4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include "timeconst.h"
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
50 struct timezone sys_tz;
52 EXPORT_SYMBOL(sys_tz);
54 #ifdef __ARCH_WANT_SYS_TIME
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 time_t i = get_seconds();
70 force_successful_syscall_return();
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
86 if (get_user(tv.tv_sec, tptr))
91 err = security_settime(&tv, NULL);
99 #endif /* __ARCH_WANT_SYS_TIME */
101 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 struct timezone __user *, tz)
104 if (likely(tv != NULL)) {
106 do_gettimeofday(&ktv);
107 if (copy_to_user(tv, &ktv, sizeof(ktv)))
110 if (unlikely(tz != NULL)) {
111 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
118 * Adjust the time obtained from the CMOS to be UTC time instead of
121 * This is ugly, but preferable to the alternatives. Otherwise we
122 * would either need to write a program to do it in /etc/rc (and risk
123 * confusion if the program gets run more than once; it would also be
124 * hard to make the program warp the clock precisely n hours) or
125 * compile in the timezone information into the kernel. Bad, bad....
129 * The best thing to do is to keep the CMOS clock in universal time (UTC)
130 * as real UNIX machines always do it. This avoids all headaches about
131 * daylight saving times and warping kernel clocks.
133 static inline void warp_clock(void)
135 struct timespec adjust;
137 adjust = current_kernel_time();
138 adjust.tv_sec += sys_tz.tz_minuteswest * 60;
139 do_settimeofday(&adjust);
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
153 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
155 static int firsttime = 1;
158 if (tv && !timespec_valid(tv))
161 error = security_settime(tv, tz);
166 /* SMP safe, global irq locking makes it work. */
168 update_vsyscall_tz();
177 /* SMP safe, again the code in arch/foo/time.c should
178 * globally block out interrupts when it runs.
180 return do_settimeofday(tv);
185 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
186 struct timezone __user *, tz)
188 struct timeval user_tv;
189 struct timespec new_ts;
190 struct timezone new_tz;
193 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
195 new_ts.tv_sec = user_tv.tv_sec;
196 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
199 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
203 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
206 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
208 struct timex txc; /* Local copy of parameter */
211 /* Copy the user data space into the kernel copy
212 * structure. But bear in mind that the structures
215 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
217 ret = do_adjtimex(&txc);
218 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
222 * current_fs_time - Return FS time
225 * Return the current time truncated to the time granularity supported by
228 struct timespec current_fs_time(struct super_block *sb)
230 struct timespec now = current_kernel_time();
231 return timespec_trunc(now, sb->s_time_gran);
233 EXPORT_SYMBOL(current_fs_time);
236 * Convert jiffies to milliseconds and back.
238 * Avoid unnecessary multiplications/divisions in the
239 * two most common HZ cases:
241 inline unsigned int jiffies_to_msecs(const unsigned long j)
243 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244 return (MSEC_PER_SEC / HZ) * j;
245 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
248 # if BITS_PER_LONG == 32
249 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
251 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
255 EXPORT_SYMBOL(jiffies_to_msecs);
257 inline unsigned int jiffies_to_usecs(const unsigned long j)
259 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260 return (USEC_PER_SEC / HZ) * j;
261 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
264 # if BITS_PER_LONG == 32
265 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
267 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
271 EXPORT_SYMBOL(jiffies_to_usecs);
274 * timespec_trunc - Truncate timespec to a granularity
276 * @gran: Granularity in ns.
278 * Truncate a timespec to a granularity. gran must be smaller than a second.
279 * Always rounds down.
281 * This function should be only used for timestamps returned by
282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
283 * it doesn't handle the better resolution of the latter.
285 struct timespec timespec_trunc(struct timespec t, unsigned gran)
288 * Division is pretty slow so avoid it for common cases.
289 * Currently current_kernel_time() never returns better than
290 * jiffies resolution. Exploit that.
292 if (gran <= jiffies_to_usecs(1) * 1000) {
294 } else if (gran == 1000000000) {
297 t.tv_nsec -= t.tv_nsec % gran;
301 EXPORT_SYMBOL(timespec_trunc);
303 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
304 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
305 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
307 * [For the Julian calendar (which was used in Russia before 1917,
308 * Britain & colonies before 1752, anywhere else before 1582,
309 * and is still in use by some communities) leave out the
310 * -year/100+year/400 terms, and add 10.]
312 * This algorithm was first published by Gauss (I think).
314 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
315 * machines where long is 32-bit! (However, as time_t is signed, we
316 * will already get problems at other places on 2038-01-19 03:14:08)
319 mktime(const unsigned int year0, const unsigned int mon0,
320 const unsigned int day, const unsigned int hour,
321 const unsigned int min, const unsigned int sec)
323 unsigned int mon = mon0, year = year0;
325 /* 1..12 -> 11,12,1..10 */
326 if (0 >= (int) (mon -= 2)) {
327 mon += 12; /* Puts Feb last since it has leap day */
331 return ((((unsigned long)
332 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
334 )*24 + hour /* now have hours */
335 )*60 + min /* now have minutes */
336 )*60 + sec; /* finally seconds */
339 EXPORT_SYMBOL(mktime);
342 * set_normalized_timespec - set timespec sec and nsec parts and normalize
344 * @ts: pointer to timespec variable to be set
345 * @sec: seconds to set
346 * @nsec: nanoseconds to set
348 * Set seconds and nanoseconds field of a timespec variable and
349 * normalize to the timespec storage format
351 * Note: The tv_nsec part is always in the range of
352 * 0 <= tv_nsec < NSEC_PER_SEC
353 * For negative values only the tv_sec field is negative !
355 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
357 while (nsec >= NSEC_PER_SEC) {
359 * The following asm() prevents the compiler from
360 * optimising this loop into a modulo operation. See
361 * also __iter_div_u64_rem() in include/linux/time.h
363 asm("" : "+rm"(nsec));
364 nsec -= NSEC_PER_SEC;
368 asm("" : "+rm"(nsec));
369 nsec += NSEC_PER_SEC;
375 EXPORT_SYMBOL(set_normalized_timespec);
378 * ns_to_timespec - Convert nanoseconds to timespec
379 * @nsec: the nanoseconds value to be converted
381 * Returns the timespec representation of the nsec parameter.
383 struct timespec ns_to_timespec(const s64 nsec)
389 return (struct timespec) {0, 0};
391 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
392 if (unlikely(rem < 0)) {
400 EXPORT_SYMBOL(ns_to_timespec);
403 * ns_to_timeval - Convert nanoseconds to timeval
404 * @nsec: the nanoseconds value to be converted
406 * Returns the timeval representation of the nsec parameter.
408 struct timeval ns_to_timeval(const s64 nsec)
410 struct timespec ts = ns_to_timespec(nsec);
413 tv.tv_sec = ts.tv_sec;
414 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
418 EXPORT_SYMBOL(ns_to_timeval);
421 * When we convert to jiffies then we interpret incoming values
424 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
426 * - 'too large' values [that would result in larger than
427 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
429 * - all other values are converted to jiffies by either multiplying
430 * the input value by a factor or dividing it with a factor
432 * We must also be careful about 32-bit overflows.
434 unsigned long msecs_to_jiffies(const unsigned int m)
437 * Negative value, means infinite timeout:
440 return MAX_JIFFY_OFFSET;
442 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
444 * HZ is equal to or smaller than 1000, and 1000 is a nice
445 * round multiple of HZ, divide with the factor between them,
448 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
449 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
451 * HZ is larger than 1000, and HZ is a nice round multiple of
452 * 1000 - simply multiply with the factor between them.
454 * But first make sure the multiplication result cannot
457 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
458 return MAX_JIFFY_OFFSET;
460 return m * (HZ / MSEC_PER_SEC);
463 * Generic case - multiply, round and divide. But first
464 * check that if we are doing a net multiplication, that
465 * we wouldn't overflow:
467 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
468 return MAX_JIFFY_OFFSET;
470 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
474 EXPORT_SYMBOL(msecs_to_jiffies);
476 unsigned long usecs_to_jiffies(const unsigned int u)
478 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
479 return MAX_JIFFY_OFFSET;
480 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
481 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
482 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
483 return u * (HZ / USEC_PER_SEC);
485 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
489 EXPORT_SYMBOL(usecs_to_jiffies);
492 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
493 * that a remainder subtract here would not do the right thing as the
494 * resolution values don't fall on second boundries. I.e. the line:
495 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
497 * Rather, we just shift the bits off the right.
499 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
500 * value to a scaled second value.
503 timespec_to_jiffies(const struct timespec *value)
505 unsigned long sec = value->tv_sec;
506 long nsec = value->tv_nsec + TICK_NSEC - 1;
508 if (sec >= MAX_SEC_IN_JIFFIES){
509 sec = MAX_SEC_IN_JIFFIES;
512 return (((u64)sec * SEC_CONVERSION) +
513 (((u64)nsec * NSEC_CONVERSION) >>
514 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
517 EXPORT_SYMBOL(timespec_to_jiffies);
520 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
523 * Convert jiffies to nanoseconds and separate with
527 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
529 value->tv_nsec = rem;
531 EXPORT_SYMBOL(jiffies_to_timespec);
533 /* Same for "timeval"
535 * Well, almost. The problem here is that the real system resolution is
536 * in nanoseconds and the value being converted is in micro seconds.
537 * Also for some machines (those that use HZ = 1024, in-particular),
538 * there is a LARGE error in the tick size in microseconds.
540 * The solution we use is to do the rounding AFTER we convert the
541 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
542 * Instruction wise, this should cost only an additional add with carry
543 * instruction above the way it was done above.
546 timeval_to_jiffies(const struct timeval *value)
548 unsigned long sec = value->tv_sec;
549 long usec = value->tv_usec;
551 if (sec >= MAX_SEC_IN_JIFFIES){
552 sec = MAX_SEC_IN_JIFFIES;
555 return (((u64)sec * SEC_CONVERSION) +
556 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
557 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
559 EXPORT_SYMBOL(timeval_to_jiffies);
561 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
564 * Convert jiffies to nanoseconds and separate with
569 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
571 value->tv_usec = rem / NSEC_PER_USEC;
573 EXPORT_SYMBOL(jiffies_to_timeval);
576 * Convert jiffies/jiffies_64 to clock_t and back.
578 clock_t jiffies_to_clock_t(long x)
580 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
582 return x * (USER_HZ / HZ);
584 return x / (HZ / USER_HZ);
587 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
590 EXPORT_SYMBOL(jiffies_to_clock_t);
592 unsigned long clock_t_to_jiffies(unsigned long x)
594 #if (HZ % USER_HZ)==0
595 if (x >= ~0UL / (HZ / USER_HZ))
597 return x * (HZ / USER_HZ);
599 /* Don't worry about loss of precision here .. */
600 if (x >= ~0UL / HZ * USER_HZ)
603 /* .. but do try to contain it here */
604 return div_u64((u64)x * HZ, USER_HZ);
607 EXPORT_SYMBOL(clock_t_to_jiffies);
609 u64 jiffies_64_to_clock_t(u64 x)
611 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
613 x = div_u64(x * USER_HZ, HZ);
615 x = div_u64(x, HZ / USER_HZ);
621 * There are better ways that don't overflow early,
622 * but even this doesn't overflow in hundreds of years
625 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
629 EXPORT_SYMBOL(jiffies_64_to_clock_t);
631 u64 nsec_to_clock_t(u64 x)
633 #if (NSEC_PER_SEC % USER_HZ) == 0
634 return div_u64(x, NSEC_PER_SEC / USER_HZ);
635 #elif (USER_HZ % 512) == 0
636 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
639 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
640 * overflow after 64.99 years.
641 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
643 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
648 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
652 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
653 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
654 * for scheduler, not for use in device drivers to calculate timeout value.
657 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
658 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
660 u64 nsecs_to_jiffies64(u64 n)
662 #if (NSEC_PER_SEC % HZ) == 0
663 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
664 return div_u64(n, NSEC_PER_SEC / HZ);
665 #elif (HZ % 512) == 0
666 /* overflow after 292 years if HZ = 1024 */
667 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
670 * Generic case - optimized for cases where HZ is a multiple of 3.
671 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
673 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
678 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
682 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
683 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
684 * for scheduler, not for use in device drivers to calculate timeout value.
687 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
688 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
690 unsigned long nsecs_to_jiffies(u64 n)
692 return (unsigned long)nsecs_to_jiffies64(n);
696 * Add two timespec values and do a safety check for overflow.
697 * It's assumed that both values are valid (>= 0)
699 struct timespec timespec_add_safe(const struct timespec lhs,
700 const struct timespec rhs)
704 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
705 lhs.tv_nsec + rhs.tv_nsec);
707 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
708 res.tv_sec = TIME_T_MAX;