0fe35ebd2509260ec44180cfe71d020f2fd20b39
[platform/kernel/linux-starfive.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
358 {
359         return local_read(&bpage->page->commit);
360 }
361
362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364         free_page((unsigned long)bpage->page);
365         kfree(bpage);
366 }
367
368 /*
369  * We need to fit the time_stamp delta into 27 bits.
370  */
371 static inline bool test_time_stamp(u64 delta)
372 {
373         return !!(delta & TS_DELTA_TEST);
374 }
375
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380
381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383         struct buffer_data_page field;
384
385         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386                          "offset:0;\tsize:%u;\tsigned:%u;\n",
387                          (unsigned int)sizeof(field.time_stamp),
388                          (unsigned int)is_signed_type(u64));
389
390         trace_seq_printf(s, "\tfield: local_t commit;\t"
391                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
392                          (unsigned int)offsetof(typeof(field), commit),
393                          (unsigned int)sizeof(field.commit),
394                          (unsigned int)is_signed_type(long));
395
396         trace_seq_printf(s, "\tfield: int overwrite;\t"
397                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
398                          (unsigned int)offsetof(typeof(field), commit),
399                          1,
400                          (unsigned int)is_signed_type(long));
401
402         trace_seq_printf(s, "\tfield: char data;\t"
403                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
404                          (unsigned int)offsetof(typeof(field), data),
405                          (unsigned int)BUF_PAGE_SIZE,
406                          (unsigned int)is_signed_type(char));
407
408         return !trace_seq_has_overflowed(s);
409 }
410
411 struct rb_irq_work {
412         struct irq_work                 work;
413         wait_queue_head_t               waiters;
414         wait_queue_head_t               full_waiters;
415         long                            wait_index;
416         bool                            waiters_pending;
417         bool                            full_waiters_pending;
418         bool                            wakeup_full;
419 };
420
421 /*
422  * Structure to hold event state and handle nested events.
423  */
424 struct rb_event_info {
425         u64                     ts;
426         u64                     delta;
427         u64                     before;
428         u64                     after;
429         unsigned long           length;
430         struct buffer_page      *tail_page;
431         int                     add_timestamp;
432 };
433
434 /*
435  * Used for the add_timestamp
436  *  NONE
437  *  EXTEND - wants a time extend
438  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
439  *  FORCE - force a full time stamp.
440  */
441 enum {
442         RB_ADD_STAMP_NONE               = 0,
443         RB_ADD_STAMP_EXTEND             = BIT(1),
444         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
445         RB_ADD_STAMP_FORCE              = BIT(3)
446 };
447 /*
448  * Used for which event context the event is in.
449  *  TRANSITION = 0
450  *  NMI     = 1
451  *  IRQ     = 2
452  *  SOFTIRQ = 3
453  *  NORMAL  = 4
454  *
455  * See trace_recursive_lock() comment below for more details.
456  */
457 enum {
458         RB_CTX_TRANSITION,
459         RB_CTX_NMI,
460         RB_CTX_IRQ,
461         RB_CTX_SOFTIRQ,
462         RB_CTX_NORMAL,
463         RB_CTX_MAX
464 };
465
466 #if BITS_PER_LONG == 32
467 #define RB_TIME_32
468 #endif
469
470 /* To test on 64 bit machines */
471 //#define RB_TIME_32
472
473 #ifdef RB_TIME_32
474
475 struct rb_time_struct {
476         local_t         cnt;
477         local_t         top;
478         local_t         bottom;
479         local_t         msb;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484         local64_t       time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488
489 #define MAX_NEST        5
490
491 /*
492  * head_page == tail_page && head == tail then buffer is empty.
493  */
494 struct ring_buffer_per_cpu {
495         int                             cpu;
496         atomic_t                        record_disabled;
497         atomic_t                        resize_disabled;
498         struct trace_buffer     *buffer;
499         raw_spinlock_t                  reader_lock;    /* serialize readers */
500         arch_spinlock_t                 lock;
501         struct lock_class_key           lock_key;
502         struct buffer_data_page         *free_page;
503         unsigned long                   nr_pages;
504         unsigned int                    current_context;
505         struct list_head                *pages;
506         struct buffer_page              *head_page;     /* read from head */
507         struct buffer_page              *tail_page;     /* write to tail */
508         struct buffer_page              *commit_page;   /* committed pages */
509         struct buffer_page              *reader_page;
510         unsigned long                   lost_events;
511         unsigned long                   last_overrun;
512         unsigned long                   nest;
513         local_t                         entries_bytes;
514         local_t                         entries;
515         local_t                         overrun;
516         local_t                         commit_overrun;
517         local_t                         dropped_events;
518         local_t                         committing;
519         local_t                         commits;
520         local_t                         pages_touched;
521         local_t                         pages_lost;
522         local_t                         pages_read;
523         long                            last_pages_touch;
524         size_t                          shortest_full;
525         unsigned long                   read;
526         unsigned long                   read_bytes;
527         rb_time_t                       write_stamp;
528         rb_time_t                       before_stamp;
529         u64                             event_stamp[MAX_NEST];
530         u64                             read_stamp;
531         /* pages removed since last reset */
532         unsigned long                   pages_removed;
533         /* ring buffer pages to update, > 0 to add, < 0 to remove */
534         long                            nr_pages_to_update;
535         struct list_head                new_pages; /* new pages to add */
536         struct work_struct              update_pages_work;
537         struct completion               update_done;
538
539         struct rb_irq_work              irq_work;
540 };
541
542 struct trace_buffer {
543         unsigned                        flags;
544         int                             cpus;
545         atomic_t                        record_disabled;
546         atomic_t                        resizing;
547         cpumask_var_t                   cpumask;
548
549         struct lock_class_key           *reader_lock_key;
550
551         struct mutex                    mutex;
552
553         struct ring_buffer_per_cpu      **buffers;
554
555         struct hlist_node               node;
556         u64                             (*clock)(void);
557
558         struct rb_irq_work              irq_work;
559         bool                            time_stamp_abs;
560 };
561
562 struct ring_buffer_iter {
563         struct ring_buffer_per_cpu      *cpu_buffer;
564         unsigned long                   head;
565         unsigned long                   next_event;
566         struct buffer_page              *head_page;
567         struct buffer_page              *cache_reader_page;
568         unsigned long                   cache_read;
569         unsigned long                   cache_pages_removed;
570         u64                             read_stamp;
571         u64                             page_stamp;
572         struct ring_buffer_event        *event;
573         int                             missed_events;
574 };
575
576 #ifdef RB_TIME_32
577
578 /*
579  * On 32 bit machines, local64_t is very expensive. As the ring
580  * buffer doesn't need all the features of a true 64 bit atomic,
581  * on 32 bit, it uses these functions (64 still uses local64_t).
582  *
583  * For the ring buffer, 64 bit required operations for the time is
584  * the following:
585  *
586  *  - Reads may fail if it interrupted a modification of the time stamp.
587  *      It will succeed if it did not interrupt another write even if
588  *      the read itself is interrupted by a write.
589  *      It returns whether it was successful or not.
590  *
591  *  - Writes always succeed and will overwrite other writes and writes
592  *      that were done by events interrupting the current write.
593  *
594  *  - A write followed by a read of the same time stamp will always succeed,
595  *      but may not contain the same value.
596  *
597  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
598  *      Other than that, it acts like a normal cmpxchg.
599  *
600  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
602  *
603  * The two most significant bits of each half holds a 2 bit counter (0-3).
604  * Each update will increment this counter by one.
605  * When reading the top and bottom, if the two counter bits match then the
606  *  top and bottom together make a valid 60 bit number.
607  */
608 #define RB_TIME_SHIFT   30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610 #define RB_TIME_MSB_SHIFT        60
611
612 static inline int rb_time_cnt(unsigned long val)
613 {
614         return (val >> RB_TIME_SHIFT) & 3;
615 }
616
617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
618 {
619         u64 val;
620
621         val = top & RB_TIME_VAL_MASK;
622         val <<= RB_TIME_SHIFT;
623         val |= bottom & RB_TIME_VAL_MASK;
624
625         return val;
626 }
627
628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
629 {
630         unsigned long top, bottom, msb;
631         unsigned long c;
632
633         /*
634          * If the read is interrupted by a write, then the cnt will
635          * be different. Loop until both top and bottom have been read
636          * without interruption.
637          */
638         do {
639                 c = local_read(&t->cnt);
640                 top = local_read(&t->top);
641                 bottom = local_read(&t->bottom);
642                 msb = local_read(&t->msb);
643         } while (c != local_read(&t->cnt));
644
645         *cnt = rb_time_cnt(top);
646
647         /* If top and msb counts don't match, this interrupted a write */
648         if (*cnt != rb_time_cnt(msb))
649                 return false;
650
651         /* The shift to msb will lose its cnt bits */
652         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
653         return true;
654 }
655
656 static bool rb_time_read(rb_time_t *t, u64 *ret)
657 {
658         unsigned long cnt;
659
660         return __rb_time_read(t, ret, &cnt);
661 }
662
663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
664 {
665         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
666 }
667
668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
669                                  unsigned long *msb)
670 {
671         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
672         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
673         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
674 }
675
676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
677 {
678         val = rb_time_val_cnt(val, cnt);
679         local_set(t, val);
680 }
681
682 static void rb_time_set(rb_time_t *t, u64 val)
683 {
684         unsigned long cnt, top, bottom, msb;
685
686         rb_time_split(val, &top, &bottom, &msb);
687
688         /* Writes always succeed with a valid number even if it gets interrupted. */
689         do {
690                 cnt = local_inc_return(&t->cnt);
691                 rb_time_val_set(&t->top, top, cnt);
692                 rb_time_val_set(&t->bottom, bottom, cnt);
693                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
694         } while (cnt != local_read(&t->cnt));
695 }
696
697 static inline bool
698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
699 {
700         return local_try_cmpxchg(l, &expect, set);
701 }
702
703 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
704 {
705         unsigned long cnt, top, bottom, msb;
706         unsigned long cnt2, top2, bottom2, msb2;
707         u64 val;
708
709         /* The cmpxchg always fails if it interrupted an update */
710          if (!__rb_time_read(t, &val, &cnt2))
711                  return false;
712
713          if (val != expect)
714                  return false;
715
716          cnt = local_read(&t->cnt);
717          if ((cnt & 3) != cnt2)
718                  return false;
719
720          cnt2 = cnt + 1;
721
722          rb_time_split(val, &top, &bottom, &msb);
723          top = rb_time_val_cnt(top, cnt);
724          bottom = rb_time_val_cnt(bottom, cnt);
725
726          rb_time_split(set, &top2, &bottom2, &msb2);
727          top2 = rb_time_val_cnt(top2, cnt2);
728          bottom2 = rb_time_val_cnt(bottom2, cnt2);
729
730         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
731                 return false;
732         if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
733                 return false;
734         if (!rb_time_read_cmpxchg(&t->top, top, top2))
735                 return false;
736         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
737                 return false;
738         return true;
739 }
740
741 #else /* 64 bits */
742
743 /* local64_t always succeeds */
744
745 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
746 {
747         *ret = local64_read(&t->time);
748         return true;
749 }
750 static void rb_time_set(rb_time_t *t, u64 val)
751 {
752         local64_set(&t->time, val);
753 }
754
755 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
756 {
757         return local64_try_cmpxchg(&t->time, &expect, set);
758 }
759 #endif
760
761 /*
762  * Enable this to make sure that the event passed to
763  * ring_buffer_event_time_stamp() is not committed and also
764  * is on the buffer that it passed in.
765  */
766 //#define RB_VERIFY_EVENT
767 #ifdef RB_VERIFY_EVENT
768 static struct list_head *rb_list_head(struct list_head *list);
769 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
770                          void *event)
771 {
772         struct buffer_page *page = cpu_buffer->commit_page;
773         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
774         struct list_head *next;
775         long commit, write;
776         unsigned long addr = (unsigned long)event;
777         bool done = false;
778         int stop = 0;
779
780         /* Make sure the event exists and is not committed yet */
781         do {
782                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
783                         done = true;
784                 commit = local_read(&page->page->commit);
785                 write = local_read(&page->write);
786                 if (addr >= (unsigned long)&page->page->data[commit] &&
787                     addr < (unsigned long)&page->page->data[write])
788                         return;
789
790                 next = rb_list_head(page->list.next);
791                 page = list_entry(next, struct buffer_page, list);
792         } while (!done);
793         WARN_ON_ONCE(1);
794 }
795 #else
796 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
797                          void *event)
798 {
799 }
800 #endif
801
802 /*
803  * The absolute time stamp drops the 5 MSBs and some clocks may
804  * require them. The rb_fix_abs_ts() will take a previous full
805  * time stamp, and add the 5 MSB of that time stamp on to the
806  * saved absolute time stamp. Then they are compared in case of
807  * the unlikely event that the latest time stamp incremented
808  * the 5 MSB.
809  */
810 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
811 {
812         if (save_ts & TS_MSB) {
813                 abs |= save_ts & TS_MSB;
814                 /* Check for overflow */
815                 if (unlikely(abs < save_ts))
816                         abs += 1ULL << 59;
817         }
818         return abs;
819 }
820
821 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
822
823 /**
824  * ring_buffer_event_time_stamp - return the event's current time stamp
825  * @buffer: The buffer that the event is on
826  * @event: the event to get the time stamp of
827  *
828  * Note, this must be called after @event is reserved, and before it is
829  * committed to the ring buffer. And must be called from the same
830  * context where the event was reserved (normal, softirq, irq, etc).
831  *
832  * Returns the time stamp associated with the current event.
833  * If the event has an extended time stamp, then that is used as
834  * the time stamp to return.
835  * In the highly unlikely case that the event was nested more than
836  * the max nesting, then the write_stamp of the buffer is returned,
837  * otherwise  current time is returned, but that really neither of
838  * the last two cases should ever happen.
839  */
840 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
841                                  struct ring_buffer_event *event)
842 {
843         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
844         unsigned int nest;
845         u64 ts;
846
847         /* If the event includes an absolute time, then just use that */
848         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
849                 ts = rb_event_time_stamp(event);
850                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
851         }
852
853         nest = local_read(&cpu_buffer->committing);
854         verify_event(cpu_buffer, event);
855         if (WARN_ON_ONCE(!nest))
856                 goto fail;
857
858         /* Read the current saved nesting level time stamp */
859         if (likely(--nest < MAX_NEST))
860                 return cpu_buffer->event_stamp[nest];
861
862         /* Shouldn't happen, warn if it does */
863         WARN_ONCE(1, "nest (%d) greater than max", nest);
864
865  fail:
866         /* Can only fail on 32 bit */
867         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
868                 /* Screw it, just read the current time */
869                 ts = rb_time_stamp(cpu_buffer->buffer);
870
871         return ts;
872 }
873
874 /**
875  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
876  * @buffer: The ring_buffer to get the number of pages from
877  * @cpu: The cpu of the ring_buffer to get the number of pages from
878  *
879  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
880  */
881 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
882 {
883         return buffer->buffers[cpu]->nr_pages;
884 }
885
886 /**
887  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
888  * @buffer: The ring_buffer to get the number of pages from
889  * @cpu: The cpu of the ring_buffer to get the number of pages from
890  *
891  * Returns the number of pages that have content in the ring buffer.
892  */
893 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
894 {
895         size_t read;
896         size_t lost;
897         size_t cnt;
898
899         read = local_read(&buffer->buffers[cpu]->pages_read);
900         lost = local_read(&buffer->buffers[cpu]->pages_lost);
901         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
902
903         if (WARN_ON_ONCE(cnt < lost))
904                 return 0;
905
906         cnt -= lost;
907
908         /* The reader can read an empty page, but not more than that */
909         if (cnt < read) {
910                 WARN_ON_ONCE(read > cnt + 1);
911                 return 0;
912         }
913
914         return cnt - read;
915 }
916
917 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
918 {
919         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
920         size_t nr_pages;
921         size_t dirty;
922
923         nr_pages = cpu_buffer->nr_pages;
924         if (!nr_pages || !full)
925                 return true;
926
927         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
928
929         return (dirty * 100) > (full * nr_pages);
930 }
931
932 /*
933  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
934  *
935  * Schedules a delayed work to wake up any task that is blocked on the
936  * ring buffer waiters queue.
937  */
938 static void rb_wake_up_waiters(struct irq_work *work)
939 {
940         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
941
942         wake_up_all(&rbwork->waiters);
943         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
944                 rbwork->wakeup_full = false;
945                 rbwork->full_waiters_pending = false;
946                 wake_up_all(&rbwork->full_waiters);
947         }
948 }
949
950 /**
951  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
952  * @buffer: The ring buffer to wake waiters on
953  * @cpu: The CPU buffer to wake waiters on
954  *
955  * In the case of a file that represents a ring buffer is closing,
956  * it is prudent to wake up any waiters that are on this.
957  */
958 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
959 {
960         struct ring_buffer_per_cpu *cpu_buffer;
961         struct rb_irq_work *rbwork;
962
963         if (!buffer)
964                 return;
965
966         if (cpu == RING_BUFFER_ALL_CPUS) {
967
968                 /* Wake up individual ones too. One level recursion */
969                 for_each_buffer_cpu(buffer, cpu)
970                         ring_buffer_wake_waiters(buffer, cpu);
971
972                 rbwork = &buffer->irq_work;
973         } else {
974                 if (WARN_ON_ONCE(!buffer->buffers))
975                         return;
976                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
977                         return;
978
979                 cpu_buffer = buffer->buffers[cpu];
980                 /* The CPU buffer may not have been initialized yet */
981                 if (!cpu_buffer)
982                         return;
983                 rbwork = &cpu_buffer->irq_work;
984         }
985
986         rbwork->wait_index++;
987         /* make sure the waiters see the new index */
988         smp_wmb();
989
990         rb_wake_up_waiters(&rbwork->work);
991 }
992
993 /**
994  * ring_buffer_wait - wait for input to the ring buffer
995  * @buffer: buffer to wait on
996  * @cpu: the cpu buffer to wait on
997  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
998  *
999  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1000  * as data is added to any of the @buffer's cpu buffers. Otherwise
1001  * it will wait for data to be added to a specific cpu buffer.
1002  */
1003 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1004 {
1005         struct ring_buffer_per_cpu *cpu_buffer;
1006         DEFINE_WAIT(wait);
1007         struct rb_irq_work *work;
1008         long wait_index;
1009         int ret = 0;
1010
1011         /*
1012          * Depending on what the caller is waiting for, either any
1013          * data in any cpu buffer, or a specific buffer, put the
1014          * caller on the appropriate wait queue.
1015          */
1016         if (cpu == RING_BUFFER_ALL_CPUS) {
1017                 work = &buffer->irq_work;
1018                 /* Full only makes sense on per cpu reads */
1019                 full = 0;
1020         } else {
1021                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1022                         return -ENODEV;
1023                 cpu_buffer = buffer->buffers[cpu];
1024                 work = &cpu_buffer->irq_work;
1025         }
1026
1027         wait_index = READ_ONCE(work->wait_index);
1028
1029         while (true) {
1030                 if (full)
1031                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1032                 else
1033                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1034
1035                 /*
1036                  * The events can happen in critical sections where
1037                  * checking a work queue can cause deadlocks.
1038                  * After adding a task to the queue, this flag is set
1039                  * only to notify events to try to wake up the queue
1040                  * using irq_work.
1041                  *
1042                  * We don't clear it even if the buffer is no longer
1043                  * empty. The flag only causes the next event to run
1044                  * irq_work to do the work queue wake up. The worse
1045                  * that can happen if we race with !trace_empty() is that
1046                  * an event will cause an irq_work to try to wake up
1047                  * an empty queue.
1048                  *
1049                  * There's no reason to protect this flag either, as
1050                  * the work queue and irq_work logic will do the necessary
1051                  * synchronization for the wake ups. The only thing
1052                  * that is necessary is that the wake up happens after
1053                  * a task has been queued. It's OK for spurious wake ups.
1054                  */
1055                 if (full)
1056                         work->full_waiters_pending = true;
1057                 else
1058                         work->waiters_pending = true;
1059
1060                 if (signal_pending(current)) {
1061                         ret = -EINTR;
1062                         break;
1063                 }
1064
1065                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1066                         break;
1067
1068                 if (cpu != RING_BUFFER_ALL_CPUS &&
1069                     !ring_buffer_empty_cpu(buffer, cpu)) {
1070                         unsigned long flags;
1071                         bool pagebusy;
1072                         bool done;
1073
1074                         if (!full)
1075                                 break;
1076
1077                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1078                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1079                         done = !pagebusy && full_hit(buffer, cpu, full);
1080
1081                         if (!cpu_buffer->shortest_full ||
1082                             cpu_buffer->shortest_full > full)
1083                                 cpu_buffer->shortest_full = full;
1084                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1085                         if (done)
1086                                 break;
1087                 }
1088
1089                 schedule();
1090
1091                 /* Make sure to see the new wait index */
1092                 smp_rmb();
1093                 if (wait_index != work->wait_index)
1094                         break;
1095         }
1096
1097         if (full)
1098                 finish_wait(&work->full_waiters, &wait);
1099         else
1100                 finish_wait(&work->waiters, &wait);
1101
1102         return ret;
1103 }
1104
1105 /**
1106  * ring_buffer_poll_wait - poll on buffer input
1107  * @buffer: buffer to wait on
1108  * @cpu: the cpu buffer to wait on
1109  * @filp: the file descriptor
1110  * @poll_table: The poll descriptor
1111  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1112  *
1113  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1114  * as data is added to any of the @buffer's cpu buffers. Otherwise
1115  * it will wait for data to be added to a specific cpu buffer.
1116  *
1117  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1118  * zero otherwise.
1119  */
1120 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1121                           struct file *filp, poll_table *poll_table, int full)
1122 {
1123         struct ring_buffer_per_cpu *cpu_buffer;
1124         struct rb_irq_work *work;
1125
1126         if (cpu == RING_BUFFER_ALL_CPUS) {
1127                 work = &buffer->irq_work;
1128                 full = 0;
1129         } else {
1130                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1131                         return -EINVAL;
1132
1133                 cpu_buffer = buffer->buffers[cpu];
1134                 work = &cpu_buffer->irq_work;
1135         }
1136
1137         if (full) {
1138                 poll_wait(filp, &work->full_waiters, poll_table);
1139                 work->full_waiters_pending = true;
1140                 if (!cpu_buffer->shortest_full ||
1141                     cpu_buffer->shortest_full > full)
1142                         cpu_buffer->shortest_full = full;
1143         } else {
1144                 poll_wait(filp, &work->waiters, poll_table);
1145                 work->waiters_pending = true;
1146         }
1147
1148         /*
1149          * There's a tight race between setting the waiters_pending and
1150          * checking if the ring buffer is empty.  Once the waiters_pending bit
1151          * is set, the next event will wake the task up, but we can get stuck
1152          * if there's only a single event in.
1153          *
1154          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1155          * but adding a memory barrier to all events will cause too much of a
1156          * performance hit in the fast path.  We only need a memory barrier when
1157          * the buffer goes from empty to having content.  But as this race is
1158          * extremely small, and it's not a problem if another event comes in, we
1159          * will fix it later.
1160          */
1161         smp_mb();
1162
1163         if (full)
1164                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1165
1166         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1167             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1168                 return EPOLLIN | EPOLLRDNORM;
1169         return 0;
1170 }
1171
1172 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1173 #define RB_WARN_ON(b, cond)                                             \
1174         ({                                                              \
1175                 int _____ret = unlikely(cond);                          \
1176                 if (_____ret) {                                         \
1177                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1178                                 struct ring_buffer_per_cpu *__b =       \
1179                                         (void *)b;                      \
1180                                 atomic_inc(&__b->buffer->record_disabled); \
1181                         } else                                          \
1182                                 atomic_inc(&b->record_disabled);        \
1183                         WARN_ON(1);                                     \
1184                 }                                                       \
1185                 _____ret;                                               \
1186         })
1187
1188 /* Up this if you want to test the TIME_EXTENTS and normalization */
1189 #define DEBUG_SHIFT 0
1190
1191 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1192 {
1193         u64 ts;
1194
1195         /* Skip retpolines :-( */
1196         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1197                 ts = trace_clock_local();
1198         else
1199                 ts = buffer->clock();
1200
1201         /* shift to debug/test normalization and TIME_EXTENTS */
1202         return ts << DEBUG_SHIFT;
1203 }
1204
1205 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1206 {
1207         u64 time;
1208
1209         preempt_disable_notrace();
1210         time = rb_time_stamp(buffer);
1211         preempt_enable_notrace();
1212
1213         return time;
1214 }
1215 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1216
1217 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1218                                       int cpu, u64 *ts)
1219 {
1220         /* Just stupid testing the normalize function and deltas */
1221         *ts >>= DEBUG_SHIFT;
1222 }
1223 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1224
1225 /*
1226  * Making the ring buffer lockless makes things tricky.
1227  * Although writes only happen on the CPU that they are on,
1228  * and they only need to worry about interrupts. Reads can
1229  * happen on any CPU.
1230  *
1231  * The reader page is always off the ring buffer, but when the
1232  * reader finishes with a page, it needs to swap its page with
1233  * a new one from the buffer. The reader needs to take from
1234  * the head (writes go to the tail). But if a writer is in overwrite
1235  * mode and wraps, it must push the head page forward.
1236  *
1237  * Here lies the problem.
1238  *
1239  * The reader must be careful to replace only the head page, and
1240  * not another one. As described at the top of the file in the
1241  * ASCII art, the reader sets its old page to point to the next
1242  * page after head. It then sets the page after head to point to
1243  * the old reader page. But if the writer moves the head page
1244  * during this operation, the reader could end up with the tail.
1245  *
1246  * We use cmpxchg to help prevent this race. We also do something
1247  * special with the page before head. We set the LSB to 1.
1248  *
1249  * When the writer must push the page forward, it will clear the
1250  * bit that points to the head page, move the head, and then set
1251  * the bit that points to the new head page.
1252  *
1253  * We also don't want an interrupt coming in and moving the head
1254  * page on another writer. Thus we use the second LSB to catch
1255  * that too. Thus:
1256  *
1257  * head->list->prev->next        bit 1          bit 0
1258  *                              -------        -------
1259  * Normal page                     0              0
1260  * Points to head page             0              1
1261  * New head page                   1              0
1262  *
1263  * Note we can not trust the prev pointer of the head page, because:
1264  *
1265  * +----+       +-----+        +-----+
1266  * |    |------>|  T  |---X--->|  N  |
1267  * |    |<------|     |        |     |
1268  * +----+       +-----+        +-----+
1269  *   ^                           ^ |
1270  *   |          +-----+          | |
1271  *   +----------|  R  |----------+ |
1272  *              |     |<-----------+
1273  *              +-----+
1274  *
1275  * Key:  ---X-->  HEAD flag set in pointer
1276  *         T      Tail page
1277  *         R      Reader page
1278  *         N      Next page
1279  *
1280  * (see __rb_reserve_next() to see where this happens)
1281  *
1282  *  What the above shows is that the reader just swapped out
1283  *  the reader page with a page in the buffer, but before it
1284  *  could make the new header point back to the new page added
1285  *  it was preempted by a writer. The writer moved forward onto
1286  *  the new page added by the reader and is about to move forward
1287  *  again.
1288  *
1289  *  You can see, it is legitimate for the previous pointer of
1290  *  the head (or any page) not to point back to itself. But only
1291  *  temporarily.
1292  */
1293
1294 #define RB_PAGE_NORMAL          0UL
1295 #define RB_PAGE_HEAD            1UL
1296 #define RB_PAGE_UPDATE          2UL
1297
1298
1299 #define RB_FLAG_MASK            3UL
1300
1301 /* PAGE_MOVED is not part of the mask */
1302 #define RB_PAGE_MOVED           4UL
1303
1304 /*
1305  * rb_list_head - remove any bit
1306  */
1307 static struct list_head *rb_list_head(struct list_head *list)
1308 {
1309         unsigned long val = (unsigned long)list;
1310
1311         return (struct list_head *)(val & ~RB_FLAG_MASK);
1312 }
1313
1314 /*
1315  * rb_is_head_page - test if the given page is the head page
1316  *
1317  * Because the reader may move the head_page pointer, we can
1318  * not trust what the head page is (it may be pointing to
1319  * the reader page). But if the next page is a header page,
1320  * its flags will be non zero.
1321  */
1322 static inline int
1323 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1324 {
1325         unsigned long val;
1326
1327         val = (unsigned long)list->next;
1328
1329         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1330                 return RB_PAGE_MOVED;
1331
1332         return val & RB_FLAG_MASK;
1333 }
1334
1335 /*
1336  * rb_is_reader_page
1337  *
1338  * The unique thing about the reader page, is that, if the
1339  * writer is ever on it, the previous pointer never points
1340  * back to the reader page.
1341  */
1342 static bool rb_is_reader_page(struct buffer_page *page)
1343 {
1344         struct list_head *list = page->list.prev;
1345
1346         return rb_list_head(list->next) != &page->list;
1347 }
1348
1349 /*
1350  * rb_set_list_to_head - set a list_head to be pointing to head.
1351  */
1352 static void rb_set_list_to_head(struct list_head *list)
1353 {
1354         unsigned long *ptr;
1355
1356         ptr = (unsigned long *)&list->next;
1357         *ptr |= RB_PAGE_HEAD;
1358         *ptr &= ~RB_PAGE_UPDATE;
1359 }
1360
1361 /*
1362  * rb_head_page_activate - sets up head page
1363  */
1364 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1365 {
1366         struct buffer_page *head;
1367
1368         head = cpu_buffer->head_page;
1369         if (!head)
1370                 return;
1371
1372         /*
1373          * Set the previous list pointer to have the HEAD flag.
1374          */
1375         rb_set_list_to_head(head->list.prev);
1376 }
1377
1378 static void rb_list_head_clear(struct list_head *list)
1379 {
1380         unsigned long *ptr = (unsigned long *)&list->next;
1381
1382         *ptr &= ~RB_FLAG_MASK;
1383 }
1384
1385 /*
1386  * rb_head_page_deactivate - clears head page ptr (for free list)
1387  */
1388 static void
1389 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1390 {
1391         struct list_head *hd;
1392
1393         /* Go through the whole list and clear any pointers found. */
1394         rb_list_head_clear(cpu_buffer->pages);
1395
1396         list_for_each(hd, cpu_buffer->pages)
1397                 rb_list_head_clear(hd);
1398 }
1399
1400 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1401                             struct buffer_page *head,
1402                             struct buffer_page *prev,
1403                             int old_flag, int new_flag)
1404 {
1405         struct list_head *list;
1406         unsigned long val = (unsigned long)&head->list;
1407         unsigned long ret;
1408
1409         list = &prev->list;
1410
1411         val &= ~RB_FLAG_MASK;
1412
1413         ret = cmpxchg((unsigned long *)&list->next,
1414                       val | old_flag, val | new_flag);
1415
1416         /* check if the reader took the page */
1417         if ((ret & ~RB_FLAG_MASK) != val)
1418                 return RB_PAGE_MOVED;
1419
1420         return ret & RB_FLAG_MASK;
1421 }
1422
1423 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1424                                    struct buffer_page *head,
1425                                    struct buffer_page *prev,
1426                                    int old_flag)
1427 {
1428         return rb_head_page_set(cpu_buffer, head, prev,
1429                                 old_flag, RB_PAGE_UPDATE);
1430 }
1431
1432 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1433                                  struct buffer_page *head,
1434                                  struct buffer_page *prev,
1435                                  int old_flag)
1436 {
1437         return rb_head_page_set(cpu_buffer, head, prev,
1438                                 old_flag, RB_PAGE_HEAD);
1439 }
1440
1441 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1442                                    struct buffer_page *head,
1443                                    struct buffer_page *prev,
1444                                    int old_flag)
1445 {
1446         return rb_head_page_set(cpu_buffer, head, prev,
1447                                 old_flag, RB_PAGE_NORMAL);
1448 }
1449
1450 static inline void rb_inc_page(struct buffer_page **bpage)
1451 {
1452         struct list_head *p = rb_list_head((*bpage)->list.next);
1453
1454         *bpage = list_entry(p, struct buffer_page, list);
1455 }
1456
1457 static struct buffer_page *
1458 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1459 {
1460         struct buffer_page *head;
1461         struct buffer_page *page;
1462         struct list_head *list;
1463         int i;
1464
1465         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1466                 return NULL;
1467
1468         /* sanity check */
1469         list = cpu_buffer->pages;
1470         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1471                 return NULL;
1472
1473         page = head = cpu_buffer->head_page;
1474         /*
1475          * It is possible that the writer moves the header behind
1476          * where we started, and we miss in one loop.
1477          * A second loop should grab the header, but we'll do
1478          * three loops just because I'm paranoid.
1479          */
1480         for (i = 0; i < 3; i++) {
1481                 do {
1482                         if (rb_is_head_page(page, page->list.prev)) {
1483                                 cpu_buffer->head_page = page;
1484                                 return page;
1485                         }
1486                         rb_inc_page(&page);
1487                 } while (page != head);
1488         }
1489
1490         RB_WARN_ON(cpu_buffer, 1);
1491
1492         return NULL;
1493 }
1494
1495 static bool rb_head_page_replace(struct buffer_page *old,
1496                                 struct buffer_page *new)
1497 {
1498         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1499         unsigned long val;
1500
1501         val = *ptr & ~RB_FLAG_MASK;
1502         val |= RB_PAGE_HEAD;
1503
1504         return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1505 }
1506
1507 /*
1508  * rb_tail_page_update - move the tail page forward
1509  */
1510 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1511                                struct buffer_page *tail_page,
1512                                struct buffer_page *next_page)
1513 {
1514         unsigned long old_entries;
1515         unsigned long old_write;
1516
1517         /*
1518          * The tail page now needs to be moved forward.
1519          *
1520          * We need to reset the tail page, but without messing
1521          * with possible erasing of data brought in by interrupts
1522          * that have moved the tail page and are currently on it.
1523          *
1524          * We add a counter to the write field to denote this.
1525          */
1526         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1527         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1528
1529         local_inc(&cpu_buffer->pages_touched);
1530         /*
1531          * Just make sure we have seen our old_write and synchronize
1532          * with any interrupts that come in.
1533          */
1534         barrier();
1535
1536         /*
1537          * If the tail page is still the same as what we think
1538          * it is, then it is up to us to update the tail
1539          * pointer.
1540          */
1541         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1542                 /* Zero the write counter */
1543                 unsigned long val = old_write & ~RB_WRITE_MASK;
1544                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1545
1546                 /*
1547                  * This will only succeed if an interrupt did
1548                  * not come in and change it. In which case, we
1549                  * do not want to modify it.
1550                  *
1551                  * We add (void) to let the compiler know that we do not care
1552                  * about the return value of these functions. We use the
1553                  * cmpxchg to only update if an interrupt did not already
1554                  * do it for us. If the cmpxchg fails, we don't care.
1555                  */
1556                 (void)local_cmpxchg(&next_page->write, old_write, val);
1557                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1558
1559                 /*
1560                  * No need to worry about races with clearing out the commit.
1561                  * it only can increment when a commit takes place. But that
1562                  * only happens in the outer most nested commit.
1563                  */
1564                 local_set(&next_page->page->commit, 0);
1565
1566                 /* Again, either we update tail_page or an interrupt does */
1567                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1568         }
1569 }
1570
1571 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1572                           struct buffer_page *bpage)
1573 {
1574         unsigned long val = (unsigned long)bpage;
1575
1576         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1577 }
1578
1579 /**
1580  * rb_check_pages - integrity check of buffer pages
1581  * @cpu_buffer: CPU buffer with pages to test
1582  *
1583  * As a safety measure we check to make sure the data pages have not
1584  * been corrupted.
1585  */
1586 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587 {
1588         struct list_head *head = rb_list_head(cpu_buffer->pages);
1589         struct list_head *tmp;
1590
1591         if (RB_WARN_ON(cpu_buffer,
1592                         rb_list_head(rb_list_head(head->next)->prev) != head))
1593                 return;
1594
1595         if (RB_WARN_ON(cpu_buffer,
1596                         rb_list_head(rb_list_head(head->prev)->next) != head))
1597                 return;
1598
1599         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1600                 if (RB_WARN_ON(cpu_buffer,
1601                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1602                         return;
1603
1604                 if (RB_WARN_ON(cpu_buffer,
1605                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1606                         return;
1607         }
1608 }
1609
1610 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1611                 long nr_pages, struct list_head *pages)
1612 {
1613         struct buffer_page *bpage, *tmp;
1614         bool user_thread = current->mm != NULL;
1615         gfp_t mflags;
1616         long i;
1617
1618         /*
1619          * Check if the available memory is there first.
1620          * Note, si_mem_available() only gives us a rough estimate of available
1621          * memory. It may not be accurate. But we don't care, we just want
1622          * to prevent doing any allocation when it is obvious that it is
1623          * not going to succeed.
1624          */
1625         i = si_mem_available();
1626         if (i < nr_pages)
1627                 return -ENOMEM;
1628
1629         /*
1630          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1631          * gracefully without invoking oom-killer and the system is not
1632          * destabilized.
1633          */
1634         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1635
1636         /*
1637          * If a user thread allocates too much, and si_mem_available()
1638          * reports there's enough memory, even though there is not.
1639          * Make sure the OOM killer kills this thread. This can happen
1640          * even with RETRY_MAYFAIL because another task may be doing
1641          * an allocation after this task has taken all memory.
1642          * This is the task the OOM killer needs to take out during this
1643          * loop, even if it was triggered by an allocation somewhere else.
1644          */
1645         if (user_thread)
1646                 set_current_oom_origin();
1647         for (i = 0; i < nr_pages; i++) {
1648                 struct page *page;
1649
1650                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1651                                     mflags, cpu_to_node(cpu_buffer->cpu));
1652                 if (!bpage)
1653                         goto free_pages;
1654
1655                 rb_check_bpage(cpu_buffer, bpage);
1656
1657                 list_add(&bpage->list, pages);
1658
1659                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1660                 if (!page)
1661                         goto free_pages;
1662                 bpage->page = page_address(page);
1663                 rb_init_page(bpage->page);
1664
1665                 if (user_thread && fatal_signal_pending(current))
1666                         goto free_pages;
1667         }
1668         if (user_thread)
1669                 clear_current_oom_origin();
1670
1671         return 0;
1672
1673 free_pages:
1674         list_for_each_entry_safe(bpage, tmp, pages, list) {
1675                 list_del_init(&bpage->list);
1676                 free_buffer_page(bpage);
1677         }
1678         if (user_thread)
1679                 clear_current_oom_origin();
1680
1681         return -ENOMEM;
1682 }
1683
1684 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1685                              unsigned long nr_pages)
1686 {
1687         LIST_HEAD(pages);
1688
1689         WARN_ON(!nr_pages);
1690
1691         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1692                 return -ENOMEM;
1693
1694         /*
1695          * The ring buffer page list is a circular list that does not
1696          * start and end with a list head. All page list items point to
1697          * other pages.
1698          */
1699         cpu_buffer->pages = pages.next;
1700         list_del(&pages);
1701
1702         cpu_buffer->nr_pages = nr_pages;
1703
1704         rb_check_pages(cpu_buffer);
1705
1706         return 0;
1707 }
1708
1709 static struct ring_buffer_per_cpu *
1710 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1711 {
1712         struct ring_buffer_per_cpu *cpu_buffer;
1713         struct buffer_page *bpage;
1714         struct page *page;
1715         int ret;
1716
1717         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1718                                   GFP_KERNEL, cpu_to_node(cpu));
1719         if (!cpu_buffer)
1720                 return NULL;
1721
1722         cpu_buffer->cpu = cpu;
1723         cpu_buffer->buffer = buffer;
1724         raw_spin_lock_init(&cpu_buffer->reader_lock);
1725         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1726         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1727         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1728         init_completion(&cpu_buffer->update_done);
1729         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1730         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1731         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1732
1733         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1734                             GFP_KERNEL, cpu_to_node(cpu));
1735         if (!bpage)
1736                 goto fail_free_buffer;
1737
1738         rb_check_bpage(cpu_buffer, bpage);
1739
1740         cpu_buffer->reader_page = bpage;
1741         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1742         if (!page)
1743                 goto fail_free_reader;
1744         bpage->page = page_address(page);
1745         rb_init_page(bpage->page);
1746
1747         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1748         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1749
1750         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1751         if (ret < 0)
1752                 goto fail_free_reader;
1753
1754         cpu_buffer->head_page
1755                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1756         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1757
1758         rb_head_page_activate(cpu_buffer);
1759
1760         return cpu_buffer;
1761
1762  fail_free_reader:
1763         free_buffer_page(cpu_buffer->reader_page);
1764
1765  fail_free_buffer:
1766         kfree(cpu_buffer);
1767         return NULL;
1768 }
1769
1770 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1771 {
1772         struct list_head *head = cpu_buffer->pages;
1773         struct buffer_page *bpage, *tmp;
1774
1775         irq_work_sync(&cpu_buffer->irq_work.work);
1776
1777         free_buffer_page(cpu_buffer->reader_page);
1778
1779         if (head) {
1780                 rb_head_page_deactivate(cpu_buffer);
1781
1782                 list_for_each_entry_safe(bpage, tmp, head, list) {
1783                         list_del_init(&bpage->list);
1784                         free_buffer_page(bpage);
1785                 }
1786                 bpage = list_entry(head, struct buffer_page, list);
1787                 free_buffer_page(bpage);
1788         }
1789
1790         free_page((unsigned long)cpu_buffer->free_page);
1791
1792         kfree(cpu_buffer);
1793 }
1794
1795 /**
1796  * __ring_buffer_alloc - allocate a new ring_buffer
1797  * @size: the size in bytes per cpu that is needed.
1798  * @flags: attributes to set for the ring buffer.
1799  * @key: ring buffer reader_lock_key.
1800  *
1801  * Currently the only flag that is available is the RB_FL_OVERWRITE
1802  * flag. This flag means that the buffer will overwrite old data
1803  * when the buffer wraps. If this flag is not set, the buffer will
1804  * drop data when the tail hits the head.
1805  */
1806 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1807                                         struct lock_class_key *key)
1808 {
1809         struct trace_buffer *buffer;
1810         long nr_pages;
1811         int bsize;
1812         int cpu;
1813         int ret;
1814
1815         /* keep it in its own cache line */
1816         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1817                          GFP_KERNEL);
1818         if (!buffer)
1819                 return NULL;
1820
1821         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1822                 goto fail_free_buffer;
1823
1824         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1825         buffer->flags = flags;
1826         buffer->clock = trace_clock_local;
1827         buffer->reader_lock_key = key;
1828
1829         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1830         init_waitqueue_head(&buffer->irq_work.waiters);
1831
1832         /* need at least two pages */
1833         if (nr_pages < 2)
1834                 nr_pages = 2;
1835
1836         buffer->cpus = nr_cpu_ids;
1837
1838         bsize = sizeof(void *) * nr_cpu_ids;
1839         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1840                                   GFP_KERNEL);
1841         if (!buffer->buffers)
1842                 goto fail_free_cpumask;
1843
1844         cpu = raw_smp_processor_id();
1845         cpumask_set_cpu(cpu, buffer->cpumask);
1846         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1847         if (!buffer->buffers[cpu])
1848                 goto fail_free_buffers;
1849
1850         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1851         if (ret < 0)
1852                 goto fail_free_buffers;
1853
1854         mutex_init(&buffer->mutex);
1855
1856         return buffer;
1857
1858  fail_free_buffers:
1859         for_each_buffer_cpu(buffer, cpu) {
1860                 if (buffer->buffers[cpu])
1861                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1862         }
1863         kfree(buffer->buffers);
1864
1865  fail_free_cpumask:
1866         free_cpumask_var(buffer->cpumask);
1867
1868  fail_free_buffer:
1869         kfree(buffer);
1870         return NULL;
1871 }
1872 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1873
1874 /**
1875  * ring_buffer_free - free a ring buffer.
1876  * @buffer: the buffer to free.
1877  */
1878 void
1879 ring_buffer_free(struct trace_buffer *buffer)
1880 {
1881         int cpu;
1882
1883         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1884
1885         irq_work_sync(&buffer->irq_work.work);
1886
1887         for_each_buffer_cpu(buffer, cpu)
1888                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1889
1890         kfree(buffer->buffers);
1891         free_cpumask_var(buffer->cpumask);
1892
1893         kfree(buffer);
1894 }
1895 EXPORT_SYMBOL_GPL(ring_buffer_free);
1896
1897 void ring_buffer_set_clock(struct trace_buffer *buffer,
1898                            u64 (*clock)(void))
1899 {
1900         buffer->clock = clock;
1901 }
1902
1903 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1904 {
1905         buffer->time_stamp_abs = abs;
1906 }
1907
1908 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1909 {
1910         return buffer->time_stamp_abs;
1911 }
1912
1913 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1914
1915 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1916 {
1917         return local_read(&bpage->entries) & RB_WRITE_MASK;
1918 }
1919
1920 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1921 {
1922         return local_read(&bpage->write) & RB_WRITE_MASK;
1923 }
1924
1925 static bool
1926 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1927 {
1928         struct list_head *tail_page, *to_remove, *next_page;
1929         struct buffer_page *to_remove_page, *tmp_iter_page;
1930         struct buffer_page *last_page, *first_page;
1931         unsigned long nr_removed;
1932         unsigned long head_bit;
1933         int page_entries;
1934
1935         head_bit = 0;
1936
1937         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1938         atomic_inc(&cpu_buffer->record_disabled);
1939         /*
1940          * We don't race with the readers since we have acquired the reader
1941          * lock. We also don't race with writers after disabling recording.
1942          * This makes it easy to figure out the first and the last page to be
1943          * removed from the list. We unlink all the pages in between including
1944          * the first and last pages. This is done in a busy loop so that we
1945          * lose the least number of traces.
1946          * The pages are freed after we restart recording and unlock readers.
1947          */
1948         tail_page = &cpu_buffer->tail_page->list;
1949
1950         /*
1951          * tail page might be on reader page, we remove the next page
1952          * from the ring buffer
1953          */
1954         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1955                 tail_page = rb_list_head(tail_page->next);
1956         to_remove = tail_page;
1957
1958         /* start of pages to remove */
1959         first_page = list_entry(rb_list_head(to_remove->next),
1960                                 struct buffer_page, list);
1961
1962         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1963                 to_remove = rb_list_head(to_remove)->next;
1964                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1965         }
1966         /* Read iterators need to reset themselves when some pages removed */
1967         cpu_buffer->pages_removed += nr_removed;
1968
1969         next_page = rb_list_head(to_remove)->next;
1970
1971         /*
1972          * Now we remove all pages between tail_page and next_page.
1973          * Make sure that we have head_bit value preserved for the
1974          * next page
1975          */
1976         tail_page->next = (struct list_head *)((unsigned long)next_page |
1977                                                 head_bit);
1978         next_page = rb_list_head(next_page);
1979         next_page->prev = tail_page;
1980
1981         /* make sure pages points to a valid page in the ring buffer */
1982         cpu_buffer->pages = next_page;
1983
1984         /* update head page */
1985         if (head_bit)
1986                 cpu_buffer->head_page = list_entry(next_page,
1987                                                 struct buffer_page, list);
1988
1989         /* pages are removed, resume tracing and then free the pages */
1990         atomic_dec(&cpu_buffer->record_disabled);
1991         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1992
1993         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1994
1995         /* last buffer page to remove */
1996         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1997                                 list);
1998         tmp_iter_page = first_page;
1999
2000         do {
2001                 cond_resched();
2002
2003                 to_remove_page = tmp_iter_page;
2004                 rb_inc_page(&tmp_iter_page);
2005
2006                 /* update the counters */
2007                 page_entries = rb_page_entries(to_remove_page);
2008                 if (page_entries) {
2009                         /*
2010                          * If something was added to this page, it was full
2011                          * since it is not the tail page. So we deduct the
2012                          * bytes consumed in ring buffer from here.
2013                          * Increment overrun to account for the lost events.
2014                          */
2015                         local_add(page_entries, &cpu_buffer->overrun);
2016                         local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2017                         local_inc(&cpu_buffer->pages_lost);
2018                 }
2019
2020                 /*
2021                  * We have already removed references to this list item, just
2022                  * free up the buffer_page and its page
2023                  */
2024                 free_buffer_page(to_remove_page);
2025                 nr_removed--;
2026
2027         } while (to_remove_page != last_page);
2028
2029         RB_WARN_ON(cpu_buffer, nr_removed);
2030
2031         return nr_removed == 0;
2032 }
2033
2034 static bool
2035 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2036 {
2037         struct list_head *pages = &cpu_buffer->new_pages;
2038         unsigned long flags;
2039         bool success;
2040         int retries;
2041
2042         /* Can be called at early boot up, where interrupts must not been enabled */
2043         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2044         /*
2045          * We are holding the reader lock, so the reader page won't be swapped
2046          * in the ring buffer. Now we are racing with the writer trying to
2047          * move head page and the tail page.
2048          * We are going to adapt the reader page update process where:
2049          * 1. We first splice the start and end of list of new pages between
2050          *    the head page and its previous page.
2051          * 2. We cmpxchg the prev_page->next to point from head page to the
2052          *    start of new pages list.
2053          * 3. Finally, we update the head->prev to the end of new list.
2054          *
2055          * We will try this process 10 times, to make sure that we don't keep
2056          * spinning.
2057          */
2058         retries = 10;
2059         success = false;
2060         while (retries--) {
2061                 struct list_head *head_page, *prev_page, *r;
2062                 struct list_head *last_page, *first_page;
2063                 struct list_head *head_page_with_bit;
2064                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2065
2066                 if (!hpage)
2067                         break;
2068                 head_page = &hpage->list;
2069                 prev_page = head_page->prev;
2070
2071                 first_page = pages->next;
2072                 last_page  = pages->prev;
2073
2074                 head_page_with_bit = (struct list_head *)
2075                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2076
2077                 last_page->next = head_page_with_bit;
2078                 first_page->prev = prev_page;
2079
2080                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2081
2082                 if (r == head_page_with_bit) {
2083                         /*
2084                          * yay, we replaced the page pointer to our new list,
2085                          * now, we just have to update to head page's prev
2086                          * pointer to point to end of list
2087                          */
2088                         head_page->prev = last_page;
2089                         success = true;
2090                         break;
2091                 }
2092         }
2093
2094         if (success)
2095                 INIT_LIST_HEAD(pages);
2096         /*
2097          * If we weren't successful in adding in new pages, warn and stop
2098          * tracing
2099          */
2100         RB_WARN_ON(cpu_buffer, !success);
2101         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2102
2103         /* free pages if they weren't inserted */
2104         if (!success) {
2105                 struct buffer_page *bpage, *tmp;
2106                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2107                                          list) {
2108                         list_del_init(&bpage->list);
2109                         free_buffer_page(bpage);
2110                 }
2111         }
2112         return success;
2113 }
2114
2115 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2116 {
2117         bool success;
2118
2119         if (cpu_buffer->nr_pages_to_update > 0)
2120                 success = rb_insert_pages(cpu_buffer);
2121         else
2122                 success = rb_remove_pages(cpu_buffer,
2123                                         -cpu_buffer->nr_pages_to_update);
2124
2125         if (success)
2126                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2127 }
2128
2129 static void update_pages_handler(struct work_struct *work)
2130 {
2131         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2132                         struct ring_buffer_per_cpu, update_pages_work);
2133         rb_update_pages(cpu_buffer);
2134         complete(&cpu_buffer->update_done);
2135 }
2136
2137 /**
2138  * ring_buffer_resize - resize the ring buffer
2139  * @buffer: the buffer to resize.
2140  * @size: the new size.
2141  * @cpu_id: the cpu buffer to resize
2142  *
2143  * Minimum size is 2 * BUF_PAGE_SIZE.
2144  *
2145  * Returns 0 on success and < 0 on failure.
2146  */
2147 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2148                         int cpu_id)
2149 {
2150         struct ring_buffer_per_cpu *cpu_buffer;
2151         unsigned long nr_pages;
2152         int cpu, err;
2153
2154         /*
2155          * Always succeed at resizing a non-existent buffer:
2156          */
2157         if (!buffer)
2158                 return 0;
2159
2160         /* Make sure the requested buffer exists */
2161         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2162             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2163                 return 0;
2164
2165         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2166
2167         /* we need a minimum of two pages */
2168         if (nr_pages < 2)
2169                 nr_pages = 2;
2170
2171         /* prevent another thread from changing buffer sizes */
2172         mutex_lock(&buffer->mutex);
2173         atomic_inc(&buffer->resizing);
2174
2175         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2176                 /*
2177                  * Don't succeed if resizing is disabled, as a reader might be
2178                  * manipulating the ring buffer and is expecting a sane state while
2179                  * this is true.
2180                  */
2181                 for_each_buffer_cpu(buffer, cpu) {
2182                         cpu_buffer = buffer->buffers[cpu];
2183                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2184                                 err = -EBUSY;
2185                                 goto out_err_unlock;
2186                         }
2187                 }
2188
2189                 /* calculate the pages to update */
2190                 for_each_buffer_cpu(buffer, cpu) {
2191                         cpu_buffer = buffer->buffers[cpu];
2192
2193                         cpu_buffer->nr_pages_to_update = nr_pages -
2194                                                         cpu_buffer->nr_pages;
2195                         /*
2196                          * nothing more to do for removing pages or no update
2197                          */
2198                         if (cpu_buffer->nr_pages_to_update <= 0)
2199                                 continue;
2200                         /*
2201                          * to add pages, make sure all new pages can be
2202                          * allocated without receiving ENOMEM
2203                          */
2204                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2205                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2206                                                 &cpu_buffer->new_pages)) {
2207                                 /* not enough memory for new pages */
2208                                 err = -ENOMEM;
2209                                 goto out_err;
2210                         }
2211
2212                         cond_resched();
2213                 }
2214
2215                 cpus_read_lock();
2216                 /*
2217                  * Fire off all the required work handlers
2218                  * We can't schedule on offline CPUs, but it's not necessary
2219                  * since we can change their buffer sizes without any race.
2220                  */
2221                 for_each_buffer_cpu(buffer, cpu) {
2222                         cpu_buffer = buffer->buffers[cpu];
2223                         if (!cpu_buffer->nr_pages_to_update)
2224                                 continue;
2225
2226                         /* Can't run something on an offline CPU. */
2227                         if (!cpu_online(cpu)) {
2228                                 rb_update_pages(cpu_buffer);
2229                                 cpu_buffer->nr_pages_to_update = 0;
2230                         } else {
2231                                 /* Run directly if possible. */
2232                                 migrate_disable();
2233                                 if (cpu != smp_processor_id()) {
2234                                         migrate_enable();
2235                                         schedule_work_on(cpu,
2236                                                          &cpu_buffer->update_pages_work);
2237                                 } else {
2238                                         update_pages_handler(&cpu_buffer->update_pages_work);
2239                                         migrate_enable();
2240                                 }
2241                         }
2242                 }
2243
2244                 /* wait for all the updates to complete */
2245                 for_each_buffer_cpu(buffer, cpu) {
2246                         cpu_buffer = buffer->buffers[cpu];
2247                         if (!cpu_buffer->nr_pages_to_update)
2248                                 continue;
2249
2250                         if (cpu_online(cpu))
2251                                 wait_for_completion(&cpu_buffer->update_done);
2252                         cpu_buffer->nr_pages_to_update = 0;
2253                 }
2254
2255                 cpus_read_unlock();
2256         } else {
2257                 cpu_buffer = buffer->buffers[cpu_id];
2258
2259                 if (nr_pages == cpu_buffer->nr_pages)
2260                         goto out;
2261
2262                 /*
2263                  * Don't succeed if resizing is disabled, as a reader might be
2264                  * manipulating the ring buffer and is expecting a sane state while
2265                  * this is true.
2266                  */
2267                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2268                         err = -EBUSY;
2269                         goto out_err_unlock;
2270                 }
2271
2272                 cpu_buffer->nr_pages_to_update = nr_pages -
2273                                                 cpu_buffer->nr_pages;
2274
2275                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2276                 if (cpu_buffer->nr_pages_to_update > 0 &&
2277                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2278                                             &cpu_buffer->new_pages)) {
2279                         err = -ENOMEM;
2280                         goto out_err;
2281                 }
2282
2283                 cpus_read_lock();
2284
2285                 /* Can't run something on an offline CPU. */
2286                 if (!cpu_online(cpu_id))
2287                         rb_update_pages(cpu_buffer);
2288                 else {
2289                         /* Run directly if possible. */
2290                         migrate_disable();
2291                         if (cpu_id == smp_processor_id()) {
2292                                 rb_update_pages(cpu_buffer);
2293                                 migrate_enable();
2294                         } else {
2295                                 migrate_enable();
2296                                 schedule_work_on(cpu_id,
2297                                                  &cpu_buffer->update_pages_work);
2298                                 wait_for_completion(&cpu_buffer->update_done);
2299                         }
2300                 }
2301
2302                 cpu_buffer->nr_pages_to_update = 0;
2303                 cpus_read_unlock();
2304         }
2305
2306  out:
2307         /*
2308          * The ring buffer resize can happen with the ring buffer
2309          * enabled, so that the update disturbs the tracing as little
2310          * as possible. But if the buffer is disabled, we do not need
2311          * to worry about that, and we can take the time to verify
2312          * that the buffer is not corrupt.
2313          */
2314         if (atomic_read(&buffer->record_disabled)) {
2315                 atomic_inc(&buffer->record_disabled);
2316                 /*
2317                  * Even though the buffer was disabled, we must make sure
2318                  * that it is truly disabled before calling rb_check_pages.
2319                  * There could have been a race between checking
2320                  * record_disable and incrementing it.
2321                  */
2322                 synchronize_rcu();
2323                 for_each_buffer_cpu(buffer, cpu) {
2324                         cpu_buffer = buffer->buffers[cpu];
2325                         rb_check_pages(cpu_buffer);
2326                 }
2327                 atomic_dec(&buffer->record_disabled);
2328         }
2329
2330         atomic_dec(&buffer->resizing);
2331         mutex_unlock(&buffer->mutex);
2332         return 0;
2333
2334  out_err:
2335         for_each_buffer_cpu(buffer, cpu) {
2336                 struct buffer_page *bpage, *tmp;
2337
2338                 cpu_buffer = buffer->buffers[cpu];
2339                 cpu_buffer->nr_pages_to_update = 0;
2340
2341                 if (list_empty(&cpu_buffer->new_pages))
2342                         continue;
2343
2344                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2345                                         list) {
2346                         list_del_init(&bpage->list);
2347                         free_buffer_page(bpage);
2348                 }
2349         }
2350  out_err_unlock:
2351         atomic_dec(&buffer->resizing);
2352         mutex_unlock(&buffer->mutex);
2353         return err;
2354 }
2355 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2356
2357 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2358 {
2359         mutex_lock(&buffer->mutex);
2360         if (val)
2361                 buffer->flags |= RB_FL_OVERWRITE;
2362         else
2363                 buffer->flags &= ~RB_FL_OVERWRITE;
2364         mutex_unlock(&buffer->mutex);
2365 }
2366 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2367
2368 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2369 {
2370         return bpage->page->data + index;
2371 }
2372
2373 static __always_inline struct ring_buffer_event *
2374 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2375 {
2376         return __rb_page_index(cpu_buffer->reader_page,
2377                                cpu_buffer->reader_page->read);
2378 }
2379
2380 static struct ring_buffer_event *
2381 rb_iter_head_event(struct ring_buffer_iter *iter)
2382 {
2383         struct ring_buffer_event *event;
2384         struct buffer_page *iter_head_page = iter->head_page;
2385         unsigned long commit;
2386         unsigned length;
2387
2388         if (iter->head != iter->next_event)
2389                 return iter->event;
2390
2391         /*
2392          * When the writer goes across pages, it issues a cmpxchg which
2393          * is a mb(), which will synchronize with the rmb here.
2394          * (see rb_tail_page_update() and __rb_reserve_next())
2395          */
2396         commit = rb_page_commit(iter_head_page);
2397         smp_rmb();
2398
2399         /* An event needs to be at least 8 bytes in size */
2400         if (iter->head > commit - 8)
2401                 goto reset;
2402
2403         event = __rb_page_index(iter_head_page, iter->head);
2404         length = rb_event_length(event);
2405
2406         /*
2407          * READ_ONCE() doesn't work on functions and we don't want the
2408          * compiler doing any crazy optimizations with length.
2409          */
2410         barrier();
2411
2412         if ((iter->head + length) > commit || length > BUF_PAGE_SIZE)
2413                 /* Writer corrupted the read? */
2414                 goto reset;
2415
2416         memcpy(iter->event, event, length);
2417         /*
2418          * If the page stamp is still the same after this rmb() then the
2419          * event was safely copied without the writer entering the page.
2420          */
2421         smp_rmb();
2422
2423         /* Make sure the page didn't change since we read this */
2424         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2425             commit > rb_page_commit(iter_head_page))
2426                 goto reset;
2427
2428         iter->next_event = iter->head + length;
2429         return iter->event;
2430  reset:
2431         /* Reset to the beginning */
2432         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2433         iter->head = 0;
2434         iter->next_event = 0;
2435         iter->missed_events = 1;
2436         return NULL;
2437 }
2438
2439 /* Size is determined by what has been committed */
2440 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2441 {
2442         return rb_page_commit(bpage);
2443 }
2444
2445 static __always_inline unsigned
2446 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2447 {
2448         return rb_page_commit(cpu_buffer->commit_page);
2449 }
2450
2451 static __always_inline unsigned
2452 rb_event_index(struct ring_buffer_event *event)
2453 {
2454         unsigned long addr = (unsigned long)event;
2455
2456         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2457 }
2458
2459 static void rb_inc_iter(struct ring_buffer_iter *iter)
2460 {
2461         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2462
2463         /*
2464          * The iterator could be on the reader page (it starts there).
2465          * But the head could have moved, since the reader was
2466          * found. Check for this case and assign the iterator
2467          * to the head page instead of next.
2468          */
2469         if (iter->head_page == cpu_buffer->reader_page)
2470                 iter->head_page = rb_set_head_page(cpu_buffer);
2471         else
2472                 rb_inc_page(&iter->head_page);
2473
2474         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2475         iter->head = 0;
2476         iter->next_event = 0;
2477 }
2478
2479 /*
2480  * rb_handle_head_page - writer hit the head page
2481  *
2482  * Returns: +1 to retry page
2483  *           0 to continue
2484  *          -1 on error
2485  */
2486 static int
2487 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2488                     struct buffer_page *tail_page,
2489                     struct buffer_page *next_page)
2490 {
2491         struct buffer_page *new_head;
2492         int entries;
2493         int type;
2494         int ret;
2495
2496         entries = rb_page_entries(next_page);
2497
2498         /*
2499          * The hard part is here. We need to move the head
2500          * forward, and protect against both readers on
2501          * other CPUs and writers coming in via interrupts.
2502          */
2503         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2504                                        RB_PAGE_HEAD);
2505
2506         /*
2507          * type can be one of four:
2508          *  NORMAL - an interrupt already moved it for us
2509          *  HEAD   - we are the first to get here.
2510          *  UPDATE - we are the interrupt interrupting
2511          *           a current move.
2512          *  MOVED  - a reader on another CPU moved the next
2513          *           pointer to its reader page. Give up
2514          *           and try again.
2515          */
2516
2517         switch (type) {
2518         case RB_PAGE_HEAD:
2519                 /*
2520                  * We changed the head to UPDATE, thus
2521                  * it is our responsibility to update
2522                  * the counters.
2523                  */
2524                 local_add(entries, &cpu_buffer->overrun);
2525                 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2526                 local_inc(&cpu_buffer->pages_lost);
2527
2528                 /*
2529                  * The entries will be zeroed out when we move the
2530                  * tail page.
2531                  */
2532
2533                 /* still more to do */
2534                 break;
2535
2536         case RB_PAGE_UPDATE:
2537                 /*
2538                  * This is an interrupt that interrupt the
2539                  * previous update. Still more to do.
2540                  */
2541                 break;
2542         case RB_PAGE_NORMAL:
2543                 /*
2544                  * An interrupt came in before the update
2545                  * and processed this for us.
2546                  * Nothing left to do.
2547                  */
2548                 return 1;
2549         case RB_PAGE_MOVED:
2550                 /*
2551                  * The reader is on another CPU and just did
2552                  * a swap with our next_page.
2553                  * Try again.
2554                  */
2555                 return 1;
2556         default:
2557                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2558                 return -1;
2559         }
2560
2561         /*
2562          * Now that we are here, the old head pointer is
2563          * set to UPDATE. This will keep the reader from
2564          * swapping the head page with the reader page.
2565          * The reader (on another CPU) will spin till
2566          * we are finished.
2567          *
2568          * We just need to protect against interrupts
2569          * doing the job. We will set the next pointer
2570          * to HEAD. After that, we set the old pointer
2571          * to NORMAL, but only if it was HEAD before.
2572          * otherwise we are an interrupt, and only
2573          * want the outer most commit to reset it.
2574          */
2575         new_head = next_page;
2576         rb_inc_page(&new_head);
2577
2578         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2579                                     RB_PAGE_NORMAL);
2580
2581         /*
2582          * Valid returns are:
2583          *  HEAD   - an interrupt came in and already set it.
2584          *  NORMAL - One of two things:
2585          *            1) We really set it.
2586          *            2) A bunch of interrupts came in and moved
2587          *               the page forward again.
2588          */
2589         switch (ret) {
2590         case RB_PAGE_HEAD:
2591         case RB_PAGE_NORMAL:
2592                 /* OK */
2593                 break;
2594         default:
2595                 RB_WARN_ON(cpu_buffer, 1);
2596                 return -1;
2597         }
2598
2599         /*
2600          * It is possible that an interrupt came in,
2601          * set the head up, then more interrupts came in
2602          * and moved it again. When we get back here,
2603          * the page would have been set to NORMAL but we
2604          * just set it back to HEAD.
2605          *
2606          * How do you detect this? Well, if that happened
2607          * the tail page would have moved.
2608          */
2609         if (ret == RB_PAGE_NORMAL) {
2610                 struct buffer_page *buffer_tail_page;
2611
2612                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2613                 /*
2614                  * If the tail had moved passed next, then we need
2615                  * to reset the pointer.
2616                  */
2617                 if (buffer_tail_page != tail_page &&
2618                     buffer_tail_page != next_page)
2619                         rb_head_page_set_normal(cpu_buffer, new_head,
2620                                                 next_page,
2621                                                 RB_PAGE_HEAD);
2622         }
2623
2624         /*
2625          * If this was the outer most commit (the one that
2626          * changed the original pointer from HEAD to UPDATE),
2627          * then it is up to us to reset it to NORMAL.
2628          */
2629         if (type == RB_PAGE_HEAD) {
2630                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2631                                               tail_page,
2632                                               RB_PAGE_UPDATE);
2633                 if (RB_WARN_ON(cpu_buffer,
2634                                ret != RB_PAGE_UPDATE))
2635                         return -1;
2636         }
2637
2638         return 0;
2639 }
2640
2641 static inline void
2642 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2643               unsigned long tail, struct rb_event_info *info)
2644 {
2645         struct buffer_page *tail_page = info->tail_page;
2646         struct ring_buffer_event *event;
2647         unsigned long length = info->length;
2648
2649         /*
2650          * Only the event that crossed the page boundary
2651          * must fill the old tail_page with padding.
2652          */
2653         if (tail >= BUF_PAGE_SIZE) {
2654                 /*
2655                  * If the page was filled, then we still need
2656                  * to update the real_end. Reset it to zero
2657                  * and the reader will ignore it.
2658                  */
2659                 if (tail == BUF_PAGE_SIZE)
2660                         tail_page->real_end = 0;
2661
2662                 local_sub(length, &tail_page->write);
2663                 return;
2664         }
2665
2666         event = __rb_page_index(tail_page, tail);
2667
2668         /*
2669          * Save the original length to the meta data.
2670          * This will be used by the reader to add lost event
2671          * counter.
2672          */
2673         tail_page->real_end = tail;
2674
2675         /*
2676          * If this event is bigger than the minimum size, then
2677          * we need to be careful that we don't subtract the
2678          * write counter enough to allow another writer to slip
2679          * in on this page.
2680          * We put in a discarded commit instead, to make sure
2681          * that this space is not used again, and this space will
2682          * not be accounted into 'entries_bytes'.
2683          *
2684          * If we are less than the minimum size, we don't need to
2685          * worry about it.
2686          */
2687         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2688                 /* No room for any events */
2689
2690                 /* Mark the rest of the page with padding */
2691                 rb_event_set_padding(event);
2692
2693                 /* Make sure the padding is visible before the write update */
2694                 smp_wmb();
2695
2696                 /* Set the write back to the previous setting */
2697                 local_sub(length, &tail_page->write);
2698                 return;
2699         }
2700
2701         /* Put in a discarded event */
2702         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2703         event->type_len = RINGBUF_TYPE_PADDING;
2704         /* time delta must be non zero */
2705         event->time_delta = 1;
2706
2707         /* account for padding bytes */
2708         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2709
2710         /* Make sure the padding is visible before the tail_page->write update */
2711         smp_wmb();
2712
2713         /* Set write to end of buffer */
2714         length = (tail + length) - BUF_PAGE_SIZE;
2715         local_sub(length, &tail_page->write);
2716 }
2717
2718 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2719
2720 /*
2721  * This is the slow path, force gcc not to inline it.
2722  */
2723 static noinline struct ring_buffer_event *
2724 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2725              unsigned long tail, struct rb_event_info *info)
2726 {
2727         struct buffer_page *tail_page = info->tail_page;
2728         struct buffer_page *commit_page = cpu_buffer->commit_page;
2729         struct trace_buffer *buffer = cpu_buffer->buffer;
2730         struct buffer_page *next_page;
2731         int ret;
2732
2733         next_page = tail_page;
2734
2735         rb_inc_page(&next_page);
2736
2737         /*
2738          * If for some reason, we had an interrupt storm that made
2739          * it all the way around the buffer, bail, and warn
2740          * about it.
2741          */
2742         if (unlikely(next_page == commit_page)) {
2743                 local_inc(&cpu_buffer->commit_overrun);
2744                 goto out_reset;
2745         }
2746
2747         /*
2748          * This is where the fun begins!
2749          *
2750          * We are fighting against races between a reader that
2751          * could be on another CPU trying to swap its reader
2752          * page with the buffer head.
2753          *
2754          * We are also fighting against interrupts coming in and
2755          * moving the head or tail on us as well.
2756          *
2757          * If the next page is the head page then we have filled
2758          * the buffer, unless the commit page is still on the
2759          * reader page.
2760          */
2761         if (rb_is_head_page(next_page, &tail_page->list)) {
2762
2763                 /*
2764                  * If the commit is not on the reader page, then
2765                  * move the header page.
2766                  */
2767                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2768                         /*
2769                          * If we are not in overwrite mode,
2770                          * this is easy, just stop here.
2771                          */
2772                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2773                                 local_inc(&cpu_buffer->dropped_events);
2774                                 goto out_reset;
2775                         }
2776
2777                         ret = rb_handle_head_page(cpu_buffer,
2778                                                   tail_page,
2779                                                   next_page);
2780                         if (ret < 0)
2781                                 goto out_reset;
2782                         if (ret)
2783                                 goto out_again;
2784                 } else {
2785                         /*
2786                          * We need to be careful here too. The
2787                          * commit page could still be on the reader
2788                          * page. We could have a small buffer, and
2789                          * have filled up the buffer with events
2790                          * from interrupts and such, and wrapped.
2791                          *
2792                          * Note, if the tail page is also on the
2793                          * reader_page, we let it move out.
2794                          */
2795                         if (unlikely((cpu_buffer->commit_page !=
2796                                       cpu_buffer->tail_page) &&
2797                                      (cpu_buffer->commit_page ==
2798                                       cpu_buffer->reader_page))) {
2799                                 local_inc(&cpu_buffer->commit_overrun);
2800                                 goto out_reset;
2801                         }
2802                 }
2803         }
2804
2805         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2806
2807  out_again:
2808
2809         rb_reset_tail(cpu_buffer, tail, info);
2810
2811         /* Commit what we have for now. */
2812         rb_end_commit(cpu_buffer);
2813         /* rb_end_commit() decs committing */
2814         local_inc(&cpu_buffer->committing);
2815
2816         /* fail and let the caller try again */
2817         return ERR_PTR(-EAGAIN);
2818
2819  out_reset:
2820         /* reset write */
2821         rb_reset_tail(cpu_buffer, tail, info);
2822
2823         return NULL;
2824 }
2825
2826 /* Slow path */
2827 static struct ring_buffer_event *
2828 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2829 {
2830         if (abs)
2831                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2832         else
2833                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2834
2835         /* Not the first event on the page, or not delta? */
2836         if (abs || rb_event_index(event)) {
2837                 event->time_delta = delta & TS_MASK;
2838                 event->array[0] = delta >> TS_SHIFT;
2839         } else {
2840                 /* nope, just zero it */
2841                 event->time_delta = 0;
2842                 event->array[0] = 0;
2843         }
2844
2845         return skip_time_extend(event);
2846 }
2847
2848 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2849 static inline bool sched_clock_stable(void)
2850 {
2851         return true;
2852 }
2853 #endif
2854
2855 static void
2856 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2857                    struct rb_event_info *info)
2858 {
2859         u64 write_stamp;
2860
2861         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2862                   (unsigned long long)info->delta,
2863                   (unsigned long long)info->ts,
2864                   (unsigned long long)info->before,
2865                   (unsigned long long)info->after,
2866                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2867                   sched_clock_stable() ? "" :
2868                   "If you just came from a suspend/resume,\n"
2869                   "please switch to the trace global clock:\n"
2870                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2871                   "or add trace_clock=global to the kernel command line\n");
2872 }
2873
2874 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2875                                       struct ring_buffer_event **event,
2876                                       struct rb_event_info *info,
2877                                       u64 *delta,
2878                                       unsigned int *length)
2879 {
2880         bool abs = info->add_timestamp &
2881                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2882
2883         if (unlikely(info->delta > (1ULL << 59))) {
2884                 /*
2885                  * Some timers can use more than 59 bits, and when a timestamp
2886                  * is added to the buffer, it will lose those bits.
2887                  */
2888                 if (abs && (info->ts & TS_MSB)) {
2889                         info->delta &= ABS_TS_MASK;
2890
2891                 /* did the clock go backwards */
2892                 } else if (info->before == info->after && info->before > info->ts) {
2893                         /* not interrupted */
2894                         static int once;
2895
2896                         /*
2897                          * This is possible with a recalibrating of the TSC.
2898                          * Do not produce a call stack, but just report it.
2899                          */
2900                         if (!once) {
2901                                 once++;
2902                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2903                                         info->before, info->ts);
2904                         }
2905                 } else
2906                         rb_check_timestamp(cpu_buffer, info);
2907                 if (!abs)
2908                         info->delta = 0;
2909         }
2910         *event = rb_add_time_stamp(*event, info->delta, abs);
2911         *length -= RB_LEN_TIME_EXTEND;
2912         *delta = 0;
2913 }
2914
2915 /**
2916  * rb_update_event - update event type and data
2917  * @cpu_buffer: The per cpu buffer of the @event
2918  * @event: the event to update
2919  * @info: The info to update the @event with (contains length and delta)
2920  *
2921  * Update the type and data fields of the @event. The length
2922  * is the actual size that is written to the ring buffer,
2923  * and with this, we can determine what to place into the
2924  * data field.
2925  */
2926 static void
2927 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2928                 struct ring_buffer_event *event,
2929                 struct rb_event_info *info)
2930 {
2931         unsigned length = info->length;
2932         u64 delta = info->delta;
2933         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2934
2935         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2936                 cpu_buffer->event_stamp[nest] = info->ts;
2937
2938         /*
2939          * If we need to add a timestamp, then we
2940          * add it to the start of the reserved space.
2941          */
2942         if (unlikely(info->add_timestamp))
2943                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2944
2945         event->time_delta = delta;
2946         length -= RB_EVNT_HDR_SIZE;
2947         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2948                 event->type_len = 0;
2949                 event->array[0] = length;
2950         } else
2951                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2952 }
2953
2954 static unsigned rb_calculate_event_length(unsigned length)
2955 {
2956         struct ring_buffer_event event; /* Used only for sizeof array */
2957
2958         /* zero length can cause confusions */
2959         if (!length)
2960                 length++;
2961
2962         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2963                 length += sizeof(event.array[0]);
2964
2965         length += RB_EVNT_HDR_SIZE;
2966         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2967
2968         /*
2969          * In case the time delta is larger than the 27 bits for it
2970          * in the header, we need to add a timestamp. If another
2971          * event comes in when trying to discard this one to increase
2972          * the length, then the timestamp will be added in the allocated
2973          * space of this event. If length is bigger than the size needed
2974          * for the TIME_EXTEND, then padding has to be used. The events
2975          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2976          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2977          * As length is a multiple of 4, we only need to worry if it
2978          * is 12 (RB_LEN_TIME_EXTEND + 4).
2979          */
2980         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2981                 length += RB_ALIGNMENT;
2982
2983         return length;
2984 }
2985
2986 static u64 rb_time_delta(struct ring_buffer_event *event)
2987 {
2988         switch (event->type_len) {
2989         case RINGBUF_TYPE_PADDING:
2990                 return 0;
2991
2992         case RINGBUF_TYPE_TIME_EXTEND:
2993                 return rb_event_time_stamp(event);
2994
2995         case RINGBUF_TYPE_TIME_STAMP:
2996                 return 0;
2997
2998         case RINGBUF_TYPE_DATA:
2999                 return event->time_delta;
3000         default:
3001                 return 0;
3002         }
3003 }
3004
3005 static inline bool
3006 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3007                   struct ring_buffer_event *event)
3008 {
3009         unsigned long new_index, old_index;
3010         struct buffer_page *bpage;
3011         unsigned long addr;
3012         u64 write_stamp;
3013         u64 delta;
3014
3015         new_index = rb_event_index(event);
3016         old_index = new_index + rb_event_ts_length(event);
3017         addr = (unsigned long)event;
3018         addr &= PAGE_MASK;
3019
3020         bpage = READ_ONCE(cpu_buffer->tail_page);
3021
3022         delta = rb_time_delta(event);
3023
3024         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3025                 return false;
3026
3027         /* Make sure the write stamp is read before testing the location */
3028         barrier();
3029
3030         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3031                 unsigned long write_mask =
3032                         local_read(&bpage->write) & ~RB_WRITE_MASK;
3033                 unsigned long event_length = rb_event_length(event);
3034
3035                 /*
3036                  * For the before_stamp to be different than the write_stamp
3037                  * to make sure that the next event adds an absolute
3038                  * value and does not rely on the saved write stamp, which
3039                  * is now going to be bogus.
3040                  */
3041                 rb_time_set(&cpu_buffer->before_stamp, 0);
3042
3043                 /* Something came in, can't discard */
3044                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3045                                        write_stamp, write_stamp - delta))
3046                         return false;
3047
3048                 /*
3049                  * If an event were to come in now, it would see that the
3050                  * write_stamp and the before_stamp are different, and assume
3051                  * that this event just added itself before updating
3052                  * the write stamp. The interrupting event will fix the
3053                  * write stamp for us, and use the before stamp as its delta.
3054                  */
3055
3056                 /*
3057                  * This is on the tail page. It is possible that
3058                  * a write could come in and move the tail page
3059                  * and write to the next page. That is fine
3060                  * because we just shorten what is on this page.
3061                  */
3062                 old_index += write_mask;
3063                 new_index += write_mask;
3064
3065                 /* caution: old_index gets updated on cmpxchg failure */
3066                 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3067                         /* update counters */
3068                         local_sub(event_length, &cpu_buffer->entries_bytes);
3069                         return true;
3070                 }
3071         }
3072
3073         /* could not discard */
3074         return false;
3075 }
3076
3077 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3078 {
3079         local_inc(&cpu_buffer->committing);
3080         local_inc(&cpu_buffer->commits);
3081 }
3082
3083 static __always_inline void
3084 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3085 {
3086         unsigned long max_count;
3087
3088         /*
3089          * We only race with interrupts and NMIs on this CPU.
3090          * If we own the commit event, then we can commit
3091          * all others that interrupted us, since the interruptions
3092          * are in stack format (they finish before they come
3093          * back to us). This allows us to do a simple loop to
3094          * assign the commit to the tail.
3095          */
3096  again:
3097         max_count = cpu_buffer->nr_pages * 100;
3098
3099         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3100                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3101                         return;
3102                 if (RB_WARN_ON(cpu_buffer,
3103                                rb_is_reader_page(cpu_buffer->tail_page)))
3104                         return;
3105                 /*
3106                  * No need for a memory barrier here, as the update
3107                  * of the tail_page did it for this page.
3108                  */
3109                 local_set(&cpu_buffer->commit_page->page->commit,
3110                           rb_page_write(cpu_buffer->commit_page));
3111                 rb_inc_page(&cpu_buffer->commit_page);
3112                 /* add barrier to keep gcc from optimizing too much */
3113                 barrier();
3114         }
3115         while (rb_commit_index(cpu_buffer) !=
3116                rb_page_write(cpu_buffer->commit_page)) {
3117
3118                 /* Make sure the readers see the content of what is committed. */
3119                 smp_wmb();
3120                 local_set(&cpu_buffer->commit_page->page->commit,
3121                           rb_page_write(cpu_buffer->commit_page));
3122                 RB_WARN_ON(cpu_buffer,
3123                            local_read(&cpu_buffer->commit_page->page->commit) &
3124                            ~RB_WRITE_MASK);
3125                 barrier();
3126         }
3127
3128         /* again, keep gcc from optimizing */
3129         barrier();
3130
3131         /*
3132          * If an interrupt came in just after the first while loop
3133          * and pushed the tail page forward, we will be left with
3134          * a dangling commit that will never go forward.
3135          */
3136         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3137                 goto again;
3138 }
3139
3140 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3141 {
3142         unsigned long commits;
3143
3144         if (RB_WARN_ON(cpu_buffer,
3145                        !local_read(&cpu_buffer->committing)))
3146                 return;
3147
3148  again:
3149         commits = local_read(&cpu_buffer->commits);
3150         /* synchronize with interrupts */
3151         barrier();
3152         if (local_read(&cpu_buffer->committing) == 1)
3153                 rb_set_commit_to_write(cpu_buffer);
3154
3155         local_dec(&cpu_buffer->committing);
3156
3157         /* synchronize with interrupts */
3158         barrier();
3159
3160         /*
3161          * Need to account for interrupts coming in between the
3162          * updating of the commit page and the clearing of the
3163          * committing counter.
3164          */
3165         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3166             !local_read(&cpu_buffer->committing)) {
3167                 local_inc(&cpu_buffer->committing);
3168                 goto again;
3169         }
3170 }
3171
3172 static inline void rb_event_discard(struct ring_buffer_event *event)
3173 {
3174         if (extended_time(event))
3175                 event = skip_time_extend(event);
3176
3177         /* array[0] holds the actual length for the discarded event */
3178         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3179         event->type_len = RINGBUF_TYPE_PADDING;
3180         /* time delta must be non zero */
3181         if (!event->time_delta)
3182                 event->time_delta = 1;
3183 }
3184
3185 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3186 {
3187         local_inc(&cpu_buffer->entries);
3188         rb_end_commit(cpu_buffer);
3189 }
3190
3191 static __always_inline void
3192 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3193 {
3194         if (buffer->irq_work.waiters_pending) {
3195                 buffer->irq_work.waiters_pending = false;
3196                 /* irq_work_queue() supplies it's own memory barriers */
3197                 irq_work_queue(&buffer->irq_work.work);
3198         }
3199
3200         if (cpu_buffer->irq_work.waiters_pending) {
3201                 cpu_buffer->irq_work.waiters_pending = false;
3202                 /* irq_work_queue() supplies it's own memory barriers */
3203                 irq_work_queue(&cpu_buffer->irq_work.work);
3204         }
3205
3206         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3207                 return;
3208
3209         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3210                 return;
3211
3212         if (!cpu_buffer->irq_work.full_waiters_pending)
3213                 return;
3214
3215         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3216
3217         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3218                 return;
3219
3220         cpu_buffer->irq_work.wakeup_full = true;
3221         cpu_buffer->irq_work.full_waiters_pending = false;
3222         /* irq_work_queue() supplies it's own memory barriers */
3223         irq_work_queue(&cpu_buffer->irq_work.work);
3224 }
3225
3226 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3227 # define do_ring_buffer_record_recursion()      \
3228         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3229 #else
3230 # define do_ring_buffer_record_recursion() do { } while (0)
3231 #endif
3232
3233 /*
3234  * The lock and unlock are done within a preempt disable section.
3235  * The current_context per_cpu variable can only be modified
3236  * by the current task between lock and unlock. But it can
3237  * be modified more than once via an interrupt. To pass this
3238  * information from the lock to the unlock without having to
3239  * access the 'in_interrupt()' functions again (which do show
3240  * a bit of overhead in something as critical as function tracing,
3241  * we use a bitmask trick.
3242  *
3243  *  bit 1 =  NMI context
3244  *  bit 2 =  IRQ context
3245  *  bit 3 =  SoftIRQ context
3246  *  bit 4 =  normal context.
3247  *
3248  * This works because this is the order of contexts that can
3249  * preempt other contexts. A SoftIRQ never preempts an IRQ
3250  * context.
3251  *
3252  * When the context is determined, the corresponding bit is
3253  * checked and set (if it was set, then a recursion of that context
3254  * happened).
3255  *
3256  * On unlock, we need to clear this bit. To do so, just subtract
3257  * 1 from the current_context and AND it to itself.
3258  *
3259  * (binary)
3260  *  101 - 1 = 100
3261  *  101 & 100 = 100 (clearing bit zero)
3262  *
3263  *  1010 - 1 = 1001
3264  *  1010 & 1001 = 1000 (clearing bit 1)
3265  *
3266  * The least significant bit can be cleared this way, and it
3267  * just so happens that it is the same bit corresponding to
3268  * the current context.
3269  *
3270  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3271  * is set when a recursion is detected at the current context, and if
3272  * the TRANSITION bit is already set, it will fail the recursion.
3273  * This is needed because there's a lag between the changing of
3274  * interrupt context and updating the preempt count. In this case,
3275  * a false positive will be found. To handle this, one extra recursion
3276  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3277  * bit is already set, then it is considered a recursion and the function
3278  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3279  *
3280  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3281  * to be cleared. Even if it wasn't the context that set it. That is,
3282  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3283  * is called before preempt_count() is updated, since the check will
3284  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3285  * NMI then comes in, it will set the NMI bit, but when the NMI code
3286  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3287  * and leave the NMI bit set. But this is fine, because the interrupt
3288  * code that set the TRANSITION bit will then clear the NMI bit when it
3289  * calls trace_recursive_unlock(). If another NMI comes in, it will
3290  * set the TRANSITION bit and continue.
3291  *
3292  * Note: The TRANSITION bit only handles a single transition between context.
3293  */
3294
3295 static __always_inline bool
3296 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3297 {
3298         unsigned int val = cpu_buffer->current_context;
3299         int bit = interrupt_context_level();
3300
3301         bit = RB_CTX_NORMAL - bit;
3302
3303         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3304                 /*
3305                  * It is possible that this was called by transitioning
3306                  * between interrupt context, and preempt_count() has not
3307                  * been updated yet. In this case, use the TRANSITION bit.
3308                  */
3309                 bit = RB_CTX_TRANSITION;
3310                 if (val & (1 << (bit + cpu_buffer->nest))) {
3311                         do_ring_buffer_record_recursion();
3312                         return true;
3313                 }
3314         }
3315
3316         val |= (1 << (bit + cpu_buffer->nest));
3317         cpu_buffer->current_context = val;
3318
3319         return false;
3320 }
3321
3322 static __always_inline void
3323 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3324 {
3325         cpu_buffer->current_context &=
3326                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3327 }
3328
3329 /* The recursive locking above uses 5 bits */
3330 #define NESTED_BITS 5
3331
3332 /**
3333  * ring_buffer_nest_start - Allow to trace while nested
3334  * @buffer: The ring buffer to modify
3335  *
3336  * The ring buffer has a safety mechanism to prevent recursion.
3337  * But there may be a case where a trace needs to be done while
3338  * tracing something else. In this case, calling this function
3339  * will allow this function to nest within a currently active
3340  * ring_buffer_lock_reserve().
3341  *
3342  * Call this function before calling another ring_buffer_lock_reserve() and
3343  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3344  */
3345 void ring_buffer_nest_start(struct trace_buffer *buffer)
3346 {
3347         struct ring_buffer_per_cpu *cpu_buffer;
3348         int cpu;
3349
3350         /* Enabled by ring_buffer_nest_end() */
3351         preempt_disable_notrace();
3352         cpu = raw_smp_processor_id();
3353         cpu_buffer = buffer->buffers[cpu];
3354         /* This is the shift value for the above recursive locking */
3355         cpu_buffer->nest += NESTED_BITS;
3356 }
3357
3358 /**
3359  * ring_buffer_nest_end - Allow to trace while nested
3360  * @buffer: The ring buffer to modify
3361  *
3362  * Must be called after ring_buffer_nest_start() and after the
3363  * ring_buffer_unlock_commit().
3364  */
3365 void ring_buffer_nest_end(struct trace_buffer *buffer)
3366 {
3367         struct ring_buffer_per_cpu *cpu_buffer;
3368         int cpu;
3369
3370         /* disabled by ring_buffer_nest_start() */
3371         cpu = raw_smp_processor_id();
3372         cpu_buffer = buffer->buffers[cpu];
3373         /* This is the shift value for the above recursive locking */
3374         cpu_buffer->nest -= NESTED_BITS;
3375         preempt_enable_notrace();
3376 }
3377
3378 /**
3379  * ring_buffer_unlock_commit - commit a reserved
3380  * @buffer: The buffer to commit to
3381  *
3382  * This commits the data to the ring buffer, and releases any locks held.
3383  *
3384  * Must be paired with ring_buffer_lock_reserve.
3385  */
3386 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3387 {
3388         struct ring_buffer_per_cpu *cpu_buffer;
3389         int cpu = raw_smp_processor_id();
3390
3391         cpu_buffer = buffer->buffers[cpu];
3392
3393         rb_commit(cpu_buffer);
3394
3395         rb_wakeups(buffer, cpu_buffer);
3396
3397         trace_recursive_unlock(cpu_buffer);
3398
3399         preempt_enable_notrace();
3400
3401         return 0;
3402 }
3403 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3404
3405 /* Special value to validate all deltas on a page. */
3406 #define CHECK_FULL_PAGE         1L
3407
3408 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3409 static void dump_buffer_page(struct buffer_data_page *bpage,
3410                              struct rb_event_info *info,
3411                              unsigned long tail)
3412 {
3413         struct ring_buffer_event *event;
3414         u64 ts, delta;
3415         int e;
3416
3417         ts = bpage->time_stamp;
3418         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3419
3420         for (e = 0; e < tail; e += rb_event_length(event)) {
3421
3422                 event = (struct ring_buffer_event *)(bpage->data + e);
3423
3424                 switch (event->type_len) {
3425
3426                 case RINGBUF_TYPE_TIME_EXTEND:
3427                         delta = rb_event_time_stamp(event);
3428                         ts += delta;
3429                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3430                         break;
3431
3432                 case RINGBUF_TYPE_TIME_STAMP:
3433                         delta = rb_event_time_stamp(event);
3434                         ts = rb_fix_abs_ts(delta, ts);
3435                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3436                         break;
3437
3438                 case RINGBUF_TYPE_PADDING:
3439                         ts += event->time_delta;
3440                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3441                         break;
3442
3443                 case RINGBUF_TYPE_DATA:
3444                         ts += event->time_delta;
3445                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3446                         break;
3447
3448                 default:
3449                         break;
3450                 }
3451         }
3452 }
3453
3454 static DEFINE_PER_CPU(atomic_t, checking);
3455 static atomic_t ts_dump;
3456
3457 /*
3458  * Check if the current event time stamp matches the deltas on
3459  * the buffer page.
3460  */
3461 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3462                          struct rb_event_info *info,
3463                          unsigned long tail)
3464 {
3465         struct ring_buffer_event *event;
3466         struct buffer_data_page *bpage;
3467         u64 ts, delta;
3468         bool full = false;
3469         int e;
3470
3471         bpage = info->tail_page->page;
3472
3473         if (tail == CHECK_FULL_PAGE) {
3474                 full = true;
3475                 tail = local_read(&bpage->commit);
3476         } else if (info->add_timestamp &
3477                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3478                 /* Ignore events with absolute time stamps */
3479                 return;
3480         }
3481
3482         /*
3483          * Do not check the first event (skip possible extends too).
3484          * Also do not check if previous events have not been committed.
3485          */
3486         if (tail <= 8 || tail > local_read(&bpage->commit))
3487                 return;
3488
3489         /*
3490          * If this interrupted another event, 
3491          */
3492         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3493                 goto out;
3494
3495         ts = bpage->time_stamp;
3496
3497         for (e = 0; e < tail; e += rb_event_length(event)) {
3498
3499                 event = (struct ring_buffer_event *)(bpage->data + e);
3500
3501                 switch (event->type_len) {
3502
3503                 case RINGBUF_TYPE_TIME_EXTEND:
3504                         delta = rb_event_time_stamp(event);
3505                         ts += delta;
3506                         break;
3507
3508                 case RINGBUF_TYPE_TIME_STAMP:
3509                         delta = rb_event_time_stamp(event);
3510                         ts = rb_fix_abs_ts(delta, ts);
3511                         break;
3512
3513                 case RINGBUF_TYPE_PADDING:
3514                         if (event->time_delta == 1)
3515                                 break;
3516                         fallthrough;
3517                 case RINGBUF_TYPE_DATA:
3518                         ts += event->time_delta;
3519                         break;
3520
3521                 default:
3522                         RB_WARN_ON(cpu_buffer, 1);
3523                 }
3524         }
3525         if ((full && ts > info->ts) ||
3526             (!full && ts + info->delta != info->ts)) {
3527                 /* If another report is happening, ignore this one */
3528                 if (atomic_inc_return(&ts_dump) != 1) {
3529                         atomic_dec(&ts_dump);
3530                         goto out;
3531                 }
3532                 atomic_inc(&cpu_buffer->record_disabled);
3533                 /* There's some cases in boot up that this can happen */
3534                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3535                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3536                         cpu_buffer->cpu,
3537                         ts + info->delta, info->ts, info->delta,
3538                         info->before, info->after,
3539                         full ? " (full)" : "");
3540                 dump_buffer_page(bpage, info, tail);
3541                 atomic_dec(&ts_dump);
3542                 /* Do not re-enable checking */
3543                 return;
3544         }
3545 out:
3546         atomic_dec(this_cpu_ptr(&checking));
3547 }
3548 #else
3549 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3550                          struct rb_event_info *info,
3551                          unsigned long tail)
3552 {
3553 }
3554 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3555
3556 static struct ring_buffer_event *
3557 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3558                   struct rb_event_info *info)
3559 {
3560         struct ring_buffer_event *event;
3561         struct buffer_page *tail_page;
3562         unsigned long tail, write, w;
3563         bool a_ok;
3564         bool b_ok;
3565
3566         /* Don't let the compiler play games with cpu_buffer->tail_page */
3567         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3568
3569  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3570         barrier();
3571         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3572         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3573         barrier();
3574         info->ts = rb_time_stamp(cpu_buffer->buffer);
3575
3576         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3577                 info->delta = info->ts;
3578         } else {
3579                 /*
3580                  * If interrupting an event time update, we may need an
3581                  * absolute timestamp.
3582                  * Don't bother if this is the start of a new page (w == 0).
3583                  */
3584                 if (!w) {
3585                         /* Use the sub-buffer timestamp */
3586                         info->delta = 0;
3587                 } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) {
3588                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3589                         info->length += RB_LEN_TIME_EXTEND;
3590                 } else {
3591                         info->delta = info->ts - info->after;
3592                         if (unlikely(test_time_stamp(info->delta))) {
3593                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3594                                 info->length += RB_LEN_TIME_EXTEND;
3595                         }
3596                 }
3597         }
3598
3599  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3600
3601  /*C*/  write = local_add_return(info->length, &tail_page->write);
3602
3603         /* set write to only the index of the write */
3604         write &= RB_WRITE_MASK;
3605
3606         tail = write - info->length;
3607
3608         /* See if we shot pass the end of this buffer page */
3609         if (unlikely(write > BUF_PAGE_SIZE)) {
3610                 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3611                 return rb_move_tail(cpu_buffer, tail, info);
3612         }
3613
3614         if (likely(tail == w)) {
3615                 u64 save_before;
3616                 bool s_ok;
3617
3618                 /* Nothing interrupted us between A and C */
3619  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3620                 barrier();
3621  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3622                 RB_WARN_ON(cpu_buffer, !s_ok);
3623                 if (likely(!(info->add_timestamp &
3624                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3625                         /* This did not interrupt any time update */
3626                         info->delta = info->ts - info->after;
3627                 else
3628                         /* Just use full timestamp for interrupting event */
3629                         info->delta = info->ts;
3630                 barrier();
3631                 check_buffer(cpu_buffer, info, tail);
3632                 if (unlikely(info->ts != save_before)) {
3633                         /* SLOW PATH - Interrupted between C and E */
3634
3635                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3636                         RB_WARN_ON(cpu_buffer, !a_ok);
3637
3638                         /* Write stamp must only go forward */
3639                         if (save_before > info->after) {
3640                                 /*
3641                                  * We do not care about the result, only that
3642                                  * it gets updated atomically.
3643                                  */
3644                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3645                                                       info->after, save_before);
3646                         }
3647                 }
3648         } else {
3649                 u64 ts;
3650                 /* SLOW PATH - Interrupted between A and C */
3651                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3652                 /* Was interrupted before here, write_stamp must be valid */
3653                 RB_WARN_ON(cpu_buffer, !a_ok);
3654                 ts = rb_time_stamp(cpu_buffer->buffer);
3655                 barrier();
3656  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3657                     info->after < ts &&
3658                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3659                                     info->after, ts)) {
3660                         /* Nothing came after this event between C and E */
3661                         info->delta = ts - info->after;
3662                 } else {
3663                         /*
3664                          * Interrupted between C and E:
3665                          * Lost the previous events time stamp. Just set the
3666                          * delta to zero, and this will be the same time as
3667                          * the event this event interrupted. And the events that
3668                          * came after this will still be correct (as they would
3669                          * have built their delta on the previous event.
3670                          */
3671                         info->delta = 0;
3672                 }
3673                 info->ts = ts;
3674                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3675         }
3676
3677         /*
3678          * If this is the first commit on the page, then it has the same
3679          * timestamp as the page itself.
3680          */
3681         if (unlikely(!tail && !(info->add_timestamp &
3682                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3683                 info->delta = 0;
3684
3685         /* We reserved something on the buffer */
3686
3687         event = __rb_page_index(tail_page, tail);
3688         rb_update_event(cpu_buffer, event, info);
3689
3690         local_inc(&tail_page->entries);
3691
3692         /*
3693          * If this is the first commit on the page, then update
3694          * its timestamp.
3695          */
3696         if (unlikely(!tail))
3697                 tail_page->page->time_stamp = info->ts;
3698
3699         /* account for these added bytes */
3700         local_add(info->length, &cpu_buffer->entries_bytes);
3701
3702         return event;
3703 }
3704
3705 static __always_inline struct ring_buffer_event *
3706 rb_reserve_next_event(struct trace_buffer *buffer,
3707                       struct ring_buffer_per_cpu *cpu_buffer,
3708                       unsigned long length)
3709 {
3710         struct ring_buffer_event *event;
3711         struct rb_event_info info;
3712         int nr_loops = 0;
3713         int add_ts_default;
3714
3715         rb_start_commit(cpu_buffer);
3716         /* The commit page can not change after this */
3717
3718 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3719         /*
3720          * Due to the ability to swap a cpu buffer from a buffer
3721          * it is possible it was swapped before we committed.
3722          * (committing stops a swap). We check for it here and
3723          * if it happened, we have to fail the write.
3724          */
3725         barrier();
3726         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3727                 local_dec(&cpu_buffer->committing);
3728                 local_dec(&cpu_buffer->commits);
3729                 return NULL;
3730         }
3731 #endif
3732
3733         info.length = rb_calculate_event_length(length);
3734
3735         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3736                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3737                 info.length += RB_LEN_TIME_EXTEND;
3738                 if (info.length > BUF_MAX_DATA_SIZE)
3739                         goto out_fail;
3740         } else {
3741                 add_ts_default = RB_ADD_STAMP_NONE;
3742         }
3743
3744  again:
3745         info.add_timestamp = add_ts_default;
3746         info.delta = 0;
3747
3748         /*
3749          * We allow for interrupts to reenter here and do a trace.
3750          * If one does, it will cause this original code to loop
3751          * back here. Even with heavy interrupts happening, this
3752          * should only happen a few times in a row. If this happens
3753          * 1000 times in a row, there must be either an interrupt
3754          * storm or we have something buggy.
3755          * Bail!
3756          */
3757         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3758                 goto out_fail;
3759
3760         event = __rb_reserve_next(cpu_buffer, &info);
3761
3762         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3763                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3764                         info.length -= RB_LEN_TIME_EXTEND;
3765                 goto again;
3766         }
3767
3768         if (likely(event))
3769                 return event;
3770  out_fail:
3771         rb_end_commit(cpu_buffer);
3772         return NULL;
3773 }
3774
3775 /**
3776  * ring_buffer_lock_reserve - reserve a part of the buffer
3777  * @buffer: the ring buffer to reserve from
3778  * @length: the length of the data to reserve (excluding event header)
3779  *
3780  * Returns a reserved event on the ring buffer to copy directly to.
3781  * The user of this interface will need to get the body to write into
3782  * and can use the ring_buffer_event_data() interface.
3783  *
3784  * The length is the length of the data needed, not the event length
3785  * which also includes the event header.
3786  *
3787  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3788  * If NULL is returned, then nothing has been allocated or locked.
3789  */
3790 struct ring_buffer_event *
3791 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3792 {
3793         struct ring_buffer_per_cpu *cpu_buffer;
3794         struct ring_buffer_event *event;
3795         int cpu;
3796
3797         /* If we are tracing schedule, we don't want to recurse */
3798         preempt_disable_notrace();
3799
3800         if (unlikely(atomic_read(&buffer->record_disabled)))
3801                 goto out;
3802
3803         cpu = raw_smp_processor_id();
3804
3805         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3806                 goto out;
3807
3808         cpu_buffer = buffer->buffers[cpu];
3809
3810         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3811                 goto out;
3812
3813         if (unlikely(length > BUF_MAX_DATA_SIZE))
3814                 goto out;
3815
3816         if (unlikely(trace_recursive_lock(cpu_buffer)))
3817                 goto out;
3818
3819         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3820         if (!event)
3821                 goto out_unlock;
3822
3823         return event;
3824
3825  out_unlock:
3826         trace_recursive_unlock(cpu_buffer);
3827  out:
3828         preempt_enable_notrace();
3829         return NULL;
3830 }
3831 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3832
3833 /*
3834  * Decrement the entries to the page that an event is on.
3835  * The event does not even need to exist, only the pointer
3836  * to the page it is on. This may only be called before the commit
3837  * takes place.
3838  */
3839 static inline void
3840 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3841                    struct ring_buffer_event *event)
3842 {
3843         unsigned long addr = (unsigned long)event;
3844         struct buffer_page *bpage = cpu_buffer->commit_page;
3845         struct buffer_page *start;
3846
3847         addr &= PAGE_MASK;
3848
3849         /* Do the likely case first */
3850         if (likely(bpage->page == (void *)addr)) {
3851                 local_dec(&bpage->entries);
3852                 return;
3853         }
3854
3855         /*
3856          * Because the commit page may be on the reader page we
3857          * start with the next page and check the end loop there.
3858          */
3859         rb_inc_page(&bpage);
3860         start = bpage;
3861         do {
3862                 if (bpage->page == (void *)addr) {
3863                         local_dec(&bpage->entries);
3864                         return;
3865                 }
3866                 rb_inc_page(&bpage);
3867         } while (bpage != start);
3868
3869         /* commit not part of this buffer?? */
3870         RB_WARN_ON(cpu_buffer, 1);
3871 }
3872
3873 /**
3874  * ring_buffer_discard_commit - discard an event that has not been committed
3875  * @buffer: the ring buffer
3876  * @event: non committed event to discard
3877  *
3878  * Sometimes an event that is in the ring buffer needs to be ignored.
3879  * This function lets the user discard an event in the ring buffer
3880  * and then that event will not be read later.
3881  *
3882  * This function only works if it is called before the item has been
3883  * committed. It will try to free the event from the ring buffer
3884  * if another event has not been added behind it.
3885  *
3886  * If another event has been added behind it, it will set the event
3887  * up as discarded, and perform the commit.
3888  *
3889  * If this function is called, do not call ring_buffer_unlock_commit on
3890  * the event.
3891  */
3892 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3893                                 struct ring_buffer_event *event)
3894 {
3895         struct ring_buffer_per_cpu *cpu_buffer;
3896         int cpu;
3897
3898         /* The event is discarded regardless */
3899         rb_event_discard(event);
3900
3901         cpu = smp_processor_id();
3902         cpu_buffer = buffer->buffers[cpu];
3903
3904         /*
3905          * This must only be called if the event has not been
3906          * committed yet. Thus we can assume that preemption
3907          * is still disabled.
3908          */
3909         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3910
3911         rb_decrement_entry(cpu_buffer, event);
3912         if (rb_try_to_discard(cpu_buffer, event))
3913                 goto out;
3914
3915  out:
3916         rb_end_commit(cpu_buffer);
3917
3918         trace_recursive_unlock(cpu_buffer);
3919
3920         preempt_enable_notrace();
3921
3922 }
3923 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3924
3925 /**
3926  * ring_buffer_write - write data to the buffer without reserving
3927  * @buffer: The ring buffer to write to.
3928  * @length: The length of the data being written (excluding the event header)
3929  * @data: The data to write to the buffer.
3930  *
3931  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3932  * one function. If you already have the data to write to the buffer, it
3933  * may be easier to simply call this function.
3934  *
3935  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3936  * and not the length of the event which would hold the header.
3937  */
3938 int ring_buffer_write(struct trace_buffer *buffer,
3939                       unsigned long length,
3940                       void *data)
3941 {
3942         struct ring_buffer_per_cpu *cpu_buffer;
3943         struct ring_buffer_event *event;
3944         void *body;
3945         int ret = -EBUSY;
3946         int cpu;
3947
3948         preempt_disable_notrace();
3949
3950         if (atomic_read(&buffer->record_disabled))
3951                 goto out;
3952
3953         cpu = raw_smp_processor_id();
3954
3955         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3956                 goto out;
3957
3958         cpu_buffer = buffer->buffers[cpu];
3959
3960         if (atomic_read(&cpu_buffer->record_disabled))
3961                 goto out;
3962
3963         if (length > BUF_MAX_DATA_SIZE)
3964                 goto out;
3965
3966         if (unlikely(trace_recursive_lock(cpu_buffer)))
3967                 goto out;
3968
3969         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3970         if (!event)
3971                 goto out_unlock;
3972
3973         body = rb_event_data(event);
3974
3975         memcpy(body, data, length);
3976
3977         rb_commit(cpu_buffer);
3978
3979         rb_wakeups(buffer, cpu_buffer);
3980
3981         ret = 0;
3982
3983  out_unlock:
3984         trace_recursive_unlock(cpu_buffer);
3985
3986  out:
3987         preempt_enable_notrace();
3988
3989         return ret;
3990 }
3991 EXPORT_SYMBOL_GPL(ring_buffer_write);
3992
3993 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3994 {
3995         struct buffer_page *reader = cpu_buffer->reader_page;
3996         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3997         struct buffer_page *commit = cpu_buffer->commit_page;
3998
3999         /* In case of error, head will be NULL */
4000         if (unlikely(!head))
4001                 return true;
4002
4003         /* Reader should exhaust content in reader page */
4004         if (reader->read != rb_page_commit(reader))
4005                 return false;
4006
4007         /*
4008          * If writers are committing on the reader page, knowing all
4009          * committed content has been read, the ring buffer is empty.
4010          */
4011         if (commit == reader)
4012                 return true;
4013
4014         /*
4015          * If writers are committing on a page other than reader page
4016          * and head page, there should always be content to read.
4017          */
4018         if (commit != head)
4019                 return false;
4020
4021         /*
4022          * Writers are committing on the head page, we just need
4023          * to care about there're committed data, and the reader will
4024          * swap reader page with head page when it is to read data.
4025          */
4026         return rb_page_commit(commit) == 0;
4027 }
4028
4029 /**
4030  * ring_buffer_record_disable - stop all writes into the buffer
4031  * @buffer: The ring buffer to stop writes to.
4032  *
4033  * This prevents all writes to the buffer. Any attempt to write
4034  * to the buffer after this will fail and return NULL.
4035  *
4036  * The caller should call synchronize_rcu() after this.
4037  */
4038 void ring_buffer_record_disable(struct trace_buffer *buffer)
4039 {
4040         atomic_inc(&buffer->record_disabled);
4041 }
4042 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4043
4044 /**
4045  * ring_buffer_record_enable - enable writes to the buffer
4046  * @buffer: The ring buffer to enable writes
4047  *
4048  * Note, multiple disables will need the same number of enables
4049  * to truly enable the writing (much like preempt_disable).
4050  */
4051 void ring_buffer_record_enable(struct trace_buffer *buffer)
4052 {
4053         atomic_dec(&buffer->record_disabled);
4054 }
4055 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4056
4057 /**
4058  * ring_buffer_record_off - stop all writes into the buffer
4059  * @buffer: The ring buffer to stop writes to.
4060  *
4061  * This prevents all writes to the buffer. Any attempt to write
4062  * to the buffer after this will fail and return NULL.
4063  *
4064  * This is different than ring_buffer_record_disable() as
4065  * it works like an on/off switch, where as the disable() version
4066  * must be paired with a enable().
4067  */
4068 void ring_buffer_record_off(struct trace_buffer *buffer)
4069 {
4070         unsigned int rd;
4071         unsigned int new_rd;
4072
4073         rd = atomic_read(&buffer->record_disabled);
4074         do {
4075                 new_rd = rd | RB_BUFFER_OFF;
4076         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4077 }
4078 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4079
4080 /**
4081  * ring_buffer_record_on - restart writes into the buffer
4082  * @buffer: The ring buffer to start writes to.
4083  *
4084  * This enables all writes to the buffer that was disabled by
4085  * ring_buffer_record_off().
4086  *
4087  * This is different than ring_buffer_record_enable() as
4088  * it works like an on/off switch, where as the enable() version
4089  * must be paired with a disable().
4090  */
4091 void ring_buffer_record_on(struct trace_buffer *buffer)
4092 {
4093         unsigned int rd;
4094         unsigned int new_rd;
4095
4096         rd = atomic_read(&buffer->record_disabled);
4097         do {
4098                 new_rd = rd & ~RB_BUFFER_OFF;
4099         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4100 }
4101 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4102
4103 /**
4104  * ring_buffer_record_is_on - return true if the ring buffer can write
4105  * @buffer: The ring buffer to see if write is enabled
4106  *
4107  * Returns true if the ring buffer is in a state that it accepts writes.
4108  */
4109 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4110 {
4111         return !atomic_read(&buffer->record_disabled);
4112 }
4113
4114 /**
4115  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4116  * @buffer: The ring buffer to see if write is set enabled
4117  *
4118  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4119  * Note that this does NOT mean it is in a writable state.
4120  *
4121  * It may return true when the ring buffer has been disabled by
4122  * ring_buffer_record_disable(), as that is a temporary disabling of
4123  * the ring buffer.
4124  */
4125 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4126 {
4127         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4128 }
4129
4130 /**
4131  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4132  * @buffer: The ring buffer to stop writes to.
4133  * @cpu: The CPU buffer to stop
4134  *
4135  * This prevents all writes to the buffer. Any attempt to write
4136  * to the buffer after this will fail and return NULL.
4137  *
4138  * The caller should call synchronize_rcu() after this.
4139  */
4140 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4141 {
4142         struct ring_buffer_per_cpu *cpu_buffer;
4143
4144         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4145                 return;
4146
4147         cpu_buffer = buffer->buffers[cpu];
4148         atomic_inc(&cpu_buffer->record_disabled);
4149 }
4150 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4151
4152 /**
4153  * ring_buffer_record_enable_cpu - enable writes to the buffer
4154  * @buffer: The ring buffer to enable writes
4155  * @cpu: The CPU to enable.
4156  *
4157  * Note, multiple disables will need the same number of enables
4158  * to truly enable the writing (much like preempt_disable).
4159  */
4160 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4161 {
4162         struct ring_buffer_per_cpu *cpu_buffer;
4163
4164         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4165                 return;
4166
4167         cpu_buffer = buffer->buffers[cpu];
4168         atomic_dec(&cpu_buffer->record_disabled);
4169 }
4170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4171
4172 /*
4173  * The total entries in the ring buffer is the running counter
4174  * of entries entered into the ring buffer, minus the sum of
4175  * the entries read from the ring buffer and the number of
4176  * entries that were overwritten.
4177  */
4178 static inline unsigned long
4179 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4180 {
4181         return local_read(&cpu_buffer->entries) -
4182                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4183 }
4184
4185 /**
4186  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4187  * @buffer: The ring buffer
4188  * @cpu: The per CPU buffer to read from.
4189  */
4190 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4191 {
4192         unsigned long flags;
4193         struct ring_buffer_per_cpu *cpu_buffer;
4194         struct buffer_page *bpage;
4195         u64 ret = 0;
4196
4197         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4198                 return 0;
4199
4200         cpu_buffer = buffer->buffers[cpu];
4201         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4202         /*
4203          * if the tail is on reader_page, oldest time stamp is on the reader
4204          * page
4205          */
4206         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4207                 bpage = cpu_buffer->reader_page;
4208         else
4209                 bpage = rb_set_head_page(cpu_buffer);
4210         if (bpage)
4211                 ret = bpage->page->time_stamp;
4212         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4213
4214         return ret;
4215 }
4216 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4217
4218 /**
4219  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4220  * @buffer: The ring buffer
4221  * @cpu: The per CPU buffer to read from.
4222  */
4223 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4224 {
4225         struct ring_buffer_per_cpu *cpu_buffer;
4226         unsigned long ret;
4227
4228         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4229                 return 0;
4230
4231         cpu_buffer = buffer->buffers[cpu];
4232         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4233
4234         return ret;
4235 }
4236 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4237
4238 /**
4239  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4240  * @buffer: The ring buffer
4241  * @cpu: The per CPU buffer to get the entries from.
4242  */
4243 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4244 {
4245         struct ring_buffer_per_cpu *cpu_buffer;
4246
4247         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4248                 return 0;
4249
4250         cpu_buffer = buffer->buffers[cpu];
4251
4252         return rb_num_of_entries(cpu_buffer);
4253 }
4254 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4255
4256 /**
4257  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4258  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4259  * @buffer: The ring buffer
4260  * @cpu: The per CPU buffer to get the number of overruns from
4261  */
4262 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4263 {
4264         struct ring_buffer_per_cpu *cpu_buffer;
4265         unsigned long ret;
4266
4267         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4268                 return 0;
4269
4270         cpu_buffer = buffer->buffers[cpu];
4271         ret = local_read(&cpu_buffer->overrun);
4272
4273         return ret;
4274 }
4275 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4276
4277 /**
4278  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4279  * commits failing due to the buffer wrapping around while there are uncommitted
4280  * events, such as during an interrupt storm.
4281  * @buffer: The ring buffer
4282  * @cpu: The per CPU buffer to get the number of overruns from
4283  */
4284 unsigned long
4285 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4286 {
4287         struct ring_buffer_per_cpu *cpu_buffer;
4288         unsigned long ret;
4289
4290         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4291                 return 0;
4292
4293         cpu_buffer = buffer->buffers[cpu];
4294         ret = local_read(&cpu_buffer->commit_overrun);
4295
4296         return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4299
4300 /**
4301  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4302  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4303  * @buffer: The ring buffer
4304  * @cpu: The per CPU buffer to get the number of overruns from
4305  */
4306 unsigned long
4307 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4308 {
4309         struct ring_buffer_per_cpu *cpu_buffer;
4310         unsigned long ret;
4311
4312         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4313                 return 0;
4314
4315         cpu_buffer = buffer->buffers[cpu];
4316         ret = local_read(&cpu_buffer->dropped_events);
4317
4318         return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4321
4322 /**
4323  * ring_buffer_read_events_cpu - get the number of events successfully read
4324  * @buffer: The ring buffer
4325  * @cpu: The per CPU buffer to get the number of events read
4326  */
4327 unsigned long
4328 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4329 {
4330         struct ring_buffer_per_cpu *cpu_buffer;
4331
4332         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4333                 return 0;
4334
4335         cpu_buffer = buffer->buffers[cpu];
4336         return cpu_buffer->read;
4337 }
4338 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4339
4340 /**
4341  * ring_buffer_entries - get the number of entries in a buffer
4342  * @buffer: The ring buffer
4343  *
4344  * Returns the total number of entries in the ring buffer
4345  * (all CPU entries)
4346  */
4347 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4348 {
4349         struct ring_buffer_per_cpu *cpu_buffer;
4350         unsigned long entries = 0;
4351         int cpu;
4352
4353         /* if you care about this being correct, lock the buffer */
4354         for_each_buffer_cpu(buffer, cpu) {
4355                 cpu_buffer = buffer->buffers[cpu];
4356                 entries += rb_num_of_entries(cpu_buffer);
4357         }
4358
4359         return entries;
4360 }
4361 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4362
4363 /**
4364  * ring_buffer_overruns - get the number of overruns in buffer
4365  * @buffer: The ring buffer
4366  *
4367  * Returns the total number of overruns in the ring buffer
4368  * (all CPU entries)
4369  */
4370 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4371 {
4372         struct ring_buffer_per_cpu *cpu_buffer;
4373         unsigned long overruns = 0;
4374         int cpu;
4375
4376         /* if you care about this being correct, lock the buffer */
4377         for_each_buffer_cpu(buffer, cpu) {
4378                 cpu_buffer = buffer->buffers[cpu];
4379                 overruns += local_read(&cpu_buffer->overrun);
4380         }
4381
4382         return overruns;
4383 }
4384 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4385
4386 static void rb_iter_reset(struct ring_buffer_iter *iter)
4387 {
4388         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4389
4390         /* Iterator usage is expected to have record disabled */
4391         iter->head_page = cpu_buffer->reader_page;
4392         iter->head = cpu_buffer->reader_page->read;
4393         iter->next_event = iter->head;
4394
4395         iter->cache_reader_page = iter->head_page;
4396         iter->cache_read = cpu_buffer->read;
4397         iter->cache_pages_removed = cpu_buffer->pages_removed;
4398
4399         if (iter->head) {
4400                 iter->read_stamp = cpu_buffer->read_stamp;
4401                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4402         } else {
4403                 iter->read_stamp = iter->head_page->page->time_stamp;
4404                 iter->page_stamp = iter->read_stamp;
4405         }
4406 }
4407
4408 /**
4409  * ring_buffer_iter_reset - reset an iterator
4410  * @iter: The iterator to reset
4411  *
4412  * Resets the iterator, so that it will start from the beginning
4413  * again.
4414  */
4415 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4416 {
4417         struct ring_buffer_per_cpu *cpu_buffer;
4418         unsigned long flags;
4419
4420         if (!iter)
4421                 return;
4422
4423         cpu_buffer = iter->cpu_buffer;
4424
4425         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4426         rb_iter_reset(iter);
4427         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4428 }
4429 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4430
4431 /**
4432  * ring_buffer_iter_empty - check if an iterator has no more to read
4433  * @iter: The iterator to check
4434  */
4435 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4436 {
4437         struct ring_buffer_per_cpu *cpu_buffer;
4438         struct buffer_page *reader;
4439         struct buffer_page *head_page;
4440         struct buffer_page *commit_page;
4441         struct buffer_page *curr_commit_page;
4442         unsigned commit;
4443         u64 curr_commit_ts;
4444         u64 commit_ts;
4445
4446         cpu_buffer = iter->cpu_buffer;
4447         reader = cpu_buffer->reader_page;
4448         head_page = cpu_buffer->head_page;
4449         commit_page = cpu_buffer->commit_page;
4450         commit_ts = commit_page->page->time_stamp;
4451
4452         /*
4453          * When the writer goes across pages, it issues a cmpxchg which
4454          * is a mb(), which will synchronize with the rmb here.
4455          * (see rb_tail_page_update())
4456          */
4457         smp_rmb();
4458         commit = rb_page_commit(commit_page);
4459         /* We want to make sure that the commit page doesn't change */
4460         smp_rmb();
4461
4462         /* Make sure commit page didn't change */
4463         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4464         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4465
4466         /* If the commit page changed, then there's more data */
4467         if (curr_commit_page != commit_page ||
4468             curr_commit_ts != commit_ts)
4469                 return 0;
4470
4471         /* Still racy, as it may return a false positive, but that's OK */
4472         return ((iter->head_page == commit_page && iter->head >= commit) ||
4473                 (iter->head_page == reader && commit_page == head_page &&
4474                  head_page->read == commit &&
4475                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4476 }
4477 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4478
4479 static void
4480 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4481                      struct ring_buffer_event *event)
4482 {
4483         u64 delta;
4484
4485         switch (event->type_len) {
4486         case RINGBUF_TYPE_PADDING:
4487                 return;
4488
4489         case RINGBUF_TYPE_TIME_EXTEND:
4490                 delta = rb_event_time_stamp(event);
4491                 cpu_buffer->read_stamp += delta;
4492                 return;
4493
4494         case RINGBUF_TYPE_TIME_STAMP:
4495                 delta = rb_event_time_stamp(event);
4496                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4497                 cpu_buffer->read_stamp = delta;
4498                 return;
4499
4500         case RINGBUF_TYPE_DATA:
4501                 cpu_buffer->read_stamp += event->time_delta;
4502                 return;
4503
4504         default:
4505                 RB_WARN_ON(cpu_buffer, 1);
4506         }
4507 }
4508
4509 static void
4510 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4511                           struct ring_buffer_event *event)
4512 {
4513         u64 delta;
4514
4515         switch (event->type_len) {
4516         case RINGBUF_TYPE_PADDING:
4517                 return;
4518
4519         case RINGBUF_TYPE_TIME_EXTEND:
4520                 delta = rb_event_time_stamp(event);
4521                 iter->read_stamp += delta;
4522                 return;
4523
4524         case RINGBUF_TYPE_TIME_STAMP:
4525                 delta = rb_event_time_stamp(event);
4526                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4527                 iter->read_stamp = delta;
4528                 return;
4529
4530         case RINGBUF_TYPE_DATA:
4531                 iter->read_stamp += event->time_delta;
4532                 return;
4533
4534         default:
4535                 RB_WARN_ON(iter->cpu_buffer, 1);
4536         }
4537 }
4538
4539 static struct buffer_page *
4540 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4541 {
4542         struct buffer_page *reader = NULL;
4543         unsigned long overwrite;
4544         unsigned long flags;
4545         int nr_loops = 0;
4546         bool ret;
4547
4548         local_irq_save(flags);
4549         arch_spin_lock(&cpu_buffer->lock);
4550
4551  again:
4552         /*
4553          * This should normally only loop twice. But because the
4554          * start of the reader inserts an empty page, it causes
4555          * a case where we will loop three times. There should be no
4556          * reason to loop four times (that I know of).
4557          */
4558         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4559                 reader = NULL;
4560                 goto out;
4561         }
4562
4563         reader = cpu_buffer->reader_page;
4564
4565         /* If there's more to read, return this page */
4566         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4567                 goto out;
4568
4569         /* Never should we have an index greater than the size */
4570         if (RB_WARN_ON(cpu_buffer,
4571                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4572                 goto out;
4573
4574         /* check if we caught up to the tail */
4575         reader = NULL;
4576         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4577                 goto out;
4578
4579         /* Don't bother swapping if the ring buffer is empty */
4580         if (rb_num_of_entries(cpu_buffer) == 0)
4581                 goto out;
4582
4583         /*
4584          * Reset the reader page to size zero.
4585          */
4586         local_set(&cpu_buffer->reader_page->write, 0);
4587         local_set(&cpu_buffer->reader_page->entries, 0);
4588         local_set(&cpu_buffer->reader_page->page->commit, 0);
4589         cpu_buffer->reader_page->real_end = 0;
4590
4591  spin:
4592         /*
4593          * Splice the empty reader page into the list around the head.
4594          */
4595         reader = rb_set_head_page(cpu_buffer);
4596         if (!reader)
4597                 goto out;
4598         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4599         cpu_buffer->reader_page->list.prev = reader->list.prev;
4600
4601         /*
4602          * cpu_buffer->pages just needs to point to the buffer, it
4603          *  has no specific buffer page to point to. Lets move it out
4604          *  of our way so we don't accidentally swap it.
4605          */
4606         cpu_buffer->pages = reader->list.prev;
4607
4608         /* The reader page will be pointing to the new head */
4609         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4610
4611         /*
4612          * We want to make sure we read the overruns after we set up our
4613          * pointers to the next object. The writer side does a
4614          * cmpxchg to cross pages which acts as the mb on the writer
4615          * side. Note, the reader will constantly fail the swap
4616          * while the writer is updating the pointers, so this
4617          * guarantees that the overwrite recorded here is the one we
4618          * want to compare with the last_overrun.
4619          */
4620         smp_mb();
4621         overwrite = local_read(&(cpu_buffer->overrun));
4622
4623         /*
4624          * Here's the tricky part.
4625          *
4626          * We need to move the pointer past the header page.
4627          * But we can only do that if a writer is not currently
4628          * moving it. The page before the header page has the
4629          * flag bit '1' set if it is pointing to the page we want.
4630          * but if the writer is in the process of moving it
4631          * than it will be '2' or already moved '0'.
4632          */
4633
4634         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4635
4636         /*
4637          * If we did not convert it, then we must try again.
4638          */
4639         if (!ret)
4640                 goto spin;
4641
4642         /*
4643          * Yay! We succeeded in replacing the page.
4644          *
4645          * Now make the new head point back to the reader page.
4646          */
4647         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4648         rb_inc_page(&cpu_buffer->head_page);
4649
4650         local_inc(&cpu_buffer->pages_read);
4651
4652         /* Finally update the reader page to the new head */
4653         cpu_buffer->reader_page = reader;
4654         cpu_buffer->reader_page->read = 0;
4655
4656         if (overwrite != cpu_buffer->last_overrun) {
4657                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4658                 cpu_buffer->last_overrun = overwrite;
4659         }
4660
4661         goto again;
4662
4663  out:
4664         /* Update the read_stamp on the first event */
4665         if (reader && reader->read == 0)
4666                 cpu_buffer->read_stamp = reader->page->time_stamp;
4667
4668         arch_spin_unlock(&cpu_buffer->lock);
4669         local_irq_restore(flags);
4670
4671         /*
4672          * The writer has preempt disable, wait for it. But not forever
4673          * Although, 1 second is pretty much "forever"
4674          */
4675 #define USECS_WAIT      1000000
4676         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4677                 /* If the write is past the end of page, a writer is still updating it */
4678                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4679                         break;
4680
4681                 udelay(1);
4682
4683                 /* Get the latest version of the reader write value */
4684                 smp_rmb();
4685         }
4686
4687         /* The writer is not moving forward? Something is wrong */
4688         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4689                 reader = NULL;
4690
4691         /*
4692          * Make sure we see any padding after the write update
4693          * (see rb_reset_tail()).
4694          *
4695          * In addition, a writer may be writing on the reader page
4696          * if the page has not been fully filled, so the read barrier
4697          * is also needed to make sure we see the content of what is
4698          * committed by the writer (see rb_set_commit_to_write()).
4699          */
4700         smp_rmb();
4701
4702
4703         return reader;
4704 }
4705
4706 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4707 {
4708         struct ring_buffer_event *event;
4709         struct buffer_page *reader;
4710         unsigned length;
4711
4712         reader = rb_get_reader_page(cpu_buffer);
4713
4714         /* This function should not be called when buffer is empty */
4715         if (RB_WARN_ON(cpu_buffer, !reader))
4716                 return;
4717
4718         event = rb_reader_event(cpu_buffer);
4719
4720         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4721                 cpu_buffer->read++;
4722
4723         rb_update_read_stamp(cpu_buffer, event);
4724
4725         length = rb_event_length(event);
4726         cpu_buffer->reader_page->read += length;
4727         cpu_buffer->read_bytes += length;
4728 }
4729
4730 static void rb_advance_iter(struct ring_buffer_iter *iter)
4731 {
4732         struct ring_buffer_per_cpu *cpu_buffer;
4733
4734         cpu_buffer = iter->cpu_buffer;
4735
4736         /* If head == next_event then we need to jump to the next event */
4737         if (iter->head == iter->next_event) {
4738                 /* If the event gets overwritten again, there's nothing to do */
4739                 if (rb_iter_head_event(iter) == NULL)
4740                         return;
4741         }
4742
4743         iter->head = iter->next_event;
4744
4745         /*
4746          * Check if we are at the end of the buffer.
4747          */
4748         if (iter->next_event >= rb_page_size(iter->head_page)) {
4749                 /* discarded commits can make the page empty */
4750                 if (iter->head_page == cpu_buffer->commit_page)
4751                         return;
4752                 rb_inc_iter(iter);
4753                 return;
4754         }
4755
4756         rb_update_iter_read_stamp(iter, iter->event);
4757 }
4758
4759 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4760 {
4761         return cpu_buffer->lost_events;
4762 }
4763
4764 static struct ring_buffer_event *
4765 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4766                unsigned long *lost_events)
4767 {
4768         struct ring_buffer_event *event;
4769         struct buffer_page *reader;
4770         int nr_loops = 0;
4771
4772         if (ts)
4773                 *ts = 0;
4774  again:
4775         /*
4776          * We repeat when a time extend is encountered.
4777          * Since the time extend is always attached to a data event,
4778          * we should never loop more than once.
4779          * (We never hit the following condition more than twice).
4780          */
4781         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4782                 return NULL;
4783
4784         reader = rb_get_reader_page(cpu_buffer);
4785         if (!reader)
4786                 return NULL;
4787
4788         event = rb_reader_event(cpu_buffer);
4789
4790         switch (event->type_len) {
4791         case RINGBUF_TYPE_PADDING:
4792                 if (rb_null_event(event))
4793                         RB_WARN_ON(cpu_buffer, 1);
4794                 /*
4795                  * Because the writer could be discarding every
4796                  * event it creates (which would probably be bad)
4797                  * if we were to go back to "again" then we may never
4798                  * catch up, and will trigger the warn on, or lock
4799                  * the box. Return the padding, and we will release
4800                  * the current locks, and try again.
4801                  */
4802                 return event;
4803
4804         case RINGBUF_TYPE_TIME_EXTEND:
4805                 /* Internal data, OK to advance */
4806                 rb_advance_reader(cpu_buffer);
4807                 goto again;
4808
4809         case RINGBUF_TYPE_TIME_STAMP:
4810                 if (ts) {
4811                         *ts = rb_event_time_stamp(event);
4812                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4813                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4814                                                          cpu_buffer->cpu, ts);
4815                 }
4816                 /* Internal data, OK to advance */
4817                 rb_advance_reader(cpu_buffer);
4818                 goto again;
4819
4820         case RINGBUF_TYPE_DATA:
4821                 if (ts && !(*ts)) {
4822                         *ts = cpu_buffer->read_stamp + event->time_delta;
4823                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4824                                                          cpu_buffer->cpu, ts);
4825                 }
4826                 if (lost_events)
4827                         *lost_events = rb_lost_events(cpu_buffer);
4828                 return event;
4829
4830         default:
4831                 RB_WARN_ON(cpu_buffer, 1);
4832         }
4833
4834         return NULL;
4835 }
4836 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4837
4838 static struct ring_buffer_event *
4839 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4840 {
4841         struct trace_buffer *buffer;
4842         struct ring_buffer_per_cpu *cpu_buffer;
4843         struct ring_buffer_event *event;
4844         int nr_loops = 0;
4845
4846         if (ts)
4847                 *ts = 0;
4848
4849         cpu_buffer = iter->cpu_buffer;
4850         buffer = cpu_buffer->buffer;
4851
4852         /*
4853          * Check if someone performed a consuming read to the buffer
4854          * or removed some pages from the buffer. In these cases,
4855          * iterator was invalidated and we need to reset it.
4856          */
4857         if (unlikely(iter->cache_read != cpu_buffer->read ||
4858                      iter->cache_reader_page != cpu_buffer->reader_page ||
4859                      iter->cache_pages_removed != cpu_buffer->pages_removed))
4860                 rb_iter_reset(iter);
4861
4862  again:
4863         if (ring_buffer_iter_empty(iter))
4864                 return NULL;
4865
4866         /*
4867          * As the writer can mess with what the iterator is trying
4868          * to read, just give up if we fail to get an event after
4869          * three tries. The iterator is not as reliable when reading
4870          * the ring buffer with an active write as the consumer is.
4871          * Do not warn if the three failures is reached.
4872          */
4873         if (++nr_loops > 3)
4874                 return NULL;
4875
4876         if (rb_per_cpu_empty(cpu_buffer))
4877                 return NULL;
4878
4879         if (iter->head >= rb_page_size(iter->head_page)) {
4880                 rb_inc_iter(iter);
4881                 goto again;
4882         }
4883
4884         event = rb_iter_head_event(iter);
4885         if (!event)
4886                 goto again;
4887
4888         switch (event->type_len) {
4889         case RINGBUF_TYPE_PADDING:
4890                 if (rb_null_event(event)) {
4891                         rb_inc_iter(iter);
4892                         goto again;
4893                 }
4894                 rb_advance_iter(iter);
4895                 return event;
4896
4897         case RINGBUF_TYPE_TIME_EXTEND:
4898                 /* Internal data, OK to advance */
4899                 rb_advance_iter(iter);
4900                 goto again;
4901
4902         case RINGBUF_TYPE_TIME_STAMP:
4903                 if (ts) {
4904                         *ts = rb_event_time_stamp(event);
4905                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4906                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4907                                                          cpu_buffer->cpu, ts);
4908                 }
4909                 /* Internal data, OK to advance */
4910                 rb_advance_iter(iter);
4911                 goto again;
4912
4913         case RINGBUF_TYPE_DATA:
4914                 if (ts && !(*ts)) {
4915                         *ts = iter->read_stamp + event->time_delta;
4916                         ring_buffer_normalize_time_stamp(buffer,
4917                                                          cpu_buffer->cpu, ts);
4918                 }
4919                 return event;
4920
4921         default:
4922                 RB_WARN_ON(cpu_buffer, 1);
4923         }
4924
4925         return NULL;
4926 }
4927 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4928
4929 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4930 {
4931         if (likely(!in_nmi())) {
4932                 raw_spin_lock(&cpu_buffer->reader_lock);
4933                 return true;
4934         }
4935
4936         /*
4937          * If an NMI die dumps out the content of the ring buffer
4938          * trylock must be used to prevent a deadlock if the NMI
4939          * preempted a task that holds the ring buffer locks. If
4940          * we get the lock then all is fine, if not, then continue
4941          * to do the read, but this can corrupt the ring buffer,
4942          * so it must be permanently disabled from future writes.
4943          * Reading from NMI is a oneshot deal.
4944          */
4945         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4946                 return true;
4947
4948         /* Continue without locking, but disable the ring buffer */
4949         atomic_inc(&cpu_buffer->record_disabled);
4950         return false;
4951 }
4952
4953 static inline void
4954 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4955 {
4956         if (likely(locked))
4957                 raw_spin_unlock(&cpu_buffer->reader_lock);
4958 }
4959
4960 /**
4961  * ring_buffer_peek - peek at the next event to be read
4962  * @buffer: The ring buffer to read
4963  * @cpu: The cpu to peak at
4964  * @ts: The timestamp counter of this event.
4965  * @lost_events: a variable to store if events were lost (may be NULL)
4966  *
4967  * This will return the event that will be read next, but does
4968  * not consume the data.
4969  */
4970 struct ring_buffer_event *
4971 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4972                  unsigned long *lost_events)
4973 {
4974         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4975         struct ring_buffer_event *event;
4976         unsigned long flags;
4977         bool dolock;
4978
4979         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4980                 return NULL;
4981
4982  again:
4983         local_irq_save(flags);
4984         dolock = rb_reader_lock(cpu_buffer);
4985         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4986         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4987                 rb_advance_reader(cpu_buffer);
4988         rb_reader_unlock(cpu_buffer, dolock);
4989         local_irq_restore(flags);
4990
4991         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4992                 goto again;
4993
4994         return event;
4995 }
4996
4997 /** ring_buffer_iter_dropped - report if there are dropped events
4998  * @iter: The ring buffer iterator
4999  *
5000  * Returns true if there was dropped events since the last peek.
5001  */
5002 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5003 {
5004         bool ret = iter->missed_events != 0;
5005
5006         iter->missed_events = 0;
5007         return ret;
5008 }
5009 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5010
5011 /**
5012  * ring_buffer_iter_peek - peek at the next event to be read
5013  * @iter: The ring buffer iterator
5014  * @ts: The timestamp counter of this event.
5015  *
5016  * This will return the event that will be read next, but does
5017  * not increment the iterator.
5018  */
5019 struct ring_buffer_event *
5020 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5021 {
5022         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5023         struct ring_buffer_event *event;
5024         unsigned long flags;
5025
5026  again:
5027         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5028         event = rb_iter_peek(iter, ts);
5029         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5030
5031         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5032                 goto again;
5033
5034         return event;
5035 }
5036
5037 /**
5038  * ring_buffer_consume - return an event and consume it
5039  * @buffer: The ring buffer to get the next event from
5040  * @cpu: the cpu to read the buffer from
5041  * @ts: a variable to store the timestamp (may be NULL)
5042  * @lost_events: a variable to store if events were lost (may be NULL)
5043  *
5044  * Returns the next event in the ring buffer, and that event is consumed.
5045  * Meaning, that sequential reads will keep returning a different event,
5046  * and eventually empty the ring buffer if the producer is slower.
5047  */
5048 struct ring_buffer_event *
5049 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5050                     unsigned long *lost_events)
5051 {
5052         struct ring_buffer_per_cpu *cpu_buffer;
5053         struct ring_buffer_event *event = NULL;
5054         unsigned long flags;
5055         bool dolock;
5056
5057  again:
5058         /* might be called in atomic */
5059         preempt_disable();
5060
5061         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5062                 goto out;
5063
5064         cpu_buffer = buffer->buffers[cpu];
5065         local_irq_save(flags);
5066         dolock = rb_reader_lock(cpu_buffer);
5067
5068         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5069         if (event) {
5070                 cpu_buffer->lost_events = 0;
5071                 rb_advance_reader(cpu_buffer);
5072         }
5073
5074         rb_reader_unlock(cpu_buffer, dolock);
5075         local_irq_restore(flags);
5076
5077  out:
5078         preempt_enable();
5079
5080         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5081                 goto again;
5082
5083         return event;
5084 }
5085 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5086
5087 /**
5088  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5089  * @buffer: The ring buffer to read from
5090  * @cpu: The cpu buffer to iterate over
5091  * @flags: gfp flags to use for memory allocation
5092  *
5093  * This performs the initial preparations necessary to iterate
5094  * through the buffer.  Memory is allocated, buffer recording
5095  * is disabled, and the iterator pointer is returned to the caller.
5096  *
5097  * Disabling buffer recording prevents the reading from being
5098  * corrupted. This is not a consuming read, so a producer is not
5099  * expected.
5100  *
5101  * After a sequence of ring_buffer_read_prepare calls, the user is
5102  * expected to make at least one call to ring_buffer_read_prepare_sync.
5103  * Afterwards, ring_buffer_read_start is invoked to get things going
5104  * for real.
5105  *
5106  * This overall must be paired with ring_buffer_read_finish.
5107  */
5108 struct ring_buffer_iter *
5109 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5110 {
5111         struct ring_buffer_per_cpu *cpu_buffer;
5112         struct ring_buffer_iter *iter;
5113
5114         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5115                 return NULL;
5116
5117         iter = kzalloc(sizeof(*iter), flags);
5118         if (!iter)
5119                 return NULL;
5120
5121         /* Holds the entire event: data and meta data */
5122         iter->event = kmalloc(BUF_PAGE_SIZE, flags);
5123         if (!iter->event) {
5124                 kfree(iter);
5125                 return NULL;
5126         }
5127
5128         cpu_buffer = buffer->buffers[cpu];
5129
5130         iter->cpu_buffer = cpu_buffer;
5131
5132         atomic_inc(&cpu_buffer->resize_disabled);
5133
5134         return iter;
5135 }
5136 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5137
5138 /**
5139  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5140  *
5141  * All previously invoked ring_buffer_read_prepare calls to prepare
5142  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5143  * calls on those iterators are allowed.
5144  */
5145 void
5146 ring_buffer_read_prepare_sync(void)
5147 {
5148         synchronize_rcu();
5149 }
5150 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5151
5152 /**
5153  * ring_buffer_read_start - start a non consuming read of the buffer
5154  * @iter: The iterator returned by ring_buffer_read_prepare
5155  *
5156  * This finalizes the startup of an iteration through the buffer.
5157  * The iterator comes from a call to ring_buffer_read_prepare and
5158  * an intervening ring_buffer_read_prepare_sync must have been
5159  * performed.
5160  *
5161  * Must be paired with ring_buffer_read_finish.
5162  */
5163 void
5164 ring_buffer_read_start(struct ring_buffer_iter *iter)
5165 {
5166         struct ring_buffer_per_cpu *cpu_buffer;
5167         unsigned long flags;
5168
5169         if (!iter)
5170                 return;
5171
5172         cpu_buffer = iter->cpu_buffer;
5173
5174         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5175         arch_spin_lock(&cpu_buffer->lock);
5176         rb_iter_reset(iter);
5177         arch_spin_unlock(&cpu_buffer->lock);
5178         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5179 }
5180 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5181
5182 /**
5183  * ring_buffer_read_finish - finish reading the iterator of the buffer
5184  * @iter: The iterator retrieved by ring_buffer_start
5185  *
5186  * This re-enables the recording to the buffer, and frees the
5187  * iterator.
5188  */
5189 void
5190 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5191 {
5192         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5193         unsigned long flags;
5194
5195         /*
5196          * Ring buffer is disabled from recording, here's a good place
5197          * to check the integrity of the ring buffer.
5198          * Must prevent readers from trying to read, as the check
5199          * clears the HEAD page and readers require it.
5200          */
5201         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5202         rb_check_pages(cpu_buffer);
5203         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5204
5205         atomic_dec(&cpu_buffer->resize_disabled);
5206         kfree(iter->event);
5207         kfree(iter);
5208 }
5209 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5210
5211 /**
5212  * ring_buffer_iter_advance - advance the iterator to the next location
5213  * @iter: The ring buffer iterator
5214  *
5215  * Move the location of the iterator such that the next read will
5216  * be the next location of the iterator.
5217  */
5218 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5219 {
5220         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5221         unsigned long flags;
5222
5223         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5224
5225         rb_advance_iter(iter);
5226
5227         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5228 }
5229 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5230
5231 /**
5232  * ring_buffer_size - return the size of the ring buffer (in bytes)
5233  * @buffer: The ring buffer.
5234  * @cpu: The CPU to get ring buffer size from.
5235  */
5236 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5237 {
5238         /*
5239          * Earlier, this method returned
5240          *      BUF_PAGE_SIZE * buffer->nr_pages
5241          * Since the nr_pages field is now removed, we have converted this to
5242          * return the per cpu buffer value.
5243          */
5244         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5245                 return 0;
5246
5247         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5248 }
5249 EXPORT_SYMBOL_GPL(ring_buffer_size);
5250
5251 static void rb_clear_buffer_page(struct buffer_page *page)
5252 {
5253         local_set(&page->write, 0);
5254         local_set(&page->entries, 0);
5255         rb_init_page(page->page);
5256         page->read = 0;
5257 }
5258
5259 static void
5260 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5261 {
5262         struct buffer_page *page;
5263
5264         rb_head_page_deactivate(cpu_buffer);
5265
5266         cpu_buffer->head_page
5267                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5268         rb_clear_buffer_page(cpu_buffer->head_page);
5269         list_for_each_entry(page, cpu_buffer->pages, list) {
5270                 rb_clear_buffer_page(page);
5271         }
5272
5273         cpu_buffer->tail_page = cpu_buffer->head_page;
5274         cpu_buffer->commit_page = cpu_buffer->head_page;
5275
5276         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5277         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5278         rb_clear_buffer_page(cpu_buffer->reader_page);
5279
5280         local_set(&cpu_buffer->entries_bytes, 0);
5281         local_set(&cpu_buffer->overrun, 0);
5282         local_set(&cpu_buffer->commit_overrun, 0);
5283         local_set(&cpu_buffer->dropped_events, 0);
5284         local_set(&cpu_buffer->entries, 0);
5285         local_set(&cpu_buffer->committing, 0);
5286         local_set(&cpu_buffer->commits, 0);
5287         local_set(&cpu_buffer->pages_touched, 0);
5288         local_set(&cpu_buffer->pages_lost, 0);
5289         local_set(&cpu_buffer->pages_read, 0);
5290         cpu_buffer->last_pages_touch = 0;
5291         cpu_buffer->shortest_full = 0;
5292         cpu_buffer->read = 0;
5293         cpu_buffer->read_bytes = 0;
5294
5295         rb_time_set(&cpu_buffer->write_stamp, 0);
5296         rb_time_set(&cpu_buffer->before_stamp, 0);
5297
5298         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5299
5300         cpu_buffer->lost_events = 0;
5301         cpu_buffer->last_overrun = 0;
5302
5303         rb_head_page_activate(cpu_buffer);
5304         cpu_buffer->pages_removed = 0;
5305 }
5306
5307 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5308 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5309 {
5310         unsigned long flags;
5311
5312         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5313
5314         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5315                 goto out;
5316
5317         arch_spin_lock(&cpu_buffer->lock);
5318
5319         rb_reset_cpu(cpu_buffer);
5320
5321         arch_spin_unlock(&cpu_buffer->lock);
5322
5323  out:
5324         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5325 }
5326
5327 /**
5328  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5329  * @buffer: The ring buffer to reset a per cpu buffer of
5330  * @cpu: The CPU buffer to be reset
5331  */
5332 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5333 {
5334         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5335
5336         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5337                 return;
5338
5339         /* prevent another thread from changing buffer sizes */
5340         mutex_lock(&buffer->mutex);
5341
5342         atomic_inc(&cpu_buffer->resize_disabled);
5343         atomic_inc(&cpu_buffer->record_disabled);
5344
5345         /* Make sure all commits have finished */
5346         synchronize_rcu();
5347
5348         reset_disabled_cpu_buffer(cpu_buffer);
5349
5350         atomic_dec(&cpu_buffer->record_disabled);
5351         atomic_dec(&cpu_buffer->resize_disabled);
5352
5353         mutex_unlock(&buffer->mutex);
5354 }
5355 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5356
5357 /* Flag to ensure proper resetting of atomic variables */
5358 #define RESET_BIT       (1 << 30)
5359
5360 /**
5361  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5362  * @buffer: The ring buffer to reset a per cpu buffer of
5363  */
5364 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5365 {
5366         struct ring_buffer_per_cpu *cpu_buffer;
5367         int cpu;
5368
5369         /* prevent another thread from changing buffer sizes */
5370         mutex_lock(&buffer->mutex);
5371
5372         for_each_online_buffer_cpu(buffer, cpu) {
5373                 cpu_buffer = buffer->buffers[cpu];
5374
5375                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5376                 atomic_inc(&cpu_buffer->record_disabled);
5377         }
5378
5379         /* Make sure all commits have finished */
5380         synchronize_rcu();
5381
5382         for_each_buffer_cpu(buffer, cpu) {
5383                 cpu_buffer = buffer->buffers[cpu];
5384
5385                 /*
5386                  * If a CPU came online during the synchronize_rcu(), then
5387                  * ignore it.
5388                  */
5389                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5390                         continue;
5391
5392                 reset_disabled_cpu_buffer(cpu_buffer);
5393
5394                 atomic_dec(&cpu_buffer->record_disabled);
5395                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5396         }
5397
5398         mutex_unlock(&buffer->mutex);
5399 }
5400
5401 /**
5402  * ring_buffer_reset - reset a ring buffer
5403  * @buffer: The ring buffer to reset all cpu buffers
5404  */
5405 void ring_buffer_reset(struct trace_buffer *buffer)
5406 {
5407         struct ring_buffer_per_cpu *cpu_buffer;
5408         int cpu;
5409
5410         /* prevent another thread from changing buffer sizes */
5411         mutex_lock(&buffer->mutex);
5412
5413         for_each_buffer_cpu(buffer, cpu) {
5414                 cpu_buffer = buffer->buffers[cpu];
5415
5416                 atomic_inc(&cpu_buffer->resize_disabled);
5417                 atomic_inc(&cpu_buffer->record_disabled);
5418         }
5419
5420         /* Make sure all commits have finished */
5421         synchronize_rcu();
5422
5423         for_each_buffer_cpu(buffer, cpu) {
5424                 cpu_buffer = buffer->buffers[cpu];
5425
5426                 reset_disabled_cpu_buffer(cpu_buffer);
5427
5428                 atomic_dec(&cpu_buffer->record_disabled);
5429                 atomic_dec(&cpu_buffer->resize_disabled);
5430         }
5431
5432         mutex_unlock(&buffer->mutex);
5433 }
5434 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5435
5436 /**
5437  * ring_buffer_empty - is the ring buffer empty?
5438  * @buffer: The ring buffer to test
5439  */
5440 bool ring_buffer_empty(struct trace_buffer *buffer)
5441 {
5442         struct ring_buffer_per_cpu *cpu_buffer;
5443         unsigned long flags;
5444         bool dolock;
5445         bool ret;
5446         int cpu;
5447
5448         /* yes this is racy, but if you don't like the race, lock the buffer */
5449         for_each_buffer_cpu(buffer, cpu) {
5450                 cpu_buffer = buffer->buffers[cpu];
5451                 local_irq_save(flags);
5452                 dolock = rb_reader_lock(cpu_buffer);
5453                 ret = rb_per_cpu_empty(cpu_buffer);
5454                 rb_reader_unlock(cpu_buffer, dolock);
5455                 local_irq_restore(flags);
5456
5457                 if (!ret)
5458                         return false;
5459         }
5460
5461         return true;
5462 }
5463 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5464
5465 /**
5466  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5467  * @buffer: The ring buffer
5468  * @cpu: The CPU buffer to test
5469  */
5470 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5471 {
5472         struct ring_buffer_per_cpu *cpu_buffer;
5473         unsigned long flags;
5474         bool dolock;
5475         bool ret;
5476
5477         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5478                 return true;
5479
5480         cpu_buffer = buffer->buffers[cpu];
5481         local_irq_save(flags);
5482         dolock = rb_reader_lock(cpu_buffer);
5483         ret = rb_per_cpu_empty(cpu_buffer);
5484         rb_reader_unlock(cpu_buffer, dolock);
5485         local_irq_restore(flags);
5486
5487         return ret;
5488 }
5489 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5490
5491 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5492 /**
5493  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5494  * @buffer_a: One buffer to swap with
5495  * @buffer_b: The other buffer to swap with
5496  * @cpu: the CPU of the buffers to swap
5497  *
5498  * This function is useful for tracers that want to take a "snapshot"
5499  * of a CPU buffer and has another back up buffer lying around.
5500  * it is expected that the tracer handles the cpu buffer not being
5501  * used at the moment.
5502  */
5503 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5504                          struct trace_buffer *buffer_b, int cpu)
5505 {
5506         struct ring_buffer_per_cpu *cpu_buffer_a;
5507         struct ring_buffer_per_cpu *cpu_buffer_b;
5508         int ret = -EINVAL;
5509
5510         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5511             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5512                 goto out;
5513
5514         cpu_buffer_a = buffer_a->buffers[cpu];
5515         cpu_buffer_b = buffer_b->buffers[cpu];
5516
5517         /* At least make sure the two buffers are somewhat the same */
5518         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5519                 goto out;
5520
5521         ret = -EAGAIN;
5522
5523         if (atomic_read(&buffer_a->record_disabled))
5524                 goto out;
5525
5526         if (atomic_read(&buffer_b->record_disabled))
5527                 goto out;
5528
5529         if (atomic_read(&cpu_buffer_a->record_disabled))
5530                 goto out;
5531
5532         if (atomic_read(&cpu_buffer_b->record_disabled))
5533                 goto out;
5534
5535         /*
5536          * We can't do a synchronize_rcu here because this
5537          * function can be called in atomic context.
5538          * Normally this will be called from the same CPU as cpu.
5539          * If not it's up to the caller to protect this.
5540          */
5541         atomic_inc(&cpu_buffer_a->record_disabled);
5542         atomic_inc(&cpu_buffer_b->record_disabled);
5543
5544         ret = -EBUSY;
5545         if (local_read(&cpu_buffer_a->committing))
5546                 goto out_dec;
5547         if (local_read(&cpu_buffer_b->committing))
5548                 goto out_dec;
5549
5550         /*
5551          * When resize is in progress, we cannot swap it because
5552          * it will mess the state of the cpu buffer.
5553          */
5554         if (atomic_read(&buffer_a->resizing))
5555                 goto out_dec;
5556         if (atomic_read(&buffer_b->resizing))
5557                 goto out_dec;
5558
5559         buffer_a->buffers[cpu] = cpu_buffer_b;
5560         buffer_b->buffers[cpu] = cpu_buffer_a;
5561
5562         cpu_buffer_b->buffer = buffer_a;
5563         cpu_buffer_a->buffer = buffer_b;
5564
5565         ret = 0;
5566
5567 out_dec:
5568         atomic_dec(&cpu_buffer_a->record_disabled);
5569         atomic_dec(&cpu_buffer_b->record_disabled);
5570 out:
5571         return ret;
5572 }
5573 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5574 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5575
5576 /**
5577  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5578  * @buffer: the buffer to allocate for.
5579  * @cpu: the cpu buffer to allocate.
5580  *
5581  * This function is used in conjunction with ring_buffer_read_page.
5582  * When reading a full page from the ring buffer, these functions
5583  * can be used to speed up the process. The calling function should
5584  * allocate a few pages first with this function. Then when it
5585  * needs to get pages from the ring buffer, it passes the result
5586  * of this function into ring_buffer_read_page, which will swap
5587  * the page that was allocated, with the read page of the buffer.
5588  *
5589  * Returns:
5590  *  The page allocated, or ERR_PTR
5591  */
5592 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5593 {
5594         struct ring_buffer_per_cpu *cpu_buffer;
5595         struct buffer_data_page *bpage = NULL;
5596         unsigned long flags;
5597         struct page *page;
5598
5599         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5600                 return ERR_PTR(-ENODEV);
5601
5602         cpu_buffer = buffer->buffers[cpu];
5603         local_irq_save(flags);
5604         arch_spin_lock(&cpu_buffer->lock);
5605
5606         if (cpu_buffer->free_page) {
5607                 bpage = cpu_buffer->free_page;
5608                 cpu_buffer->free_page = NULL;
5609         }
5610
5611         arch_spin_unlock(&cpu_buffer->lock);
5612         local_irq_restore(flags);
5613
5614         if (bpage)
5615                 goto out;
5616
5617         page = alloc_pages_node(cpu_to_node(cpu),
5618                                 GFP_KERNEL | __GFP_NORETRY, 0);
5619         if (!page)
5620                 return ERR_PTR(-ENOMEM);
5621
5622         bpage = page_address(page);
5623
5624  out:
5625         rb_init_page(bpage);
5626
5627         return bpage;
5628 }
5629 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5630
5631 /**
5632  * ring_buffer_free_read_page - free an allocated read page
5633  * @buffer: the buffer the page was allocate for
5634  * @cpu: the cpu buffer the page came from
5635  * @data: the page to free
5636  *
5637  * Free a page allocated from ring_buffer_alloc_read_page.
5638  */
5639 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5640 {
5641         struct ring_buffer_per_cpu *cpu_buffer;
5642         struct buffer_data_page *bpage = data;
5643         struct page *page = virt_to_page(bpage);
5644         unsigned long flags;
5645
5646         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5647                 return;
5648
5649         cpu_buffer = buffer->buffers[cpu];
5650
5651         /* If the page is still in use someplace else, we can't reuse it */
5652         if (page_ref_count(page) > 1)
5653                 goto out;
5654
5655         local_irq_save(flags);
5656         arch_spin_lock(&cpu_buffer->lock);
5657
5658         if (!cpu_buffer->free_page) {
5659                 cpu_buffer->free_page = bpage;
5660                 bpage = NULL;
5661         }
5662
5663         arch_spin_unlock(&cpu_buffer->lock);
5664         local_irq_restore(flags);
5665
5666  out:
5667         free_page((unsigned long)bpage);
5668 }
5669 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5670
5671 /**
5672  * ring_buffer_read_page - extract a page from the ring buffer
5673  * @buffer: buffer to extract from
5674  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5675  * @len: amount to extract
5676  * @cpu: the cpu of the buffer to extract
5677  * @full: should the extraction only happen when the page is full.
5678  *
5679  * This function will pull out a page from the ring buffer and consume it.
5680  * @data_page must be the address of the variable that was returned
5681  * from ring_buffer_alloc_read_page. This is because the page might be used
5682  * to swap with a page in the ring buffer.
5683  *
5684  * for example:
5685  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5686  *      if (IS_ERR(rpage))
5687  *              return PTR_ERR(rpage);
5688  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5689  *      if (ret >= 0)
5690  *              process_page(rpage, ret);
5691  *
5692  * When @full is set, the function will not return true unless
5693  * the writer is off the reader page.
5694  *
5695  * Note: it is up to the calling functions to handle sleeps and wakeups.
5696  *  The ring buffer can be used anywhere in the kernel and can not
5697  *  blindly call wake_up. The layer that uses the ring buffer must be
5698  *  responsible for that.
5699  *
5700  * Returns:
5701  *  >=0 if data has been transferred, returns the offset of consumed data.
5702  *  <0 if no data has been transferred.
5703  */
5704 int ring_buffer_read_page(struct trace_buffer *buffer,
5705                           void **data_page, size_t len, int cpu, int full)
5706 {
5707         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5708         struct ring_buffer_event *event;
5709         struct buffer_data_page *bpage;
5710         struct buffer_page *reader;
5711         unsigned long missed_events;
5712         unsigned long flags;
5713         unsigned int commit;
5714         unsigned int read;
5715         u64 save_timestamp;
5716         int ret = -1;
5717
5718         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5719                 goto out;
5720
5721         /*
5722          * If len is not big enough to hold the page header, then
5723          * we can not copy anything.
5724          */
5725         if (len <= BUF_PAGE_HDR_SIZE)
5726                 goto out;
5727
5728         len -= BUF_PAGE_HDR_SIZE;
5729
5730         if (!data_page)
5731                 goto out;
5732
5733         bpage = *data_page;
5734         if (!bpage)
5735                 goto out;
5736
5737         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5738
5739         reader = rb_get_reader_page(cpu_buffer);
5740         if (!reader)
5741                 goto out_unlock;
5742
5743         event = rb_reader_event(cpu_buffer);
5744
5745         read = reader->read;
5746         commit = rb_page_commit(reader);
5747
5748         /* Check if any events were dropped */
5749         missed_events = cpu_buffer->lost_events;
5750
5751         /*
5752          * If this page has been partially read or
5753          * if len is not big enough to read the rest of the page or
5754          * a writer is still on the page, then
5755          * we must copy the data from the page to the buffer.
5756          * Otherwise, we can simply swap the page with the one passed in.
5757          */
5758         if (read || (len < (commit - read)) ||
5759             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5760                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5761                 unsigned int rpos = read;
5762                 unsigned int pos = 0;
5763                 unsigned int size;
5764
5765                 /*
5766                  * If a full page is expected, this can still be returned
5767                  * if there's been a previous partial read and the
5768                  * rest of the page can be read and the commit page is off
5769                  * the reader page.
5770                  */
5771                 if (full &&
5772                     (!read || (len < (commit - read)) ||
5773                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5774                         goto out_unlock;
5775
5776                 if (len > (commit - read))
5777                         len = (commit - read);
5778
5779                 /* Always keep the time extend and data together */
5780                 size = rb_event_ts_length(event);
5781
5782                 if (len < size)
5783                         goto out_unlock;
5784
5785                 /* save the current timestamp, since the user will need it */
5786                 save_timestamp = cpu_buffer->read_stamp;
5787
5788                 /* Need to copy one event at a time */
5789                 do {
5790                         /* We need the size of one event, because
5791                          * rb_advance_reader only advances by one event,
5792                          * whereas rb_event_ts_length may include the size of
5793                          * one or two events.
5794                          * We have already ensured there's enough space if this
5795                          * is a time extend. */
5796                         size = rb_event_length(event);
5797                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5798
5799                         len -= size;
5800
5801                         rb_advance_reader(cpu_buffer);
5802                         rpos = reader->read;
5803                         pos += size;
5804
5805                         if (rpos >= commit)
5806                                 break;
5807
5808                         event = rb_reader_event(cpu_buffer);
5809                         /* Always keep the time extend and data together */
5810                         size = rb_event_ts_length(event);
5811                 } while (len >= size);
5812
5813                 /* update bpage */
5814                 local_set(&bpage->commit, pos);
5815                 bpage->time_stamp = save_timestamp;
5816
5817                 /* we copied everything to the beginning */
5818                 read = 0;
5819         } else {
5820                 /* update the entry counter */
5821                 cpu_buffer->read += rb_page_entries(reader);
5822                 cpu_buffer->read_bytes += rb_page_commit(reader);
5823
5824                 /* swap the pages */
5825                 rb_init_page(bpage);
5826                 bpage = reader->page;
5827                 reader->page = *data_page;
5828                 local_set(&reader->write, 0);
5829                 local_set(&reader->entries, 0);
5830                 reader->read = 0;
5831                 *data_page = bpage;
5832
5833                 /*
5834                  * Use the real_end for the data size,
5835                  * This gives us a chance to store the lost events
5836                  * on the page.
5837                  */
5838                 if (reader->real_end)
5839                         local_set(&bpage->commit, reader->real_end);
5840         }
5841         ret = read;
5842
5843         cpu_buffer->lost_events = 0;
5844
5845         commit = local_read(&bpage->commit);
5846         /*
5847          * Set a flag in the commit field if we lost events
5848          */
5849         if (missed_events) {
5850                 /* If there is room at the end of the page to save the
5851                  * missed events, then record it there.
5852                  */
5853                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5854                         memcpy(&bpage->data[commit], &missed_events,
5855                                sizeof(missed_events));
5856                         local_add(RB_MISSED_STORED, &bpage->commit);
5857                         commit += sizeof(missed_events);
5858                 }
5859                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5860         }
5861
5862         /*
5863          * This page may be off to user land. Zero it out here.
5864          */
5865         if (commit < BUF_PAGE_SIZE)
5866                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5867
5868  out_unlock:
5869         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5870
5871  out:
5872         return ret;
5873 }
5874 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5875
5876 /*
5877  * We only allocate new buffers, never free them if the CPU goes down.
5878  * If we were to free the buffer, then the user would lose any trace that was in
5879  * the buffer.
5880  */
5881 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5882 {
5883         struct trace_buffer *buffer;
5884         long nr_pages_same;
5885         int cpu_i;
5886         unsigned long nr_pages;
5887
5888         buffer = container_of(node, struct trace_buffer, node);
5889         if (cpumask_test_cpu(cpu, buffer->cpumask))
5890                 return 0;
5891
5892         nr_pages = 0;
5893         nr_pages_same = 1;
5894         /* check if all cpu sizes are same */
5895         for_each_buffer_cpu(buffer, cpu_i) {
5896                 /* fill in the size from first enabled cpu */
5897                 if (nr_pages == 0)
5898                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5899                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5900                         nr_pages_same = 0;
5901                         break;
5902                 }
5903         }
5904         /* allocate minimum pages, user can later expand it */
5905         if (!nr_pages_same)
5906                 nr_pages = 2;
5907         buffer->buffers[cpu] =
5908                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5909         if (!buffer->buffers[cpu]) {
5910                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5911                      cpu);
5912                 return -ENOMEM;
5913         }
5914         smp_wmb();
5915         cpumask_set_cpu(cpu, buffer->cpumask);
5916         return 0;
5917 }
5918
5919 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5920 /*
5921  * This is a basic integrity check of the ring buffer.
5922  * Late in the boot cycle this test will run when configured in.
5923  * It will kick off a thread per CPU that will go into a loop
5924  * writing to the per cpu ring buffer various sizes of data.
5925  * Some of the data will be large items, some small.
5926  *
5927  * Another thread is created that goes into a spin, sending out
5928  * IPIs to the other CPUs to also write into the ring buffer.
5929  * this is to test the nesting ability of the buffer.
5930  *
5931  * Basic stats are recorded and reported. If something in the
5932  * ring buffer should happen that's not expected, a big warning
5933  * is displayed and all ring buffers are disabled.
5934  */
5935 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5936
5937 struct rb_test_data {
5938         struct trace_buffer *buffer;
5939         unsigned long           events;
5940         unsigned long           bytes_written;
5941         unsigned long           bytes_alloc;
5942         unsigned long           bytes_dropped;
5943         unsigned long           events_nested;
5944         unsigned long           bytes_written_nested;
5945         unsigned long           bytes_alloc_nested;
5946         unsigned long           bytes_dropped_nested;
5947         int                     min_size_nested;
5948         int                     max_size_nested;
5949         int                     max_size;
5950         int                     min_size;
5951         int                     cpu;
5952         int                     cnt;
5953 };
5954
5955 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5956
5957 /* 1 meg per cpu */
5958 #define RB_TEST_BUFFER_SIZE     1048576
5959
5960 static char rb_string[] __initdata =
5961         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5962         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5963         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5964
5965 static bool rb_test_started __initdata;
5966
5967 struct rb_item {
5968         int size;
5969         char str[];
5970 };
5971
5972 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5973 {
5974         struct ring_buffer_event *event;
5975         struct rb_item *item;
5976         bool started;
5977         int event_len;
5978         int size;
5979         int len;
5980         int cnt;
5981
5982         /* Have nested writes different that what is written */
5983         cnt = data->cnt + (nested ? 27 : 0);
5984
5985         /* Multiply cnt by ~e, to make some unique increment */
5986         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5987
5988         len = size + sizeof(struct rb_item);
5989
5990         started = rb_test_started;
5991         /* read rb_test_started before checking buffer enabled */
5992         smp_rmb();
5993
5994         event = ring_buffer_lock_reserve(data->buffer, len);
5995         if (!event) {
5996                 /* Ignore dropped events before test starts. */
5997                 if (started) {
5998                         if (nested)
5999                                 data->bytes_dropped += len;
6000                         else
6001                                 data->bytes_dropped_nested += len;
6002                 }
6003                 return len;
6004         }
6005
6006         event_len = ring_buffer_event_length(event);
6007
6008         if (RB_WARN_ON(data->buffer, event_len < len))
6009                 goto out;
6010
6011         item = ring_buffer_event_data(event);
6012         item->size = size;
6013         memcpy(item->str, rb_string, size);
6014
6015         if (nested) {
6016                 data->bytes_alloc_nested += event_len;
6017                 data->bytes_written_nested += len;
6018                 data->events_nested++;
6019                 if (!data->min_size_nested || len < data->min_size_nested)
6020                         data->min_size_nested = len;
6021                 if (len > data->max_size_nested)
6022                         data->max_size_nested = len;
6023         } else {
6024                 data->bytes_alloc += event_len;
6025                 data->bytes_written += len;
6026                 data->events++;
6027                 if (!data->min_size || len < data->min_size)
6028                         data->max_size = len;
6029                 if (len > data->max_size)
6030                         data->max_size = len;
6031         }
6032
6033  out:
6034         ring_buffer_unlock_commit(data->buffer);
6035
6036         return 0;
6037 }
6038
6039 static __init int rb_test(void *arg)
6040 {
6041         struct rb_test_data *data = arg;
6042
6043         while (!kthread_should_stop()) {
6044                 rb_write_something(data, false);
6045                 data->cnt++;
6046
6047                 set_current_state(TASK_INTERRUPTIBLE);
6048                 /* Now sleep between a min of 100-300us and a max of 1ms */
6049                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6050         }
6051
6052         return 0;
6053 }
6054
6055 static __init void rb_ipi(void *ignore)
6056 {
6057         struct rb_test_data *data;
6058         int cpu = smp_processor_id();
6059
6060         data = &rb_data[cpu];
6061         rb_write_something(data, true);
6062 }
6063
6064 static __init int rb_hammer_test(void *arg)
6065 {
6066         while (!kthread_should_stop()) {
6067
6068                 /* Send an IPI to all cpus to write data! */
6069                 smp_call_function(rb_ipi, NULL, 1);
6070                 /* No sleep, but for non preempt, let others run */
6071                 schedule();
6072         }
6073
6074         return 0;
6075 }
6076
6077 static __init int test_ringbuffer(void)
6078 {
6079         struct task_struct *rb_hammer;
6080         struct trace_buffer *buffer;
6081         int cpu;
6082         int ret = 0;
6083
6084         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6085                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6086                 return 0;
6087         }
6088
6089         pr_info("Running ring buffer tests...\n");
6090
6091         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6092         if (WARN_ON(!buffer))
6093                 return 0;
6094
6095         /* Disable buffer so that threads can't write to it yet */
6096         ring_buffer_record_off(buffer);
6097
6098         for_each_online_cpu(cpu) {
6099                 rb_data[cpu].buffer = buffer;
6100                 rb_data[cpu].cpu = cpu;
6101                 rb_data[cpu].cnt = cpu;
6102                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6103                                                      cpu, "rbtester/%u");
6104                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6105                         pr_cont("FAILED\n");
6106                         ret = PTR_ERR(rb_threads[cpu]);
6107                         goto out_free;
6108                 }
6109         }
6110
6111         /* Now create the rb hammer! */
6112         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6113         if (WARN_ON(IS_ERR(rb_hammer))) {
6114                 pr_cont("FAILED\n");
6115                 ret = PTR_ERR(rb_hammer);
6116                 goto out_free;
6117         }
6118
6119         ring_buffer_record_on(buffer);
6120         /*
6121          * Show buffer is enabled before setting rb_test_started.
6122          * Yes there's a small race window where events could be
6123          * dropped and the thread wont catch it. But when a ring
6124          * buffer gets enabled, there will always be some kind of
6125          * delay before other CPUs see it. Thus, we don't care about
6126          * those dropped events. We care about events dropped after
6127          * the threads see that the buffer is active.
6128          */
6129         smp_wmb();
6130         rb_test_started = true;
6131
6132         set_current_state(TASK_INTERRUPTIBLE);
6133         /* Just run for 10 seconds */;
6134         schedule_timeout(10 * HZ);
6135
6136         kthread_stop(rb_hammer);
6137
6138  out_free:
6139         for_each_online_cpu(cpu) {
6140                 if (!rb_threads[cpu])
6141                         break;
6142                 kthread_stop(rb_threads[cpu]);
6143         }
6144         if (ret) {
6145                 ring_buffer_free(buffer);
6146                 return ret;
6147         }
6148
6149         /* Report! */
6150         pr_info("finished\n");
6151         for_each_online_cpu(cpu) {
6152                 struct ring_buffer_event *event;
6153                 struct rb_test_data *data = &rb_data[cpu];
6154                 struct rb_item *item;
6155                 unsigned long total_events;
6156                 unsigned long total_dropped;
6157                 unsigned long total_written;
6158                 unsigned long total_alloc;
6159                 unsigned long total_read = 0;
6160                 unsigned long total_size = 0;
6161                 unsigned long total_len = 0;
6162                 unsigned long total_lost = 0;
6163                 unsigned long lost;
6164                 int big_event_size;
6165                 int small_event_size;
6166
6167                 ret = -1;
6168
6169                 total_events = data->events + data->events_nested;
6170                 total_written = data->bytes_written + data->bytes_written_nested;
6171                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6172                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6173
6174                 big_event_size = data->max_size + data->max_size_nested;
6175                 small_event_size = data->min_size + data->min_size_nested;
6176
6177                 pr_info("CPU %d:\n", cpu);
6178                 pr_info("              events:    %ld\n", total_events);
6179                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6180                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6181                 pr_info("       written bytes:    %ld\n", total_written);
6182                 pr_info("       biggest event:    %d\n", big_event_size);
6183                 pr_info("      smallest event:    %d\n", small_event_size);
6184
6185                 if (RB_WARN_ON(buffer, total_dropped))
6186                         break;
6187
6188                 ret = 0;
6189
6190                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6191                         total_lost += lost;
6192                         item = ring_buffer_event_data(event);
6193                         total_len += ring_buffer_event_length(event);
6194                         total_size += item->size + sizeof(struct rb_item);
6195                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6196                                 pr_info("FAILED!\n");
6197                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6198                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6199                                 RB_WARN_ON(buffer, 1);
6200                                 ret = -1;
6201                                 break;
6202                         }
6203                         total_read++;
6204                 }
6205                 if (ret)
6206                         break;
6207
6208                 ret = -1;
6209
6210                 pr_info("         read events:   %ld\n", total_read);
6211                 pr_info("         lost events:   %ld\n", total_lost);
6212                 pr_info("        total events:   %ld\n", total_lost + total_read);
6213                 pr_info("  recorded len bytes:   %ld\n", total_len);
6214                 pr_info(" recorded size bytes:   %ld\n", total_size);
6215                 if (total_lost) {
6216                         pr_info(" With dropped events, record len and size may not match\n"
6217                                 " alloced and written from above\n");
6218                 } else {
6219                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6220                                        total_size != total_written))
6221                                 break;
6222                 }
6223                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6224                         break;
6225
6226                 ret = 0;
6227         }
6228         if (!ret)
6229                 pr_info("Ring buffer PASSED!\n");
6230
6231         ring_buffer_free(buffer);
6232         return 0;
6233 }
6234
6235 late_initcall(test_ringbuffer);
6236 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */