Merge tag 'platform-drivers-x86-v6.1-5' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / kernel / trace / bpf_trace.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20 #include <linux/fprobe.h>
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/key.h>
24 #include <linux/verification.h>
25
26 #include <net/bpf_sk_storage.h>
27
28 #include <uapi/linux/bpf.h>
29 #include <uapi/linux/btf.h>
30
31 #include <asm/tlb.h>
32
33 #include "trace_probe.h"
34 #include "trace.h"
35
36 #define CREATE_TRACE_POINTS
37 #include "bpf_trace.h"
38
39 #define bpf_event_rcu_dereference(p)                                    \
40         rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
41
42 #ifdef CONFIG_MODULES
43 struct bpf_trace_module {
44         struct module *module;
45         struct list_head list;
46 };
47
48 static LIST_HEAD(bpf_trace_modules);
49 static DEFINE_MUTEX(bpf_module_mutex);
50
51 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
52 {
53         struct bpf_raw_event_map *btp, *ret = NULL;
54         struct bpf_trace_module *btm;
55         unsigned int i;
56
57         mutex_lock(&bpf_module_mutex);
58         list_for_each_entry(btm, &bpf_trace_modules, list) {
59                 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
60                         btp = &btm->module->bpf_raw_events[i];
61                         if (!strcmp(btp->tp->name, name)) {
62                                 if (try_module_get(btm->module))
63                                         ret = btp;
64                                 goto out;
65                         }
66                 }
67         }
68 out:
69         mutex_unlock(&bpf_module_mutex);
70         return ret;
71 }
72 #else
73 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
74 {
75         return NULL;
76 }
77 #endif /* CONFIG_MODULES */
78
79 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
80 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
81
82 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
83                                   u64 flags, const struct btf **btf,
84                                   s32 *btf_id);
85 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
86 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
87
88 /**
89  * trace_call_bpf - invoke BPF program
90  * @call: tracepoint event
91  * @ctx: opaque context pointer
92  *
93  * kprobe handlers execute BPF programs via this helper.
94  * Can be used from static tracepoints in the future.
95  *
96  * Return: BPF programs always return an integer which is interpreted by
97  * kprobe handler as:
98  * 0 - return from kprobe (event is filtered out)
99  * 1 - store kprobe event into ring buffer
100  * Other values are reserved and currently alias to 1
101  */
102 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
103 {
104         unsigned int ret;
105
106         cant_sleep();
107
108         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
109                 /*
110                  * since some bpf program is already running on this cpu,
111                  * don't call into another bpf program (same or different)
112                  * and don't send kprobe event into ring-buffer,
113                  * so return zero here
114                  */
115                 ret = 0;
116                 goto out;
117         }
118
119         /*
120          * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
121          * to all call sites, we did a bpf_prog_array_valid() there to check
122          * whether call->prog_array is empty or not, which is
123          * a heuristic to speed up execution.
124          *
125          * If bpf_prog_array_valid() fetched prog_array was
126          * non-NULL, we go into trace_call_bpf() and do the actual
127          * proper rcu_dereference() under RCU lock.
128          * If it turns out that prog_array is NULL then, we bail out.
129          * For the opposite, if the bpf_prog_array_valid() fetched pointer
130          * was NULL, you'll skip the prog_array with the risk of missing
131          * out of events when it was updated in between this and the
132          * rcu_dereference() which is accepted risk.
133          */
134         rcu_read_lock();
135         ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
136                                  ctx, bpf_prog_run);
137         rcu_read_unlock();
138
139  out:
140         __this_cpu_dec(bpf_prog_active);
141
142         return ret;
143 }
144
145 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
146 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
147 {
148         regs_set_return_value(regs, rc);
149         override_function_with_return(regs);
150         return 0;
151 }
152
153 static const struct bpf_func_proto bpf_override_return_proto = {
154         .func           = bpf_override_return,
155         .gpl_only       = true,
156         .ret_type       = RET_INTEGER,
157         .arg1_type      = ARG_PTR_TO_CTX,
158         .arg2_type      = ARG_ANYTHING,
159 };
160 #endif
161
162 static __always_inline int
163 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
164 {
165         int ret;
166
167         ret = copy_from_user_nofault(dst, unsafe_ptr, size);
168         if (unlikely(ret < 0))
169                 memset(dst, 0, size);
170         return ret;
171 }
172
173 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
174            const void __user *, unsafe_ptr)
175 {
176         return bpf_probe_read_user_common(dst, size, unsafe_ptr);
177 }
178
179 const struct bpf_func_proto bpf_probe_read_user_proto = {
180         .func           = bpf_probe_read_user,
181         .gpl_only       = true,
182         .ret_type       = RET_INTEGER,
183         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
184         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
185         .arg3_type      = ARG_ANYTHING,
186 };
187
188 static __always_inline int
189 bpf_probe_read_user_str_common(void *dst, u32 size,
190                                const void __user *unsafe_ptr)
191 {
192         int ret;
193
194         /*
195          * NB: We rely on strncpy_from_user() not copying junk past the NUL
196          * terminator into `dst`.
197          *
198          * strncpy_from_user() does long-sized strides in the fast path. If the
199          * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
200          * then there could be junk after the NUL in `dst`. If user takes `dst`
201          * and keys a hash map with it, then semantically identical strings can
202          * occupy multiple entries in the map.
203          */
204         ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
205         if (unlikely(ret < 0))
206                 memset(dst, 0, size);
207         return ret;
208 }
209
210 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
211            const void __user *, unsafe_ptr)
212 {
213         return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
214 }
215
216 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
217         .func           = bpf_probe_read_user_str,
218         .gpl_only       = true,
219         .ret_type       = RET_INTEGER,
220         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
221         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
222         .arg3_type      = ARG_ANYTHING,
223 };
224
225 static __always_inline int
226 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
227 {
228         int ret;
229
230         ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
231         if (unlikely(ret < 0))
232                 memset(dst, 0, size);
233         return ret;
234 }
235
236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
237            const void *, unsafe_ptr)
238 {
239         return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
240 }
241
242 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
243         .func           = bpf_probe_read_kernel,
244         .gpl_only       = true,
245         .ret_type       = RET_INTEGER,
246         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
247         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
248         .arg3_type      = ARG_ANYTHING,
249 };
250
251 static __always_inline int
252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
253 {
254         int ret;
255
256         /*
257          * The strncpy_from_kernel_nofault() call will likely not fill the
258          * entire buffer, but that's okay in this circumstance as we're probing
259          * arbitrary memory anyway similar to bpf_probe_read_*() and might
260          * as well probe the stack. Thus, memory is explicitly cleared
261          * only in error case, so that improper users ignoring return
262          * code altogether don't copy garbage; otherwise length of string
263          * is returned that can be used for bpf_perf_event_output() et al.
264          */
265         ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
266         if (unlikely(ret < 0))
267                 memset(dst, 0, size);
268         return ret;
269 }
270
271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
272            const void *, unsafe_ptr)
273 {
274         return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
275 }
276
277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
278         .func           = bpf_probe_read_kernel_str,
279         .gpl_only       = true,
280         .ret_type       = RET_INTEGER,
281         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
282         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
283         .arg3_type      = ARG_ANYTHING,
284 };
285
286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
288            const void *, unsafe_ptr)
289 {
290         if ((unsigned long)unsafe_ptr < TASK_SIZE) {
291                 return bpf_probe_read_user_common(dst, size,
292                                 (__force void __user *)unsafe_ptr);
293         }
294         return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
295 }
296
297 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
298         .func           = bpf_probe_read_compat,
299         .gpl_only       = true,
300         .ret_type       = RET_INTEGER,
301         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
302         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
303         .arg3_type      = ARG_ANYTHING,
304 };
305
306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
307            const void *, unsafe_ptr)
308 {
309         if ((unsigned long)unsafe_ptr < TASK_SIZE) {
310                 return bpf_probe_read_user_str_common(dst, size,
311                                 (__force void __user *)unsafe_ptr);
312         }
313         return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
314 }
315
316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
317         .func           = bpf_probe_read_compat_str,
318         .gpl_only       = true,
319         .ret_type       = RET_INTEGER,
320         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
321         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
322         .arg3_type      = ARG_ANYTHING,
323 };
324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
325
326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
327            u32, size)
328 {
329         /*
330          * Ensure we're in user context which is safe for the helper to
331          * run. This helper has no business in a kthread.
332          *
333          * access_ok() should prevent writing to non-user memory, but in
334          * some situations (nommu, temporary switch, etc) access_ok() does
335          * not provide enough validation, hence the check on KERNEL_DS.
336          *
337          * nmi_uaccess_okay() ensures the probe is not run in an interim
338          * state, when the task or mm are switched. This is specifically
339          * required to prevent the use of temporary mm.
340          */
341
342         if (unlikely(in_interrupt() ||
343                      current->flags & (PF_KTHREAD | PF_EXITING)))
344                 return -EPERM;
345         if (unlikely(!nmi_uaccess_okay()))
346                 return -EPERM;
347
348         return copy_to_user_nofault(unsafe_ptr, src, size);
349 }
350
351 static const struct bpf_func_proto bpf_probe_write_user_proto = {
352         .func           = bpf_probe_write_user,
353         .gpl_only       = true,
354         .ret_type       = RET_INTEGER,
355         .arg1_type      = ARG_ANYTHING,
356         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
357         .arg3_type      = ARG_CONST_SIZE,
358 };
359
360 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
361 {
362         if (!capable(CAP_SYS_ADMIN))
363                 return NULL;
364
365         pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
366                             current->comm, task_pid_nr(current));
367
368         return &bpf_probe_write_user_proto;
369 }
370
371 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
372
373 #define MAX_TRACE_PRINTK_VARARGS        3
374 #define BPF_TRACE_PRINTK_SIZE           1024
375
376 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
377            u64, arg2, u64, arg3)
378 {
379         u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
380         u32 *bin_args;
381         static char buf[BPF_TRACE_PRINTK_SIZE];
382         unsigned long flags;
383         int ret;
384
385         ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
386                                   MAX_TRACE_PRINTK_VARARGS);
387         if (ret < 0)
388                 return ret;
389
390         raw_spin_lock_irqsave(&trace_printk_lock, flags);
391         ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
392
393         trace_bpf_trace_printk(buf);
394         raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
395
396         bpf_bprintf_cleanup();
397
398         return ret;
399 }
400
401 static const struct bpf_func_proto bpf_trace_printk_proto = {
402         .func           = bpf_trace_printk,
403         .gpl_only       = true,
404         .ret_type       = RET_INTEGER,
405         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
406         .arg2_type      = ARG_CONST_SIZE,
407 };
408
409 static void __set_printk_clr_event(void)
410 {
411         /*
412          * This program might be calling bpf_trace_printk,
413          * so enable the associated bpf_trace/bpf_trace_printk event.
414          * Repeat this each time as it is possible a user has
415          * disabled bpf_trace_printk events.  By loading a program
416          * calling bpf_trace_printk() however the user has expressed
417          * the intent to see such events.
418          */
419         if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
420                 pr_warn_ratelimited("could not enable bpf_trace_printk events");
421 }
422
423 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
424 {
425         __set_printk_clr_event();
426         return &bpf_trace_printk_proto;
427 }
428
429 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, data,
430            u32, data_len)
431 {
432         static char buf[BPF_TRACE_PRINTK_SIZE];
433         unsigned long flags;
434         int ret, num_args;
435         u32 *bin_args;
436
437         if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
438             (data_len && !data))
439                 return -EINVAL;
440         num_args = data_len / 8;
441
442         ret = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
443         if (ret < 0)
444                 return ret;
445
446         raw_spin_lock_irqsave(&trace_printk_lock, flags);
447         ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
448
449         trace_bpf_trace_printk(buf);
450         raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
451
452         bpf_bprintf_cleanup();
453
454         return ret;
455 }
456
457 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
458         .func           = bpf_trace_vprintk,
459         .gpl_only       = true,
460         .ret_type       = RET_INTEGER,
461         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
462         .arg2_type      = ARG_CONST_SIZE,
463         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
464         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
465 };
466
467 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
468 {
469         __set_printk_clr_event();
470         return &bpf_trace_vprintk_proto;
471 }
472
473 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
474            const void *, data, u32, data_len)
475 {
476         int err, num_args;
477         u32 *bin_args;
478
479         if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
480             (data_len && !data))
481                 return -EINVAL;
482         num_args = data_len / 8;
483
484         err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
485         if (err < 0)
486                 return err;
487
488         seq_bprintf(m, fmt, bin_args);
489
490         bpf_bprintf_cleanup();
491
492         return seq_has_overflowed(m) ? -EOVERFLOW : 0;
493 }
494
495 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
496
497 static const struct bpf_func_proto bpf_seq_printf_proto = {
498         .func           = bpf_seq_printf,
499         .gpl_only       = true,
500         .ret_type       = RET_INTEGER,
501         .arg1_type      = ARG_PTR_TO_BTF_ID,
502         .arg1_btf_id    = &btf_seq_file_ids[0],
503         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
504         .arg3_type      = ARG_CONST_SIZE,
505         .arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
506         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
507 };
508
509 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
510 {
511         return seq_write(m, data, len) ? -EOVERFLOW : 0;
512 }
513
514 static const struct bpf_func_proto bpf_seq_write_proto = {
515         .func           = bpf_seq_write,
516         .gpl_only       = true,
517         .ret_type       = RET_INTEGER,
518         .arg1_type      = ARG_PTR_TO_BTF_ID,
519         .arg1_btf_id    = &btf_seq_file_ids[0],
520         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
521         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
522 };
523
524 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
525            u32, btf_ptr_size, u64, flags)
526 {
527         const struct btf *btf;
528         s32 btf_id;
529         int ret;
530
531         ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
532         if (ret)
533                 return ret;
534
535         return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
536 }
537
538 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
539         .func           = bpf_seq_printf_btf,
540         .gpl_only       = true,
541         .ret_type       = RET_INTEGER,
542         .arg1_type      = ARG_PTR_TO_BTF_ID,
543         .arg1_btf_id    = &btf_seq_file_ids[0],
544         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
545         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
546         .arg4_type      = ARG_ANYTHING,
547 };
548
549 static __always_inline int
550 get_map_perf_counter(struct bpf_map *map, u64 flags,
551                      u64 *value, u64 *enabled, u64 *running)
552 {
553         struct bpf_array *array = container_of(map, struct bpf_array, map);
554         unsigned int cpu = smp_processor_id();
555         u64 index = flags & BPF_F_INDEX_MASK;
556         struct bpf_event_entry *ee;
557
558         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
559                 return -EINVAL;
560         if (index == BPF_F_CURRENT_CPU)
561                 index = cpu;
562         if (unlikely(index >= array->map.max_entries))
563                 return -E2BIG;
564
565         ee = READ_ONCE(array->ptrs[index]);
566         if (!ee)
567                 return -ENOENT;
568
569         return perf_event_read_local(ee->event, value, enabled, running);
570 }
571
572 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
573 {
574         u64 value = 0;
575         int err;
576
577         err = get_map_perf_counter(map, flags, &value, NULL, NULL);
578         /*
579          * this api is ugly since we miss [-22..-2] range of valid
580          * counter values, but that's uapi
581          */
582         if (err)
583                 return err;
584         return value;
585 }
586
587 static const struct bpf_func_proto bpf_perf_event_read_proto = {
588         .func           = bpf_perf_event_read,
589         .gpl_only       = true,
590         .ret_type       = RET_INTEGER,
591         .arg1_type      = ARG_CONST_MAP_PTR,
592         .arg2_type      = ARG_ANYTHING,
593 };
594
595 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
596            struct bpf_perf_event_value *, buf, u32, size)
597 {
598         int err = -EINVAL;
599
600         if (unlikely(size != sizeof(struct bpf_perf_event_value)))
601                 goto clear;
602         err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
603                                    &buf->running);
604         if (unlikely(err))
605                 goto clear;
606         return 0;
607 clear:
608         memset(buf, 0, size);
609         return err;
610 }
611
612 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
613         .func           = bpf_perf_event_read_value,
614         .gpl_only       = true,
615         .ret_type       = RET_INTEGER,
616         .arg1_type      = ARG_CONST_MAP_PTR,
617         .arg2_type      = ARG_ANYTHING,
618         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
619         .arg4_type      = ARG_CONST_SIZE,
620 };
621
622 static __always_inline u64
623 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
624                         u64 flags, struct perf_sample_data *sd)
625 {
626         struct bpf_array *array = container_of(map, struct bpf_array, map);
627         unsigned int cpu = smp_processor_id();
628         u64 index = flags & BPF_F_INDEX_MASK;
629         struct bpf_event_entry *ee;
630         struct perf_event *event;
631
632         if (index == BPF_F_CURRENT_CPU)
633                 index = cpu;
634         if (unlikely(index >= array->map.max_entries))
635                 return -E2BIG;
636
637         ee = READ_ONCE(array->ptrs[index]);
638         if (!ee)
639                 return -ENOENT;
640
641         event = ee->event;
642         if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
643                      event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
644                 return -EINVAL;
645
646         if (unlikely(event->oncpu != cpu))
647                 return -EOPNOTSUPP;
648
649         return perf_event_output(event, sd, regs);
650 }
651
652 /*
653  * Support executing tracepoints in normal, irq, and nmi context that each call
654  * bpf_perf_event_output
655  */
656 struct bpf_trace_sample_data {
657         struct perf_sample_data sds[3];
658 };
659
660 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
661 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
662 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
663            u64, flags, void *, data, u64, size)
664 {
665         struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
666         int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
667         struct perf_raw_record raw = {
668                 .frag = {
669                         .size = size,
670                         .data = data,
671                 },
672         };
673         struct perf_sample_data *sd;
674         int err;
675
676         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
677                 err = -EBUSY;
678                 goto out;
679         }
680
681         sd = &sds->sds[nest_level - 1];
682
683         if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
684                 err = -EINVAL;
685                 goto out;
686         }
687
688         perf_sample_data_init(sd, 0, 0);
689         sd->raw = &raw;
690         sd->sample_flags |= PERF_SAMPLE_RAW;
691
692         err = __bpf_perf_event_output(regs, map, flags, sd);
693
694 out:
695         this_cpu_dec(bpf_trace_nest_level);
696         return err;
697 }
698
699 static const struct bpf_func_proto bpf_perf_event_output_proto = {
700         .func           = bpf_perf_event_output,
701         .gpl_only       = true,
702         .ret_type       = RET_INTEGER,
703         .arg1_type      = ARG_PTR_TO_CTX,
704         .arg2_type      = ARG_CONST_MAP_PTR,
705         .arg3_type      = ARG_ANYTHING,
706         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
707         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
708 };
709
710 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
711 struct bpf_nested_pt_regs {
712         struct pt_regs regs[3];
713 };
714 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
715 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
716
717 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
718                      void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
719 {
720         int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
721         struct perf_raw_frag frag = {
722                 .copy           = ctx_copy,
723                 .size           = ctx_size,
724                 .data           = ctx,
725         };
726         struct perf_raw_record raw = {
727                 .frag = {
728                         {
729                                 .next   = ctx_size ? &frag : NULL,
730                         },
731                         .size   = meta_size,
732                         .data   = meta,
733                 },
734         };
735         struct perf_sample_data *sd;
736         struct pt_regs *regs;
737         u64 ret;
738
739         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
740                 ret = -EBUSY;
741                 goto out;
742         }
743         sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
744         regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
745
746         perf_fetch_caller_regs(regs);
747         perf_sample_data_init(sd, 0, 0);
748         sd->raw = &raw;
749         sd->sample_flags |= PERF_SAMPLE_RAW;
750
751         ret = __bpf_perf_event_output(regs, map, flags, sd);
752 out:
753         this_cpu_dec(bpf_event_output_nest_level);
754         return ret;
755 }
756
757 BPF_CALL_0(bpf_get_current_task)
758 {
759         return (long) current;
760 }
761
762 const struct bpf_func_proto bpf_get_current_task_proto = {
763         .func           = bpf_get_current_task,
764         .gpl_only       = true,
765         .ret_type       = RET_INTEGER,
766 };
767
768 BPF_CALL_0(bpf_get_current_task_btf)
769 {
770         return (unsigned long) current;
771 }
772
773 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
774         .func           = bpf_get_current_task_btf,
775         .gpl_only       = true,
776         .ret_type       = RET_PTR_TO_BTF_ID,
777         .ret_btf_id     = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
778 };
779
780 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
781 {
782         return (unsigned long) task_pt_regs(task);
783 }
784
785 BTF_ID_LIST(bpf_task_pt_regs_ids)
786 BTF_ID(struct, pt_regs)
787
788 const struct bpf_func_proto bpf_task_pt_regs_proto = {
789         .func           = bpf_task_pt_regs,
790         .gpl_only       = true,
791         .arg1_type      = ARG_PTR_TO_BTF_ID,
792         .arg1_btf_id    = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
793         .ret_type       = RET_PTR_TO_BTF_ID,
794         .ret_btf_id     = &bpf_task_pt_regs_ids[0],
795 };
796
797 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
798 {
799         struct bpf_array *array = container_of(map, struct bpf_array, map);
800         struct cgroup *cgrp;
801
802         if (unlikely(idx >= array->map.max_entries))
803                 return -E2BIG;
804
805         cgrp = READ_ONCE(array->ptrs[idx]);
806         if (unlikely(!cgrp))
807                 return -EAGAIN;
808
809         return task_under_cgroup_hierarchy(current, cgrp);
810 }
811
812 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
813         .func           = bpf_current_task_under_cgroup,
814         .gpl_only       = false,
815         .ret_type       = RET_INTEGER,
816         .arg1_type      = ARG_CONST_MAP_PTR,
817         .arg2_type      = ARG_ANYTHING,
818 };
819
820 struct send_signal_irq_work {
821         struct irq_work irq_work;
822         struct task_struct *task;
823         u32 sig;
824         enum pid_type type;
825 };
826
827 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
828
829 static void do_bpf_send_signal(struct irq_work *entry)
830 {
831         struct send_signal_irq_work *work;
832
833         work = container_of(entry, struct send_signal_irq_work, irq_work);
834         group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
835 }
836
837 static int bpf_send_signal_common(u32 sig, enum pid_type type)
838 {
839         struct send_signal_irq_work *work = NULL;
840
841         /* Similar to bpf_probe_write_user, task needs to be
842          * in a sound condition and kernel memory access be
843          * permitted in order to send signal to the current
844          * task.
845          */
846         if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
847                 return -EPERM;
848         if (unlikely(!nmi_uaccess_okay()))
849                 return -EPERM;
850
851         if (irqs_disabled()) {
852                 /* Do an early check on signal validity. Otherwise,
853                  * the error is lost in deferred irq_work.
854                  */
855                 if (unlikely(!valid_signal(sig)))
856                         return -EINVAL;
857
858                 work = this_cpu_ptr(&send_signal_work);
859                 if (irq_work_is_busy(&work->irq_work))
860                         return -EBUSY;
861
862                 /* Add the current task, which is the target of sending signal,
863                  * to the irq_work. The current task may change when queued
864                  * irq works get executed.
865                  */
866                 work->task = current;
867                 work->sig = sig;
868                 work->type = type;
869                 irq_work_queue(&work->irq_work);
870                 return 0;
871         }
872
873         return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
874 }
875
876 BPF_CALL_1(bpf_send_signal, u32, sig)
877 {
878         return bpf_send_signal_common(sig, PIDTYPE_TGID);
879 }
880
881 static const struct bpf_func_proto bpf_send_signal_proto = {
882         .func           = bpf_send_signal,
883         .gpl_only       = false,
884         .ret_type       = RET_INTEGER,
885         .arg1_type      = ARG_ANYTHING,
886 };
887
888 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
889 {
890         return bpf_send_signal_common(sig, PIDTYPE_PID);
891 }
892
893 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
894         .func           = bpf_send_signal_thread,
895         .gpl_only       = false,
896         .ret_type       = RET_INTEGER,
897         .arg1_type      = ARG_ANYTHING,
898 };
899
900 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
901 {
902         long len;
903         char *p;
904
905         if (!sz)
906                 return 0;
907
908         p = d_path(path, buf, sz);
909         if (IS_ERR(p)) {
910                 len = PTR_ERR(p);
911         } else {
912                 len = buf + sz - p;
913                 memmove(buf, p, len);
914         }
915
916         return len;
917 }
918
919 BTF_SET_START(btf_allowlist_d_path)
920 #ifdef CONFIG_SECURITY
921 BTF_ID(func, security_file_permission)
922 BTF_ID(func, security_inode_getattr)
923 BTF_ID(func, security_file_open)
924 #endif
925 #ifdef CONFIG_SECURITY_PATH
926 BTF_ID(func, security_path_truncate)
927 #endif
928 BTF_ID(func, vfs_truncate)
929 BTF_ID(func, vfs_fallocate)
930 BTF_ID(func, dentry_open)
931 BTF_ID(func, vfs_getattr)
932 BTF_ID(func, filp_close)
933 BTF_SET_END(btf_allowlist_d_path)
934
935 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
936 {
937         if (prog->type == BPF_PROG_TYPE_TRACING &&
938             prog->expected_attach_type == BPF_TRACE_ITER)
939                 return true;
940
941         if (prog->type == BPF_PROG_TYPE_LSM)
942                 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
943
944         return btf_id_set_contains(&btf_allowlist_d_path,
945                                    prog->aux->attach_btf_id);
946 }
947
948 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
949
950 static const struct bpf_func_proto bpf_d_path_proto = {
951         .func           = bpf_d_path,
952         .gpl_only       = false,
953         .ret_type       = RET_INTEGER,
954         .arg1_type      = ARG_PTR_TO_BTF_ID,
955         .arg1_btf_id    = &bpf_d_path_btf_ids[0],
956         .arg2_type      = ARG_PTR_TO_MEM,
957         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
958         .allowed        = bpf_d_path_allowed,
959 };
960
961 #define BTF_F_ALL       (BTF_F_COMPACT  | BTF_F_NONAME | \
962                          BTF_F_PTR_RAW | BTF_F_ZERO)
963
964 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
965                                   u64 flags, const struct btf **btf,
966                                   s32 *btf_id)
967 {
968         const struct btf_type *t;
969
970         if (unlikely(flags & ~(BTF_F_ALL)))
971                 return -EINVAL;
972
973         if (btf_ptr_size != sizeof(struct btf_ptr))
974                 return -EINVAL;
975
976         *btf = bpf_get_btf_vmlinux();
977
978         if (IS_ERR_OR_NULL(*btf))
979                 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
980
981         if (ptr->type_id > 0)
982                 *btf_id = ptr->type_id;
983         else
984                 return -EINVAL;
985
986         if (*btf_id > 0)
987                 t = btf_type_by_id(*btf, *btf_id);
988         if (*btf_id <= 0 || !t)
989                 return -ENOENT;
990
991         return 0;
992 }
993
994 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
995            u32, btf_ptr_size, u64, flags)
996 {
997         const struct btf *btf;
998         s32 btf_id;
999         int ret;
1000
1001         ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1002         if (ret)
1003                 return ret;
1004
1005         return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1006                                       flags);
1007 }
1008
1009 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1010         .func           = bpf_snprintf_btf,
1011         .gpl_only       = false,
1012         .ret_type       = RET_INTEGER,
1013         .arg1_type      = ARG_PTR_TO_MEM,
1014         .arg2_type      = ARG_CONST_SIZE,
1015         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1016         .arg4_type      = ARG_CONST_SIZE,
1017         .arg5_type      = ARG_ANYTHING,
1018 };
1019
1020 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1021 {
1022         /* This helper call is inlined by verifier. */
1023         return ((u64 *)ctx)[-2];
1024 }
1025
1026 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1027         .func           = bpf_get_func_ip_tracing,
1028         .gpl_only       = true,
1029         .ret_type       = RET_INTEGER,
1030         .arg1_type      = ARG_PTR_TO_CTX,
1031 };
1032
1033 #ifdef CONFIG_X86_KERNEL_IBT
1034 static unsigned long get_entry_ip(unsigned long fentry_ip)
1035 {
1036         u32 instr;
1037
1038         /* Being extra safe in here in case entry ip is on the page-edge. */
1039         if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1040                 return fentry_ip;
1041         if (is_endbr(instr))
1042                 fentry_ip -= ENDBR_INSN_SIZE;
1043         return fentry_ip;
1044 }
1045 #else
1046 #define get_entry_ip(fentry_ip) fentry_ip
1047 #endif
1048
1049 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1050 {
1051         struct kprobe *kp = kprobe_running();
1052
1053         if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1054                 return 0;
1055
1056         return get_entry_ip((uintptr_t)kp->addr);
1057 }
1058
1059 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1060         .func           = bpf_get_func_ip_kprobe,
1061         .gpl_only       = true,
1062         .ret_type       = RET_INTEGER,
1063         .arg1_type      = ARG_PTR_TO_CTX,
1064 };
1065
1066 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1067 {
1068         return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1069 }
1070
1071 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1072         .func           = bpf_get_func_ip_kprobe_multi,
1073         .gpl_only       = false,
1074         .ret_type       = RET_INTEGER,
1075         .arg1_type      = ARG_PTR_TO_CTX,
1076 };
1077
1078 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1079 {
1080         return bpf_kprobe_multi_cookie(current->bpf_ctx);
1081 }
1082
1083 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1084         .func           = bpf_get_attach_cookie_kprobe_multi,
1085         .gpl_only       = false,
1086         .ret_type       = RET_INTEGER,
1087         .arg1_type      = ARG_PTR_TO_CTX,
1088 };
1089
1090 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1091 {
1092         struct bpf_trace_run_ctx *run_ctx;
1093
1094         run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1095         return run_ctx->bpf_cookie;
1096 }
1097
1098 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1099         .func           = bpf_get_attach_cookie_trace,
1100         .gpl_only       = false,
1101         .ret_type       = RET_INTEGER,
1102         .arg1_type      = ARG_PTR_TO_CTX,
1103 };
1104
1105 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1106 {
1107         return ctx->event->bpf_cookie;
1108 }
1109
1110 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1111         .func           = bpf_get_attach_cookie_pe,
1112         .gpl_only       = false,
1113         .ret_type       = RET_INTEGER,
1114         .arg1_type      = ARG_PTR_TO_CTX,
1115 };
1116
1117 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1118 {
1119         struct bpf_trace_run_ctx *run_ctx;
1120
1121         run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1122         return run_ctx->bpf_cookie;
1123 }
1124
1125 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1126         .func           = bpf_get_attach_cookie_tracing,
1127         .gpl_only       = false,
1128         .ret_type       = RET_INTEGER,
1129         .arg1_type      = ARG_PTR_TO_CTX,
1130 };
1131
1132 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1133 {
1134 #ifndef CONFIG_X86
1135         return -ENOENT;
1136 #else
1137         static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1138         u32 entry_cnt = size / br_entry_size;
1139
1140         entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1141
1142         if (unlikely(flags))
1143                 return -EINVAL;
1144
1145         if (!entry_cnt)
1146                 return -ENOENT;
1147
1148         return entry_cnt * br_entry_size;
1149 #endif
1150 }
1151
1152 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1153         .func           = bpf_get_branch_snapshot,
1154         .gpl_only       = true,
1155         .ret_type       = RET_INTEGER,
1156         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
1157         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1158 };
1159
1160 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1161 {
1162         /* This helper call is inlined by verifier. */
1163         u64 nr_args = ((u64 *)ctx)[-1];
1164
1165         if ((u64) n >= nr_args)
1166                 return -EINVAL;
1167         *value = ((u64 *)ctx)[n];
1168         return 0;
1169 }
1170
1171 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1172         .func           = get_func_arg,
1173         .ret_type       = RET_INTEGER,
1174         .arg1_type      = ARG_PTR_TO_CTX,
1175         .arg2_type      = ARG_ANYTHING,
1176         .arg3_type      = ARG_PTR_TO_LONG,
1177 };
1178
1179 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1180 {
1181         /* This helper call is inlined by verifier. */
1182         u64 nr_args = ((u64 *)ctx)[-1];
1183
1184         *value = ((u64 *)ctx)[nr_args];
1185         return 0;
1186 }
1187
1188 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1189         .func           = get_func_ret,
1190         .ret_type       = RET_INTEGER,
1191         .arg1_type      = ARG_PTR_TO_CTX,
1192         .arg2_type      = ARG_PTR_TO_LONG,
1193 };
1194
1195 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1196 {
1197         /* This helper call is inlined by verifier. */
1198         return ((u64 *)ctx)[-1];
1199 }
1200
1201 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1202         .func           = get_func_arg_cnt,
1203         .ret_type       = RET_INTEGER,
1204         .arg1_type      = ARG_PTR_TO_CTX,
1205 };
1206
1207 #ifdef CONFIG_KEYS
1208 __diag_push();
1209 __diag_ignore_all("-Wmissing-prototypes",
1210                   "kfuncs which will be used in BPF programs");
1211
1212 /**
1213  * bpf_lookup_user_key - lookup a key by its serial
1214  * @serial: key handle serial number
1215  * @flags: lookup-specific flags
1216  *
1217  * Search a key with a given *serial* and the provided *flags*.
1218  * If found, increment the reference count of the key by one, and
1219  * return it in the bpf_key structure.
1220  *
1221  * The bpf_key structure must be passed to bpf_key_put() when done
1222  * with it, so that the key reference count is decremented and the
1223  * bpf_key structure is freed.
1224  *
1225  * Permission checks are deferred to the time the key is used by
1226  * one of the available key-specific kfuncs.
1227  *
1228  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1229  * special keyring (e.g. session keyring), if it doesn't yet exist.
1230  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1231  * for the key construction, and to retrieve uninstantiated keys (keys
1232  * without data attached to them).
1233  *
1234  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1235  *         NULL pointer otherwise.
1236  */
1237 struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1238 {
1239         key_ref_t key_ref;
1240         struct bpf_key *bkey;
1241
1242         if (flags & ~KEY_LOOKUP_ALL)
1243                 return NULL;
1244
1245         /*
1246          * Permission check is deferred until the key is used, as the
1247          * intent of the caller is unknown here.
1248          */
1249         key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1250         if (IS_ERR(key_ref))
1251                 return NULL;
1252
1253         bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1254         if (!bkey) {
1255                 key_put(key_ref_to_ptr(key_ref));
1256                 return NULL;
1257         }
1258
1259         bkey->key = key_ref_to_ptr(key_ref);
1260         bkey->has_ref = true;
1261
1262         return bkey;
1263 }
1264
1265 /**
1266  * bpf_lookup_system_key - lookup a key by a system-defined ID
1267  * @id: key ID
1268  *
1269  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1270  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1271  * attempting to decrement the key reference count on that pointer. The key
1272  * pointer set in such way is currently understood only by
1273  * verify_pkcs7_signature().
1274  *
1275  * Set *id* to one of the values defined in include/linux/verification.h:
1276  * 0 for the primary keyring (immutable keyring of system keys);
1277  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1278  * (where keys can be added only if they are vouched for by existing keys
1279  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1280  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1281  * kerned image and, possibly, the initramfs signature).
1282  *
1283  * Return: a bpf_key pointer with an invalid key pointer set from the
1284  *         pre-determined ID on success, a NULL pointer otherwise
1285  */
1286 struct bpf_key *bpf_lookup_system_key(u64 id)
1287 {
1288         struct bpf_key *bkey;
1289
1290         if (system_keyring_id_check(id) < 0)
1291                 return NULL;
1292
1293         bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1294         if (!bkey)
1295                 return NULL;
1296
1297         bkey->key = (struct key *)(unsigned long)id;
1298         bkey->has_ref = false;
1299
1300         return bkey;
1301 }
1302
1303 /**
1304  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1305  * @bkey: bpf_key structure
1306  *
1307  * Decrement the reference count of the key inside *bkey*, if the pointer
1308  * is valid, and free *bkey*.
1309  */
1310 void bpf_key_put(struct bpf_key *bkey)
1311 {
1312         if (bkey->has_ref)
1313                 key_put(bkey->key);
1314
1315         kfree(bkey);
1316 }
1317
1318 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1319 /**
1320  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1321  * @data_ptr: data to verify
1322  * @sig_ptr: signature of the data
1323  * @trusted_keyring: keyring with keys trusted for signature verification
1324  *
1325  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1326  * with keys in a keyring referenced by *trusted_keyring*.
1327  *
1328  * Return: 0 on success, a negative value on error.
1329  */
1330 int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1331                                struct bpf_dynptr_kern *sig_ptr,
1332                                struct bpf_key *trusted_keyring)
1333 {
1334         int ret;
1335
1336         if (trusted_keyring->has_ref) {
1337                 /*
1338                  * Do the permission check deferred in bpf_lookup_user_key().
1339                  * See bpf_lookup_user_key() for more details.
1340                  *
1341                  * A call to key_task_permission() here would be redundant, as
1342                  * it is already done by keyring_search() called by
1343                  * find_asymmetric_key().
1344                  */
1345                 ret = key_validate(trusted_keyring->key);
1346                 if (ret < 0)
1347                         return ret;
1348         }
1349
1350         return verify_pkcs7_signature(data_ptr->data,
1351                                       bpf_dynptr_get_size(data_ptr),
1352                                       sig_ptr->data,
1353                                       bpf_dynptr_get_size(sig_ptr),
1354                                       trusted_keyring->key,
1355                                       VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1356                                       NULL);
1357 }
1358 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1359
1360 __diag_pop();
1361
1362 BTF_SET8_START(key_sig_kfunc_set)
1363 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1364 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1365 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1366 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1367 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1368 #endif
1369 BTF_SET8_END(key_sig_kfunc_set)
1370
1371 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1372         .owner = THIS_MODULE,
1373         .set = &key_sig_kfunc_set,
1374 };
1375
1376 static int __init bpf_key_sig_kfuncs_init(void)
1377 {
1378         return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1379                                          &bpf_key_sig_kfunc_set);
1380 }
1381
1382 late_initcall(bpf_key_sig_kfuncs_init);
1383 #endif /* CONFIG_KEYS */
1384
1385 static const struct bpf_func_proto *
1386 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1387 {
1388         switch (func_id) {
1389         case BPF_FUNC_map_lookup_elem:
1390                 return &bpf_map_lookup_elem_proto;
1391         case BPF_FUNC_map_update_elem:
1392                 return &bpf_map_update_elem_proto;
1393         case BPF_FUNC_map_delete_elem:
1394                 return &bpf_map_delete_elem_proto;
1395         case BPF_FUNC_map_push_elem:
1396                 return &bpf_map_push_elem_proto;
1397         case BPF_FUNC_map_pop_elem:
1398                 return &bpf_map_pop_elem_proto;
1399         case BPF_FUNC_map_peek_elem:
1400                 return &bpf_map_peek_elem_proto;
1401         case BPF_FUNC_map_lookup_percpu_elem:
1402                 return &bpf_map_lookup_percpu_elem_proto;
1403         case BPF_FUNC_ktime_get_ns:
1404                 return &bpf_ktime_get_ns_proto;
1405         case BPF_FUNC_ktime_get_boot_ns:
1406                 return &bpf_ktime_get_boot_ns_proto;
1407         case BPF_FUNC_tail_call:
1408                 return &bpf_tail_call_proto;
1409         case BPF_FUNC_get_current_pid_tgid:
1410                 return &bpf_get_current_pid_tgid_proto;
1411         case BPF_FUNC_get_current_task:
1412                 return &bpf_get_current_task_proto;
1413         case BPF_FUNC_get_current_task_btf:
1414                 return &bpf_get_current_task_btf_proto;
1415         case BPF_FUNC_task_pt_regs:
1416                 return &bpf_task_pt_regs_proto;
1417         case BPF_FUNC_get_current_uid_gid:
1418                 return &bpf_get_current_uid_gid_proto;
1419         case BPF_FUNC_get_current_comm:
1420                 return &bpf_get_current_comm_proto;
1421         case BPF_FUNC_trace_printk:
1422                 return bpf_get_trace_printk_proto();
1423         case BPF_FUNC_get_smp_processor_id:
1424                 return &bpf_get_smp_processor_id_proto;
1425         case BPF_FUNC_get_numa_node_id:
1426                 return &bpf_get_numa_node_id_proto;
1427         case BPF_FUNC_perf_event_read:
1428                 return &bpf_perf_event_read_proto;
1429         case BPF_FUNC_current_task_under_cgroup:
1430                 return &bpf_current_task_under_cgroup_proto;
1431         case BPF_FUNC_get_prandom_u32:
1432                 return &bpf_get_prandom_u32_proto;
1433         case BPF_FUNC_probe_write_user:
1434                 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1435                        NULL : bpf_get_probe_write_proto();
1436         case BPF_FUNC_probe_read_user:
1437                 return &bpf_probe_read_user_proto;
1438         case BPF_FUNC_probe_read_kernel:
1439                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1440                        NULL : &bpf_probe_read_kernel_proto;
1441         case BPF_FUNC_probe_read_user_str:
1442                 return &bpf_probe_read_user_str_proto;
1443         case BPF_FUNC_probe_read_kernel_str:
1444                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1445                        NULL : &bpf_probe_read_kernel_str_proto;
1446 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1447         case BPF_FUNC_probe_read:
1448                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1449                        NULL : &bpf_probe_read_compat_proto;
1450         case BPF_FUNC_probe_read_str:
1451                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1452                        NULL : &bpf_probe_read_compat_str_proto;
1453 #endif
1454 #ifdef CONFIG_CGROUPS
1455         case BPF_FUNC_get_current_cgroup_id:
1456                 return &bpf_get_current_cgroup_id_proto;
1457         case BPF_FUNC_get_current_ancestor_cgroup_id:
1458                 return &bpf_get_current_ancestor_cgroup_id_proto;
1459 #endif
1460         case BPF_FUNC_send_signal:
1461                 return &bpf_send_signal_proto;
1462         case BPF_FUNC_send_signal_thread:
1463                 return &bpf_send_signal_thread_proto;
1464         case BPF_FUNC_perf_event_read_value:
1465                 return &bpf_perf_event_read_value_proto;
1466         case BPF_FUNC_get_ns_current_pid_tgid:
1467                 return &bpf_get_ns_current_pid_tgid_proto;
1468         case BPF_FUNC_ringbuf_output:
1469                 return &bpf_ringbuf_output_proto;
1470         case BPF_FUNC_ringbuf_reserve:
1471                 return &bpf_ringbuf_reserve_proto;
1472         case BPF_FUNC_ringbuf_submit:
1473                 return &bpf_ringbuf_submit_proto;
1474         case BPF_FUNC_ringbuf_discard:
1475                 return &bpf_ringbuf_discard_proto;
1476         case BPF_FUNC_ringbuf_query:
1477                 return &bpf_ringbuf_query_proto;
1478         case BPF_FUNC_jiffies64:
1479                 return &bpf_jiffies64_proto;
1480         case BPF_FUNC_get_task_stack:
1481                 return &bpf_get_task_stack_proto;
1482         case BPF_FUNC_copy_from_user:
1483                 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1484         case BPF_FUNC_copy_from_user_task:
1485                 return prog->aux->sleepable ? &bpf_copy_from_user_task_proto : NULL;
1486         case BPF_FUNC_snprintf_btf:
1487                 return &bpf_snprintf_btf_proto;
1488         case BPF_FUNC_per_cpu_ptr:
1489                 return &bpf_per_cpu_ptr_proto;
1490         case BPF_FUNC_this_cpu_ptr:
1491                 return &bpf_this_cpu_ptr_proto;
1492         case BPF_FUNC_task_storage_get:
1493                 return &bpf_task_storage_get_proto;
1494         case BPF_FUNC_task_storage_delete:
1495                 return &bpf_task_storage_delete_proto;
1496         case BPF_FUNC_for_each_map_elem:
1497                 return &bpf_for_each_map_elem_proto;
1498         case BPF_FUNC_snprintf:
1499                 return &bpf_snprintf_proto;
1500         case BPF_FUNC_get_func_ip:
1501                 return &bpf_get_func_ip_proto_tracing;
1502         case BPF_FUNC_get_branch_snapshot:
1503                 return &bpf_get_branch_snapshot_proto;
1504         case BPF_FUNC_find_vma:
1505                 return &bpf_find_vma_proto;
1506         case BPF_FUNC_trace_vprintk:
1507                 return bpf_get_trace_vprintk_proto();
1508         default:
1509                 return bpf_base_func_proto(func_id);
1510         }
1511 }
1512
1513 static const struct bpf_func_proto *
1514 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1515 {
1516         switch (func_id) {
1517         case BPF_FUNC_perf_event_output:
1518                 return &bpf_perf_event_output_proto;
1519         case BPF_FUNC_get_stackid:
1520                 return &bpf_get_stackid_proto;
1521         case BPF_FUNC_get_stack:
1522                 return &bpf_get_stack_proto;
1523 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1524         case BPF_FUNC_override_return:
1525                 return &bpf_override_return_proto;
1526 #endif
1527         case BPF_FUNC_get_func_ip:
1528                 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1529                         &bpf_get_func_ip_proto_kprobe_multi :
1530                         &bpf_get_func_ip_proto_kprobe;
1531         case BPF_FUNC_get_attach_cookie:
1532                 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1533                         &bpf_get_attach_cookie_proto_kmulti :
1534                         &bpf_get_attach_cookie_proto_trace;
1535         default:
1536                 return bpf_tracing_func_proto(func_id, prog);
1537         }
1538 }
1539
1540 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1541 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1542                                         const struct bpf_prog *prog,
1543                                         struct bpf_insn_access_aux *info)
1544 {
1545         if (off < 0 || off >= sizeof(struct pt_regs))
1546                 return false;
1547         if (type != BPF_READ)
1548                 return false;
1549         if (off % size != 0)
1550                 return false;
1551         /*
1552          * Assertion for 32 bit to make sure last 8 byte access
1553          * (BPF_DW) to the last 4 byte member is disallowed.
1554          */
1555         if (off + size > sizeof(struct pt_regs))
1556                 return false;
1557
1558         return true;
1559 }
1560
1561 const struct bpf_verifier_ops kprobe_verifier_ops = {
1562         .get_func_proto  = kprobe_prog_func_proto,
1563         .is_valid_access = kprobe_prog_is_valid_access,
1564 };
1565
1566 const struct bpf_prog_ops kprobe_prog_ops = {
1567 };
1568
1569 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1570            u64, flags, void *, data, u64, size)
1571 {
1572         struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1573
1574         /*
1575          * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1576          * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1577          * from there and call the same bpf_perf_event_output() helper inline.
1578          */
1579         return ____bpf_perf_event_output(regs, map, flags, data, size);
1580 }
1581
1582 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1583         .func           = bpf_perf_event_output_tp,
1584         .gpl_only       = true,
1585         .ret_type       = RET_INTEGER,
1586         .arg1_type      = ARG_PTR_TO_CTX,
1587         .arg2_type      = ARG_CONST_MAP_PTR,
1588         .arg3_type      = ARG_ANYTHING,
1589         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1590         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1591 };
1592
1593 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1594            u64, flags)
1595 {
1596         struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1597
1598         /*
1599          * Same comment as in bpf_perf_event_output_tp(), only that this time
1600          * the other helper's function body cannot be inlined due to being
1601          * external, thus we need to call raw helper function.
1602          */
1603         return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1604                                flags, 0, 0);
1605 }
1606
1607 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1608         .func           = bpf_get_stackid_tp,
1609         .gpl_only       = true,
1610         .ret_type       = RET_INTEGER,
1611         .arg1_type      = ARG_PTR_TO_CTX,
1612         .arg2_type      = ARG_CONST_MAP_PTR,
1613         .arg3_type      = ARG_ANYTHING,
1614 };
1615
1616 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1617            u64, flags)
1618 {
1619         struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1620
1621         return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1622                              (unsigned long) size, flags, 0);
1623 }
1624
1625 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1626         .func           = bpf_get_stack_tp,
1627         .gpl_only       = true,
1628         .ret_type       = RET_INTEGER,
1629         .arg1_type      = ARG_PTR_TO_CTX,
1630         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1631         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1632         .arg4_type      = ARG_ANYTHING,
1633 };
1634
1635 static const struct bpf_func_proto *
1636 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1637 {
1638         switch (func_id) {
1639         case BPF_FUNC_perf_event_output:
1640                 return &bpf_perf_event_output_proto_tp;
1641         case BPF_FUNC_get_stackid:
1642                 return &bpf_get_stackid_proto_tp;
1643         case BPF_FUNC_get_stack:
1644                 return &bpf_get_stack_proto_tp;
1645         case BPF_FUNC_get_attach_cookie:
1646                 return &bpf_get_attach_cookie_proto_trace;
1647         default:
1648                 return bpf_tracing_func_proto(func_id, prog);
1649         }
1650 }
1651
1652 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1653                                     const struct bpf_prog *prog,
1654                                     struct bpf_insn_access_aux *info)
1655 {
1656         if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1657                 return false;
1658         if (type != BPF_READ)
1659                 return false;
1660         if (off % size != 0)
1661                 return false;
1662
1663         BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1664         return true;
1665 }
1666
1667 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1668         .get_func_proto  = tp_prog_func_proto,
1669         .is_valid_access = tp_prog_is_valid_access,
1670 };
1671
1672 const struct bpf_prog_ops tracepoint_prog_ops = {
1673 };
1674
1675 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1676            struct bpf_perf_event_value *, buf, u32, size)
1677 {
1678         int err = -EINVAL;
1679
1680         if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1681                 goto clear;
1682         err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1683                                     &buf->running);
1684         if (unlikely(err))
1685                 goto clear;
1686         return 0;
1687 clear:
1688         memset(buf, 0, size);
1689         return err;
1690 }
1691
1692 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1693          .func           = bpf_perf_prog_read_value,
1694          .gpl_only       = true,
1695          .ret_type       = RET_INTEGER,
1696          .arg1_type      = ARG_PTR_TO_CTX,
1697          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1698          .arg3_type      = ARG_CONST_SIZE,
1699 };
1700
1701 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1702            void *, buf, u32, size, u64, flags)
1703 {
1704         static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1705         struct perf_branch_stack *br_stack = ctx->data->br_stack;
1706         u32 to_copy;
1707
1708         if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1709                 return -EINVAL;
1710
1711         if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1712                 return -ENOENT;
1713
1714         if (unlikely(!br_stack))
1715                 return -ENOENT;
1716
1717         if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1718                 return br_stack->nr * br_entry_size;
1719
1720         if (!buf || (size % br_entry_size != 0))
1721                 return -EINVAL;
1722
1723         to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1724         memcpy(buf, br_stack->entries, to_copy);
1725
1726         return to_copy;
1727 }
1728
1729 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1730         .func           = bpf_read_branch_records,
1731         .gpl_only       = true,
1732         .ret_type       = RET_INTEGER,
1733         .arg1_type      = ARG_PTR_TO_CTX,
1734         .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1735         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1736         .arg4_type      = ARG_ANYTHING,
1737 };
1738
1739 static const struct bpf_func_proto *
1740 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1741 {
1742         switch (func_id) {
1743         case BPF_FUNC_perf_event_output:
1744                 return &bpf_perf_event_output_proto_tp;
1745         case BPF_FUNC_get_stackid:
1746                 return &bpf_get_stackid_proto_pe;
1747         case BPF_FUNC_get_stack:
1748                 return &bpf_get_stack_proto_pe;
1749         case BPF_FUNC_perf_prog_read_value:
1750                 return &bpf_perf_prog_read_value_proto;
1751         case BPF_FUNC_read_branch_records:
1752                 return &bpf_read_branch_records_proto;
1753         case BPF_FUNC_get_attach_cookie:
1754                 return &bpf_get_attach_cookie_proto_pe;
1755         default:
1756                 return bpf_tracing_func_proto(func_id, prog);
1757         }
1758 }
1759
1760 /*
1761  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1762  * to avoid potential recursive reuse issue when/if tracepoints are added
1763  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1764  *
1765  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1766  * in normal, irq, and nmi context.
1767  */
1768 struct bpf_raw_tp_regs {
1769         struct pt_regs regs[3];
1770 };
1771 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1772 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1773 static struct pt_regs *get_bpf_raw_tp_regs(void)
1774 {
1775         struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1776         int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1777
1778         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1779                 this_cpu_dec(bpf_raw_tp_nest_level);
1780                 return ERR_PTR(-EBUSY);
1781         }
1782
1783         return &tp_regs->regs[nest_level - 1];
1784 }
1785
1786 static void put_bpf_raw_tp_regs(void)
1787 {
1788         this_cpu_dec(bpf_raw_tp_nest_level);
1789 }
1790
1791 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1792            struct bpf_map *, map, u64, flags, void *, data, u64, size)
1793 {
1794         struct pt_regs *regs = get_bpf_raw_tp_regs();
1795         int ret;
1796
1797         if (IS_ERR(regs))
1798                 return PTR_ERR(regs);
1799
1800         perf_fetch_caller_regs(regs);
1801         ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1802
1803         put_bpf_raw_tp_regs();
1804         return ret;
1805 }
1806
1807 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1808         .func           = bpf_perf_event_output_raw_tp,
1809         .gpl_only       = true,
1810         .ret_type       = RET_INTEGER,
1811         .arg1_type      = ARG_PTR_TO_CTX,
1812         .arg2_type      = ARG_CONST_MAP_PTR,
1813         .arg3_type      = ARG_ANYTHING,
1814         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1815         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1816 };
1817
1818 extern const struct bpf_func_proto bpf_skb_output_proto;
1819 extern const struct bpf_func_proto bpf_xdp_output_proto;
1820 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1821
1822 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1823            struct bpf_map *, map, u64, flags)
1824 {
1825         struct pt_regs *regs = get_bpf_raw_tp_regs();
1826         int ret;
1827
1828         if (IS_ERR(regs))
1829                 return PTR_ERR(regs);
1830
1831         perf_fetch_caller_regs(regs);
1832         /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1833         ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1834                               flags, 0, 0);
1835         put_bpf_raw_tp_regs();
1836         return ret;
1837 }
1838
1839 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1840         .func           = bpf_get_stackid_raw_tp,
1841         .gpl_only       = true,
1842         .ret_type       = RET_INTEGER,
1843         .arg1_type      = ARG_PTR_TO_CTX,
1844         .arg2_type      = ARG_CONST_MAP_PTR,
1845         .arg3_type      = ARG_ANYTHING,
1846 };
1847
1848 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1849            void *, buf, u32, size, u64, flags)
1850 {
1851         struct pt_regs *regs = get_bpf_raw_tp_regs();
1852         int ret;
1853
1854         if (IS_ERR(regs))
1855                 return PTR_ERR(regs);
1856
1857         perf_fetch_caller_regs(regs);
1858         ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1859                             (unsigned long) size, flags, 0);
1860         put_bpf_raw_tp_regs();
1861         return ret;
1862 }
1863
1864 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1865         .func           = bpf_get_stack_raw_tp,
1866         .gpl_only       = true,
1867         .ret_type       = RET_INTEGER,
1868         .arg1_type      = ARG_PTR_TO_CTX,
1869         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1870         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1871         .arg4_type      = ARG_ANYTHING,
1872 };
1873
1874 static const struct bpf_func_proto *
1875 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1876 {
1877         switch (func_id) {
1878         case BPF_FUNC_perf_event_output:
1879                 return &bpf_perf_event_output_proto_raw_tp;
1880         case BPF_FUNC_get_stackid:
1881                 return &bpf_get_stackid_proto_raw_tp;
1882         case BPF_FUNC_get_stack:
1883                 return &bpf_get_stack_proto_raw_tp;
1884         default:
1885                 return bpf_tracing_func_proto(func_id, prog);
1886         }
1887 }
1888
1889 const struct bpf_func_proto *
1890 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1891 {
1892         const struct bpf_func_proto *fn;
1893
1894         switch (func_id) {
1895 #ifdef CONFIG_NET
1896         case BPF_FUNC_skb_output:
1897                 return &bpf_skb_output_proto;
1898         case BPF_FUNC_xdp_output:
1899                 return &bpf_xdp_output_proto;
1900         case BPF_FUNC_skc_to_tcp6_sock:
1901                 return &bpf_skc_to_tcp6_sock_proto;
1902         case BPF_FUNC_skc_to_tcp_sock:
1903                 return &bpf_skc_to_tcp_sock_proto;
1904         case BPF_FUNC_skc_to_tcp_timewait_sock:
1905                 return &bpf_skc_to_tcp_timewait_sock_proto;
1906         case BPF_FUNC_skc_to_tcp_request_sock:
1907                 return &bpf_skc_to_tcp_request_sock_proto;
1908         case BPF_FUNC_skc_to_udp6_sock:
1909                 return &bpf_skc_to_udp6_sock_proto;
1910         case BPF_FUNC_skc_to_unix_sock:
1911                 return &bpf_skc_to_unix_sock_proto;
1912         case BPF_FUNC_skc_to_mptcp_sock:
1913                 return &bpf_skc_to_mptcp_sock_proto;
1914         case BPF_FUNC_sk_storage_get:
1915                 return &bpf_sk_storage_get_tracing_proto;
1916         case BPF_FUNC_sk_storage_delete:
1917                 return &bpf_sk_storage_delete_tracing_proto;
1918         case BPF_FUNC_sock_from_file:
1919                 return &bpf_sock_from_file_proto;
1920         case BPF_FUNC_get_socket_cookie:
1921                 return &bpf_get_socket_ptr_cookie_proto;
1922         case BPF_FUNC_xdp_get_buff_len:
1923                 return &bpf_xdp_get_buff_len_trace_proto;
1924 #endif
1925         case BPF_FUNC_seq_printf:
1926                 return prog->expected_attach_type == BPF_TRACE_ITER ?
1927                        &bpf_seq_printf_proto :
1928                        NULL;
1929         case BPF_FUNC_seq_write:
1930                 return prog->expected_attach_type == BPF_TRACE_ITER ?
1931                        &bpf_seq_write_proto :
1932                        NULL;
1933         case BPF_FUNC_seq_printf_btf:
1934                 return prog->expected_attach_type == BPF_TRACE_ITER ?
1935                        &bpf_seq_printf_btf_proto :
1936                        NULL;
1937         case BPF_FUNC_d_path:
1938                 return &bpf_d_path_proto;
1939         case BPF_FUNC_get_func_arg:
1940                 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1941         case BPF_FUNC_get_func_ret:
1942                 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1943         case BPF_FUNC_get_func_arg_cnt:
1944                 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1945         case BPF_FUNC_get_attach_cookie:
1946                 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1947         default:
1948                 fn = raw_tp_prog_func_proto(func_id, prog);
1949                 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1950                         fn = bpf_iter_get_func_proto(func_id, prog);
1951                 return fn;
1952         }
1953 }
1954
1955 static bool raw_tp_prog_is_valid_access(int off, int size,
1956                                         enum bpf_access_type type,
1957                                         const struct bpf_prog *prog,
1958                                         struct bpf_insn_access_aux *info)
1959 {
1960         return bpf_tracing_ctx_access(off, size, type);
1961 }
1962
1963 static bool tracing_prog_is_valid_access(int off, int size,
1964                                          enum bpf_access_type type,
1965                                          const struct bpf_prog *prog,
1966                                          struct bpf_insn_access_aux *info)
1967 {
1968         return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1969 }
1970
1971 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1972                                      const union bpf_attr *kattr,
1973                                      union bpf_attr __user *uattr)
1974 {
1975         return -ENOTSUPP;
1976 }
1977
1978 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1979         .get_func_proto  = raw_tp_prog_func_proto,
1980         .is_valid_access = raw_tp_prog_is_valid_access,
1981 };
1982
1983 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1984 #ifdef CONFIG_NET
1985         .test_run = bpf_prog_test_run_raw_tp,
1986 #endif
1987 };
1988
1989 const struct bpf_verifier_ops tracing_verifier_ops = {
1990         .get_func_proto  = tracing_prog_func_proto,
1991         .is_valid_access = tracing_prog_is_valid_access,
1992 };
1993
1994 const struct bpf_prog_ops tracing_prog_ops = {
1995         .test_run = bpf_prog_test_run_tracing,
1996 };
1997
1998 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1999                                                  enum bpf_access_type type,
2000                                                  const struct bpf_prog *prog,
2001                                                  struct bpf_insn_access_aux *info)
2002 {
2003         if (off == 0) {
2004                 if (size != sizeof(u64) || type != BPF_READ)
2005                         return false;
2006                 info->reg_type = PTR_TO_TP_BUFFER;
2007         }
2008         return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2009 }
2010
2011 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2012         .get_func_proto  = raw_tp_prog_func_proto,
2013         .is_valid_access = raw_tp_writable_prog_is_valid_access,
2014 };
2015
2016 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2017 };
2018
2019 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2020                                     const struct bpf_prog *prog,
2021                                     struct bpf_insn_access_aux *info)
2022 {
2023         const int size_u64 = sizeof(u64);
2024
2025         if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2026                 return false;
2027         if (type != BPF_READ)
2028                 return false;
2029         if (off % size != 0) {
2030                 if (sizeof(unsigned long) != 4)
2031                         return false;
2032                 if (size != 8)
2033                         return false;
2034                 if (off % size != 4)
2035                         return false;
2036         }
2037
2038         switch (off) {
2039         case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2040                 bpf_ctx_record_field_size(info, size_u64);
2041                 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2042                         return false;
2043                 break;
2044         case bpf_ctx_range(struct bpf_perf_event_data, addr):
2045                 bpf_ctx_record_field_size(info, size_u64);
2046                 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2047                         return false;
2048                 break;
2049         default:
2050                 if (size != sizeof(long))
2051                         return false;
2052         }
2053
2054         return true;
2055 }
2056
2057 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2058                                       const struct bpf_insn *si,
2059                                       struct bpf_insn *insn_buf,
2060                                       struct bpf_prog *prog, u32 *target_size)
2061 {
2062         struct bpf_insn *insn = insn_buf;
2063
2064         switch (si->off) {
2065         case offsetof(struct bpf_perf_event_data, sample_period):
2066                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2067                                                        data), si->dst_reg, si->src_reg,
2068                                       offsetof(struct bpf_perf_event_data_kern, data));
2069                 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2070                                       bpf_target_off(struct perf_sample_data, period, 8,
2071                                                      target_size));
2072                 break;
2073         case offsetof(struct bpf_perf_event_data, addr):
2074                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2075                                                        data), si->dst_reg, si->src_reg,
2076                                       offsetof(struct bpf_perf_event_data_kern, data));
2077                 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2078                                       bpf_target_off(struct perf_sample_data, addr, 8,
2079                                                      target_size));
2080                 break;
2081         default:
2082                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2083                                                        regs), si->dst_reg, si->src_reg,
2084                                       offsetof(struct bpf_perf_event_data_kern, regs));
2085                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2086                                       si->off);
2087                 break;
2088         }
2089
2090         return insn - insn_buf;
2091 }
2092
2093 const struct bpf_verifier_ops perf_event_verifier_ops = {
2094         .get_func_proto         = pe_prog_func_proto,
2095         .is_valid_access        = pe_prog_is_valid_access,
2096         .convert_ctx_access     = pe_prog_convert_ctx_access,
2097 };
2098
2099 const struct bpf_prog_ops perf_event_prog_ops = {
2100 };
2101
2102 static DEFINE_MUTEX(bpf_event_mutex);
2103
2104 #define BPF_TRACE_MAX_PROGS 64
2105
2106 int perf_event_attach_bpf_prog(struct perf_event *event,
2107                                struct bpf_prog *prog,
2108                                u64 bpf_cookie)
2109 {
2110         struct bpf_prog_array *old_array;
2111         struct bpf_prog_array *new_array;
2112         int ret = -EEXIST;
2113
2114         /*
2115          * Kprobe override only works if they are on the function entry,
2116          * and only if they are on the opt-in list.
2117          */
2118         if (prog->kprobe_override &&
2119             (!trace_kprobe_on_func_entry(event->tp_event) ||
2120              !trace_kprobe_error_injectable(event->tp_event)))
2121                 return -EINVAL;
2122
2123         mutex_lock(&bpf_event_mutex);
2124
2125         if (event->prog)
2126                 goto unlock;
2127
2128         old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2129         if (old_array &&
2130             bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2131                 ret = -E2BIG;
2132                 goto unlock;
2133         }
2134
2135         ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2136         if (ret < 0)
2137                 goto unlock;
2138
2139         /* set the new array to event->tp_event and set event->prog */
2140         event->prog = prog;
2141         event->bpf_cookie = bpf_cookie;
2142         rcu_assign_pointer(event->tp_event->prog_array, new_array);
2143         bpf_prog_array_free_sleepable(old_array);
2144
2145 unlock:
2146         mutex_unlock(&bpf_event_mutex);
2147         return ret;
2148 }
2149
2150 void perf_event_detach_bpf_prog(struct perf_event *event)
2151 {
2152         struct bpf_prog_array *old_array;
2153         struct bpf_prog_array *new_array;
2154         int ret;
2155
2156         mutex_lock(&bpf_event_mutex);
2157
2158         if (!event->prog)
2159                 goto unlock;
2160
2161         old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2162         ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2163         if (ret == -ENOENT)
2164                 goto unlock;
2165         if (ret < 0) {
2166                 bpf_prog_array_delete_safe(old_array, event->prog);
2167         } else {
2168                 rcu_assign_pointer(event->tp_event->prog_array, new_array);
2169                 bpf_prog_array_free_sleepable(old_array);
2170         }
2171
2172         bpf_prog_put(event->prog);
2173         event->prog = NULL;
2174
2175 unlock:
2176         mutex_unlock(&bpf_event_mutex);
2177 }
2178
2179 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2180 {
2181         struct perf_event_query_bpf __user *uquery = info;
2182         struct perf_event_query_bpf query = {};
2183         struct bpf_prog_array *progs;
2184         u32 *ids, prog_cnt, ids_len;
2185         int ret;
2186
2187         if (!perfmon_capable())
2188                 return -EPERM;
2189         if (event->attr.type != PERF_TYPE_TRACEPOINT)
2190                 return -EINVAL;
2191         if (copy_from_user(&query, uquery, sizeof(query)))
2192                 return -EFAULT;
2193
2194         ids_len = query.ids_len;
2195         if (ids_len > BPF_TRACE_MAX_PROGS)
2196                 return -E2BIG;
2197         ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2198         if (!ids)
2199                 return -ENOMEM;
2200         /*
2201          * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2202          * is required when user only wants to check for uquery->prog_cnt.
2203          * There is no need to check for it since the case is handled
2204          * gracefully in bpf_prog_array_copy_info.
2205          */
2206
2207         mutex_lock(&bpf_event_mutex);
2208         progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2209         ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2210         mutex_unlock(&bpf_event_mutex);
2211
2212         if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2213             copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2214                 ret = -EFAULT;
2215
2216         kfree(ids);
2217         return ret;
2218 }
2219
2220 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2221 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2222
2223 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2224 {
2225         struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2226
2227         for (; btp < __stop__bpf_raw_tp; btp++) {
2228                 if (!strcmp(btp->tp->name, name))
2229                         return btp;
2230         }
2231
2232         return bpf_get_raw_tracepoint_module(name);
2233 }
2234
2235 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2236 {
2237         struct module *mod;
2238
2239         preempt_disable();
2240         mod = __module_address((unsigned long)btp);
2241         module_put(mod);
2242         preempt_enable();
2243 }
2244
2245 static __always_inline
2246 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2247 {
2248         cant_sleep();
2249         if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2250                 bpf_prog_inc_misses_counter(prog);
2251                 goto out;
2252         }
2253         rcu_read_lock();
2254         (void) bpf_prog_run(prog, args);
2255         rcu_read_unlock();
2256 out:
2257         this_cpu_dec(*(prog->active));
2258 }
2259
2260 #define UNPACK(...)                     __VA_ARGS__
2261 #define REPEAT_1(FN, DL, X, ...)        FN(X)
2262 #define REPEAT_2(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2263 #define REPEAT_3(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2264 #define REPEAT_4(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2265 #define REPEAT_5(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2266 #define REPEAT_6(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2267 #define REPEAT_7(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2268 #define REPEAT_8(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2269 #define REPEAT_9(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2270 #define REPEAT_10(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2271 #define REPEAT_11(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2272 #define REPEAT_12(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2273 #define REPEAT(X, FN, DL, ...)          REPEAT_##X(FN, DL, __VA_ARGS__)
2274
2275 #define SARG(X)         u64 arg##X
2276 #define COPY(X)         args[X] = arg##X
2277
2278 #define __DL_COM        (,)
2279 #define __DL_SEM        (;)
2280
2281 #define __SEQ_0_11      0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2282
2283 #define BPF_TRACE_DEFN_x(x)                                             \
2284         void bpf_trace_run##x(struct bpf_prog *prog,                    \
2285                               REPEAT(x, SARG, __DL_COM, __SEQ_0_11))    \
2286         {                                                               \
2287                 u64 args[x];                                            \
2288                 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);                  \
2289                 __bpf_trace_run(prog, args);                            \
2290         }                                                               \
2291         EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2292 BPF_TRACE_DEFN_x(1);
2293 BPF_TRACE_DEFN_x(2);
2294 BPF_TRACE_DEFN_x(3);
2295 BPF_TRACE_DEFN_x(4);
2296 BPF_TRACE_DEFN_x(5);
2297 BPF_TRACE_DEFN_x(6);
2298 BPF_TRACE_DEFN_x(7);
2299 BPF_TRACE_DEFN_x(8);
2300 BPF_TRACE_DEFN_x(9);
2301 BPF_TRACE_DEFN_x(10);
2302 BPF_TRACE_DEFN_x(11);
2303 BPF_TRACE_DEFN_x(12);
2304
2305 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2306 {
2307         struct tracepoint *tp = btp->tp;
2308
2309         /*
2310          * check that program doesn't access arguments beyond what's
2311          * available in this tracepoint
2312          */
2313         if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2314                 return -EINVAL;
2315
2316         if (prog->aux->max_tp_access > btp->writable_size)
2317                 return -EINVAL;
2318
2319         return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2320                                                    prog);
2321 }
2322
2323 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2324 {
2325         return __bpf_probe_register(btp, prog);
2326 }
2327
2328 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2329 {
2330         return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2331 }
2332
2333 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2334                             u32 *fd_type, const char **buf,
2335                             u64 *probe_offset, u64 *probe_addr)
2336 {
2337         bool is_tracepoint, is_syscall_tp;
2338         struct bpf_prog *prog;
2339         int flags, err = 0;
2340
2341         prog = event->prog;
2342         if (!prog)
2343                 return -ENOENT;
2344
2345         /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2346         if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2347                 return -EOPNOTSUPP;
2348
2349         *prog_id = prog->aux->id;
2350         flags = event->tp_event->flags;
2351         is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2352         is_syscall_tp = is_syscall_trace_event(event->tp_event);
2353
2354         if (is_tracepoint || is_syscall_tp) {
2355                 *buf = is_tracepoint ? event->tp_event->tp->name
2356                                      : event->tp_event->name;
2357                 *fd_type = BPF_FD_TYPE_TRACEPOINT;
2358                 *probe_offset = 0x0;
2359                 *probe_addr = 0x0;
2360         } else {
2361                 /* kprobe/uprobe */
2362                 err = -EOPNOTSUPP;
2363 #ifdef CONFIG_KPROBE_EVENTS
2364                 if (flags & TRACE_EVENT_FL_KPROBE)
2365                         err = bpf_get_kprobe_info(event, fd_type, buf,
2366                                                   probe_offset, probe_addr,
2367                                                   event->attr.type == PERF_TYPE_TRACEPOINT);
2368 #endif
2369 #ifdef CONFIG_UPROBE_EVENTS
2370                 if (flags & TRACE_EVENT_FL_UPROBE)
2371                         err = bpf_get_uprobe_info(event, fd_type, buf,
2372                                                   probe_offset,
2373                                                   event->attr.type == PERF_TYPE_TRACEPOINT);
2374 #endif
2375         }
2376
2377         return err;
2378 }
2379
2380 static int __init send_signal_irq_work_init(void)
2381 {
2382         int cpu;
2383         struct send_signal_irq_work *work;
2384
2385         for_each_possible_cpu(cpu) {
2386                 work = per_cpu_ptr(&send_signal_work, cpu);
2387                 init_irq_work(&work->irq_work, do_bpf_send_signal);
2388         }
2389         return 0;
2390 }
2391
2392 subsys_initcall(send_signal_irq_work_init);
2393
2394 #ifdef CONFIG_MODULES
2395 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2396                             void *module)
2397 {
2398         struct bpf_trace_module *btm, *tmp;
2399         struct module *mod = module;
2400         int ret = 0;
2401
2402         if (mod->num_bpf_raw_events == 0 ||
2403             (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2404                 goto out;
2405
2406         mutex_lock(&bpf_module_mutex);
2407
2408         switch (op) {
2409         case MODULE_STATE_COMING:
2410                 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2411                 if (btm) {
2412                         btm->module = module;
2413                         list_add(&btm->list, &bpf_trace_modules);
2414                 } else {
2415                         ret = -ENOMEM;
2416                 }
2417                 break;
2418         case MODULE_STATE_GOING:
2419                 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2420                         if (btm->module == module) {
2421                                 list_del(&btm->list);
2422                                 kfree(btm);
2423                                 break;
2424                         }
2425                 }
2426                 break;
2427         }
2428
2429         mutex_unlock(&bpf_module_mutex);
2430
2431 out:
2432         return notifier_from_errno(ret);
2433 }
2434
2435 static struct notifier_block bpf_module_nb = {
2436         .notifier_call = bpf_event_notify,
2437 };
2438
2439 static int __init bpf_event_init(void)
2440 {
2441         register_module_notifier(&bpf_module_nb);
2442         return 0;
2443 }
2444
2445 fs_initcall(bpf_event_init);
2446 #endif /* CONFIG_MODULES */
2447
2448 #ifdef CONFIG_FPROBE
2449 struct bpf_kprobe_multi_link {
2450         struct bpf_link link;
2451         struct fprobe fp;
2452         unsigned long *addrs;
2453         u64 *cookies;
2454         u32 cnt;
2455 };
2456
2457 struct bpf_kprobe_multi_run_ctx {
2458         struct bpf_run_ctx run_ctx;
2459         struct bpf_kprobe_multi_link *link;
2460         unsigned long entry_ip;
2461 };
2462
2463 struct user_syms {
2464         const char **syms;
2465         char *buf;
2466 };
2467
2468 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2469 {
2470         unsigned long __user usymbol;
2471         const char **syms = NULL;
2472         char *buf = NULL, *p;
2473         int err = -ENOMEM;
2474         unsigned int i;
2475
2476         syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2477         if (!syms)
2478                 goto error;
2479
2480         buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2481         if (!buf)
2482                 goto error;
2483
2484         for (p = buf, i = 0; i < cnt; i++) {
2485                 if (__get_user(usymbol, usyms + i)) {
2486                         err = -EFAULT;
2487                         goto error;
2488                 }
2489                 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2490                 if (err == KSYM_NAME_LEN)
2491                         err = -E2BIG;
2492                 if (err < 0)
2493                         goto error;
2494                 syms[i] = p;
2495                 p += err + 1;
2496         }
2497
2498         us->syms = syms;
2499         us->buf = buf;
2500         return 0;
2501
2502 error:
2503         if (err) {
2504                 kvfree(syms);
2505                 kvfree(buf);
2506         }
2507         return err;
2508 }
2509
2510 static void free_user_syms(struct user_syms *us)
2511 {
2512         kvfree(us->syms);
2513         kvfree(us->buf);
2514 }
2515
2516 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2517 {
2518         struct bpf_kprobe_multi_link *kmulti_link;
2519
2520         kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2521         unregister_fprobe(&kmulti_link->fp);
2522 }
2523
2524 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2525 {
2526         struct bpf_kprobe_multi_link *kmulti_link;
2527
2528         kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2529         kvfree(kmulti_link->addrs);
2530         kvfree(kmulti_link->cookies);
2531         kfree(kmulti_link);
2532 }
2533
2534 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2535         .release = bpf_kprobe_multi_link_release,
2536         .dealloc = bpf_kprobe_multi_link_dealloc,
2537 };
2538
2539 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2540 {
2541         const struct bpf_kprobe_multi_link *link = priv;
2542         unsigned long *addr_a = a, *addr_b = b;
2543         u64 *cookie_a, *cookie_b;
2544
2545         cookie_a = link->cookies + (addr_a - link->addrs);
2546         cookie_b = link->cookies + (addr_b - link->addrs);
2547
2548         /* swap addr_a/addr_b and cookie_a/cookie_b values */
2549         swap(*addr_a, *addr_b);
2550         swap(*cookie_a, *cookie_b);
2551 }
2552
2553 static int __bpf_kprobe_multi_cookie_cmp(const void *a, const void *b)
2554 {
2555         const unsigned long *addr_a = a, *addr_b = b;
2556
2557         if (*addr_a == *addr_b)
2558                 return 0;
2559         return *addr_a < *addr_b ? -1 : 1;
2560 }
2561
2562 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2563 {
2564         return __bpf_kprobe_multi_cookie_cmp(a, b);
2565 }
2566
2567 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2568 {
2569         struct bpf_kprobe_multi_run_ctx *run_ctx;
2570         struct bpf_kprobe_multi_link *link;
2571         u64 *cookie, entry_ip;
2572         unsigned long *addr;
2573
2574         if (WARN_ON_ONCE(!ctx))
2575                 return 0;
2576         run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2577         link = run_ctx->link;
2578         if (!link->cookies)
2579                 return 0;
2580         entry_ip = run_ctx->entry_ip;
2581         addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2582                        __bpf_kprobe_multi_cookie_cmp);
2583         if (!addr)
2584                 return 0;
2585         cookie = link->cookies + (addr - link->addrs);
2586         return *cookie;
2587 }
2588
2589 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2590 {
2591         struct bpf_kprobe_multi_run_ctx *run_ctx;
2592
2593         run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2594         return run_ctx->entry_ip;
2595 }
2596
2597 static int
2598 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2599                            unsigned long entry_ip, struct pt_regs *regs)
2600 {
2601         struct bpf_kprobe_multi_run_ctx run_ctx = {
2602                 .link = link,
2603                 .entry_ip = entry_ip,
2604         };
2605         struct bpf_run_ctx *old_run_ctx;
2606         int err;
2607
2608         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2609                 err = 0;
2610                 goto out;
2611         }
2612
2613         migrate_disable();
2614         rcu_read_lock();
2615         old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2616         err = bpf_prog_run(link->link.prog, regs);
2617         bpf_reset_run_ctx(old_run_ctx);
2618         rcu_read_unlock();
2619         migrate_enable();
2620
2621  out:
2622         __this_cpu_dec(bpf_prog_active);
2623         return err;
2624 }
2625
2626 static void
2627 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2628                           struct pt_regs *regs)
2629 {
2630         struct bpf_kprobe_multi_link *link;
2631
2632         link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2633         kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2634 }
2635
2636 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2637 {
2638         const char **str_a = (const char **) a;
2639         const char **str_b = (const char **) b;
2640
2641         return strcmp(*str_a, *str_b);
2642 }
2643
2644 struct multi_symbols_sort {
2645         const char **funcs;
2646         u64 *cookies;
2647 };
2648
2649 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2650 {
2651         const struct multi_symbols_sort *data = priv;
2652         const char **name_a = a, **name_b = b;
2653
2654         swap(*name_a, *name_b);
2655
2656         /* If defined, swap also related cookies. */
2657         if (data->cookies) {
2658                 u64 *cookie_a, *cookie_b;
2659
2660                 cookie_a = data->cookies + (name_a - data->funcs);
2661                 cookie_b = data->cookies + (name_b - data->funcs);
2662                 swap(*cookie_a, *cookie_b);
2663         }
2664 }
2665
2666 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2667 {
2668         struct bpf_kprobe_multi_link *link = NULL;
2669         struct bpf_link_primer link_primer;
2670         void __user *ucookies;
2671         unsigned long *addrs;
2672         u32 flags, cnt, size;
2673         void __user *uaddrs;
2674         u64 *cookies = NULL;
2675         void __user *usyms;
2676         int err;
2677
2678         /* no support for 32bit archs yet */
2679         if (sizeof(u64) != sizeof(void *))
2680                 return -EOPNOTSUPP;
2681
2682         if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2683                 return -EINVAL;
2684
2685         flags = attr->link_create.kprobe_multi.flags;
2686         if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2687                 return -EINVAL;
2688
2689         uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2690         usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2691         if (!!uaddrs == !!usyms)
2692                 return -EINVAL;
2693
2694         cnt = attr->link_create.kprobe_multi.cnt;
2695         if (!cnt)
2696                 return -EINVAL;
2697
2698         size = cnt * sizeof(*addrs);
2699         addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2700         if (!addrs)
2701                 return -ENOMEM;
2702
2703         ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2704         if (ucookies) {
2705                 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2706                 if (!cookies) {
2707                         err = -ENOMEM;
2708                         goto error;
2709                 }
2710                 if (copy_from_user(cookies, ucookies, size)) {
2711                         err = -EFAULT;
2712                         goto error;
2713                 }
2714         }
2715
2716         if (uaddrs) {
2717                 if (copy_from_user(addrs, uaddrs, size)) {
2718                         err = -EFAULT;
2719                         goto error;
2720                 }
2721         } else {
2722                 struct multi_symbols_sort data = {
2723                         .cookies = cookies,
2724                 };
2725                 struct user_syms us;
2726
2727                 err = copy_user_syms(&us, usyms, cnt);
2728                 if (err)
2729                         goto error;
2730
2731                 if (cookies)
2732                         data.funcs = us.syms;
2733
2734                 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2735                        symbols_swap_r, &data);
2736
2737                 err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2738                 free_user_syms(&us);
2739                 if (err)
2740                         goto error;
2741         }
2742
2743         link = kzalloc(sizeof(*link), GFP_KERNEL);
2744         if (!link) {
2745                 err = -ENOMEM;
2746                 goto error;
2747         }
2748
2749         bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2750                       &bpf_kprobe_multi_link_lops, prog);
2751
2752         err = bpf_link_prime(&link->link, &link_primer);
2753         if (err)
2754                 goto error;
2755
2756         if (flags & BPF_F_KPROBE_MULTI_RETURN)
2757                 link->fp.exit_handler = kprobe_multi_link_handler;
2758         else
2759                 link->fp.entry_handler = kprobe_multi_link_handler;
2760
2761         link->addrs = addrs;
2762         link->cookies = cookies;
2763         link->cnt = cnt;
2764
2765         if (cookies) {
2766                 /*
2767                  * Sorting addresses will trigger sorting cookies as well
2768                  * (check bpf_kprobe_multi_cookie_swap). This way we can
2769                  * find cookie based on the address in bpf_get_attach_cookie
2770                  * helper.
2771                  */
2772                 sort_r(addrs, cnt, sizeof(*addrs),
2773                        bpf_kprobe_multi_cookie_cmp,
2774                        bpf_kprobe_multi_cookie_swap,
2775                        link);
2776         }
2777
2778         err = register_fprobe_ips(&link->fp, addrs, cnt);
2779         if (err) {
2780                 bpf_link_cleanup(&link_primer);
2781                 return err;
2782         }
2783
2784         return bpf_link_settle(&link_primer);
2785
2786 error:
2787         kfree(link);
2788         kvfree(addrs);
2789         kvfree(cookies);
2790         return err;
2791 }
2792 #else /* !CONFIG_FPROBE */
2793 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2794 {
2795         return -EOPNOTSUPP;
2796 }
2797 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2798 {
2799         return 0;
2800 }
2801 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2802 {
2803         return 0;
2804 }
2805 #endif