bpf: move explored_state() closer to the beginning of verifier.c
[platform/kernel/linux-starfive.git] / kernel / trace / bpf_trace.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27
28 #include <net/bpf_sk_storage.h>
29
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32
33 #include <asm/tlb.h>
34
35 #include "trace_probe.h"
36 #include "trace.h"
37
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40
41 #define bpf_event_rcu_dereference(p)                                    \
42         rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43
44 #define MAX_UPROBE_MULTI_CNT (1U << 20)
45 #define MAX_KPROBE_MULTI_CNT (1U << 20)
46
47 #ifdef CONFIG_MODULES
48 struct bpf_trace_module {
49         struct module *module;
50         struct list_head list;
51 };
52
53 static LIST_HEAD(bpf_trace_modules);
54 static DEFINE_MUTEX(bpf_module_mutex);
55
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58         struct bpf_raw_event_map *btp, *ret = NULL;
59         struct bpf_trace_module *btm;
60         unsigned int i;
61
62         mutex_lock(&bpf_module_mutex);
63         list_for_each_entry(btm, &bpf_trace_modules, list) {
64                 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
65                         btp = &btm->module->bpf_raw_events[i];
66                         if (!strcmp(btp->tp->name, name)) {
67                                 if (try_module_get(btm->module))
68                                         ret = btp;
69                                 goto out;
70                         }
71                 }
72         }
73 out:
74         mutex_unlock(&bpf_module_mutex);
75         return ret;
76 }
77 #else
78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
79 {
80         return NULL;
81 }
82 #endif /* CONFIG_MODULES */
83
84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86
87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
88                                   u64 flags, const struct btf **btf,
89                                   s32 *btf_id);
90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92
93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
95
96 /**
97  * trace_call_bpf - invoke BPF program
98  * @call: tracepoint event
99  * @ctx: opaque context pointer
100  *
101  * kprobe handlers execute BPF programs via this helper.
102  * Can be used from static tracepoints in the future.
103  *
104  * Return: BPF programs always return an integer which is interpreted by
105  * kprobe handler as:
106  * 0 - return from kprobe (event is filtered out)
107  * 1 - store kprobe event into ring buffer
108  * Other values are reserved and currently alias to 1
109  */
110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
111 {
112         unsigned int ret;
113
114         cant_sleep();
115
116         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
117                 /*
118                  * since some bpf program is already running on this cpu,
119                  * don't call into another bpf program (same or different)
120                  * and don't send kprobe event into ring-buffer,
121                  * so return zero here
122                  */
123                 ret = 0;
124                 goto out;
125         }
126
127         /*
128          * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
129          * to all call sites, we did a bpf_prog_array_valid() there to check
130          * whether call->prog_array is empty or not, which is
131          * a heuristic to speed up execution.
132          *
133          * If bpf_prog_array_valid() fetched prog_array was
134          * non-NULL, we go into trace_call_bpf() and do the actual
135          * proper rcu_dereference() under RCU lock.
136          * If it turns out that prog_array is NULL then, we bail out.
137          * For the opposite, if the bpf_prog_array_valid() fetched pointer
138          * was NULL, you'll skip the prog_array with the risk of missing
139          * out of events when it was updated in between this and the
140          * rcu_dereference() which is accepted risk.
141          */
142         rcu_read_lock();
143         ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
144                                  ctx, bpf_prog_run);
145         rcu_read_unlock();
146
147  out:
148         __this_cpu_dec(bpf_prog_active);
149
150         return ret;
151 }
152
153 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
154 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
155 {
156         regs_set_return_value(regs, rc);
157         override_function_with_return(regs);
158         return 0;
159 }
160
161 static const struct bpf_func_proto bpf_override_return_proto = {
162         .func           = bpf_override_return,
163         .gpl_only       = true,
164         .ret_type       = RET_INTEGER,
165         .arg1_type      = ARG_PTR_TO_CTX,
166         .arg2_type      = ARG_ANYTHING,
167 };
168 #endif
169
170 static __always_inline int
171 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
172 {
173         int ret;
174
175         ret = copy_from_user_nofault(dst, unsafe_ptr, size);
176         if (unlikely(ret < 0))
177                 memset(dst, 0, size);
178         return ret;
179 }
180
181 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
182            const void __user *, unsafe_ptr)
183 {
184         return bpf_probe_read_user_common(dst, size, unsafe_ptr);
185 }
186
187 const struct bpf_func_proto bpf_probe_read_user_proto = {
188         .func           = bpf_probe_read_user,
189         .gpl_only       = true,
190         .ret_type       = RET_INTEGER,
191         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
192         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
193         .arg3_type      = ARG_ANYTHING,
194 };
195
196 static __always_inline int
197 bpf_probe_read_user_str_common(void *dst, u32 size,
198                                const void __user *unsafe_ptr)
199 {
200         int ret;
201
202         /*
203          * NB: We rely on strncpy_from_user() not copying junk past the NUL
204          * terminator into `dst`.
205          *
206          * strncpy_from_user() does long-sized strides in the fast path. If the
207          * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
208          * then there could be junk after the NUL in `dst`. If user takes `dst`
209          * and keys a hash map with it, then semantically identical strings can
210          * occupy multiple entries in the map.
211          */
212         ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
213         if (unlikely(ret < 0))
214                 memset(dst, 0, size);
215         return ret;
216 }
217
218 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
219            const void __user *, unsafe_ptr)
220 {
221         return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
222 }
223
224 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
225         .func           = bpf_probe_read_user_str,
226         .gpl_only       = true,
227         .ret_type       = RET_INTEGER,
228         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
229         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
230         .arg3_type      = ARG_ANYTHING,
231 };
232
233 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
234            const void *, unsafe_ptr)
235 {
236         return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
237 }
238
239 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
240         .func           = bpf_probe_read_kernel,
241         .gpl_only       = true,
242         .ret_type       = RET_INTEGER,
243         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
244         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
245         .arg3_type      = ARG_ANYTHING,
246 };
247
248 static __always_inline int
249 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
250 {
251         int ret;
252
253         /*
254          * The strncpy_from_kernel_nofault() call will likely not fill the
255          * entire buffer, but that's okay in this circumstance as we're probing
256          * arbitrary memory anyway similar to bpf_probe_read_*() and might
257          * as well probe the stack. Thus, memory is explicitly cleared
258          * only in error case, so that improper users ignoring return
259          * code altogether don't copy garbage; otherwise length of string
260          * is returned that can be used for bpf_perf_event_output() et al.
261          */
262         ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
263         if (unlikely(ret < 0))
264                 memset(dst, 0, size);
265         return ret;
266 }
267
268 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
269            const void *, unsafe_ptr)
270 {
271         return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
272 }
273
274 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
275         .func           = bpf_probe_read_kernel_str,
276         .gpl_only       = true,
277         .ret_type       = RET_INTEGER,
278         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
279         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
280         .arg3_type      = ARG_ANYTHING,
281 };
282
283 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
284 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
285            const void *, unsafe_ptr)
286 {
287         if ((unsigned long)unsafe_ptr < TASK_SIZE) {
288                 return bpf_probe_read_user_common(dst, size,
289                                 (__force void __user *)unsafe_ptr);
290         }
291         return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
292 }
293
294 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
295         .func           = bpf_probe_read_compat,
296         .gpl_only       = true,
297         .ret_type       = RET_INTEGER,
298         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
299         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
300         .arg3_type      = ARG_ANYTHING,
301 };
302
303 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
304            const void *, unsafe_ptr)
305 {
306         if ((unsigned long)unsafe_ptr < TASK_SIZE) {
307                 return bpf_probe_read_user_str_common(dst, size,
308                                 (__force void __user *)unsafe_ptr);
309         }
310         return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
311 }
312
313 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
314         .func           = bpf_probe_read_compat_str,
315         .gpl_only       = true,
316         .ret_type       = RET_INTEGER,
317         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
318         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
319         .arg3_type      = ARG_ANYTHING,
320 };
321 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
322
323 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
324            u32, size)
325 {
326         /*
327          * Ensure we're in user context which is safe for the helper to
328          * run. This helper has no business in a kthread.
329          *
330          * access_ok() should prevent writing to non-user memory, but in
331          * some situations (nommu, temporary switch, etc) access_ok() does
332          * not provide enough validation, hence the check on KERNEL_DS.
333          *
334          * nmi_uaccess_okay() ensures the probe is not run in an interim
335          * state, when the task or mm are switched. This is specifically
336          * required to prevent the use of temporary mm.
337          */
338
339         if (unlikely(in_interrupt() ||
340                      current->flags & (PF_KTHREAD | PF_EXITING)))
341                 return -EPERM;
342         if (unlikely(!nmi_uaccess_okay()))
343                 return -EPERM;
344
345         return copy_to_user_nofault(unsafe_ptr, src, size);
346 }
347
348 static const struct bpf_func_proto bpf_probe_write_user_proto = {
349         .func           = bpf_probe_write_user,
350         .gpl_only       = true,
351         .ret_type       = RET_INTEGER,
352         .arg1_type      = ARG_ANYTHING,
353         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
354         .arg3_type      = ARG_CONST_SIZE,
355 };
356
357 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
358 {
359         if (!capable(CAP_SYS_ADMIN))
360                 return NULL;
361
362         pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
363                             current->comm, task_pid_nr(current));
364
365         return &bpf_probe_write_user_proto;
366 }
367
368 #define MAX_TRACE_PRINTK_VARARGS        3
369 #define BPF_TRACE_PRINTK_SIZE           1024
370
371 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
372            u64, arg2, u64, arg3)
373 {
374         u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
375         struct bpf_bprintf_data data = {
376                 .get_bin_args   = true,
377                 .get_buf        = true,
378         };
379         int ret;
380
381         ret = bpf_bprintf_prepare(fmt, fmt_size, args,
382                                   MAX_TRACE_PRINTK_VARARGS, &data);
383         if (ret < 0)
384                 return ret;
385
386         ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
387
388         trace_bpf_trace_printk(data.buf);
389
390         bpf_bprintf_cleanup(&data);
391
392         return ret;
393 }
394
395 static const struct bpf_func_proto bpf_trace_printk_proto = {
396         .func           = bpf_trace_printk,
397         .gpl_only       = true,
398         .ret_type       = RET_INTEGER,
399         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
400         .arg2_type      = ARG_CONST_SIZE,
401 };
402
403 static void __set_printk_clr_event(void)
404 {
405         /*
406          * This program might be calling bpf_trace_printk,
407          * so enable the associated bpf_trace/bpf_trace_printk event.
408          * Repeat this each time as it is possible a user has
409          * disabled bpf_trace_printk events.  By loading a program
410          * calling bpf_trace_printk() however the user has expressed
411          * the intent to see such events.
412          */
413         if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
414                 pr_warn_ratelimited("could not enable bpf_trace_printk events");
415 }
416
417 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
418 {
419         __set_printk_clr_event();
420         return &bpf_trace_printk_proto;
421 }
422
423 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
424            u32, data_len)
425 {
426         struct bpf_bprintf_data data = {
427                 .get_bin_args   = true,
428                 .get_buf        = true,
429         };
430         int ret, num_args;
431
432         if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
433             (data_len && !args))
434                 return -EINVAL;
435         num_args = data_len / 8;
436
437         ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
438         if (ret < 0)
439                 return ret;
440
441         ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
442
443         trace_bpf_trace_printk(data.buf);
444
445         bpf_bprintf_cleanup(&data);
446
447         return ret;
448 }
449
450 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
451         .func           = bpf_trace_vprintk,
452         .gpl_only       = true,
453         .ret_type       = RET_INTEGER,
454         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
455         .arg2_type      = ARG_CONST_SIZE,
456         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
457         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
458 };
459
460 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
461 {
462         __set_printk_clr_event();
463         return &bpf_trace_vprintk_proto;
464 }
465
466 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
467            const void *, args, u32, data_len)
468 {
469         struct bpf_bprintf_data data = {
470                 .get_bin_args   = true,
471         };
472         int err, num_args;
473
474         if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
475             (data_len && !args))
476                 return -EINVAL;
477         num_args = data_len / 8;
478
479         err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
480         if (err < 0)
481                 return err;
482
483         seq_bprintf(m, fmt, data.bin_args);
484
485         bpf_bprintf_cleanup(&data);
486
487         return seq_has_overflowed(m) ? -EOVERFLOW : 0;
488 }
489
490 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
491
492 static const struct bpf_func_proto bpf_seq_printf_proto = {
493         .func           = bpf_seq_printf,
494         .gpl_only       = true,
495         .ret_type       = RET_INTEGER,
496         .arg1_type      = ARG_PTR_TO_BTF_ID,
497         .arg1_btf_id    = &btf_seq_file_ids[0],
498         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
499         .arg3_type      = ARG_CONST_SIZE,
500         .arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
501         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
502 };
503
504 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
505 {
506         return seq_write(m, data, len) ? -EOVERFLOW : 0;
507 }
508
509 static const struct bpf_func_proto bpf_seq_write_proto = {
510         .func           = bpf_seq_write,
511         .gpl_only       = true,
512         .ret_type       = RET_INTEGER,
513         .arg1_type      = ARG_PTR_TO_BTF_ID,
514         .arg1_btf_id    = &btf_seq_file_ids[0],
515         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
516         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
517 };
518
519 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
520            u32, btf_ptr_size, u64, flags)
521 {
522         const struct btf *btf;
523         s32 btf_id;
524         int ret;
525
526         ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
527         if (ret)
528                 return ret;
529
530         return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
531 }
532
533 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
534         .func           = bpf_seq_printf_btf,
535         .gpl_only       = true,
536         .ret_type       = RET_INTEGER,
537         .arg1_type      = ARG_PTR_TO_BTF_ID,
538         .arg1_btf_id    = &btf_seq_file_ids[0],
539         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
540         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
541         .arg4_type      = ARG_ANYTHING,
542 };
543
544 static __always_inline int
545 get_map_perf_counter(struct bpf_map *map, u64 flags,
546                      u64 *value, u64 *enabled, u64 *running)
547 {
548         struct bpf_array *array = container_of(map, struct bpf_array, map);
549         unsigned int cpu = smp_processor_id();
550         u64 index = flags & BPF_F_INDEX_MASK;
551         struct bpf_event_entry *ee;
552
553         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
554                 return -EINVAL;
555         if (index == BPF_F_CURRENT_CPU)
556                 index = cpu;
557         if (unlikely(index >= array->map.max_entries))
558                 return -E2BIG;
559
560         ee = READ_ONCE(array->ptrs[index]);
561         if (!ee)
562                 return -ENOENT;
563
564         return perf_event_read_local(ee->event, value, enabled, running);
565 }
566
567 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
568 {
569         u64 value = 0;
570         int err;
571
572         err = get_map_perf_counter(map, flags, &value, NULL, NULL);
573         /*
574          * this api is ugly since we miss [-22..-2] range of valid
575          * counter values, but that's uapi
576          */
577         if (err)
578                 return err;
579         return value;
580 }
581
582 static const struct bpf_func_proto bpf_perf_event_read_proto = {
583         .func           = bpf_perf_event_read,
584         .gpl_only       = true,
585         .ret_type       = RET_INTEGER,
586         .arg1_type      = ARG_CONST_MAP_PTR,
587         .arg2_type      = ARG_ANYTHING,
588 };
589
590 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
591            struct bpf_perf_event_value *, buf, u32, size)
592 {
593         int err = -EINVAL;
594
595         if (unlikely(size != sizeof(struct bpf_perf_event_value)))
596                 goto clear;
597         err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
598                                    &buf->running);
599         if (unlikely(err))
600                 goto clear;
601         return 0;
602 clear:
603         memset(buf, 0, size);
604         return err;
605 }
606
607 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
608         .func           = bpf_perf_event_read_value,
609         .gpl_only       = true,
610         .ret_type       = RET_INTEGER,
611         .arg1_type      = ARG_CONST_MAP_PTR,
612         .arg2_type      = ARG_ANYTHING,
613         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
614         .arg4_type      = ARG_CONST_SIZE,
615 };
616
617 static __always_inline u64
618 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
619                         u64 flags, struct perf_sample_data *sd)
620 {
621         struct bpf_array *array = container_of(map, struct bpf_array, map);
622         unsigned int cpu = smp_processor_id();
623         u64 index = flags & BPF_F_INDEX_MASK;
624         struct bpf_event_entry *ee;
625         struct perf_event *event;
626
627         if (index == BPF_F_CURRENT_CPU)
628                 index = cpu;
629         if (unlikely(index >= array->map.max_entries))
630                 return -E2BIG;
631
632         ee = READ_ONCE(array->ptrs[index]);
633         if (!ee)
634                 return -ENOENT;
635
636         event = ee->event;
637         if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
638                      event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
639                 return -EINVAL;
640
641         if (unlikely(event->oncpu != cpu))
642                 return -EOPNOTSUPP;
643
644         return perf_event_output(event, sd, regs);
645 }
646
647 /*
648  * Support executing tracepoints in normal, irq, and nmi context that each call
649  * bpf_perf_event_output
650  */
651 struct bpf_trace_sample_data {
652         struct perf_sample_data sds[3];
653 };
654
655 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
656 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
657 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
658            u64, flags, void *, data, u64, size)
659 {
660         struct bpf_trace_sample_data *sds;
661         struct perf_raw_record raw = {
662                 .frag = {
663                         .size = size,
664                         .data = data,
665                 },
666         };
667         struct perf_sample_data *sd;
668         int nest_level, err;
669
670         preempt_disable();
671         sds = this_cpu_ptr(&bpf_trace_sds);
672         nest_level = this_cpu_inc_return(bpf_trace_nest_level);
673
674         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
675                 err = -EBUSY;
676                 goto out;
677         }
678
679         sd = &sds->sds[nest_level - 1];
680
681         if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
682                 err = -EINVAL;
683                 goto out;
684         }
685
686         perf_sample_data_init(sd, 0, 0);
687         perf_sample_save_raw_data(sd, &raw);
688
689         err = __bpf_perf_event_output(regs, map, flags, sd);
690 out:
691         this_cpu_dec(bpf_trace_nest_level);
692         preempt_enable();
693         return err;
694 }
695
696 static const struct bpf_func_proto bpf_perf_event_output_proto = {
697         .func           = bpf_perf_event_output,
698         .gpl_only       = true,
699         .ret_type       = RET_INTEGER,
700         .arg1_type      = ARG_PTR_TO_CTX,
701         .arg2_type      = ARG_CONST_MAP_PTR,
702         .arg3_type      = ARG_ANYTHING,
703         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
704         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
705 };
706
707 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
708 struct bpf_nested_pt_regs {
709         struct pt_regs regs[3];
710 };
711 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
712 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
713
714 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
715                      void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
716 {
717         struct perf_raw_frag frag = {
718                 .copy           = ctx_copy,
719                 .size           = ctx_size,
720                 .data           = ctx,
721         };
722         struct perf_raw_record raw = {
723                 .frag = {
724                         {
725                                 .next   = ctx_size ? &frag : NULL,
726                         },
727                         .size   = meta_size,
728                         .data   = meta,
729                 },
730         };
731         struct perf_sample_data *sd;
732         struct pt_regs *regs;
733         int nest_level;
734         u64 ret;
735
736         preempt_disable();
737         nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
738
739         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
740                 ret = -EBUSY;
741                 goto out;
742         }
743         sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
744         regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
745
746         perf_fetch_caller_regs(regs);
747         perf_sample_data_init(sd, 0, 0);
748         perf_sample_save_raw_data(sd, &raw);
749
750         ret = __bpf_perf_event_output(regs, map, flags, sd);
751 out:
752         this_cpu_dec(bpf_event_output_nest_level);
753         preempt_enable();
754         return ret;
755 }
756
757 BPF_CALL_0(bpf_get_current_task)
758 {
759         return (long) current;
760 }
761
762 const struct bpf_func_proto bpf_get_current_task_proto = {
763         .func           = bpf_get_current_task,
764         .gpl_only       = true,
765         .ret_type       = RET_INTEGER,
766 };
767
768 BPF_CALL_0(bpf_get_current_task_btf)
769 {
770         return (unsigned long) current;
771 }
772
773 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
774         .func           = bpf_get_current_task_btf,
775         .gpl_only       = true,
776         .ret_type       = RET_PTR_TO_BTF_ID_TRUSTED,
777         .ret_btf_id     = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
778 };
779
780 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
781 {
782         return (unsigned long) task_pt_regs(task);
783 }
784
785 BTF_ID_LIST(bpf_task_pt_regs_ids)
786 BTF_ID(struct, pt_regs)
787
788 const struct bpf_func_proto bpf_task_pt_regs_proto = {
789         .func           = bpf_task_pt_regs,
790         .gpl_only       = true,
791         .arg1_type      = ARG_PTR_TO_BTF_ID,
792         .arg1_btf_id    = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
793         .ret_type       = RET_PTR_TO_BTF_ID,
794         .ret_btf_id     = &bpf_task_pt_regs_ids[0],
795 };
796
797 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
798 {
799         struct bpf_array *array = container_of(map, struct bpf_array, map);
800         struct cgroup *cgrp;
801
802         if (unlikely(idx >= array->map.max_entries))
803                 return -E2BIG;
804
805         cgrp = READ_ONCE(array->ptrs[idx]);
806         if (unlikely(!cgrp))
807                 return -EAGAIN;
808
809         return task_under_cgroup_hierarchy(current, cgrp);
810 }
811
812 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
813         .func           = bpf_current_task_under_cgroup,
814         .gpl_only       = false,
815         .ret_type       = RET_INTEGER,
816         .arg1_type      = ARG_CONST_MAP_PTR,
817         .arg2_type      = ARG_ANYTHING,
818 };
819
820 struct send_signal_irq_work {
821         struct irq_work irq_work;
822         struct task_struct *task;
823         u32 sig;
824         enum pid_type type;
825 };
826
827 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
828
829 static void do_bpf_send_signal(struct irq_work *entry)
830 {
831         struct send_signal_irq_work *work;
832
833         work = container_of(entry, struct send_signal_irq_work, irq_work);
834         group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
835         put_task_struct(work->task);
836 }
837
838 static int bpf_send_signal_common(u32 sig, enum pid_type type)
839 {
840         struct send_signal_irq_work *work = NULL;
841
842         /* Similar to bpf_probe_write_user, task needs to be
843          * in a sound condition and kernel memory access be
844          * permitted in order to send signal to the current
845          * task.
846          */
847         if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
848                 return -EPERM;
849         if (unlikely(!nmi_uaccess_okay()))
850                 return -EPERM;
851         /* Task should not be pid=1 to avoid kernel panic. */
852         if (unlikely(is_global_init(current)))
853                 return -EPERM;
854
855         if (irqs_disabled()) {
856                 /* Do an early check on signal validity. Otherwise,
857                  * the error is lost in deferred irq_work.
858                  */
859                 if (unlikely(!valid_signal(sig)))
860                         return -EINVAL;
861
862                 work = this_cpu_ptr(&send_signal_work);
863                 if (irq_work_is_busy(&work->irq_work))
864                         return -EBUSY;
865
866                 /* Add the current task, which is the target of sending signal,
867                  * to the irq_work. The current task may change when queued
868                  * irq works get executed.
869                  */
870                 work->task = get_task_struct(current);
871                 work->sig = sig;
872                 work->type = type;
873                 irq_work_queue(&work->irq_work);
874                 return 0;
875         }
876
877         return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
878 }
879
880 BPF_CALL_1(bpf_send_signal, u32, sig)
881 {
882         return bpf_send_signal_common(sig, PIDTYPE_TGID);
883 }
884
885 static const struct bpf_func_proto bpf_send_signal_proto = {
886         .func           = bpf_send_signal,
887         .gpl_only       = false,
888         .ret_type       = RET_INTEGER,
889         .arg1_type      = ARG_ANYTHING,
890 };
891
892 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
893 {
894         return bpf_send_signal_common(sig, PIDTYPE_PID);
895 }
896
897 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
898         .func           = bpf_send_signal_thread,
899         .gpl_only       = false,
900         .ret_type       = RET_INTEGER,
901         .arg1_type      = ARG_ANYTHING,
902 };
903
904 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
905 {
906         struct path copy;
907         long len;
908         char *p;
909
910         if (!sz)
911                 return 0;
912
913         /*
914          * The path pointer is verified as trusted and safe to use,
915          * but let's double check it's valid anyway to workaround
916          * potentially broken verifier.
917          */
918         len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
919         if (len < 0)
920                 return len;
921
922         p = d_path(&copy, buf, sz);
923         if (IS_ERR(p)) {
924                 len = PTR_ERR(p);
925         } else {
926                 len = buf + sz - p;
927                 memmove(buf, p, len);
928         }
929
930         return len;
931 }
932
933 BTF_SET_START(btf_allowlist_d_path)
934 #ifdef CONFIG_SECURITY
935 BTF_ID(func, security_file_permission)
936 BTF_ID(func, security_inode_getattr)
937 BTF_ID(func, security_file_open)
938 #endif
939 #ifdef CONFIG_SECURITY_PATH
940 BTF_ID(func, security_path_truncate)
941 #endif
942 BTF_ID(func, vfs_truncate)
943 BTF_ID(func, vfs_fallocate)
944 BTF_ID(func, dentry_open)
945 BTF_ID(func, vfs_getattr)
946 BTF_ID(func, filp_close)
947 BTF_SET_END(btf_allowlist_d_path)
948
949 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
950 {
951         if (prog->type == BPF_PROG_TYPE_TRACING &&
952             prog->expected_attach_type == BPF_TRACE_ITER)
953                 return true;
954
955         if (prog->type == BPF_PROG_TYPE_LSM)
956                 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
957
958         return btf_id_set_contains(&btf_allowlist_d_path,
959                                    prog->aux->attach_btf_id);
960 }
961
962 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
963
964 static const struct bpf_func_proto bpf_d_path_proto = {
965         .func           = bpf_d_path,
966         .gpl_only       = false,
967         .ret_type       = RET_INTEGER,
968         .arg1_type      = ARG_PTR_TO_BTF_ID,
969         .arg1_btf_id    = &bpf_d_path_btf_ids[0],
970         .arg2_type      = ARG_PTR_TO_MEM,
971         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
972         .allowed        = bpf_d_path_allowed,
973 };
974
975 #define BTF_F_ALL       (BTF_F_COMPACT  | BTF_F_NONAME | \
976                          BTF_F_PTR_RAW | BTF_F_ZERO)
977
978 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
979                                   u64 flags, const struct btf **btf,
980                                   s32 *btf_id)
981 {
982         const struct btf_type *t;
983
984         if (unlikely(flags & ~(BTF_F_ALL)))
985                 return -EINVAL;
986
987         if (btf_ptr_size != sizeof(struct btf_ptr))
988                 return -EINVAL;
989
990         *btf = bpf_get_btf_vmlinux();
991
992         if (IS_ERR_OR_NULL(*btf))
993                 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
994
995         if (ptr->type_id > 0)
996                 *btf_id = ptr->type_id;
997         else
998                 return -EINVAL;
999
1000         if (*btf_id > 0)
1001                 t = btf_type_by_id(*btf, *btf_id);
1002         if (*btf_id <= 0 || !t)
1003                 return -ENOENT;
1004
1005         return 0;
1006 }
1007
1008 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1009            u32, btf_ptr_size, u64, flags)
1010 {
1011         const struct btf *btf;
1012         s32 btf_id;
1013         int ret;
1014
1015         ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1016         if (ret)
1017                 return ret;
1018
1019         return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1020                                       flags);
1021 }
1022
1023 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1024         .func           = bpf_snprintf_btf,
1025         .gpl_only       = false,
1026         .ret_type       = RET_INTEGER,
1027         .arg1_type      = ARG_PTR_TO_MEM,
1028         .arg2_type      = ARG_CONST_SIZE,
1029         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1030         .arg4_type      = ARG_CONST_SIZE,
1031         .arg5_type      = ARG_ANYTHING,
1032 };
1033
1034 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1035 {
1036         /* This helper call is inlined by verifier. */
1037         return ((u64 *)ctx)[-2];
1038 }
1039
1040 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1041         .func           = bpf_get_func_ip_tracing,
1042         .gpl_only       = true,
1043         .ret_type       = RET_INTEGER,
1044         .arg1_type      = ARG_PTR_TO_CTX,
1045 };
1046
1047 #ifdef CONFIG_X86_KERNEL_IBT
1048 static unsigned long get_entry_ip(unsigned long fentry_ip)
1049 {
1050         u32 instr;
1051
1052         /* Being extra safe in here in case entry ip is on the page-edge. */
1053         if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1054                 return fentry_ip;
1055         if (is_endbr(instr))
1056                 fentry_ip -= ENDBR_INSN_SIZE;
1057         return fentry_ip;
1058 }
1059 #else
1060 #define get_entry_ip(fentry_ip) fentry_ip
1061 #endif
1062
1063 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1064 {
1065         struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1066         struct kprobe *kp;
1067
1068 #ifdef CONFIG_UPROBES
1069         run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1070         if (run_ctx->is_uprobe)
1071                 return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1072 #endif
1073
1074         kp = kprobe_running();
1075
1076         if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1077                 return 0;
1078
1079         return get_entry_ip((uintptr_t)kp->addr);
1080 }
1081
1082 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1083         .func           = bpf_get_func_ip_kprobe,
1084         .gpl_only       = true,
1085         .ret_type       = RET_INTEGER,
1086         .arg1_type      = ARG_PTR_TO_CTX,
1087 };
1088
1089 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1090 {
1091         return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1092 }
1093
1094 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1095         .func           = bpf_get_func_ip_kprobe_multi,
1096         .gpl_only       = false,
1097         .ret_type       = RET_INTEGER,
1098         .arg1_type      = ARG_PTR_TO_CTX,
1099 };
1100
1101 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1102 {
1103         return bpf_kprobe_multi_cookie(current->bpf_ctx);
1104 }
1105
1106 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1107         .func           = bpf_get_attach_cookie_kprobe_multi,
1108         .gpl_only       = false,
1109         .ret_type       = RET_INTEGER,
1110         .arg1_type      = ARG_PTR_TO_CTX,
1111 };
1112
1113 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1114 {
1115         return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1116 }
1117
1118 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1119         .func           = bpf_get_func_ip_uprobe_multi,
1120         .gpl_only       = false,
1121         .ret_type       = RET_INTEGER,
1122         .arg1_type      = ARG_PTR_TO_CTX,
1123 };
1124
1125 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1126 {
1127         return bpf_uprobe_multi_cookie(current->bpf_ctx);
1128 }
1129
1130 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1131         .func           = bpf_get_attach_cookie_uprobe_multi,
1132         .gpl_only       = false,
1133         .ret_type       = RET_INTEGER,
1134         .arg1_type      = ARG_PTR_TO_CTX,
1135 };
1136
1137 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1138 {
1139         struct bpf_trace_run_ctx *run_ctx;
1140
1141         run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1142         return run_ctx->bpf_cookie;
1143 }
1144
1145 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1146         .func           = bpf_get_attach_cookie_trace,
1147         .gpl_only       = false,
1148         .ret_type       = RET_INTEGER,
1149         .arg1_type      = ARG_PTR_TO_CTX,
1150 };
1151
1152 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1153 {
1154         return ctx->event->bpf_cookie;
1155 }
1156
1157 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1158         .func           = bpf_get_attach_cookie_pe,
1159         .gpl_only       = false,
1160         .ret_type       = RET_INTEGER,
1161         .arg1_type      = ARG_PTR_TO_CTX,
1162 };
1163
1164 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1165 {
1166         struct bpf_trace_run_ctx *run_ctx;
1167
1168         run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1169         return run_ctx->bpf_cookie;
1170 }
1171
1172 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1173         .func           = bpf_get_attach_cookie_tracing,
1174         .gpl_only       = false,
1175         .ret_type       = RET_INTEGER,
1176         .arg1_type      = ARG_PTR_TO_CTX,
1177 };
1178
1179 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1180 {
1181 #ifndef CONFIG_X86
1182         return -ENOENT;
1183 #else
1184         static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1185         u32 entry_cnt = size / br_entry_size;
1186
1187         entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1188
1189         if (unlikely(flags))
1190                 return -EINVAL;
1191
1192         if (!entry_cnt)
1193                 return -ENOENT;
1194
1195         return entry_cnt * br_entry_size;
1196 #endif
1197 }
1198
1199 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1200         .func           = bpf_get_branch_snapshot,
1201         .gpl_only       = true,
1202         .ret_type       = RET_INTEGER,
1203         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
1204         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1205 };
1206
1207 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1208 {
1209         /* This helper call is inlined by verifier. */
1210         u64 nr_args = ((u64 *)ctx)[-1];
1211
1212         if ((u64) n >= nr_args)
1213                 return -EINVAL;
1214         *value = ((u64 *)ctx)[n];
1215         return 0;
1216 }
1217
1218 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1219         .func           = get_func_arg,
1220         .ret_type       = RET_INTEGER,
1221         .arg1_type      = ARG_PTR_TO_CTX,
1222         .arg2_type      = ARG_ANYTHING,
1223         .arg3_type      = ARG_PTR_TO_LONG,
1224 };
1225
1226 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1227 {
1228         /* This helper call is inlined by verifier. */
1229         u64 nr_args = ((u64 *)ctx)[-1];
1230
1231         *value = ((u64 *)ctx)[nr_args];
1232         return 0;
1233 }
1234
1235 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1236         .func           = get_func_ret,
1237         .ret_type       = RET_INTEGER,
1238         .arg1_type      = ARG_PTR_TO_CTX,
1239         .arg2_type      = ARG_PTR_TO_LONG,
1240 };
1241
1242 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1243 {
1244         /* This helper call is inlined by verifier. */
1245         return ((u64 *)ctx)[-1];
1246 }
1247
1248 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1249         .func           = get_func_arg_cnt,
1250         .ret_type       = RET_INTEGER,
1251         .arg1_type      = ARG_PTR_TO_CTX,
1252 };
1253
1254 #ifdef CONFIG_KEYS
1255 __diag_push();
1256 __diag_ignore_all("-Wmissing-prototypes",
1257                   "kfuncs which will be used in BPF programs");
1258
1259 /**
1260  * bpf_lookup_user_key - lookup a key by its serial
1261  * @serial: key handle serial number
1262  * @flags: lookup-specific flags
1263  *
1264  * Search a key with a given *serial* and the provided *flags*.
1265  * If found, increment the reference count of the key by one, and
1266  * return it in the bpf_key structure.
1267  *
1268  * The bpf_key structure must be passed to bpf_key_put() when done
1269  * with it, so that the key reference count is decremented and the
1270  * bpf_key structure is freed.
1271  *
1272  * Permission checks are deferred to the time the key is used by
1273  * one of the available key-specific kfuncs.
1274  *
1275  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1276  * special keyring (e.g. session keyring), if it doesn't yet exist.
1277  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1278  * for the key construction, and to retrieve uninstantiated keys (keys
1279  * without data attached to them).
1280  *
1281  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1282  *         NULL pointer otherwise.
1283  */
1284 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1285 {
1286         key_ref_t key_ref;
1287         struct bpf_key *bkey;
1288
1289         if (flags & ~KEY_LOOKUP_ALL)
1290                 return NULL;
1291
1292         /*
1293          * Permission check is deferred until the key is used, as the
1294          * intent of the caller is unknown here.
1295          */
1296         key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1297         if (IS_ERR(key_ref))
1298                 return NULL;
1299
1300         bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1301         if (!bkey) {
1302                 key_put(key_ref_to_ptr(key_ref));
1303                 return NULL;
1304         }
1305
1306         bkey->key = key_ref_to_ptr(key_ref);
1307         bkey->has_ref = true;
1308
1309         return bkey;
1310 }
1311
1312 /**
1313  * bpf_lookup_system_key - lookup a key by a system-defined ID
1314  * @id: key ID
1315  *
1316  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1317  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1318  * attempting to decrement the key reference count on that pointer. The key
1319  * pointer set in such way is currently understood only by
1320  * verify_pkcs7_signature().
1321  *
1322  * Set *id* to one of the values defined in include/linux/verification.h:
1323  * 0 for the primary keyring (immutable keyring of system keys);
1324  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1325  * (where keys can be added only if they are vouched for by existing keys
1326  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1327  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1328  * kerned image and, possibly, the initramfs signature).
1329  *
1330  * Return: a bpf_key pointer with an invalid key pointer set from the
1331  *         pre-determined ID on success, a NULL pointer otherwise
1332  */
1333 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1334 {
1335         struct bpf_key *bkey;
1336
1337         if (system_keyring_id_check(id) < 0)
1338                 return NULL;
1339
1340         bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1341         if (!bkey)
1342                 return NULL;
1343
1344         bkey->key = (struct key *)(unsigned long)id;
1345         bkey->has_ref = false;
1346
1347         return bkey;
1348 }
1349
1350 /**
1351  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1352  * @bkey: bpf_key structure
1353  *
1354  * Decrement the reference count of the key inside *bkey*, if the pointer
1355  * is valid, and free *bkey*.
1356  */
1357 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1358 {
1359         if (bkey->has_ref)
1360                 key_put(bkey->key);
1361
1362         kfree(bkey);
1363 }
1364
1365 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1366 /**
1367  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1368  * @data_ptr: data to verify
1369  * @sig_ptr: signature of the data
1370  * @trusted_keyring: keyring with keys trusted for signature verification
1371  *
1372  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1373  * with keys in a keyring referenced by *trusted_keyring*.
1374  *
1375  * Return: 0 on success, a negative value on error.
1376  */
1377 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1378                                struct bpf_dynptr_kern *sig_ptr,
1379                                struct bpf_key *trusted_keyring)
1380 {
1381         int ret;
1382
1383         if (trusted_keyring->has_ref) {
1384                 /*
1385                  * Do the permission check deferred in bpf_lookup_user_key().
1386                  * See bpf_lookup_user_key() for more details.
1387                  *
1388                  * A call to key_task_permission() here would be redundant, as
1389                  * it is already done by keyring_search() called by
1390                  * find_asymmetric_key().
1391                  */
1392                 ret = key_validate(trusted_keyring->key);
1393                 if (ret < 0)
1394                         return ret;
1395         }
1396
1397         return verify_pkcs7_signature(data_ptr->data,
1398                                       __bpf_dynptr_size(data_ptr),
1399                                       sig_ptr->data,
1400                                       __bpf_dynptr_size(sig_ptr),
1401                                       trusted_keyring->key,
1402                                       VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1403                                       NULL);
1404 }
1405 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1406
1407 __diag_pop();
1408
1409 BTF_SET8_START(key_sig_kfunc_set)
1410 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1411 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1412 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1413 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1414 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1415 #endif
1416 BTF_SET8_END(key_sig_kfunc_set)
1417
1418 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1419         .owner = THIS_MODULE,
1420         .set = &key_sig_kfunc_set,
1421 };
1422
1423 static int __init bpf_key_sig_kfuncs_init(void)
1424 {
1425         return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1426                                          &bpf_key_sig_kfunc_set);
1427 }
1428
1429 late_initcall(bpf_key_sig_kfuncs_init);
1430 #endif /* CONFIG_KEYS */
1431
1432 static const struct bpf_func_proto *
1433 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1434 {
1435         switch (func_id) {
1436         case BPF_FUNC_map_lookup_elem:
1437                 return &bpf_map_lookup_elem_proto;
1438         case BPF_FUNC_map_update_elem:
1439                 return &bpf_map_update_elem_proto;
1440         case BPF_FUNC_map_delete_elem:
1441                 return &bpf_map_delete_elem_proto;
1442         case BPF_FUNC_map_push_elem:
1443                 return &bpf_map_push_elem_proto;
1444         case BPF_FUNC_map_pop_elem:
1445                 return &bpf_map_pop_elem_proto;
1446         case BPF_FUNC_map_peek_elem:
1447                 return &bpf_map_peek_elem_proto;
1448         case BPF_FUNC_map_lookup_percpu_elem:
1449                 return &bpf_map_lookup_percpu_elem_proto;
1450         case BPF_FUNC_ktime_get_ns:
1451                 return &bpf_ktime_get_ns_proto;
1452         case BPF_FUNC_ktime_get_boot_ns:
1453                 return &bpf_ktime_get_boot_ns_proto;
1454         case BPF_FUNC_tail_call:
1455                 return &bpf_tail_call_proto;
1456         case BPF_FUNC_get_current_pid_tgid:
1457                 return &bpf_get_current_pid_tgid_proto;
1458         case BPF_FUNC_get_current_task:
1459                 return &bpf_get_current_task_proto;
1460         case BPF_FUNC_get_current_task_btf:
1461                 return &bpf_get_current_task_btf_proto;
1462         case BPF_FUNC_task_pt_regs:
1463                 return &bpf_task_pt_regs_proto;
1464         case BPF_FUNC_get_current_uid_gid:
1465                 return &bpf_get_current_uid_gid_proto;
1466         case BPF_FUNC_get_current_comm:
1467                 return &bpf_get_current_comm_proto;
1468         case BPF_FUNC_trace_printk:
1469                 return bpf_get_trace_printk_proto();
1470         case BPF_FUNC_get_smp_processor_id:
1471                 return &bpf_get_smp_processor_id_proto;
1472         case BPF_FUNC_get_numa_node_id:
1473                 return &bpf_get_numa_node_id_proto;
1474         case BPF_FUNC_perf_event_read:
1475                 return &bpf_perf_event_read_proto;
1476         case BPF_FUNC_current_task_under_cgroup:
1477                 return &bpf_current_task_under_cgroup_proto;
1478         case BPF_FUNC_get_prandom_u32:
1479                 return &bpf_get_prandom_u32_proto;
1480         case BPF_FUNC_probe_write_user:
1481                 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1482                        NULL : bpf_get_probe_write_proto();
1483         case BPF_FUNC_probe_read_user:
1484                 return &bpf_probe_read_user_proto;
1485         case BPF_FUNC_probe_read_kernel:
1486                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1487                        NULL : &bpf_probe_read_kernel_proto;
1488         case BPF_FUNC_probe_read_user_str:
1489                 return &bpf_probe_read_user_str_proto;
1490         case BPF_FUNC_probe_read_kernel_str:
1491                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1492                        NULL : &bpf_probe_read_kernel_str_proto;
1493 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1494         case BPF_FUNC_probe_read:
1495                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1496                        NULL : &bpf_probe_read_compat_proto;
1497         case BPF_FUNC_probe_read_str:
1498                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1499                        NULL : &bpf_probe_read_compat_str_proto;
1500 #endif
1501 #ifdef CONFIG_CGROUPS
1502         case BPF_FUNC_cgrp_storage_get:
1503                 return &bpf_cgrp_storage_get_proto;
1504         case BPF_FUNC_cgrp_storage_delete:
1505                 return &bpf_cgrp_storage_delete_proto;
1506 #endif
1507         case BPF_FUNC_send_signal:
1508                 return &bpf_send_signal_proto;
1509         case BPF_FUNC_send_signal_thread:
1510                 return &bpf_send_signal_thread_proto;
1511         case BPF_FUNC_perf_event_read_value:
1512                 return &bpf_perf_event_read_value_proto;
1513         case BPF_FUNC_get_ns_current_pid_tgid:
1514                 return &bpf_get_ns_current_pid_tgid_proto;
1515         case BPF_FUNC_ringbuf_output:
1516                 return &bpf_ringbuf_output_proto;
1517         case BPF_FUNC_ringbuf_reserve:
1518                 return &bpf_ringbuf_reserve_proto;
1519         case BPF_FUNC_ringbuf_submit:
1520                 return &bpf_ringbuf_submit_proto;
1521         case BPF_FUNC_ringbuf_discard:
1522                 return &bpf_ringbuf_discard_proto;
1523         case BPF_FUNC_ringbuf_query:
1524                 return &bpf_ringbuf_query_proto;
1525         case BPF_FUNC_jiffies64:
1526                 return &bpf_jiffies64_proto;
1527         case BPF_FUNC_get_task_stack:
1528                 return &bpf_get_task_stack_proto;
1529         case BPF_FUNC_copy_from_user:
1530                 return &bpf_copy_from_user_proto;
1531         case BPF_FUNC_copy_from_user_task:
1532                 return &bpf_copy_from_user_task_proto;
1533         case BPF_FUNC_snprintf_btf:
1534                 return &bpf_snprintf_btf_proto;
1535         case BPF_FUNC_per_cpu_ptr:
1536                 return &bpf_per_cpu_ptr_proto;
1537         case BPF_FUNC_this_cpu_ptr:
1538                 return &bpf_this_cpu_ptr_proto;
1539         case BPF_FUNC_task_storage_get:
1540                 if (bpf_prog_check_recur(prog))
1541                         return &bpf_task_storage_get_recur_proto;
1542                 return &bpf_task_storage_get_proto;
1543         case BPF_FUNC_task_storage_delete:
1544                 if (bpf_prog_check_recur(prog))
1545                         return &bpf_task_storage_delete_recur_proto;
1546                 return &bpf_task_storage_delete_proto;
1547         case BPF_FUNC_for_each_map_elem:
1548                 return &bpf_for_each_map_elem_proto;
1549         case BPF_FUNC_snprintf:
1550                 return &bpf_snprintf_proto;
1551         case BPF_FUNC_get_func_ip:
1552                 return &bpf_get_func_ip_proto_tracing;
1553         case BPF_FUNC_get_branch_snapshot:
1554                 return &bpf_get_branch_snapshot_proto;
1555         case BPF_FUNC_find_vma:
1556                 return &bpf_find_vma_proto;
1557         case BPF_FUNC_trace_vprintk:
1558                 return bpf_get_trace_vprintk_proto();
1559         default:
1560                 return bpf_base_func_proto(func_id);
1561         }
1562 }
1563
1564 static const struct bpf_func_proto *
1565 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1566 {
1567         switch (func_id) {
1568         case BPF_FUNC_perf_event_output:
1569                 return &bpf_perf_event_output_proto;
1570         case BPF_FUNC_get_stackid:
1571                 return &bpf_get_stackid_proto;
1572         case BPF_FUNC_get_stack:
1573                 return &bpf_get_stack_proto;
1574 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1575         case BPF_FUNC_override_return:
1576                 return &bpf_override_return_proto;
1577 #endif
1578         case BPF_FUNC_get_func_ip:
1579                 if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
1580                         return &bpf_get_func_ip_proto_kprobe_multi;
1581                 if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1582                         return &bpf_get_func_ip_proto_uprobe_multi;
1583                 return &bpf_get_func_ip_proto_kprobe;
1584         case BPF_FUNC_get_attach_cookie:
1585                 if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
1586                         return &bpf_get_attach_cookie_proto_kmulti;
1587                 if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1588                         return &bpf_get_attach_cookie_proto_umulti;
1589                 return &bpf_get_attach_cookie_proto_trace;
1590         default:
1591                 return bpf_tracing_func_proto(func_id, prog);
1592         }
1593 }
1594
1595 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1596 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1597                                         const struct bpf_prog *prog,
1598                                         struct bpf_insn_access_aux *info)
1599 {
1600         if (off < 0 || off >= sizeof(struct pt_regs))
1601                 return false;
1602         if (type != BPF_READ)
1603                 return false;
1604         if (off % size != 0)
1605                 return false;
1606         /*
1607          * Assertion for 32 bit to make sure last 8 byte access
1608          * (BPF_DW) to the last 4 byte member is disallowed.
1609          */
1610         if (off + size > sizeof(struct pt_regs))
1611                 return false;
1612
1613         return true;
1614 }
1615
1616 const struct bpf_verifier_ops kprobe_verifier_ops = {
1617         .get_func_proto  = kprobe_prog_func_proto,
1618         .is_valid_access = kprobe_prog_is_valid_access,
1619 };
1620
1621 const struct bpf_prog_ops kprobe_prog_ops = {
1622 };
1623
1624 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1625            u64, flags, void *, data, u64, size)
1626 {
1627         struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1628
1629         /*
1630          * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1631          * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1632          * from there and call the same bpf_perf_event_output() helper inline.
1633          */
1634         return ____bpf_perf_event_output(regs, map, flags, data, size);
1635 }
1636
1637 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1638         .func           = bpf_perf_event_output_tp,
1639         .gpl_only       = true,
1640         .ret_type       = RET_INTEGER,
1641         .arg1_type      = ARG_PTR_TO_CTX,
1642         .arg2_type      = ARG_CONST_MAP_PTR,
1643         .arg3_type      = ARG_ANYTHING,
1644         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1645         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1646 };
1647
1648 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1649            u64, flags)
1650 {
1651         struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1652
1653         /*
1654          * Same comment as in bpf_perf_event_output_tp(), only that this time
1655          * the other helper's function body cannot be inlined due to being
1656          * external, thus we need to call raw helper function.
1657          */
1658         return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1659                                flags, 0, 0);
1660 }
1661
1662 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1663         .func           = bpf_get_stackid_tp,
1664         .gpl_only       = true,
1665         .ret_type       = RET_INTEGER,
1666         .arg1_type      = ARG_PTR_TO_CTX,
1667         .arg2_type      = ARG_CONST_MAP_PTR,
1668         .arg3_type      = ARG_ANYTHING,
1669 };
1670
1671 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1672            u64, flags)
1673 {
1674         struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1675
1676         return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1677                              (unsigned long) size, flags, 0);
1678 }
1679
1680 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1681         .func           = bpf_get_stack_tp,
1682         .gpl_only       = true,
1683         .ret_type       = RET_INTEGER,
1684         .arg1_type      = ARG_PTR_TO_CTX,
1685         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1686         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1687         .arg4_type      = ARG_ANYTHING,
1688 };
1689
1690 static const struct bpf_func_proto *
1691 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1692 {
1693         switch (func_id) {
1694         case BPF_FUNC_perf_event_output:
1695                 return &bpf_perf_event_output_proto_tp;
1696         case BPF_FUNC_get_stackid:
1697                 return &bpf_get_stackid_proto_tp;
1698         case BPF_FUNC_get_stack:
1699                 return &bpf_get_stack_proto_tp;
1700         case BPF_FUNC_get_attach_cookie:
1701                 return &bpf_get_attach_cookie_proto_trace;
1702         default:
1703                 return bpf_tracing_func_proto(func_id, prog);
1704         }
1705 }
1706
1707 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1708                                     const struct bpf_prog *prog,
1709                                     struct bpf_insn_access_aux *info)
1710 {
1711         if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1712                 return false;
1713         if (type != BPF_READ)
1714                 return false;
1715         if (off % size != 0)
1716                 return false;
1717
1718         BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1719         return true;
1720 }
1721
1722 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1723         .get_func_proto  = tp_prog_func_proto,
1724         .is_valid_access = tp_prog_is_valid_access,
1725 };
1726
1727 const struct bpf_prog_ops tracepoint_prog_ops = {
1728 };
1729
1730 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1731            struct bpf_perf_event_value *, buf, u32, size)
1732 {
1733         int err = -EINVAL;
1734
1735         if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1736                 goto clear;
1737         err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1738                                     &buf->running);
1739         if (unlikely(err))
1740                 goto clear;
1741         return 0;
1742 clear:
1743         memset(buf, 0, size);
1744         return err;
1745 }
1746
1747 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1748          .func           = bpf_perf_prog_read_value,
1749          .gpl_only       = true,
1750          .ret_type       = RET_INTEGER,
1751          .arg1_type      = ARG_PTR_TO_CTX,
1752          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1753          .arg3_type      = ARG_CONST_SIZE,
1754 };
1755
1756 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1757            void *, buf, u32, size, u64, flags)
1758 {
1759         static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1760         struct perf_branch_stack *br_stack = ctx->data->br_stack;
1761         u32 to_copy;
1762
1763         if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1764                 return -EINVAL;
1765
1766         if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1767                 return -ENOENT;
1768
1769         if (unlikely(!br_stack))
1770                 return -ENOENT;
1771
1772         if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1773                 return br_stack->nr * br_entry_size;
1774
1775         if (!buf || (size % br_entry_size != 0))
1776                 return -EINVAL;
1777
1778         to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1779         memcpy(buf, br_stack->entries, to_copy);
1780
1781         return to_copy;
1782 }
1783
1784 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1785         .func           = bpf_read_branch_records,
1786         .gpl_only       = true,
1787         .ret_type       = RET_INTEGER,
1788         .arg1_type      = ARG_PTR_TO_CTX,
1789         .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1790         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1791         .arg4_type      = ARG_ANYTHING,
1792 };
1793
1794 static const struct bpf_func_proto *
1795 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1796 {
1797         switch (func_id) {
1798         case BPF_FUNC_perf_event_output:
1799                 return &bpf_perf_event_output_proto_tp;
1800         case BPF_FUNC_get_stackid:
1801                 return &bpf_get_stackid_proto_pe;
1802         case BPF_FUNC_get_stack:
1803                 return &bpf_get_stack_proto_pe;
1804         case BPF_FUNC_perf_prog_read_value:
1805                 return &bpf_perf_prog_read_value_proto;
1806         case BPF_FUNC_read_branch_records:
1807                 return &bpf_read_branch_records_proto;
1808         case BPF_FUNC_get_attach_cookie:
1809                 return &bpf_get_attach_cookie_proto_pe;
1810         default:
1811                 return bpf_tracing_func_proto(func_id, prog);
1812         }
1813 }
1814
1815 /*
1816  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1817  * to avoid potential recursive reuse issue when/if tracepoints are added
1818  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1819  *
1820  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1821  * in normal, irq, and nmi context.
1822  */
1823 struct bpf_raw_tp_regs {
1824         struct pt_regs regs[3];
1825 };
1826 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1827 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1828 static struct pt_regs *get_bpf_raw_tp_regs(void)
1829 {
1830         struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1831         int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1832
1833         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1834                 this_cpu_dec(bpf_raw_tp_nest_level);
1835                 return ERR_PTR(-EBUSY);
1836         }
1837
1838         return &tp_regs->regs[nest_level - 1];
1839 }
1840
1841 static void put_bpf_raw_tp_regs(void)
1842 {
1843         this_cpu_dec(bpf_raw_tp_nest_level);
1844 }
1845
1846 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1847            struct bpf_map *, map, u64, flags, void *, data, u64, size)
1848 {
1849         struct pt_regs *regs = get_bpf_raw_tp_regs();
1850         int ret;
1851
1852         if (IS_ERR(regs))
1853                 return PTR_ERR(regs);
1854
1855         perf_fetch_caller_regs(regs);
1856         ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1857
1858         put_bpf_raw_tp_regs();
1859         return ret;
1860 }
1861
1862 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1863         .func           = bpf_perf_event_output_raw_tp,
1864         .gpl_only       = true,
1865         .ret_type       = RET_INTEGER,
1866         .arg1_type      = ARG_PTR_TO_CTX,
1867         .arg2_type      = ARG_CONST_MAP_PTR,
1868         .arg3_type      = ARG_ANYTHING,
1869         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1870         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1871 };
1872
1873 extern const struct bpf_func_proto bpf_skb_output_proto;
1874 extern const struct bpf_func_proto bpf_xdp_output_proto;
1875 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1876
1877 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1878            struct bpf_map *, map, u64, flags)
1879 {
1880         struct pt_regs *regs = get_bpf_raw_tp_regs();
1881         int ret;
1882
1883         if (IS_ERR(regs))
1884                 return PTR_ERR(regs);
1885
1886         perf_fetch_caller_regs(regs);
1887         /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1888         ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1889                               flags, 0, 0);
1890         put_bpf_raw_tp_regs();
1891         return ret;
1892 }
1893
1894 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1895         .func           = bpf_get_stackid_raw_tp,
1896         .gpl_only       = true,
1897         .ret_type       = RET_INTEGER,
1898         .arg1_type      = ARG_PTR_TO_CTX,
1899         .arg2_type      = ARG_CONST_MAP_PTR,
1900         .arg3_type      = ARG_ANYTHING,
1901 };
1902
1903 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1904            void *, buf, u32, size, u64, flags)
1905 {
1906         struct pt_regs *regs = get_bpf_raw_tp_regs();
1907         int ret;
1908
1909         if (IS_ERR(regs))
1910                 return PTR_ERR(regs);
1911
1912         perf_fetch_caller_regs(regs);
1913         ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1914                             (unsigned long) size, flags, 0);
1915         put_bpf_raw_tp_regs();
1916         return ret;
1917 }
1918
1919 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1920         .func           = bpf_get_stack_raw_tp,
1921         .gpl_only       = true,
1922         .ret_type       = RET_INTEGER,
1923         .arg1_type      = ARG_PTR_TO_CTX,
1924         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1925         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1926         .arg4_type      = ARG_ANYTHING,
1927 };
1928
1929 static const struct bpf_func_proto *
1930 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1931 {
1932         switch (func_id) {
1933         case BPF_FUNC_perf_event_output:
1934                 return &bpf_perf_event_output_proto_raw_tp;
1935         case BPF_FUNC_get_stackid:
1936                 return &bpf_get_stackid_proto_raw_tp;
1937         case BPF_FUNC_get_stack:
1938                 return &bpf_get_stack_proto_raw_tp;
1939         default:
1940                 return bpf_tracing_func_proto(func_id, prog);
1941         }
1942 }
1943
1944 const struct bpf_func_proto *
1945 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1946 {
1947         const struct bpf_func_proto *fn;
1948
1949         switch (func_id) {
1950 #ifdef CONFIG_NET
1951         case BPF_FUNC_skb_output:
1952                 return &bpf_skb_output_proto;
1953         case BPF_FUNC_xdp_output:
1954                 return &bpf_xdp_output_proto;
1955         case BPF_FUNC_skc_to_tcp6_sock:
1956                 return &bpf_skc_to_tcp6_sock_proto;
1957         case BPF_FUNC_skc_to_tcp_sock:
1958                 return &bpf_skc_to_tcp_sock_proto;
1959         case BPF_FUNC_skc_to_tcp_timewait_sock:
1960                 return &bpf_skc_to_tcp_timewait_sock_proto;
1961         case BPF_FUNC_skc_to_tcp_request_sock:
1962                 return &bpf_skc_to_tcp_request_sock_proto;
1963         case BPF_FUNC_skc_to_udp6_sock:
1964                 return &bpf_skc_to_udp6_sock_proto;
1965         case BPF_FUNC_skc_to_unix_sock:
1966                 return &bpf_skc_to_unix_sock_proto;
1967         case BPF_FUNC_skc_to_mptcp_sock:
1968                 return &bpf_skc_to_mptcp_sock_proto;
1969         case BPF_FUNC_sk_storage_get:
1970                 return &bpf_sk_storage_get_tracing_proto;
1971         case BPF_FUNC_sk_storage_delete:
1972                 return &bpf_sk_storage_delete_tracing_proto;
1973         case BPF_FUNC_sock_from_file:
1974                 return &bpf_sock_from_file_proto;
1975         case BPF_FUNC_get_socket_cookie:
1976                 return &bpf_get_socket_ptr_cookie_proto;
1977         case BPF_FUNC_xdp_get_buff_len:
1978                 return &bpf_xdp_get_buff_len_trace_proto;
1979 #endif
1980         case BPF_FUNC_seq_printf:
1981                 return prog->expected_attach_type == BPF_TRACE_ITER ?
1982                        &bpf_seq_printf_proto :
1983                        NULL;
1984         case BPF_FUNC_seq_write:
1985                 return prog->expected_attach_type == BPF_TRACE_ITER ?
1986                        &bpf_seq_write_proto :
1987                        NULL;
1988         case BPF_FUNC_seq_printf_btf:
1989                 return prog->expected_attach_type == BPF_TRACE_ITER ?
1990                        &bpf_seq_printf_btf_proto :
1991                        NULL;
1992         case BPF_FUNC_d_path:
1993                 return &bpf_d_path_proto;
1994         case BPF_FUNC_get_func_arg:
1995                 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1996         case BPF_FUNC_get_func_ret:
1997                 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1998         case BPF_FUNC_get_func_arg_cnt:
1999                 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
2000         case BPF_FUNC_get_attach_cookie:
2001                 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
2002         default:
2003                 fn = raw_tp_prog_func_proto(func_id, prog);
2004                 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
2005                         fn = bpf_iter_get_func_proto(func_id, prog);
2006                 return fn;
2007         }
2008 }
2009
2010 static bool raw_tp_prog_is_valid_access(int off, int size,
2011                                         enum bpf_access_type type,
2012                                         const struct bpf_prog *prog,
2013                                         struct bpf_insn_access_aux *info)
2014 {
2015         return bpf_tracing_ctx_access(off, size, type);
2016 }
2017
2018 static bool tracing_prog_is_valid_access(int off, int size,
2019                                          enum bpf_access_type type,
2020                                          const struct bpf_prog *prog,
2021                                          struct bpf_insn_access_aux *info)
2022 {
2023         return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
2024 }
2025
2026 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
2027                                      const union bpf_attr *kattr,
2028                                      union bpf_attr __user *uattr)
2029 {
2030         return -ENOTSUPP;
2031 }
2032
2033 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
2034         .get_func_proto  = raw_tp_prog_func_proto,
2035         .is_valid_access = raw_tp_prog_is_valid_access,
2036 };
2037
2038 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2039 #ifdef CONFIG_NET
2040         .test_run = bpf_prog_test_run_raw_tp,
2041 #endif
2042 };
2043
2044 const struct bpf_verifier_ops tracing_verifier_ops = {
2045         .get_func_proto  = tracing_prog_func_proto,
2046         .is_valid_access = tracing_prog_is_valid_access,
2047 };
2048
2049 const struct bpf_prog_ops tracing_prog_ops = {
2050         .test_run = bpf_prog_test_run_tracing,
2051 };
2052
2053 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2054                                                  enum bpf_access_type type,
2055                                                  const struct bpf_prog *prog,
2056                                                  struct bpf_insn_access_aux *info)
2057 {
2058         if (off == 0) {
2059                 if (size != sizeof(u64) || type != BPF_READ)
2060                         return false;
2061                 info->reg_type = PTR_TO_TP_BUFFER;
2062         }
2063         return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2064 }
2065
2066 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2067         .get_func_proto  = raw_tp_prog_func_proto,
2068         .is_valid_access = raw_tp_writable_prog_is_valid_access,
2069 };
2070
2071 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2072 };
2073
2074 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2075                                     const struct bpf_prog *prog,
2076                                     struct bpf_insn_access_aux *info)
2077 {
2078         const int size_u64 = sizeof(u64);
2079
2080         if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2081                 return false;
2082         if (type != BPF_READ)
2083                 return false;
2084         if (off % size != 0) {
2085                 if (sizeof(unsigned long) != 4)
2086                         return false;
2087                 if (size != 8)
2088                         return false;
2089                 if (off % size != 4)
2090                         return false;
2091         }
2092
2093         switch (off) {
2094         case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2095                 bpf_ctx_record_field_size(info, size_u64);
2096                 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2097                         return false;
2098                 break;
2099         case bpf_ctx_range(struct bpf_perf_event_data, addr):
2100                 bpf_ctx_record_field_size(info, size_u64);
2101                 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2102                         return false;
2103                 break;
2104         default:
2105                 if (size != sizeof(long))
2106                         return false;
2107         }
2108
2109         return true;
2110 }
2111
2112 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2113                                       const struct bpf_insn *si,
2114                                       struct bpf_insn *insn_buf,
2115                                       struct bpf_prog *prog, u32 *target_size)
2116 {
2117         struct bpf_insn *insn = insn_buf;
2118
2119         switch (si->off) {
2120         case offsetof(struct bpf_perf_event_data, sample_period):
2121                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2122                                                        data), si->dst_reg, si->src_reg,
2123                                       offsetof(struct bpf_perf_event_data_kern, data));
2124                 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2125                                       bpf_target_off(struct perf_sample_data, period, 8,
2126                                                      target_size));
2127                 break;
2128         case offsetof(struct bpf_perf_event_data, addr):
2129                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2130                                                        data), si->dst_reg, si->src_reg,
2131                                       offsetof(struct bpf_perf_event_data_kern, data));
2132                 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2133                                       bpf_target_off(struct perf_sample_data, addr, 8,
2134                                                      target_size));
2135                 break;
2136         default:
2137                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2138                                                        regs), si->dst_reg, si->src_reg,
2139                                       offsetof(struct bpf_perf_event_data_kern, regs));
2140                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2141                                       si->off);
2142                 break;
2143         }
2144
2145         return insn - insn_buf;
2146 }
2147
2148 const struct bpf_verifier_ops perf_event_verifier_ops = {
2149         .get_func_proto         = pe_prog_func_proto,
2150         .is_valid_access        = pe_prog_is_valid_access,
2151         .convert_ctx_access     = pe_prog_convert_ctx_access,
2152 };
2153
2154 const struct bpf_prog_ops perf_event_prog_ops = {
2155 };
2156
2157 static DEFINE_MUTEX(bpf_event_mutex);
2158
2159 #define BPF_TRACE_MAX_PROGS 64
2160
2161 int perf_event_attach_bpf_prog(struct perf_event *event,
2162                                struct bpf_prog *prog,
2163                                u64 bpf_cookie)
2164 {
2165         struct bpf_prog_array *old_array;
2166         struct bpf_prog_array *new_array;
2167         int ret = -EEXIST;
2168
2169         /*
2170          * Kprobe override only works if they are on the function entry,
2171          * and only if they are on the opt-in list.
2172          */
2173         if (prog->kprobe_override &&
2174             (!trace_kprobe_on_func_entry(event->tp_event) ||
2175              !trace_kprobe_error_injectable(event->tp_event)))
2176                 return -EINVAL;
2177
2178         mutex_lock(&bpf_event_mutex);
2179
2180         if (event->prog)
2181                 goto unlock;
2182
2183         old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2184         if (old_array &&
2185             bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2186                 ret = -E2BIG;
2187                 goto unlock;
2188         }
2189
2190         ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2191         if (ret < 0)
2192                 goto unlock;
2193
2194         /* set the new array to event->tp_event and set event->prog */
2195         event->prog = prog;
2196         event->bpf_cookie = bpf_cookie;
2197         rcu_assign_pointer(event->tp_event->prog_array, new_array);
2198         bpf_prog_array_free_sleepable(old_array);
2199
2200 unlock:
2201         mutex_unlock(&bpf_event_mutex);
2202         return ret;
2203 }
2204
2205 void perf_event_detach_bpf_prog(struct perf_event *event)
2206 {
2207         struct bpf_prog_array *old_array;
2208         struct bpf_prog_array *new_array;
2209         int ret;
2210
2211         mutex_lock(&bpf_event_mutex);
2212
2213         if (!event->prog)
2214                 goto unlock;
2215
2216         old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2217         ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2218         if (ret == -ENOENT)
2219                 goto unlock;
2220         if (ret < 0) {
2221                 bpf_prog_array_delete_safe(old_array, event->prog);
2222         } else {
2223                 rcu_assign_pointer(event->tp_event->prog_array, new_array);
2224                 bpf_prog_array_free_sleepable(old_array);
2225         }
2226
2227         bpf_prog_put(event->prog);
2228         event->prog = NULL;
2229
2230 unlock:
2231         mutex_unlock(&bpf_event_mutex);
2232 }
2233
2234 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2235 {
2236         struct perf_event_query_bpf __user *uquery = info;
2237         struct perf_event_query_bpf query = {};
2238         struct bpf_prog_array *progs;
2239         u32 *ids, prog_cnt, ids_len;
2240         int ret;
2241
2242         if (!perfmon_capable())
2243                 return -EPERM;
2244         if (event->attr.type != PERF_TYPE_TRACEPOINT)
2245                 return -EINVAL;
2246         if (copy_from_user(&query, uquery, sizeof(query)))
2247                 return -EFAULT;
2248
2249         ids_len = query.ids_len;
2250         if (ids_len > BPF_TRACE_MAX_PROGS)
2251                 return -E2BIG;
2252         ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2253         if (!ids)
2254                 return -ENOMEM;
2255         /*
2256          * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2257          * is required when user only wants to check for uquery->prog_cnt.
2258          * There is no need to check for it since the case is handled
2259          * gracefully in bpf_prog_array_copy_info.
2260          */
2261
2262         mutex_lock(&bpf_event_mutex);
2263         progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2264         ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2265         mutex_unlock(&bpf_event_mutex);
2266
2267         if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2268             copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2269                 ret = -EFAULT;
2270
2271         kfree(ids);
2272         return ret;
2273 }
2274
2275 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2276 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2277
2278 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2279 {
2280         struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2281
2282         for (; btp < __stop__bpf_raw_tp; btp++) {
2283                 if (!strcmp(btp->tp->name, name))
2284                         return btp;
2285         }
2286
2287         return bpf_get_raw_tracepoint_module(name);
2288 }
2289
2290 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2291 {
2292         struct module *mod;
2293
2294         preempt_disable();
2295         mod = __module_address((unsigned long)btp);
2296         module_put(mod);
2297         preempt_enable();
2298 }
2299
2300 static __always_inline
2301 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2302 {
2303         cant_sleep();
2304         if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2305                 bpf_prog_inc_misses_counter(prog);
2306                 goto out;
2307         }
2308         rcu_read_lock();
2309         (void) bpf_prog_run(prog, args);
2310         rcu_read_unlock();
2311 out:
2312         this_cpu_dec(*(prog->active));
2313 }
2314
2315 #define UNPACK(...)                     __VA_ARGS__
2316 #define REPEAT_1(FN, DL, X, ...)        FN(X)
2317 #define REPEAT_2(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2318 #define REPEAT_3(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2319 #define REPEAT_4(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2320 #define REPEAT_5(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2321 #define REPEAT_6(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2322 #define REPEAT_7(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2323 #define REPEAT_8(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2324 #define REPEAT_9(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2325 #define REPEAT_10(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2326 #define REPEAT_11(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2327 #define REPEAT_12(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2328 #define REPEAT(X, FN, DL, ...)          REPEAT_##X(FN, DL, __VA_ARGS__)
2329
2330 #define SARG(X)         u64 arg##X
2331 #define COPY(X)         args[X] = arg##X
2332
2333 #define __DL_COM        (,)
2334 #define __DL_SEM        (;)
2335
2336 #define __SEQ_0_11      0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2337
2338 #define BPF_TRACE_DEFN_x(x)                                             \
2339         void bpf_trace_run##x(struct bpf_prog *prog,                    \
2340                               REPEAT(x, SARG, __DL_COM, __SEQ_0_11))    \
2341         {                                                               \
2342                 u64 args[x];                                            \
2343                 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);                  \
2344                 __bpf_trace_run(prog, args);                            \
2345         }                                                               \
2346         EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2347 BPF_TRACE_DEFN_x(1);
2348 BPF_TRACE_DEFN_x(2);
2349 BPF_TRACE_DEFN_x(3);
2350 BPF_TRACE_DEFN_x(4);
2351 BPF_TRACE_DEFN_x(5);
2352 BPF_TRACE_DEFN_x(6);
2353 BPF_TRACE_DEFN_x(7);
2354 BPF_TRACE_DEFN_x(8);
2355 BPF_TRACE_DEFN_x(9);
2356 BPF_TRACE_DEFN_x(10);
2357 BPF_TRACE_DEFN_x(11);
2358 BPF_TRACE_DEFN_x(12);
2359
2360 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2361 {
2362         struct tracepoint *tp = btp->tp;
2363
2364         /*
2365          * check that program doesn't access arguments beyond what's
2366          * available in this tracepoint
2367          */
2368         if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2369                 return -EINVAL;
2370
2371         if (prog->aux->max_tp_access > btp->writable_size)
2372                 return -EINVAL;
2373
2374         return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2375                                                    prog);
2376 }
2377
2378 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2379 {
2380         return __bpf_probe_register(btp, prog);
2381 }
2382
2383 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2384 {
2385         return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2386 }
2387
2388 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2389                             u32 *fd_type, const char **buf,
2390                             u64 *probe_offset, u64 *probe_addr)
2391 {
2392         bool is_tracepoint, is_syscall_tp;
2393         struct bpf_prog *prog;
2394         int flags, err = 0;
2395
2396         prog = event->prog;
2397         if (!prog)
2398                 return -ENOENT;
2399
2400         /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2401         if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2402                 return -EOPNOTSUPP;
2403
2404         *prog_id = prog->aux->id;
2405         flags = event->tp_event->flags;
2406         is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2407         is_syscall_tp = is_syscall_trace_event(event->tp_event);
2408
2409         if (is_tracepoint || is_syscall_tp) {
2410                 *buf = is_tracepoint ? event->tp_event->tp->name
2411                                      : event->tp_event->name;
2412                 /* We allow NULL pointer for tracepoint */
2413                 if (fd_type)
2414                         *fd_type = BPF_FD_TYPE_TRACEPOINT;
2415                 if (probe_offset)
2416                         *probe_offset = 0x0;
2417                 if (probe_addr)
2418                         *probe_addr = 0x0;
2419         } else {
2420                 /* kprobe/uprobe */
2421                 err = -EOPNOTSUPP;
2422 #ifdef CONFIG_KPROBE_EVENTS
2423                 if (flags & TRACE_EVENT_FL_KPROBE)
2424                         err = bpf_get_kprobe_info(event, fd_type, buf,
2425                                                   probe_offset, probe_addr,
2426                                                   event->attr.type == PERF_TYPE_TRACEPOINT);
2427 #endif
2428 #ifdef CONFIG_UPROBE_EVENTS
2429                 if (flags & TRACE_EVENT_FL_UPROBE)
2430                         err = bpf_get_uprobe_info(event, fd_type, buf,
2431                                                   probe_offset, probe_addr,
2432                                                   event->attr.type == PERF_TYPE_TRACEPOINT);
2433 #endif
2434         }
2435
2436         return err;
2437 }
2438
2439 static int __init send_signal_irq_work_init(void)
2440 {
2441         int cpu;
2442         struct send_signal_irq_work *work;
2443
2444         for_each_possible_cpu(cpu) {
2445                 work = per_cpu_ptr(&send_signal_work, cpu);
2446                 init_irq_work(&work->irq_work, do_bpf_send_signal);
2447         }
2448         return 0;
2449 }
2450
2451 subsys_initcall(send_signal_irq_work_init);
2452
2453 #ifdef CONFIG_MODULES
2454 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2455                             void *module)
2456 {
2457         struct bpf_trace_module *btm, *tmp;
2458         struct module *mod = module;
2459         int ret = 0;
2460
2461         if (mod->num_bpf_raw_events == 0 ||
2462             (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2463                 goto out;
2464
2465         mutex_lock(&bpf_module_mutex);
2466
2467         switch (op) {
2468         case MODULE_STATE_COMING:
2469                 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2470                 if (btm) {
2471                         btm->module = module;
2472                         list_add(&btm->list, &bpf_trace_modules);
2473                 } else {
2474                         ret = -ENOMEM;
2475                 }
2476                 break;
2477         case MODULE_STATE_GOING:
2478                 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2479                         if (btm->module == module) {
2480                                 list_del(&btm->list);
2481                                 kfree(btm);
2482                                 break;
2483                         }
2484                 }
2485                 break;
2486         }
2487
2488         mutex_unlock(&bpf_module_mutex);
2489
2490 out:
2491         return notifier_from_errno(ret);
2492 }
2493
2494 static struct notifier_block bpf_module_nb = {
2495         .notifier_call = bpf_event_notify,
2496 };
2497
2498 static int __init bpf_event_init(void)
2499 {
2500         register_module_notifier(&bpf_module_nb);
2501         return 0;
2502 }
2503
2504 fs_initcall(bpf_event_init);
2505 #endif /* CONFIG_MODULES */
2506
2507 #ifdef CONFIG_FPROBE
2508 struct bpf_kprobe_multi_link {
2509         struct bpf_link link;
2510         struct fprobe fp;
2511         unsigned long *addrs;
2512         u64 *cookies;
2513         u32 cnt;
2514         u32 mods_cnt;
2515         struct module **mods;
2516         u32 flags;
2517 };
2518
2519 struct bpf_kprobe_multi_run_ctx {
2520         struct bpf_run_ctx run_ctx;
2521         struct bpf_kprobe_multi_link *link;
2522         unsigned long entry_ip;
2523 };
2524
2525 struct user_syms {
2526         const char **syms;
2527         char *buf;
2528 };
2529
2530 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2531 {
2532         unsigned long __user usymbol;
2533         const char **syms = NULL;
2534         char *buf = NULL, *p;
2535         int err = -ENOMEM;
2536         unsigned int i;
2537
2538         syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2539         if (!syms)
2540                 goto error;
2541
2542         buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2543         if (!buf)
2544                 goto error;
2545
2546         for (p = buf, i = 0; i < cnt; i++) {
2547                 if (__get_user(usymbol, usyms + i)) {
2548                         err = -EFAULT;
2549                         goto error;
2550                 }
2551                 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2552                 if (err == KSYM_NAME_LEN)
2553                         err = -E2BIG;
2554                 if (err < 0)
2555                         goto error;
2556                 syms[i] = p;
2557                 p += err + 1;
2558         }
2559
2560         us->syms = syms;
2561         us->buf = buf;
2562         return 0;
2563
2564 error:
2565         if (err) {
2566                 kvfree(syms);
2567                 kvfree(buf);
2568         }
2569         return err;
2570 }
2571
2572 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2573 {
2574         u32 i;
2575
2576         for (i = 0; i < cnt; i++)
2577                 module_put(mods[i]);
2578 }
2579
2580 static void free_user_syms(struct user_syms *us)
2581 {
2582         kvfree(us->syms);
2583         kvfree(us->buf);
2584 }
2585
2586 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2587 {
2588         struct bpf_kprobe_multi_link *kmulti_link;
2589
2590         kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2591         unregister_fprobe(&kmulti_link->fp);
2592         kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2593 }
2594
2595 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2596 {
2597         struct bpf_kprobe_multi_link *kmulti_link;
2598
2599         kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2600         kvfree(kmulti_link->addrs);
2601         kvfree(kmulti_link->cookies);
2602         kfree(kmulti_link->mods);
2603         kfree(kmulti_link);
2604 }
2605
2606 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2607                                                 struct bpf_link_info *info)
2608 {
2609         u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2610         struct bpf_kprobe_multi_link *kmulti_link;
2611         u32 ucount = info->kprobe_multi.count;
2612         int err = 0, i;
2613
2614         if (!uaddrs ^ !ucount)
2615                 return -EINVAL;
2616
2617         kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2618         info->kprobe_multi.count = kmulti_link->cnt;
2619         info->kprobe_multi.flags = kmulti_link->flags;
2620
2621         if (!uaddrs)
2622                 return 0;
2623         if (ucount < kmulti_link->cnt)
2624                 err = -ENOSPC;
2625         else
2626                 ucount = kmulti_link->cnt;
2627
2628         if (kallsyms_show_value(current_cred())) {
2629                 if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2630                         return -EFAULT;
2631         } else {
2632                 for (i = 0; i < ucount; i++) {
2633                         if (put_user(0, uaddrs + i))
2634                                 return -EFAULT;
2635                 }
2636         }
2637         return err;
2638 }
2639
2640 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2641         .release = bpf_kprobe_multi_link_release,
2642         .dealloc = bpf_kprobe_multi_link_dealloc,
2643         .fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2644 };
2645
2646 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2647 {
2648         const struct bpf_kprobe_multi_link *link = priv;
2649         unsigned long *addr_a = a, *addr_b = b;
2650         u64 *cookie_a, *cookie_b;
2651
2652         cookie_a = link->cookies + (addr_a - link->addrs);
2653         cookie_b = link->cookies + (addr_b - link->addrs);
2654
2655         /* swap addr_a/addr_b and cookie_a/cookie_b values */
2656         swap(*addr_a, *addr_b);
2657         swap(*cookie_a, *cookie_b);
2658 }
2659
2660 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2661 {
2662         const unsigned long *addr_a = a, *addr_b = b;
2663
2664         if (*addr_a == *addr_b)
2665                 return 0;
2666         return *addr_a < *addr_b ? -1 : 1;
2667 }
2668
2669 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2670 {
2671         return bpf_kprobe_multi_addrs_cmp(a, b);
2672 }
2673
2674 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2675 {
2676         struct bpf_kprobe_multi_run_ctx *run_ctx;
2677         struct bpf_kprobe_multi_link *link;
2678         u64 *cookie, entry_ip;
2679         unsigned long *addr;
2680
2681         if (WARN_ON_ONCE(!ctx))
2682                 return 0;
2683         run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2684         link = run_ctx->link;
2685         if (!link->cookies)
2686                 return 0;
2687         entry_ip = run_ctx->entry_ip;
2688         addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2689                        bpf_kprobe_multi_addrs_cmp);
2690         if (!addr)
2691                 return 0;
2692         cookie = link->cookies + (addr - link->addrs);
2693         return *cookie;
2694 }
2695
2696 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2697 {
2698         struct bpf_kprobe_multi_run_ctx *run_ctx;
2699
2700         run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2701         return run_ctx->entry_ip;
2702 }
2703
2704 static int
2705 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2706                            unsigned long entry_ip, struct pt_regs *regs)
2707 {
2708         struct bpf_kprobe_multi_run_ctx run_ctx = {
2709                 .link = link,
2710                 .entry_ip = entry_ip,
2711         };
2712         struct bpf_run_ctx *old_run_ctx;
2713         int err;
2714
2715         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2716                 err = 0;
2717                 goto out;
2718         }
2719
2720         migrate_disable();
2721         rcu_read_lock();
2722         old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2723         err = bpf_prog_run(link->link.prog, regs);
2724         bpf_reset_run_ctx(old_run_ctx);
2725         rcu_read_unlock();
2726         migrate_enable();
2727
2728  out:
2729         __this_cpu_dec(bpf_prog_active);
2730         return err;
2731 }
2732
2733 static int
2734 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2735                           unsigned long ret_ip, struct pt_regs *regs,
2736                           void *data)
2737 {
2738         struct bpf_kprobe_multi_link *link;
2739
2740         link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2741         kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2742         return 0;
2743 }
2744
2745 static void
2746 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2747                                unsigned long ret_ip, struct pt_regs *regs,
2748                                void *data)
2749 {
2750         struct bpf_kprobe_multi_link *link;
2751
2752         link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2753         kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2754 }
2755
2756 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2757 {
2758         const char **str_a = (const char **) a;
2759         const char **str_b = (const char **) b;
2760
2761         return strcmp(*str_a, *str_b);
2762 }
2763
2764 struct multi_symbols_sort {
2765         const char **funcs;
2766         u64 *cookies;
2767 };
2768
2769 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2770 {
2771         const struct multi_symbols_sort *data = priv;
2772         const char **name_a = a, **name_b = b;
2773
2774         swap(*name_a, *name_b);
2775
2776         /* If defined, swap also related cookies. */
2777         if (data->cookies) {
2778                 u64 *cookie_a, *cookie_b;
2779
2780                 cookie_a = data->cookies + (name_a - data->funcs);
2781                 cookie_b = data->cookies + (name_b - data->funcs);
2782                 swap(*cookie_a, *cookie_b);
2783         }
2784 }
2785
2786 struct modules_array {
2787         struct module **mods;
2788         int mods_cnt;
2789         int mods_cap;
2790 };
2791
2792 static int add_module(struct modules_array *arr, struct module *mod)
2793 {
2794         struct module **mods;
2795
2796         if (arr->mods_cnt == arr->mods_cap) {
2797                 arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2798                 mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2799                 if (!mods)
2800                         return -ENOMEM;
2801                 arr->mods = mods;
2802         }
2803
2804         arr->mods[arr->mods_cnt] = mod;
2805         arr->mods_cnt++;
2806         return 0;
2807 }
2808
2809 static bool has_module(struct modules_array *arr, struct module *mod)
2810 {
2811         int i;
2812
2813         for (i = arr->mods_cnt - 1; i >= 0; i--) {
2814                 if (arr->mods[i] == mod)
2815                         return true;
2816         }
2817         return false;
2818 }
2819
2820 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2821 {
2822         struct modules_array arr = {};
2823         u32 i, err = 0;
2824
2825         for (i = 0; i < addrs_cnt; i++) {
2826                 struct module *mod;
2827
2828                 preempt_disable();
2829                 mod = __module_address(addrs[i]);
2830                 /* Either no module or we it's already stored  */
2831                 if (!mod || has_module(&arr, mod)) {
2832                         preempt_enable();
2833                         continue;
2834                 }
2835                 if (!try_module_get(mod))
2836                         err = -EINVAL;
2837                 preempt_enable();
2838                 if (err)
2839                         break;
2840                 err = add_module(&arr, mod);
2841                 if (err) {
2842                         module_put(mod);
2843                         break;
2844                 }
2845         }
2846
2847         /* We return either err < 0 in case of error, ... */
2848         if (err) {
2849                 kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2850                 kfree(arr.mods);
2851                 return err;
2852         }
2853
2854         /* or number of modules found if everything is ok. */
2855         *mods = arr.mods;
2856         return arr.mods_cnt;
2857 }
2858
2859 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2860 {
2861         u32 i;
2862
2863         for (i = 0; i < cnt; i++) {
2864                 if (!within_error_injection_list(addrs[i]))
2865                         return -EINVAL;
2866         }
2867         return 0;
2868 }
2869
2870 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2871 {
2872         struct bpf_kprobe_multi_link *link = NULL;
2873         struct bpf_link_primer link_primer;
2874         void __user *ucookies;
2875         unsigned long *addrs;
2876         u32 flags, cnt, size;
2877         void __user *uaddrs;
2878         u64 *cookies = NULL;
2879         void __user *usyms;
2880         int err;
2881
2882         /* no support for 32bit archs yet */
2883         if (sizeof(u64) != sizeof(void *))
2884                 return -EOPNOTSUPP;
2885
2886         if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2887                 return -EINVAL;
2888
2889         flags = attr->link_create.kprobe_multi.flags;
2890         if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2891                 return -EINVAL;
2892
2893         uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2894         usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2895         if (!!uaddrs == !!usyms)
2896                 return -EINVAL;
2897
2898         cnt = attr->link_create.kprobe_multi.cnt;
2899         if (!cnt)
2900                 return -EINVAL;
2901         if (cnt > MAX_KPROBE_MULTI_CNT)
2902                 return -E2BIG;
2903
2904         size = cnt * sizeof(*addrs);
2905         addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2906         if (!addrs)
2907                 return -ENOMEM;
2908
2909         ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2910         if (ucookies) {
2911                 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2912                 if (!cookies) {
2913                         err = -ENOMEM;
2914                         goto error;
2915                 }
2916                 if (copy_from_user(cookies, ucookies, size)) {
2917                         err = -EFAULT;
2918                         goto error;
2919                 }
2920         }
2921
2922         if (uaddrs) {
2923                 if (copy_from_user(addrs, uaddrs, size)) {
2924                         err = -EFAULT;
2925                         goto error;
2926                 }
2927         } else {
2928                 struct multi_symbols_sort data = {
2929                         .cookies = cookies,
2930                 };
2931                 struct user_syms us;
2932
2933                 err = copy_user_syms(&us, usyms, cnt);
2934                 if (err)
2935                         goto error;
2936
2937                 if (cookies)
2938                         data.funcs = us.syms;
2939
2940                 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2941                        symbols_swap_r, &data);
2942
2943                 err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2944                 free_user_syms(&us);
2945                 if (err)
2946                         goto error;
2947         }
2948
2949         if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
2950                 err = -EINVAL;
2951                 goto error;
2952         }
2953
2954         link = kzalloc(sizeof(*link), GFP_KERNEL);
2955         if (!link) {
2956                 err = -ENOMEM;
2957                 goto error;
2958         }
2959
2960         bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2961                       &bpf_kprobe_multi_link_lops, prog);
2962
2963         err = bpf_link_prime(&link->link, &link_primer);
2964         if (err)
2965                 goto error;
2966
2967         if (flags & BPF_F_KPROBE_MULTI_RETURN)
2968                 link->fp.exit_handler = kprobe_multi_link_exit_handler;
2969         else
2970                 link->fp.entry_handler = kprobe_multi_link_handler;
2971
2972         link->addrs = addrs;
2973         link->cookies = cookies;
2974         link->cnt = cnt;
2975         link->flags = flags;
2976
2977         if (cookies) {
2978                 /*
2979                  * Sorting addresses will trigger sorting cookies as well
2980                  * (check bpf_kprobe_multi_cookie_swap). This way we can
2981                  * find cookie based on the address in bpf_get_attach_cookie
2982                  * helper.
2983                  */
2984                 sort_r(addrs, cnt, sizeof(*addrs),
2985                        bpf_kprobe_multi_cookie_cmp,
2986                        bpf_kprobe_multi_cookie_swap,
2987                        link);
2988         }
2989
2990         err = get_modules_for_addrs(&link->mods, addrs, cnt);
2991         if (err < 0) {
2992                 bpf_link_cleanup(&link_primer);
2993                 return err;
2994         }
2995         link->mods_cnt = err;
2996
2997         err = register_fprobe_ips(&link->fp, addrs, cnt);
2998         if (err) {
2999                 kprobe_multi_put_modules(link->mods, link->mods_cnt);
3000                 bpf_link_cleanup(&link_primer);
3001                 return err;
3002         }
3003
3004         return bpf_link_settle(&link_primer);
3005
3006 error:
3007         kfree(link);
3008         kvfree(addrs);
3009         kvfree(cookies);
3010         return err;
3011 }
3012 #else /* !CONFIG_FPROBE */
3013 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3014 {
3015         return -EOPNOTSUPP;
3016 }
3017 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3018 {
3019         return 0;
3020 }
3021 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3022 {
3023         return 0;
3024 }
3025 #endif
3026
3027 #ifdef CONFIG_UPROBES
3028 struct bpf_uprobe_multi_link;
3029
3030 struct bpf_uprobe {
3031         struct bpf_uprobe_multi_link *link;
3032         loff_t offset;
3033         u64 cookie;
3034         struct uprobe_consumer consumer;
3035 };
3036
3037 struct bpf_uprobe_multi_link {
3038         struct path path;
3039         struct bpf_link link;
3040         u32 cnt;
3041         struct bpf_uprobe *uprobes;
3042         struct task_struct *task;
3043 };
3044
3045 struct bpf_uprobe_multi_run_ctx {
3046         struct bpf_run_ctx run_ctx;
3047         unsigned long entry_ip;
3048         struct bpf_uprobe *uprobe;
3049 };
3050
3051 static void bpf_uprobe_unregister(struct path *path, struct bpf_uprobe *uprobes,
3052                                   u32 cnt)
3053 {
3054         u32 i;
3055
3056         for (i = 0; i < cnt; i++) {
3057                 uprobe_unregister(d_real_inode(path->dentry), uprobes[i].offset,
3058                                   &uprobes[i].consumer);
3059         }
3060 }
3061
3062 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3063 {
3064         struct bpf_uprobe_multi_link *umulti_link;
3065
3066         umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3067         bpf_uprobe_unregister(&umulti_link->path, umulti_link->uprobes, umulti_link->cnt);
3068 }
3069
3070 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3071 {
3072         struct bpf_uprobe_multi_link *umulti_link;
3073
3074         umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3075         if (umulti_link->task)
3076                 put_task_struct(umulti_link->task);
3077         path_put(&umulti_link->path);
3078         kvfree(umulti_link->uprobes);
3079         kfree(umulti_link);
3080 }
3081
3082 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3083         .release = bpf_uprobe_multi_link_release,
3084         .dealloc = bpf_uprobe_multi_link_dealloc,
3085 };
3086
3087 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3088                            unsigned long entry_ip,
3089                            struct pt_regs *regs)
3090 {
3091         struct bpf_uprobe_multi_link *link = uprobe->link;
3092         struct bpf_uprobe_multi_run_ctx run_ctx = {
3093                 .entry_ip = entry_ip,
3094                 .uprobe = uprobe,
3095         };
3096         struct bpf_prog *prog = link->link.prog;
3097         bool sleepable = prog->aux->sleepable;
3098         struct bpf_run_ctx *old_run_ctx;
3099         int err = 0;
3100
3101         if (link->task && current != link->task)
3102                 return 0;
3103
3104         if (sleepable)
3105                 rcu_read_lock_trace();
3106         else
3107                 rcu_read_lock();
3108
3109         migrate_disable();
3110
3111         old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
3112         err = bpf_prog_run(link->link.prog, regs);
3113         bpf_reset_run_ctx(old_run_ctx);
3114
3115         migrate_enable();
3116
3117         if (sleepable)
3118                 rcu_read_unlock_trace();
3119         else
3120                 rcu_read_unlock();
3121         return err;
3122 }
3123
3124 static bool
3125 uprobe_multi_link_filter(struct uprobe_consumer *con, enum uprobe_filter_ctx ctx,
3126                          struct mm_struct *mm)
3127 {
3128         struct bpf_uprobe *uprobe;
3129
3130         uprobe = container_of(con, struct bpf_uprobe, consumer);
3131         return uprobe->link->task->mm == mm;
3132 }
3133
3134 static int
3135 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs)
3136 {
3137         struct bpf_uprobe *uprobe;
3138
3139         uprobe = container_of(con, struct bpf_uprobe, consumer);
3140         return uprobe_prog_run(uprobe, instruction_pointer(regs), regs);
3141 }
3142
3143 static int
3144 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs)
3145 {
3146         struct bpf_uprobe *uprobe;
3147
3148         uprobe = container_of(con, struct bpf_uprobe, consumer);
3149         return uprobe_prog_run(uprobe, func, regs);
3150 }
3151
3152 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3153 {
3154         struct bpf_uprobe_multi_run_ctx *run_ctx;
3155
3156         run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3157         return run_ctx->entry_ip;
3158 }
3159
3160 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3161 {
3162         struct bpf_uprobe_multi_run_ctx *run_ctx;
3163
3164         run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3165         return run_ctx->uprobe->cookie;
3166 }
3167
3168 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3169 {
3170         struct bpf_uprobe_multi_link *link = NULL;
3171         unsigned long __user *uref_ctr_offsets;
3172         unsigned long *ref_ctr_offsets = NULL;
3173         struct bpf_link_primer link_primer;
3174         struct bpf_uprobe *uprobes = NULL;
3175         struct task_struct *task = NULL;
3176         unsigned long __user *uoffsets;
3177         u64 __user *ucookies;
3178         void __user *upath;
3179         u32 flags, cnt, i;
3180         struct path path;
3181         char *name;
3182         pid_t pid;
3183         int err;
3184
3185         /* no support for 32bit archs yet */
3186         if (sizeof(u64) != sizeof(void *))
3187                 return -EOPNOTSUPP;
3188
3189         if (prog->expected_attach_type != BPF_TRACE_UPROBE_MULTI)
3190                 return -EINVAL;
3191
3192         flags = attr->link_create.uprobe_multi.flags;
3193         if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3194                 return -EINVAL;
3195
3196         /*
3197          * path, offsets and cnt are mandatory,
3198          * ref_ctr_offsets and cookies are optional
3199          */
3200         upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3201         uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3202         cnt = attr->link_create.uprobe_multi.cnt;
3203
3204         if (!upath || !uoffsets || !cnt)
3205                 return -EINVAL;
3206         if (cnt > MAX_UPROBE_MULTI_CNT)
3207                 return -E2BIG;
3208
3209         uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3210         ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3211
3212         name = strndup_user(upath, PATH_MAX);
3213         if (IS_ERR(name)) {
3214                 err = PTR_ERR(name);
3215                 return err;
3216         }
3217
3218         err = kern_path(name, LOOKUP_FOLLOW, &path);
3219         kfree(name);
3220         if (err)
3221                 return err;
3222
3223         if (!d_is_reg(path.dentry)) {
3224                 err = -EBADF;
3225                 goto error_path_put;
3226         }
3227
3228         pid = attr->link_create.uprobe_multi.pid;
3229         if (pid) {
3230                 rcu_read_lock();
3231                 task = get_pid_task(find_vpid(pid), PIDTYPE_PID);
3232                 rcu_read_unlock();
3233                 if (!task) {
3234                         err = -ESRCH;
3235                         goto error_path_put;
3236                 }
3237         }
3238
3239         err = -ENOMEM;
3240
3241         link = kzalloc(sizeof(*link), GFP_KERNEL);
3242         uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3243
3244         if (!uprobes || !link)
3245                 goto error_free;
3246
3247         if (uref_ctr_offsets) {
3248                 ref_ctr_offsets = kvcalloc(cnt, sizeof(*ref_ctr_offsets), GFP_KERNEL);
3249                 if (!ref_ctr_offsets)
3250                         goto error_free;
3251         }
3252
3253         for (i = 0; i < cnt; i++) {
3254                 if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3255                         err = -EFAULT;
3256                         goto error_free;
3257                 }
3258                 if (uref_ctr_offsets && __get_user(ref_ctr_offsets[i], uref_ctr_offsets + i)) {
3259                         err = -EFAULT;
3260                         goto error_free;
3261                 }
3262                 if (__get_user(uprobes[i].offset, uoffsets + i)) {
3263                         err = -EFAULT;
3264                         goto error_free;
3265                 }
3266
3267                 uprobes[i].link = link;
3268
3269                 if (flags & BPF_F_UPROBE_MULTI_RETURN)
3270                         uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3271                 else
3272                         uprobes[i].consumer.handler = uprobe_multi_link_handler;
3273
3274                 if (pid)
3275                         uprobes[i].consumer.filter = uprobe_multi_link_filter;
3276         }
3277
3278         link->cnt = cnt;
3279         link->uprobes = uprobes;
3280         link->path = path;
3281         link->task = task;
3282
3283         bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3284                       &bpf_uprobe_multi_link_lops, prog);
3285
3286         for (i = 0; i < cnt; i++) {
3287                 err = uprobe_register_refctr(d_real_inode(link->path.dentry),
3288                                              uprobes[i].offset,
3289                                              ref_ctr_offsets ? ref_ctr_offsets[i] : 0,
3290                                              &uprobes[i].consumer);
3291                 if (err) {
3292                         bpf_uprobe_unregister(&path, uprobes, i);
3293                         goto error_free;
3294                 }
3295         }
3296
3297         err = bpf_link_prime(&link->link, &link_primer);
3298         if (err)
3299                 goto error_free;
3300
3301         kvfree(ref_ctr_offsets);
3302         return bpf_link_settle(&link_primer);
3303
3304 error_free:
3305         kvfree(ref_ctr_offsets);
3306         kvfree(uprobes);
3307         kfree(link);
3308         if (task)
3309                 put_task_struct(task);
3310 error_path_put:
3311         path_put(&path);
3312         return err;
3313 }
3314 #else /* !CONFIG_UPROBES */
3315 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3316 {
3317         return -EOPNOTSUPP;
3318 }
3319 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3320 {
3321         return 0;
3322 }
3323 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3324 {
3325         return 0;
3326 }
3327 #endif /* CONFIG_UPROBES */