring_buffer_read);
4285
4286 /**
4287  * ring_buffer_size - return the size of the ring buffer (in bytes)
4288  * @buffer: The ring buffer.
4289  */
4290 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4291 {
4292         /*
4293          * Earlier, this method returned
4294          *      BUF_PAGE_SIZE * buffer->nr_pages
4295          * Since the nr_pages field is now removed, we have converted this to
4296          * return the per cpu buffer value.
4297          */
4298         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4299                 return 0;
4300
4301         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4302 }
4303 EXPORT_SYMBOL_GPL(ring_buffer_size);
4304
4305 static void
4306 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4307 {
4308         rb_head_page_deactivate(cpu_buffer);
4309
4310         cpu_buffer->head_page
4311                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4312         local_set(&cpu_buffer->head_page->write, 0);
4313         local_set(&cpu_buffer->head_page->entries, 0);
4314         local_set(&cpu_buffer->head_page->page->commit, 0);
4315
4316         cpu_buffer->head_page->read = 0;
4317
4318         cpu_buffer->tail_page = cpu_buffer->head_page;
4319         cpu_buffer->commit_page = cpu_buffer->head_page;
4320
4321         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4322         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4323         local_set(&cpu_buffer->reader_page->write, 0);
4324         local_set(&cpu_buffer->reader_page->entries, 0);
4325         local_set(&cpu_buffer->reader_page->page->commit, 0);
4326         cpu_buffer->reader_page->read = 0;
4327
4328         local_set(&cpu_buffer->entries_bytes, 0);
4329         local_set(&cpu_buffer->overrun, 0);
4330         local_set(&cpu_buffer->commit_overrun, 0);
4331         local_set(&cpu_buffer->dropped_events, 0);
4332         local_set(&cpu_buffer->entries, 0);
4333         local_set(&cpu_buffer->committing, 0);
4334         local_set(&cpu_buffer->commits, 0);
4335         cpu_buffer->read = 0;
4336         cpu_buffer->read_bytes = 0;
4337
4338         cpu_buffer->write_stamp = 0;
4339         cpu_buffer->read_stamp = 0;
4340
4341         cpu_buffer->lost_events = 0;
4342         cpu_buffer->last_overrun = 0;
4343
4344         rb_head_page_activate(cpu_buffer);
4345 }
4346
4347 /**
4348  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4349  * @buffer: The ring buffer to reset a per cpu buffer of
4350  * @cpu: The CPU buffer to be reset
4351  */
4352 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4353 {
4354         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4355         unsigned long flags;
4356
4357         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4358                 return;
4359
4360         atomic_inc(&buffer->resize_disabled);
4361         atomic_inc(&cpu_buffer->record_disabled);
4362
4363         /* Make sure all commits have finished */
4364         synchronize_sched();
4365
4366         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4367
4368         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4369                 goto out;
4370
4371         arch_spin_lock(&cpu_buffer->lock);
4372
4373         rb_reset_cpu(cpu_buffer);
4374
4375         arch_spin_unlock(&cpu_buffer->lock);
4376
4377  out:
4378         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4379
4380         atomic_dec(&cpu_buffer->record_disabled);
4381         atomic_dec(&buffer->resize_disabled);
4382 }
4383 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4384
4385 /**
4386  * ring_buffer_reset - reset a ring buffer
4387  * @buffer: The ring buffer to reset all cpu buffers
4388  */
4389 void ring_buffer_reset(struct ring_buffer *buffer)
4390 {
4391         int cpu;
4392
4393         for_each_buffer_cpu(buffer, cpu)
4394                 ring_buffer_reset_cpu(buffer, cpu);
4395 }
4396 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4397
4398 /**
4399  * rind_buffer_empty - is the ring buffer empty?
4400  * @buffer: The ring buffer to test
4401  */
4402 bool ring_buffer_empty(struct ring_buffer *buffer)
4403 {
4404         struct ring_buffer_per_cpu *cpu_buffer;
4405         unsigned long flags;
4406         bool dolock;
4407         int cpu;
4408         int ret;
4409
4410         /* yes this is racy, but if you don't like the race, lock the buffer */
4411         for_each_buffer_cpu(buffer, cpu) {
4412                 cpu_buffer = buffer->buffers[cpu];
4413                 local_irq_save(flags);
4414                 dolock = rb_reader_lock(cpu_buffer);
4415                 ret = rb_per_cpu_empty(cpu_buffer);
4416                 rb_reader_unlock(cpu_buffer, dolock);
4417                 local_irq_restore(flags);
4418
4419                 if (!ret)
4420                         return false;
4421         }
4422
4423         return true;
4424 }
4425 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4426
4427 /**
4428  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4429  * @buffer: The ring buffer
4430  * @cpu: The CPU buffer to test
4431  */
4432 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4433 {
4434         struct ring_buffer_per_cpu *cpu_buffer;
4435         unsigned long flags;
4436         bool dolock;
4437         int ret;
4438
4439         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4440                 return true;
4441
4442         cpu_buffer = buffer->buffers[cpu];
4443         local_irq_save(flags);
4444         dolock = rb_reader_lock(cpu_buffer);
4445         ret = rb_per_cpu_empty(cpu_buffer);
4446         rb_reader_unlock(cpu_buffer, dolock);
4447         local_irq_restore(flags);
4448
4449         return ret;
4450 }
4451 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4452
4453 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4454 /**
4455  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4456  * @buffer_a: One buffer to swap with
4457  * @buffer_b: The other buffer to swap with
4458  *
4459  * This function is useful for tracers that want to take a "snapshot"
4460  * of a CPU buffer and has another back up buffer lying around.
4461  * it is expected that the tracer handles the cpu buffer not being
4462  * used at the moment.
4463  */
4464 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4465                          struct ring_buffer *buffer_b, int cpu)
4466 {
4467         struct ring_buffer_per_cpu *cpu_buffer_a;
4468         struct ring_buffer_per_cpu *cpu_buffer_b;
4469         int ret = -EINVAL;
4470
4471         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4472             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4473                 goto out;
4474
4475         cpu_buffer_a = buffer_a->buffers[cpu];
4476         cpu_buffer_b = buffer_b->buffers[cpu];
4477
4478         /* At least make sure the two buffers are somewhat the same */
4479         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4480                 goto out;
4481
4482         ret = -EAGAIN;
4483
4484         if (atomic_read(&buffer_a->record_disabled))
4485                 goto out;
4486
4487         if (atomic_read(&buffer_b->record_disabled))
4488                 goto out;
4489
4490         if (atomic_read(&cpu_buffer_a->record_disabled))
4491                 goto out;
4492
4493         if (atomic_read(&cpu_buffer_b->record_disabled))
4494                 goto out;
4495
4496         /*
4497          * We can't do a synchronize_sched here because this
4498          * function can be called in atomic context.
4499          * Normally this will be called from the same CPU as cpu.
4500          * If not it's up to the caller to protect this.
4501          */
4502         atomic_inc(&cpu_buffer_a->record_disabled);
4503         atomic_inc(&cpu_buffer_b->record_disabled);
4504
4505         ret = -EBUSY;
4506         if (local_read(&cpu_buffer_a->committing))
4507                 goto out_dec;
4508         if (local_read(&cpu_buffer_b->committing))
4509                 goto out_dec;
4510
4511         buffer_a->buffers[cpu] = cpu_buffer_b;
4512         buffer_b->buffers[cpu] = cpu_buffer_a;
4513
4514         cpu_buffer_b->buffer = buffer_a;
4515         cpu_buffer_a->buffer = buffer_b;
4516
4517         ret = 0;
4518
4519 out_dec:
4520         atomic_dec(&cpu_buffer_a->record_disabled);
4521         atomic_dec(&cpu_buffer_b->record_disabled);
4522 out:
4523         return ret;
4524 }
4525 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4526 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4527
4528 /**
4529  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4530  * @buffer: the buffer to allocate for.
4531  * @cpu: the cpu buffer to allocate.
4532  *
4533  * This function is used in conjunction with ring_buffer_read_page.
4534  * When reading a full page from the ring buffer, these functions
4535  * can be used to speed up the process. The calling function should
4536  * allocate a few pages first with this function. Then when it
4537  * needs to get pages from the ring buffer, it passes the result
4538  * of this function into ring_buffer_read_page, which will swap
4539  * the page that was allocated, with the read page of the buffer.
4540  *
4541  * Returns:
4542  *  The page allocated, or ERR_PTR
4543  */
4544 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4545 {
4546         struct ring_buffer_per_cpu *cpu_buffer;
4547         struct buffer_data_page *bpage = NULL;
4548         unsigned long flags;
4549         struct page *page;
4550
4551         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4552                 return ERR_PTR(-ENODEV);
4553
4554         cpu_buffer = buffer->buffers[cpu];
4555         local_irq_save(flags);
4556         arch_spin_lock(&cpu_buffer->lock);
4557
4558         if (cpu_buffer->free_page) {
4559                 bpage = cpu_buffer->free_page;
4560                 cpu_buffer->free_page = NULL;
4561         }
4562
4563         arch_spin_unlock(&cpu_buffer->lock);
4564         local_irq_restore(flags);
4565
4566         if (bpage)
4567                 goto out;
4568
4569         page = alloc_pages_node(cpu_to_node(cpu),
4570                                 GFP_KERNEL | __GFP_NORETRY, 0);
4571         if (!page)
4572                 return ERR_PTR(-ENOMEM);
4573
4574         bpage = page_address(page);
4575
4576  out:
4577         rb_init_page(bpage);
4578
4579         return bpage;
4580 }
4581 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4582
4583 /**
4584  * ring_buffer_free_read_page - free an allocated read page
4585  * @buffer: the buffer the page was allocate for
4586  * @cpu: the cpu buffer the page came from
4587  * @data: the page to free
4588  *
4589  * Free a page allocated from ring_buffer_alloc_read_page.
4590  */
4591 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4592 {
4593         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4594         struct buffer_data_page *bpage = data;
4595         struct page *page = virt_to_page(bpage);
4596         unsigned long flags;
4597
4598         /* If the page is still in use someplace else, we can't reuse it */
4599         if (page_ref_count(page) > 1)
4600                 goto out;
4601
4602         local_irq_save(flags);
4603         arch_spin_lock(&cpu_buffer->lock);
4604
4605         if (!cpu_buffer->free_page) {
4606                 cpu_buffer->free_page = bpage;
4607                 bpage = NULL;
4608         }
4609
4610         arch_spin_unlock(&cpu_buffer->lock);
4611         local_irq_restore(flags);
4612
4613  out:
4614         free_page((unsigned long)bpage);
4615 }
4616 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4617
4618 /**
4619  * ring_buffer_read_page - extract a page from the ring buffer
4620  * @buffer: buffer to extract from
4621  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4622  * @len: amount to extract
4623  * @cpu: the cpu of the buffer to extract
4624  * @full: should the extraction only happen when the page is full.
4625  *
4626  * This function will pull out a page from the ring buffer and consume it.
4627  * @data_page must be the address of the variable that was returned
4628  * from ring_buffer_alloc_read_page. This is because the page might be used
4629  * to swap with a page in the ring buffer.
4630  *
4631  * for example:
4632  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4633  *      if (IS_ERR(rpage))
4634  *              return PTR_ERR(rpage);
4635  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4636  *      if (ret >= 0)
4637  *              process_page(rpage, ret);
4638  *
4639  * When @full is set, the function will not return true unless
4640  * the writer is off the reader page.
4641  *
4642  * Note: it is up to the calling functions to handle sleeps and wakeups.
4643  *  The ring buffer can be used anywhere in the kernel and can not
4644  *  blindly call wake_up. The layer that uses the ring buffer must be
4645  *  responsible for that.
4646  *
4647  * Returns:
4648  *  >=0 if data has been transferred, returns the offset of consumed data.
4649  *  <0 if no data has been transferred.
4650  */
4651 int ring_buffer_read_page(struct ring_buffer *buffer,
4652                           void **data_page, size_t len, int cpu, int full)
4653 {
4654         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4655         struct ring_buffer_event *event;
4656         struct buffer_data_page *bpage;
4657         struct buffer_page *reader;
4658         unsigned long missed_events;
4659         unsigned long flags;
4660         unsigned int commit;
4661         unsigned int read;
4662         u64 save_timestamp;
4663         int ret = -1;
4664
4665         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4666                 goto out;
4667
4668         /*
4669          * If len is not big enough to hold the page header, then
4670          * we can not copy anything.
4671          */
4672         if (len <= BUF_PAGE_HDR_SIZE)
4673                 goto out;
4674
4675         len -= BUF_PAGE_HDR_SIZE;
4676
4677         if (!data_page)
4678                 goto out;
4679
4680         bpage = *data_page;
4681         if (!bpage)
4682                 goto out;
4683
4684         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4685
4686         reader = rb_get_reader_page(cpu_buffer);
4687         if (!reader)
4688                 goto out_unlock;
4689
4690         event = rb_reader_event(cpu_buffer);
4691
4692         read = reader->read;
4693         commit = rb_page_commit(reader);
4694
4695         /* Check if any events were dropped */
4696         missed_events = cpu_buffer->lost_events;
4697
4698         /*
4699          * If this page has been partially read or
4700          * if len is not big enough to read the rest of the page or
4701          * a writer is still on the page, then
4702          * we must copy the data from the page to the buffer.
4703          * Otherwise, we can simply swap the page with the one passed in.
4704          */
4705         if (read || (len < (commit - read)) ||
4706             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4707                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4708                 unsigned int rpos = read;
4709                 unsigned int pos = 0;
4710                 unsigned int size;
4711
4712                 if (full)
4713                         goto out_unlock;
4714
4715                 if (len > (commit - read))
4716                         len = (commit - read);
4717
4718                 /* Always keep the time extend and data together */
4719                 size = rb_event_ts_length(event);
4720
4721                 if (len < size)
4722                         goto out_unlock;
4723
4724                 /* save the current timestamp, since the user will need it */
4725                 save_timestamp = cpu_buffer->read_stamp;
4726
4727                 /* Need to copy one event at a time */
4728                 do {
4729                         /* We need the size of one event, because
4730                          * rb_advance_reader only advances by one event,
4731                          * whereas rb_event_ts_length may include the size of
4732                          * one or two events.
4733                          * We have already ensured there's enough space if this
4734                          * is a time extend. */
4735                         size = rb_event_length(event);
4736                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4737
4738                         len -= size;
4739
4740                         rb_advance_reader(cpu_buffer);
4741                         rpos = reader->read;
4742                         pos += size;
4743
4744                         if (rpos >= commit)
4745                                 break;
4746
4747                         event = rb_reader_event(cpu_buffer);
4748                         /* Always keep the time extend and data together */
4749                         size = rb_event_ts_length(event);
4750                 } while (len >= size);
4751
4752                 /* update bpage */
4753                 local_set(&bpage->commit, pos);
4754                 bpage->time_stamp = save_timestamp;
4755
4756                 /* we copied everything to the beginning */
4757                 read = 0;
4758         } else {
4759                 /* update the entry counter */
4760                 cpu_buffer->read += rb_page_entries(reader);
4761                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4762
4763                 /* swap the pages */
4764                 rb_init_page(bpage);
4765                 bpage = reader->page;
4766                 reader->page = *data_page;
4767                 local_set(&reader->write, 0);
4768                 local_set(&reader->entries, 0);
4769                 reader->read = 0;
4770                 *data_page = bpage;
4771
4772                 /*
4773                  * Use the real_end for the data size,
4774                  * This gives us a chance to store the lost events
4775                  * on the page.
4776                  */
4777                 if (reader->real_end)
4778                         local_set(&bpage->commit, reader->real_end);
4779         }
4780         ret = read;
4781
4782         cpu_buffer->lost_events = 0;
4783
4784         commit = local_read(&bpage->commit);
4785         /*
4786          * Set a flag in the commit field if we lost events
4787          */
4788         if (missed_events) {
4789                 /* If there is room at the end of the page to save the
4790                  * missed events, then record it there.
4791                  */
4792                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4793                         memcpy(&bpage->data[commit], &missed_events,
4794                                sizeof(missed_events));
4795                         local_add(RB_MISSED_STORED, &bpage->commit);
4796                         commit += sizeof(missed_events);
4797                 }
4798                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4799         }
4800
4801         /*
4802          * This page may be off to user land. Zero it out here.
4803          */
4804         if (commit < BUF_PAGE_SIZE)
4805                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4806
4807  out_unlock:
4808         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4809
4810  out:
4811         return ret;
4812 }
4813 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4814
4815 /*
4816  * We only allocate new buffers, never free them if the CPU goes down.
4817  * If we were to free the buffer, then the user would lose any trace that was in
4818  * the buffer.
4819  */
4820 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4821 {
4822         struct ring_buffer *buffer;
4823         long nr_pages_same;
4824         int cpu_i;
4825         unsigned long nr_pages;
4826
4827         buffer = container_of(node, struct ring_buffer, node);
4828         if (cpumask_test_cpu(cpu, buffer->cpumask))
4829                 return 0;
4830
4831         nr_pages = 0;
4832         nr_pages_same = 1;
4833         /* check if all cpu sizes are same */
4834         for_each_buffer_cpu(buffer, cpu_i) {
4835                 /* fill in the size from first enabled cpu */
4836                 if (nr_pages == 0)
4837                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4838                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4839                         nr_pages_same = 0;
4840                         break;
4841                 }
4842         }
4843         /* allocate minimum pages, user can later expand it */
4844         if (!nr_pages_same)
4845                 nr_pages = 2;
4846         buffer->buffers[cpu] =
4847                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4848         if (!buffer->buffers[cpu]) {
4849                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4850                      cpu);
4851                 return -ENOMEM;
4852         }
4853         smp_wmb();
4854         cpumask_set_cpu(cpu, buffer->cpumask);
4855         return 0;
4856 }
4857
4858 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4859 /*
4860  * This is a basic integrity check of the ring buffer.
4861  * Late in the boot cycle this test will run when configured in.
4862  * It will kick off a thread per CPU that will go into a loop
4863  * writing to the per cpu ring buffer various sizes of data.
4864  * Some of the data will be large items, some small.
4865  *
4866  * Another thread is created that goes into a spin, sending out
4867  * IPIs to the other CPUs to also write into the ring buffer.
4868  * this is to test the nesting ability of the buffer.
4869  *
4870  * Basic stats are recorded and reported. If something in the
4871  * ring buffer should happen that's not expected, a big warning
4872  * is displayed and all ring buffers are disabled.
4873  */
4874 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4875
4876 struct rb_test_data {
4877         struct ring_buffer      *buffer;
4878         unsigned long           events;
4879         unsigned long           bytes_written;
4880         unsigned long           bytes_alloc;
4881         unsigned long           bytes_dropped;
4882         unsigned long           events_nested;
4883         unsigned long           bytes_written_nested;
4884         unsigned long           bytes_alloc_nested;
4885         unsigned long           bytes_dropped_nested;
4886         int                     min_size_nested;
4887         int                     max_size_nested;
4888         int                     max_size;
4889         int                     min_size;
4890         int                     cpu;
4891         int                     cnt;
4892 };
4893
4894 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4895
4896 /* 1 meg per cpu */
4897 #define RB_TEST_BUFFER_SIZE     1048576
4898
4899 static char rb_string[] __initdata =
4900         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4901         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4902         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4903
4904 static bool rb_test_started __initdata;
4905
4906 struct rb_item {
4907         int size;
4908         char str[];
4909 };
4910
4911 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4912 {
4913         struct ring_buffer_event *event;
4914         struct rb_item *item;
4915         bool started;
4916         int event_len;
4917         int size;
4918         int len;
4919         int cnt;
4920
4921         /* Have nested writes different that what is written */
4922         cnt = data->cnt + (nested ? 27 : 0);
4923
4924         /* Multiply cnt by ~e, to make some unique increment */
4925         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4926
4927         len = size + sizeof(struct rb_item);
4928
4929         started = rb_test_started;
4930         /* read rb_test_started before checking buffer enabled */
4931         smp_rmb();
4932
4933         event = ring_buffer_lock_reserve(data->buffer, len);
4934         if (!event) {
4935                 /* Ignore dropped events before test starts. */
4936                 if (started) {
4937                         if (nested)
4938                                 data->bytes_dropped += len;
4939                         else
4940                                 data->bytes_dropped_nested += len;
4941                 }
4942                 return len;
4943         }
4944
4945         event_len = ring_buffer_event_length(event);
4946
4947         if (RB_WARN_ON(data->buffer, event_len < len))
4948                 goto out;
4949
4950         item = ring_buffer_event_data(event);
4951         item->size = size;
4952         memcpy(item->str, rb_string, size);
4953
4954         if (nested) {
4955                 data->bytes_alloc_nested += event_len;
4956                 data->bytes_written_nested += len;
4957                 data->events_nested++;
4958                 if (!data->min_size_nested || len < data->min_size_nested)
4959                         data->min_size_nested = len;
4960                 if (len > data->max_size_nested)
4961                         data->max_size_nested = len;
4962         } else {
4963                 data->bytes_alloc += event_len;
4964                 data->bytes_written += len;
4965                 data->events++;
4966                 if (!data->min_size || len < data->min_size)
4967                         data->max_size = len;
4968                 if (len > data->max_size)
4969                         data->max_size = len;
4970         }
4971
4972  out:
4973         ring_buffer_unlock_commit(data->buffer, event);
4974
4975         return 0;
4976 }
4977
4978 static __init int rb_test(void *arg)
4979 {
4980         struct rb_test_data *data = arg;
4981
4982         while (!kthread_should_stop()) {
4983                 rb_write_something(data, false);
4984                 data->cnt++;
4985
4986                 set_current_state(TASK_INTERRUPTIBLE);
4987                 /* Now sleep between a min of 100-300us and a max of 1ms */
4988                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4989         }
4990
4991         return 0;
4992 }
4993
4994 static __init void rb_ipi(void *ignore)
4995 {
4996         struct rb_test_data *data;
4997         int cpu = smp_processor_id();
4998
4999         data = &rb_data[cpu];
5000         rb_write_something(data, true);
5001 }
5002
5003 static __init int rb_hammer_test(void *arg)
5004 {
5005         while (!kthread_should_stop()) {
5006
5007                 /* Send an IPI to all cpus to write data! */
5008                 smp_call_function(rb_ipi, NULL, 1);
5009                 /* No sleep, but for non preempt, let others run */
5010                 schedule();
5011         }
5012
5013         return 0;
5014 }
5015
5016 static __init int test_ringbuffer(void)
5017 {
5018         struct task_struct *rb_hammer;
5019         struct ring_buffer *buffer;
5020         int cpu;
5021         int ret = 0;
5022
5023         pr_info("Running ring buffer tests...\n");
5024
5025         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5026         if (WARN_ON(!buffer))
5027                 return 0;
5028
5029         /* Disable buffer so that threads can't write to it yet */
5030         ring_buffer_record_off(buffer);
5031
5032         for_each_online_cpu(cpu) {
5033                 rb_data[cpu].buffer = buffer;
5034                 rb_data[cpu].cpu = cpu;
5035                 rb_data[cpu].cnt = cpu;
5036                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5037                                                  "rbtester/%d", cpu);
5038                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5039                         pr_cont("FAILED\n");
5040                         ret = PTR_ERR(rb_threads[cpu]);
5041                         goto out_free;
5042                 }
5043
5044                 kthread_bind(rb_threads[cpu], cpu);
5045                 wake_up_process(rb_threads[cpu]);
5046         }
5047
5048         /* Now create the rb hammer! */
5049         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5050         if (WARN_ON(IS_ERR(rb_hammer))) {
5051                 pr_cont("FAILED\n");
5052                 ret = PTR_ERR(rb_hammer);
5053                 goto out_free;
5054         }
5055
5056         ring_buffer_record_on(buffer);
5057         /*
5058          * Show buffer is enabled before setting rb_test_started.
5059          * Yes there's a small race window where events could be
5060          * dropped and the thread wont catch it. But when a ring
5061          * buffer gets enabled, there will always be some kind of
5062          * delay before other CPUs see it. Thus, we don't care about
5063          * those dropped events. We care about events dropped after
5064          * the threads see that the buffer is active.
5065          */
5066         smp_wmb();
5067         rb_test_started = true;
5068
5069         set_current_state(TASK_INTERRUPTIBLE);
5070         /* Just run for 10 seconds */;
5071         schedule_timeout(10 * HZ);
5072
5073         kthread_stop(rb_hammer);
5074
5075  out_free:
5076         for_each_online_cpu(cpu) {
5077                 if (!rb_threads[cpu])
5078                         break;
5079                 kthread_stop(rb_threads[cpu]);
5080         }
5081         if (ret) {
5082                 ring_buffer_free(buffer);
5083                 return ret;
5084         }
5085
5086         /* Report! */
5087         pr_info("finished\n");
5088         for_each_online_cpu(cpu) {
5089                 struct ring_buffer_event *event;
5090                 struct rb_test_data *data = &rb_data[cpu];
5091                 struct rb_item *item;
5092                 unsigned long total_events;
5093                 unsigned long total_dropped;
5094                 unsigned long total_written;
5095                 unsigned long total_alloc;
5096                 unsigned long total_read = 0;
5097                 unsigned long total_size = 0;
5098                 unsigned long total_len = 0;
5099                 unsigned long total_lost = 0;
5100                 unsigned long lost;
5101                 int big_event_size;
5102                 int small_event_size;
5103
5104                 ret = -1;
5105
5106                 total_events = data->events + data->events_nested;
5107                 total_written = data->bytes_written + data->bytes_written_nested;
5108                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5109                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5110
5111                 big_event_size = data->max_size + data->max_size_nested;
5112                 small_event_size = data->min_size + data->min_size_nested;
5113
5114                 pr_info("CPU %d:\n", cpu);
5115                 pr_info("              events:    %ld\n", total_events);
5116                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5117                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5118                 pr_info("       written bytes:    %ld\n", total_written);
5119                 pr_info("       biggest event:    %d\n", big_event_size);
5120                 pr_info("      smallest event:    %d\n", small_event_size);
5121
5122                 if (RB_WARN_ON(buffer, total_dropped))
5123                         break;
5124
5125                 ret = 0;
5126
5127                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5128                         total_lost += lost;
5129                         item = ring_buffer_event_data(event);
5130                         total_len += ring_buffer_event_length(event);
5131                         total_size += item->size + sizeof(struct rb_item);
5132                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5133                                 pr_info("FAILED!\n");
5134                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5135                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5136                                 RB_WARN_ON(buffer, 1);
5137                                 ret = -1;
5138                                 break;
5139                         }
5140                         total_read++;
5141                 }
5142                 if (ret)
5143                         break;
5144
5145                 ret = -1;
5146
5147                 pr_info("         read events:   %ld\n", total_read);
5148                 pr_info("         lost events:   %ld\n", total_lost);
5149                 pr_info("        total events:   %ld\n", total_lost + total_read);
5150                 pr_info("  recorded len bytes:   %ld\n", total_len);
5151                 pr_info(" recorded size bytes:   %ld\n", total_size);
5152                 if (total_lost)
5153                         pr_info(" With dropped events, record len and size may not match\n"
5154                                 " alloced and written from above\n");
5155                 if (!total_lost) {
5156                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5157                                        total_size != total_written))
5158                                 break;
5159                 }
5160                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5161                         break;
5162
5163                 ret = 0;
5164         }
5165         if (!ret)
5166                 pr_info("Ring buffer PASSED!\n");
5167
5168         ring_buffer_free(buffer);
5169         return 0;
5170 }
5171
5172 late_initcall(test_ringbuffer);
5173 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */