1 // SPDX-License-Identifier: GPL-2.0
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
32 #define TK_CLEAR_NTP (1 << 0)
33 #define TK_MIRROR (1 << 1)
34 #define TK_CLOCK_WAS_SET (1 << 2)
36 enum timekeeping_adv_mode {
37 /* Update timekeeper when a tick has passed */
40 /* Update timekeeper on a direct frequency change */
44 DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 * The most important data for readout fits into a single 64 byte
51 seqcount_raw_spinlock_t seq;
52 struct timekeeper timekeeper;
53 } tk_core ____cacheline_aligned = {
54 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
57 static struct timekeeper shadow_timekeeper;
59 /* flag for if timekeeping is suspended */
60 int __read_mostly timekeeping_suspended;
63 * struct tk_fast - NMI safe timekeeper
64 * @seq: Sequence counter for protecting updates. The lowest bit
65 * is the index for the tk_read_base array
66 * @base: tk_read_base array. Access is indexed by the lowest bit of
69 * See @update_fast_timekeeper() below.
73 struct tk_read_base base[2];
76 /* Suspend-time cycles value for halted fast timekeeper. */
77 static u64 cycles_at_suspend;
79 static u64 dummy_clock_read(struct clocksource *cs)
81 if (timekeeping_suspended)
82 return cycles_at_suspend;
86 static struct clocksource dummy_clock = {
87 .read = dummy_clock_read,
91 * Boot time initialization which allows local_clock() to be utilized
92 * during early boot when clocksources are not available. local_clock()
93 * returns nanoseconds already so no conversion is required, hence mult=1
94 * and shift=0. When the first proper clocksource is installed then
95 * the fast time keepers are updated with the correct values.
97 #define FAST_TK_INIT \
99 .clock = &dummy_clock, \
100 .mask = CLOCKSOURCE_MASK(64), \
105 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
107 .base[0] = FAST_TK_INIT,
108 .base[1] = FAST_TK_INIT,
111 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
113 .base[0] = FAST_TK_INIT,
114 .base[1] = FAST_TK_INIT,
117 static inline void tk_normalize_xtime(struct timekeeper *tk)
119 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
120 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
123 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
124 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
131 struct timespec64 ts;
133 ts.tv_sec = tk->xtime_sec;
134 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
140 tk->xtime_sec = ts->tv_sec;
141 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
146 tk->xtime_sec += ts->tv_sec;
147 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
148 tk_normalize_xtime(tk);
151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
153 struct timespec64 tmp;
156 * Verify consistency of: offset_real = -wall_to_monotonic
157 * before modifying anything
159 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
160 -tk->wall_to_monotonic.tv_nsec);
161 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
162 tk->wall_to_monotonic = wtm;
163 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
164 tk->offs_real = timespec64_to_ktime(tmp);
165 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
170 tk->offs_boot = ktime_add(tk->offs_boot, delta);
172 * Timespec representation for VDSO update to avoid 64bit division
175 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
179 * tk_clock_read - atomic clocksource read() helper
181 * This helper is necessary to use in the read paths because, while the
182 * seqcount ensures we don't return a bad value while structures are updated,
183 * it doesn't protect from potential crashes. There is the possibility that
184 * the tkr's clocksource may change between the read reference, and the
185 * clock reference passed to the read function. This can cause crashes if
186 * the wrong clocksource is passed to the wrong read function.
187 * This isn't necessary to use when holding the timekeeper_lock or doing
188 * a read of the fast-timekeeper tkrs (which is protected by its own locking
191 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
193 struct clocksource *clock = READ_ONCE(tkr->clock);
195 return clock->read(clock);
198 #ifdef CONFIG_DEBUG_TIMEKEEPING
199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
204 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
205 const char *name = tk->tkr_mono.clock->name;
207 if (offset > max_cycles) {
208 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
209 offset, name, max_cycles);
210 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
212 if (offset > (max_cycles >> 1)) {
213 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
214 offset, name, max_cycles >> 1);
215 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
219 if (tk->underflow_seen) {
220 if (jiffies - tk->last_warning > WARNING_FREQ) {
221 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
222 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
223 printk_deferred(" Your kernel is probably still fine.\n");
224 tk->last_warning = jiffies;
226 tk->underflow_seen = 0;
229 if (tk->overflow_seen) {
230 if (jiffies - tk->last_warning > WARNING_FREQ) {
231 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
232 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
233 printk_deferred(" Your kernel is probably still fine.\n");
234 tk->last_warning = jiffies;
236 tk->overflow_seen = 0;
240 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
242 struct timekeeper *tk = &tk_core.timekeeper;
243 u64 now, last, mask, max, delta;
247 * Since we're called holding a seqcount, the data may shift
248 * under us while we're doing the calculation. This can cause
249 * false positives, since we'd note a problem but throw the
250 * results away. So nest another seqcount here to atomically
251 * grab the points we are checking with.
254 seq = read_seqcount_begin(&tk_core.seq);
255 now = tk_clock_read(tkr);
256 last = tkr->cycle_last;
258 max = tkr->clock->max_cycles;
259 } while (read_seqcount_retry(&tk_core.seq, seq));
261 delta = clocksource_delta(now, last, mask);
264 * Try to catch underflows by checking if we are seeing small
265 * mask-relative negative values.
267 if (unlikely((~delta & mask) < (mask >> 3))) {
268 tk->underflow_seen = 1;
272 /* Cap delta value to the max_cycles values to avoid mult overflows */
273 if (unlikely(delta > max)) {
274 tk->overflow_seen = 1;
275 delta = tkr->clock->max_cycles;
281 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
284 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
286 u64 cycle_now, delta;
288 /* read clocksource */
289 cycle_now = tk_clock_read(tkr);
291 /* calculate the delta since the last update_wall_time */
292 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
299 * tk_setup_internals - Set up internals to use clocksource clock.
301 * @tk: The target timekeeper to setup.
302 * @clock: Pointer to clocksource.
304 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
305 * pair and interval request.
307 * Unless you're the timekeeping code, you should not be using this!
309 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
312 u64 tmp, ntpinterval;
313 struct clocksource *old_clock;
315 ++tk->cs_was_changed_seq;
316 old_clock = tk->tkr_mono.clock;
317 tk->tkr_mono.clock = clock;
318 tk->tkr_mono.mask = clock->mask;
319 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
321 tk->tkr_raw.clock = clock;
322 tk->tkr_raw.mask = clock->mask;
323 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
325 /* Do the ns -> cycle conversion first, using original mult */
326 tmp = NTP_INTERVAL_LENGTH;
327 tmp <<= clock->shift;
329 tmp += clock->mult/2;
330 do_div(tmp, clock->mult);
334 interval = (u64) tmp;
335 tk->cycle_interval = interval;
337 /* Go back from cycles -> shifted ns */
338 tk->xtime_interval = interval * clock->mult;
339 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
340 tk->raw_interval = interval * clock->mult;
342 /* if changing clocks, convert xtime_nsec shift units */
344 int shift_change = clock->shift - old_clock->shift;
345 if (shift_change < 0) {
346 tk->tkr_mono.xtime_nsec >>= -shift_change;
347 tk->tkr_raw.xtime_nsec >>= -shift_change;
349 tk->tkr_mono.xtime_nsec <<= shift_change;
350 tk->tkr_raw.xtime_nsec <<= shift_change;
354 tk->tkr_mono.shift = clock->shift;
355 tk->tkr_raw.shift = clock->shift;
358 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
359 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
362 * The timekeeper keeps its own mult values for the currently
363 * active clocksource. These value will be adjusted via NTP
364 * to counteract clock drifting.
366 tk->tkr_mono.mult = clock->mult;
367 tk->tkr_raw.mult = clock->mult;
368 tk->ntp_err_mult = 0;
369 tk->skip_second_overflow = 0;
372 /* Timekeeper helper functions. */
374 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
378 nsec = delta * tkr->mult + tkr->xtime_nsec;
384 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
388 delta = timekeeping_get_delta(tkr);
389 return timekeeping_delta_to_ns(tkr, delta);
392 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
396 /* calculate the delta since the last update_wall_time */
397 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
398 return timekeeping_delta_to_ns(tkr, delta);
402 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
403 * @tkr: Timekeeping readout base from which we take the update
404 * @tkf: Pointer to NMI safe timekeeper
406 * We want to use this from any context including NMI and tracing /
407 * instrumenting the timekeeping code itself.
409 * Employ the latch technique; see @raw_write_seqcount_latch.
411 * So if a NMI hits the update of base[0] then it will use base[1]
412 * which is still consistent. In the worst case this can result is a
413 * slightly wrong timestamp (a few nanoseconds). See
414 * @ktime_get_mono_fast_ns.
416 static void update_fast_timekeeper(const struct tk_read_base *tkr,
419 struct tk_read_base *base = tkf->base;
421 /* Force readers off to base[1] */
422 raw_write_seqcount_latch(&tkf->seq);
425 memcpy(base, tkr, sizeof(*base));
427 /* Force readers back to base[0] */
428 raw_write_seqcount_latch(&tkf->seq);
431 memcpy(base + 1, base, sizeof(*base));
434 static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
436 u64 delta, cycles = tk_clock_read(tkr);
438 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
439 return timekeeping_delta_to_ns(tkr, delta);
442 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
444 struct tk_read_base *tkr;
449 seq = raw_read_seqcount_latch(&tkf->seq);
450 tkr = tkf->base + (seq & 0x01);
451 now = ktime_to_ns(tkr->base);
452 now += fast_tk_get_delta_ns(tkr);
453 } while (read_seqcount_latch_retry(&tkf->seq, seq));
459 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
461 * This timestamp is not guaranteed to be monotonic across an update.
462 * The timestamp is calculated by:
464 * now = base_mono + clock_delta * slope
466 * So if the update lowers the slope, readers who are forced to the
467 * not yet updated second array are still using the old steeper slope.
476 * |12345678---> reader order
482 * So reader 6 will observe time going backwards versus reader 5.
484 * While other CPUs are likely to be able to observe that, the only way
485 * for a CPU local observation is when an NMI hits in the middle of
486 * the update. Timestamps taken from that NMI context might be ahead
487 * of the following timestamps. Callers need to be aware of that and
490 u64 notrace ktime_get_mono_fast_ns(void)
492 return __ktime_get_fast_ns(&tk_fast_mono);
494 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
497 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
499 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
500 * conversion factor is not affected by NTP/PTP correction.
502 u64 notrace ktime_get_raw_fast_ns(void)
504 return __ktime_get_fast_ns(&tk_fast_raw);
506 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
509 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
511 * To keep it NMI safe since we're accessing from tracing, we're not using a
512 * separate timekeeper with updates to monotonic clock and boot offset
513 * protected with seqcounts. This has the following minor side effects:
515 * (1) Its possible that a timestamp be taken after the boot offset is updated
516 * but before the timekeeper is updated. If this happens, the new boot offset
517 * is added to the old timekeeping making the clock appear to update slightly
520 * timekeeping_inject_sleeptime64()
521 * __timekeeping_inject_sleeptime(tk, delta);
523 * timekeeping_update(tk, TK_CLEAR_NTP...);
525 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
526 * partially updated. Since the tk->offs_boot update is a rare event, this
527 * should be a rare occurrence which postprocessing should be able to handle.
529 * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
532 u64 notrace ktime_get_boot_fast_ns(void)
534 struct timekeeper *tk = &tk_core.timekeeper;
536 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
538 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
541 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
543 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
544 * mono time and the TAI offset are not read atomically which may yield wrong
545 * readouts. However, an update of the TAI offset is an rare event e.g., caused
546 * by settime or adjtimex with an offset. The user of this function has to deal
547 * with the possibility of wrong timestamps in post processing.
549 u64 notrace ktime_get_tai_fast_ns(void)
551 struct timekeeper *tk = &tk_core.timekeeper;
553 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
555 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
557 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
559 struct tk_read_base *tkr;
560 u64 basem, baser, delta;
564 seq = raw_read_seqcount_latch(&tkf->seq);
565 tkr = tkf->base + (seq & 0x01);
566 basem = ktime_to_ns(tkr->base);
567 baser = ktime_to_ns(tkr->base_real);
568 delta = fast_tk_get_delta_ns(tkr);
569 } while (read_seqcount_latch_retry(&tkf->seq, seq));
572 *mono = basem + delta;
573 return baser + delta;
577 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
579 * See ktime_get_fast_ns() for documentation of the time stamp ordering.
581 u64 ktime_get_real_fast_ns(void)
583 return __ktime_get_real_fast(&tk_fast_mono, NULL);
585 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
588 * ktime_get_fast_timestamps: - NMI safe timestamps
589 * @snapshot: Pointer to timestamp storage
591 * Stores clock monotonic, boottime and realtime timestamps.
593 * Boot time is a racy access on 32bit systems if the sleep time injection
594 * happens late during resume and not in timekeeping_resume(). That could
595 * be avoided by expanding struct tk_read_base with boot offset for 32bit
596 * and adding more overhead to the update. As this is a hard to observe
597 * once per resume event which can be filtered with reasonable effort using
598 * the accurate mono/real timestamps, it's probably not worth the trouble.
600 * Aside of that it might be possible on 32 and 64 bit to observe the
601 * following when the sleep time injection happens late:
604 * timekeeping_resume()
605 * ktime_get_fast_timestamps()
606 * mono, real = __ktime_get_real_fast()
607 * inject_sleep_time()
609 * boot = mono + bootoffset;
611 * That means that boot time already has the sleep time adjustment, but
612 * real time does not. On the next readout both are in sync again.
614 * Preventing this for 64bit is not really feasible without destroying the
615 * careful cache layout of the timekeeper because the sequence count and
616 * struct tk_read_base would then need two cache lines instead of one.
618 * Access to the time keeper clock source is disabled across the innermost
619 * steps of suspend/resume. The accessors still work, but the timestamps
620 * are frozen until time keeping is resumed which happens very early.
622 * For regular suspend/resume there is no observable difference vs. sched
623 * clock, but it might affect some of the nasty low level debug printks.
625 * OTOH, access to sched clock is not guaranteed across suspend/resume on
626 * all systems either so it depends on the hardware in use.
628 * If that turns out to be a real problem then this could be mitigated by
629 * using sched clock in a similar way as during early boot. But it's not as
630 * trivial as on early boot because it needs some careful protection
631 * against the clock monotonic timestamp jumping backwards on resume.
633 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
635 struct timekeeper *tk = &tk_core.timekeeper;
637 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
638 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
642 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
643 * @tk: Timekeeper to snapshot.
645 * It generally is unsafe to access the clocksource after timekeeping has been
646 * suspended, so take a snapshot of the readout base of @tk and use it as the
647 * fast timekeeper's readout base while suspended. It will return the same
648 * number of cycles every time until timekeeping is resumed at which time the
649 * proper readout base for the fast timekeeper will be restored automatically.
651 static void halt_fast_timekeeper(const struct timekeeper *tk)
653 static struct tk_read_base tkr_dummy;
654 const struct tk_read_base *tkr = &tk->tkr_mono;
656 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
657 cycles_at_suspend = tk_clock_read(tkr);
658 tkr_dummy.clock = &dummy_clock;
659 tkr_dummy.base_real = tkr->base + tk->offs_real;
660 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
663 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
664 tkr_dummy.clock = &dummy_clock;
665 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
668 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
670 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
672 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
676 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
677 * @nb: Pointer to the notifier block to register
679 int pvclock_gtod_register_notifier(struct notifier_block *nb)
681 struct timekeeper *tk = &tk_core.timekeeper;
685 raw_spin_lock_irqsave(&timekeeper_lock, flags);
686 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
687 update_pvclock_gtod(tk, true);
688 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
692 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
695 * pvclock_gtod_unregister_notifier - unregister a pvclock
696 * timedata update listener
697 * @nb: Pointer to the notifier block to unregister
699 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
704 raw_spin_lock_irqsave(&timekeeper_lock, flags);
705 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
706 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
710 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
713 * tk_update_leap_state - helper to update the next_leap_ktime
715 static inline void tk_update_leap_state(struct timekeeper *tk)
717 tk->next_leap_ktime = ntp_get_next_leap();
718 if (tk->next_leap_ktime != KTIME_MAX)
719 /* Convert to monotonic time */
720 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
724 * Update the ktime_t based scalar nsec members of the timekeeper
726 static inline void tk_update_ktime_data(struct timekeeper *tk)
732 * The xtime based monotonic readout is:
733 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
734 * The ktime based monotonic readout is:
735 * nsec = base_mono + now();
736 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
738 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
739 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
740 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
743 * The sum of the nanoseconds portions of xtime and
744 * wall_to_monotonic can be greater/equal one second. Take
745 * this into account before updating tk->ktime_sec.
747 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
748 if (nsec >= NSEC_PER_SEC)
750 tk->ktime_sec = seconds;
752 /* Update the monotonic raw base */
753 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
756 /* must hold timekeeper_lock */
757 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
759 if (action & TK_CLEAR_NTP) {
764 tk_update_leap_state(tk);
765 tk_update_ktime_data(tk);
768 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
770 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
771 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
772 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
774 if (action & TK_CLOCK_WAS_SET)
775 tk->clock_was_set_seq++;
777 * The mirroring of the data to the shadow-timekeeper needs
778 * to happen last here to ensure we don't over-write the
779 * timekeeper structure on the next update with stale data
781 if (action & TK_MIRROR)
782 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
783 sizeof(tk_core.timekeeper));
787 * timekeeping_forward_now - update clock to the current time
788 * @tk: Pointer to the timekeeper to update
790 * Forward the current clock to update its state since the last call to
791 * update_wall_time(). This is useful before significant clock changes,
792 * as it avoids having to deal with this time offset explicitly.
794 static void timekeeping_forward_now(struct timekeeper *tk)
796 u64 cycle_now, delta;
798 cycle_now = tk_clock_read(&tk->tkr_mono);
799 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
800 tk->tkr_mono.cycle_last = cycle_now;
801 tk->tkr_raw.cycle_last = cycle_now;
803 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
804 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
806 tk_normalize_xtime(tk);
810 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
811 * @ts: pointer to the timespec to be set
813 * Returns the time of day in a timespec64 (WARN if suspended).
815 void ktime_get_real_ts64(struct timespec64 *ts)
817 struct timekeeper *tk = &tk_core.timekeeper;
821 WARN_ON(timekeeping_suspended);
824 seq = read_seqcount_begin(&tk_core.seq);
826 ts->tv_sec = tk->xtime_sec;
827 nsecs = timekeeping_get_ns(&tk->tkr_mono);
829 } while (read_seqcount_retry(&tk_core.seq, seq));
832 timespec64_add_ns(ts, nsecs);
834 EXPORT_SYMBOL(ktime_get_real_ts64);
836 ktime_t ktime_get(void)
838 struct timekeeper *tk = &tk_core.timekeeper;
843 WARN_ON(timekeeping_suspended);
846 seq = read_seqcount_begin(&tk_core.seq);
847 base = tk->tkr_mono.base;
848 nsecs = timekeeping_get_ns(&tk->tkr_mono);
850 } while (read_seqcount_retry(&tk_core.seq, seq));
852 return ktime_add_ns(base, nsecs);
854 EXPORT_SYMBOL_GPL(ktime_get);
856 u32 ktime_get_resolution_ns(void)
858 struct timekeeper *tk = &tk_core.timekeeper;
862 WARN_ON(timekeeping_suspended);
865 seq = read_seqcount_begin(&tk_core.seq);
866 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
867 } while (read_seqcount_retry(&tk_core.seq, seq));
871 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
873 static ktime_t *offsets[TK_OFFS_MAX] = {
874 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
875 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
876 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
879 ktime_t ktime_get_with_offset(enum tk_offsets offs)
881 struct timekeeper *tk = &tk_core.timekeeper;
883 ktime_t base, *offset = offsets[offs];
886 WARN_ON(timekeeping_suspended);
889 seq = read_seqcount_begin(&tk_core.seq);
890 base = ktime_add(tk->tkr_mono.base, *offset);
891 nsecs = timekeeping_get_ns(&tk->tkr_mono);
893 } while (read_seqcount_retry(&tk_core.seq, seq));
895 return ktime_add_ns(base, nsecs);
898 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
900 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
902 struct timekeeper *tk = &tk_core.timekeeper;
904 ktime_t base, *offset = offsets[offs];
907 WARN_ON(timekeeping_suspended);
910 seq = read_seqcount_begin(&tk_core.seq);
911 base = ktime_add(tk->tkr_mono.base, *offset);
912 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
914 } while (read_seqcount_retry(&tk_core.seq, seq));
916 return ktime_add_ns(base, nsecs);
918 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
921 * ktime_mono_to_any() - convert monotonic time to any other time
922 * @tmono: time to convert.
923 * @offs: which offset to use
925 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
927 ktime_t *offset = offsets[offs];
932 seq = read_seqcount_begin(&tk_core.seq);
933 tconv = ktime_add(tmono, *offset);
934 } while (read_seqcount_retry(&tk_core.seq, seq));
938 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
941 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
943 ktime_t ktime_get_raw(void)
945 struct timekeeper *tk = &tk_core.timekeeper;
951 seq = read_seqcount_begin(&tk_core.seq);
952 base = tk->tkr_raw.base;
953 nsecs = timekeeping_get_ns(&tk->tkr_raw);
955 } while (read_seqcount_retry(&tk_core.seq, seq));
957 return ktime_add_ns(base, nsecs);
959 EXPORT_SYMBOL_GPL(ktime_get_raw);
962 * ktime_get_ts64 - get the monotonic clock in timespec64 format
963 * @ts: pointer to timespec variable
965 * The function calculates the monotonic clock from the realtime
966 * clock and the wall_to_monotonic offset and stores the result
967 * in normalized timespec64 format in the variable pointed to by @ts.
969 void ktime_get_ts64(struct timespec64 *ts)
971 struct timekeeper *tk = &tk_core.timekeeper;
972 struct timespec64 tomono;
976 WARN_ON(timekeeping_suspended);
979 seq = read_seqcount_begin(&tk_core.seq);
980 ts->tv_sec = tk->xtime_sec;
981 nsec = timekeeping_get_ns(&tk->tkr_mono);
982 tomono = tk->wall_to_monotonic;
984 } while (read_seqcount_retry(&tk_core.seq, seq));
986 ts->tv_sec += tomono.tv_sec;
988 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
990 EXPORT_SYMBOL_GPL(ktime_get_ts64);
993 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
995 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
996 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
997 * works on both 32 and 64 bit systems. On 32 bit systems the readout
998 * covers ~136 years of uptime which should be enough to prevent
999 * premature wrap arounds.
1001 time64_t ktime_get_seconds(void)
1003 struct timekeeper *tk = &tk_core.timekeeper;
1005 WARN_ON(timekeeping_suspended);
1006 return tk->ktime_sec;
1008 EXPORT_SYMBOL_GPL(ktime_get_seconds);
1011 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1013 * Returns the wall clock seconds since 1970.
1015 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1016 * 32bit systems the access must be protected with the sequence
1017 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1020 time64_t ktime_get_real_seconds(void)
1022 struct timekeeper *tk = &tk_core.timekeeper;
1026 if (IS_ENABLED(CONFIG_64BIT))
1027 return tk->xtime_sec;
1030 seq = read_seqcount_begin(&tk_core.seq);
1031 seconds = tk->xtime_sec;
1033 } while (read_seqcount_retry(&tk_core.seq, seq));
1037 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1040 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1041 * but without the sequence counter protect. This internal function
1042 * is called just when timekeeping lock is already held.
1044 noinstr time64_t __ktime_get_real_seconds(void)
1046 struct timekeeper *tk = &tk_core.timekeeper;
1048 return tk->xtime_sec;
1052 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1053 * @systime_snapshot: pointer to struct receiving the system time snapshot
1055 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1057 struct timekeeper *tk = &tk_core.timekeeper;
1065 WARN_ON_ONCE(timekeeping_suspended);
1068 seq = read_seqcount_begin(&tk_core.seq);
1069 now = tk_clock_read(&tk->tkr_mono);
1070 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1071 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1072 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1073 base_real = ktime_add(tk->tkr_mono.base,
1074 tk_core.timekeeper.offs_real);
1075 base_raw = tk->tkr_raw.base;
1076 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1077 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1078 } while (read_seqcount_retry(&tk_core.seq, seq));
1080 systime_snapshot->cycles = now;
1081 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1082 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1084 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1086 /* Scale base by mult/div checking for overflow */
1087 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1091 tmp = div64_u64_rem(*base, div, &rem);
1093 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1094 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1098 rem = div64_u64(rem * mult, div);
1104 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1105 * @history: Snapshot representing start of history
1106 * @partial_history_cycles: Cycle offset into history (fractional part)
1107 * @total_history_cycles: Total history length in cycles
1108 * @discontinuity: True indicates clock was set on history period
1109 * @ts: Cross timestamp that should be adjusted using
1110 * partial/total ratio
1112 * Helper function used by get_device_system_crosststamp() to correct the
1113 * crosstimestamp corresponding to the start of the current interval to the
1114 * system counter value (timestamp point) provided by the driver. The
1115 * total_history_* quantities are the total history starting at the provided
1116 * reference point and ending at the start of the current interval. The cycle
1117 * count between the driver timestamp point and the start of the current
1118 * interval is partial_history_cycles.
1120 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1121 u64 partial_history_cycles,
1122 u64 total_history_cycles,
1124 struct system_device_crosststamp *ts)
1126 struct timekeeper *tk = &tk_core.timekeeper;
1127 u64 corr_raw, corr_real;
1128 bool interp_forward;
1131 if (total_history_cycles == 0 || partial_history_cycles == 0)
1134 /* Interpolate shortest distance from beginning or end of history */
1135 interp_forward = partial_history_cycles > total_history_cycles / 2;
1136 partial_history_cycles = interp_forward ?
1137 total_history_cycles - partial_history_cycles :
1138 partial_history_cycles;
1141 * Scale the monotonic raw time delta by:
1142 * partial_history_cycles / total_history_cycles
1144 corr_raw = (u64)ktime_to_ns(
1145 ktime_sub(ts->sys_monoraw, history->raw));
1146 ret = scale64_check_overflow(partial_history_cycles,
1147 total_history_cycles, &corr_raw);
1152 * If there is a discontinuity in the history, scale monotonic raw
1154 * mult(real)/mult(raw) yielding the realtime correction
1155 * Otherwise, calculate the realtime correction similar to monotonic
1158 if (discontinuity) {
1159 corr_real = mul_u64_u32_div
1160 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1162 corr_real = (u64)ktime_to_ns(
1163 ktime_sub(ts->sys_realtime, history->real));
1164 ret = scale64_check_overflow(partial_history_cycles,
1165 total_history_cycles, &corr_real);
1170 /* Fixup monotonic raw and real time time values */
1171 if (interp_forward) {
1172 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1173 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1175 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1176 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1183 * cycle_between - true if test occurs chronologically between before and after
1185 static bool cycle_between(u64 before, u64 test, u64 after)
1187 if (test > before && test < after)
1189 if (test < before && before > after)
1195 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1196 * @get_time_fn: Callback to get simultaneous device time and
1197 * system counter from the device driver
1198 * @ctx: Context passed to get_time_fn()
1199 * @history_begin: Historical reference point used to interpolate system
1200 * time when counter provided by the driver is before the current interval
1201 * @xtstamp: Receives simultaneously captured system and device time
1203 * Reads a timestamp from a device and correlates it to system time
1205 int get_device_system_crosststamp(int (*get_time_fn)
1206 (ktime_t *device_time,
1207 struct system_counterval_t *sys_counterval,
1210 struct system_time_snapshot *history_begin,
1211 struct system_device_crosststamp *xtstamp)
1213 struct system_counterval_t system_counterval;
1214 struct timekeeper *tk = &tk_core.timekeeper;
1215 u64 cycles, now, interval_start;
1216 unsigned int clock_was_set_seq = 0;
1217 ktime_t base_real, base_raw;
1218 u64 nsec_real, nsec_raw;
1219 u8 cs_was_changed_seq;
1225 seq = read_seqcount_begin(&tk_core.seq);
1227 * Try to synchronously capture device time and a system
1228 * counter value calling back into the device driver
1230 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1235 * Verify that the clocksource associated with the captured
1236 * system counter value is the same as the currently installed
1237 * timekeeper clocksource
1239 if (tk->tkr_mono.clock != system_counterval.cs)
1241 cycles = system_counterval.cycles;
1244 * Check whether the system counter value provided by the
1245 * device driver is on the current timekeeping interval.
1247 now = tk_clock_read(&tk->tkr_mono);
1248 interval_start = tk->tkr_mono.cycle_last;
1249 if (!cycle_between(interval_start, cycles, now)) {
1250 clock_was_set_seq = tk->clock_was_set_seq;
1251 cs_was_changed_seq = tk->cs_was_changed_seq;
1252 cycles = interval_start;
1258 base_real = ktime_add(tk->tkr_mono.base,
1259 tk_core.timekeeper.offs_real);
1260 base_raw = tk->tkr_raw.base;
1262 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1263 system_counterval.cycles);
1264 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1265 system_counterval.cycles);
1266 } while (read_seqcount_retry(&tk_core.seq, seq));
1268 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1269 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1272 * Interpolate if necessary, adjusting back from the start of the
1276 u64 partial_history_cycles, total_history_cycles;
1280 * Check that the counter value occurs after the provided
1281 * history reference and that the history doesn't cross a
1282 * clocksource change
1284 if (!history_begin ||
1285 !cycle_between(history_begin->cycles,
1286 system_counterval.cycles, cycles) ||
1287 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1289 partial_history_cycles = cycles - system_counterval.cycles;
1290 total_history_cycles = cycles - history_begin->cycles;
1292 history_begin->clock_was_set_seq != clock_was_set_seq;
1294 ret = adjust_historical_crosststamp(history_begin,
1295 partial_history_cycles,
1296 total_history_cycles,
1297 discontinuity, xtstamp);
1304 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1307 * do_settimeofday64 - Sets the time of day.
1308 * @ts: pointer to the timespec64 variable containing the new time
1310 * Sets the time of day to the new time and update NTP and notify hrtimers
1312 int do_settimeofday64(const struct timespec64 *ts)
1314 struct timekeeper *tk = &tk_core.timekeeper;
1315 struct timespec64 ts_delta, xt;
1316 unsigned long flags;
1319 if (!timespec64_valid_settod(ts))
1322 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1323 write_seqcount_begin(&tk_core.seq);
1325 timekeeping_forward_now(tk);
1328 ts_delta = timespec64_sub(*ts, xt);
1330 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1335 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1337 tk_set_xtime(tk, ts);
1339 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1341 write_seqcount_end(&tk_core.seq);
1342 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1344 /* Signal hrtimers about time change */
1345 clock_was_set(CLOCK_SET_WALL);
1348 audit_tk_injoffset(ts_delta);
1349 add_device_randomness(ts, sizeof(*ts));
1354 EXPORT_SYMBOL(do_settimeofday64);
1357 * timekeeping_inject_offset - Adds or subtracts from the current time.
1358 * @ts: Pointer to the timespec variable containing the offset
1360 * Adds or subtracts an offset value from the current time.
1362 static int timekeeping_inject_offset(const struct timespec64 *ts)
1364 struct timekeeper *tk = &tk_core.timekeeper;
1365 unsigned long flags;
1366 struct timespec64 tmp;
1369 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1372 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1373 write_seqcount_begin(&tk_core.seq);
1375 timekeeping_forward_now(tk);
1377 /* Make sure the proposed value is valid */
1378 tmp = timespec64_add(tk_xtime(tk), *ts);
1379 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1380 !timespec64_valid_settod(&tmp)) {
1385 tk_xtime_add(tk, ts);
1386 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1388 error: /* even if we error out, we forwarded the time, so call update */
1389 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1391 write_seqcount_end(&tk_core.seq);
1392 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1394 /* Signal hrtimers about time change */
1395 clock_was_set(CLOCK_SET_WALL);
1401 * Indicates if there is an offset between the system clock and the hardware
1402 * clock/persistent clock/rtc.
1404 int persistent_clock_is_local;
1407 * Adjust the time obtained from the CMOS to be UTC time instead of
1410 * This is ugly, but preferable to the alternatives. Otherwise we
1411 * would either need to write a program to do it in /etc/rc (and risk
1412 * confusion if the program gets run more than once; it would also be
1413 * hard to make the program warp the clock precisely n hours) or
1414 * compile in the timezone information into the kernel. Bad, bad....
1418 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1419 * as real UNIX machines always do it. This avoids all headaches about
1420 * daylight saving times and warping kernel clocks.
1422 void timekeeping_warp_clock(void)
1424 if (sys_tz.tz_minuteswest != 0) {
1425 struct timespec64 adjust;
1427 persistent_clock_is_local = 1;
1428 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1430 timekeeping_inject_offset(&adjust);
1435 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1437 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1439 tk->tai_offset = tai_offset;
1440 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1444 * change_clocksource - Swaps clocksources if a new one is available
1446 * Accumulates current time interval and initializes new clocksource
1448 static int change_clocksource(void *data)
1450 struct timekeeper *tk = &tk_core.timekeeper;
1451 struct clocksource *new, *old = NULL;
1452 unsigned long flags;
1453 bool change = false;
1455 new = (struct clocksource *) data;
1458 * If the cs is in module, get a module reference. Succeeds
1459 * for built-in code (owner == NULL) as well.
1461 if (try_module_get(new->owner)) {
1462 if (!new->enable || new->enable(new) == 0)
1465 module_put(new->owner);
1468 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1469 write_seqcount_begin(&tk_core.seq);
1471 timekeeping_forward_now(tk);
1474 old = tk->tkr_mono.clock;
1475 tk_setup_internals(tk, new);
1478 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1480 write_seqcount_end(&tk_core.seq);
1481 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1487 module_put(old->owner);
1494 * timekeeping_notify - Install a new clock source
1495 * @clock: pointer to the clock source
1497 * This function is called from clocksource.c after a new, better clock
1498 * source has been registered. The caller holds the clocksource_mutex.
1500 int timekeeping_notify(struct clocksource *clock)
1502 struct timekeeper *tk = &tk_core.timekeeper;
1504 if (tk->tkr_mono.clock == clock)
1506 stop_machine(change_clocksource, clock, NULL);
1507 tick_clock_notify();
1508 return tk->tkr_mono.clock == clock ? 0 : -1;
1512 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1513 * @ts: pointer to the timespec64 to be set
1515 * Returns the raw monotonic time (completely un-modified by ntp)
1517 void ktime_get_raw_ts64(struct timespec64 *ts)
1519 struct timekeeper *tk = &tk_core.timekeeper;
1524 seq = read_seqcount_begin(&tk_core.seq);
1525 ts->tv_sec = tk->raw_sec;
1526 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1528 } while (read_seqcount_retry(&tk_core.seq, seq));
1531 timespec64_add_ns(ts, nsecs);
1533 EXPORT_SYMBOL(ktime_get_raw_ts64);
1537 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1539 int timekeeping_valid_for_hres(void)
1541 struct timekeeper *tk = &tk_core.timekeeper;
1546 seq = read_seqcount_begin(&tk_core.seq);
1548 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1550 } while (read_seqcount_retry(&tk_core.seq, seq));
1556 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1558 u64 timekeeping_max_deferment(void)
1560 struct timekeeper *tk = &tk_core.timekeeper;
1565 seq = read_seqcount_begin(&tk_core.seq);
1567 ret = tk->tkr_mono.clock->max_idle_ns;
1569 } while (read_seqcount_retry(&tk_core.seq, seq));
1575 * read_persistent_clock64 - Return time from the persistent clock.
1576 * @ts: Pointer to the storage for the readout value
1578 * Weak dummy function for arches that do not yet support it.
1579 * Reads the time from the battery backed persistent clock.
1580 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1582 * XXX - Do be sure to remove it once all arches implement it.
1584 void __weak read_persistent_clock64(struct timespec64 *ts)
1591 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1594 * Weak dummy function for arches that do not yet support it.
1595 * @wall_time: - current time as returned by persistent clock
1596 * @boot_offset: - offset that is defined as wall_time - boot_time
1598 * The default function calculates offset based on the current value of
1599 * local_clock(). This way architectures that support sched_clock() but don't
1600 * support dedicated boot time clock will provide the best estimate of the
1604 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1605 struct timespec64 *boot_offset)
1607 read_persistent_clock64(wall_time);
1608 *boot_offset = ns_to_timespec64(local_clock());
1612 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1614 * The flag starts of false and is only set when a suspend reaches
1615 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1616 * timekeeper clocksource is not stopping across suspend and has been
1617 * used to update sleep time. If the timekeeper clocksource has stopped
1618 * then the flag stays true and is used by the RTC resume code to decide
1619 * whether sleeptime must be injected and if so the flag gets false then.
1621 * If a suspend fails before reaching timekeeping_resume() then the flag
1622 * stays false and prevents erroneous sleeptime injection.
1624 static bool suspend_timing_needed;
1626 /* Flag for if there is a persistent clock on this platform */
1627 static bool persistent_clock_exists;
1630 * timekeeping_init - Initializes the clocksource and common timekeeping values
1632 void __init timekeeping_init(void)
1634 struct timespec64 wall_time, boot_offset, wall_to_mono;
1635 struct timekeeper *tk = &tk_core.timekeeper;
1636 struct clocksource *clock;
1637 unsigned long flags;
1639 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1640 if (timespec64_valid_settod(&wall_time) &&
1641 timespec64_to_ns(&wall_time) > 0) {
1642 persistent_clock_exists = true;
1643 } else if (timespec64_to_ns(&wall_time) != 0) {
1644 pr_warn("Persistent clock returned invalid value");
1645 wall_time = (struct timespec64){0};
1648 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1649 boot_offset = (struct timespec64){0};
1652 * We want set wall_to_mono, so the following is true:
1653 * wall time + wall_to_mono = boot time
1655 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1657 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1658 write_seqcount_begin(&tk_core.seq);
1661 clock = clocksource_default_clock();
1663 clock->enable(clock);
1664 tk_setup_internals(tk, clock);
1666 tk_set_xtime(tk, &wall_time);
1669 tk_set_wall_to_mono(tk, wall_to_mono);
1671 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1673 write_seqcount_end(&tk_core.seq);
1674 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1677 /* time in seconds when suspend began for persistent clock */
1678 static struct timespec64 timekeeping_suspend_time;
1681 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1682 * @tk: Pointer to the timekeeper to be updated
1683 * @delta: Pointer to the delta value in timespec64 format
1685 * Takes a timespec offset measuring a suspend interval and properly
1686 * adds the sleep offset to the timekeeping variables.
1688 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1689 const struct timespec64 *delta)
1691 if (!timespec64_valid_strict(delta)) {
1692 printk_deferred(KERN_WARNING
1693 "__timekeeping_inject_sleeptime: Invalid "
1694 "sleep delta value!\n");
1697 tk_xtime_add(tk, delta);
1698 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1699 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1700 tk_debug_account_sleep_time(delta);
1703 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1705 * We have three kinds of time sources to use for sleep time
1706 * injection, the preference order is:
1707 * 1) non-stop clocksource
1708 * 2) persistent clock (ie: RTC accessible when irqs are off)
1711 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1712 * If system has neither 1) nor 2), 3) will be used finally.
1715 * If timekeeping has injected sleeptime via either 1) or 2),
1716 * 3) becomes needless, so in this case we don't need to call
1717 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1720 bool timekeeping_rtc_skipresume(void)
1722 return !suspend_timing_needed;
1726 * 1) can be determined whether to use or not only when doing
1727 * timekeeping_resume() which is invoked after rtc_suspend(),
1728 * so we can't skip rtc_suspend() surely if system has 1).
1730 * But if system has 2), 2) will definitely be used, so in this
1731 * case we don't need to call rtc_suspend(), and this is what
1732 * timekeeping_rtc_skipsuspend() means.
1734 bool timekeeping_rtc_skipsuspend(void)
1736 return persistent_clock_exists;
1740 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1741 * @delta: pointer to a timespec64 delta value
1743 * This hook is for architectures that cannot support read_persistent_clock64
1744 * because their RTC/persistent clock is only accessible when irqs are enabled.
1745 * and also don't have an effective nonstop clocksource.
1747 * This function should only be called by rtc_resume(), and allows
1748 * a suspend offset to be injected into the timekeeping values.
1750 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1752 struct timekeeper *tk = &tk_core.timekeeper;
1753 unsigned long flags;
1755 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1756 write_seqcount_begin(&tk_core.seq);
1758 suspend_timing_needed = false;
1760 timekeeping_forward_now(tk);
1762 __timekeeping_inject_sleeptime(tk, delta);
1764 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1766 write_seqcount_end(&tk_core.seq);
1767 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1769 /* Signal hrtimers about time change */
1770 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1775 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1777 void timekeeping_resume(void)
1779 struct timekeeper *tk = &tk_core.timekeeper;
1780 struct clocksource *clock = tk->tkr_mono.clock;
1781 unsigned long flags;
1782 struct timespec64 ts_new, ts_delta;
1783 u64 cycle_now, nsec;
1784 bool inject_sleeptime = false;
1786 read_persistent_clock64(&ts_new);
1788 clockevents_resume();
1789 clocksource_resume();
1791 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1792 write_seqcount_begin(&tk_core.seq);
1795 * After system resumes, we need to calculate the suspended time and
1796 * compensate it for the OS time. There are 3 sources that could be
1797 * used: Nonstop clocksource during suspend, persistent clock and rtc
1800 * One specific platform may have 1 or 2 or all of them, and the
1801 * preference will be:
1802 * suspend-nonstop clocksource -> persistent clock -> rtc
1803 * The less preferred source will only be tried if there is no better
1804 * usable source. The rtc part is handled separately in rtc core code.
1806 cycle_now = tk_clock_read(&tk->tkr_mono);
1807 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1809 ts_delta = ns_to_timespec64(nsec);
1810 inject_sleeptime = true;
1811 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1812 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1813 inject_sleeptime = true;
1816 if (inject_sleeptime) {
1817 suspend_timing_needed = false;
1818 __timekeeping_inject_sleeptime(tk, &ts_delta);
1821 /* Re-base the last cycle value */
1822 tk->tkr_mono.cycle_last = cycle_now;
1823 tk->tkr_raw.cycle_last = cycle_now;
1826 timekeeping_suspended = 0;
1827 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1828 write_seqcount_end(&tk_core.seq);
1829 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1831 touch_softlockup_watchdog();
1833 /* Resume the clockevent device(s) and hrtimers */
1835 /* Notify timerfd as resume is equivalent to clock_was_set() */
1839 int timekeeping_suspend(void)
1841 struct timekeeper *tk = &tk_core.timekeeper;
1842 unsigned long flags;
1843 struct timespec64 delta, delta_delta;
1844 static struct timespec64 old_delta;
1845 struct clocksource *curr_clock;
1848 read_persistent_clock64(&timekeeping_suspend_time);
1851 * On some systems the persistent_clock can not be detected at
1852 * timekeeping_init by its return value, so if we see a valid
1853 * value returned, update the persistent_clock_exists flag.
1855 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1856 persistent_clock_exists = true;
1858 suspend_timing_needed = true;
1860 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1861 write_seqcount_begin(&tk_core.seq);
1862 timekeeping_forward_now(tk);
1863 timekeeping_suspended = 1;
1866 * Since we've called forward_now, cycle_last stores the value
1867 * just read from the current clocksource. Save this to potentially
1868 * use in suspend timing.
1870 curr_clock = tk->tkr_mono.clock;
1871 cycle_now = tk->tkr_mono.cycle_last;
1872 clocksource_start_suspend_timing(curr_clock, cycle_now);
1874 if (persistent_clock_exists) {
1876 * To avoid drift caused by repeated suspend/resumes,
1877 * which each can add ~1 second drift error,
1878 * try to compensate so the difference in system time
1879 * and persistent_clock time stays close to constant.
1881 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1882 delta_delta = timespec64_sub(delta, old_delta);
1883 if (abs(delta_delta.tv_sec) >= 2) {
1885 * if delta_delta is too large, assume time correction
1886 * has occurred and set old_delta to the current delta.
1890 /* Otherwise try to adjust old_system to compensate */
1891 timekeeping_suspend_time =
1892 timespec64_add(timekeeping_suspend_time, delta_delta);
1896 timekeeping_update(tk, TK_MIRROR);
1897 halt_fast_timekeeper(tk);
1898 write_seqcount_end(&tk_core.seq);
1899 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1902 clocksource_suspend();
1903 clockevents_suspend();
1908 /* sysfs resume/suspend bits for timekeeping */
1909 static struct syscore_ops timekeeping_syscore_ops = {
1910 .resume = timekeeping_resume,
1911 .suspend = timekeeping_suspend,
1914 static int __init timekeeping_init_ops(void)
1916 register_syscore_ops(&timekeeping_syscore_ops);
1919 device_initcall(timekeeping_init_ops);
1922 * Apply a multiplier adjustment to the timekeeper
1924 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1928 s64 interval = tk->cycle_interval;
1930 if (mult_adj == 0) {
1932 } else if (mult_adj == -1) {
1933 interval = -interval;
1935 } else if (mult_adj != 1) {
1936 interval *= mult_adj;
1941 * So the following can be confusing.
1943 * To keep things simple, lets assume mult_adj == 1 for now.
1945 * When mult_adj != 1, remember that the interval and offset values
1946 * have been appropriately scaled so the math is the same.
1948 * The basic idea here is that we're increasing the multiplier
1949 * by one, this causes the xtime_interval to be incremented by
1950 * one cycle_interval. This is because:
1951 * xtime_interval = cycle_interval * mult
1952 * So if mult is being incremented by one:
1953 * xtime_interval = cycle_interval * (mult + 1)
1955 * xtime_interval = (cycle_interval * mult) + cycle_interval
1956 * Which can be shortened to:
1957 * xtime_interval += cycle_interval
1959 * So offset stores the non-accumulated cycles. Thus the current
1960 * time (in shifted nanoseconds) is:
1961 * now = (offset * adj) + xtime_nsec
1962 * Now, even though we're adjusting the clock frequency, we have
1963 * to keep time consistent. In other words, we can't jump back
1964 * in time, and we also want to avoid jumping forward in time.
1966 * So given the same offset value, we need the time to be the same
1967 * both before and after the freq adjustment.
1968 * now = (offset * adj_1) + xtime_nsec_1
1969 * now = (offset * adj_2) + xtime_nsec_2
1971 * (offset * adj_1) + xtime_nsec_1 =
1972 * (offset * adj_2) + xtime_nsec_2
1976 * (offset * adj_1) + xtime_nsec_1 =
1977 * (offset * (adj_1+1)) + xtime_nsec_2
1978 * (offset * adj_1) + xtime_nsec_1 =
1979 * (offset * adj_1) + offset + xtime_nsec_2
1980 * Canceling the sides:
1981 * xtime_nsec_1 = offset + xtime_nsec_2
1983 * xtime_nsec_2 = xtime_nsec_1 - offset
1984 * Which simplifies to:
1985 * xtime_nsec -= offset
1987 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1988 /* NTP adjustment caused clocksource mult overflow */
1993 tk->tkr_mono.mult += mult_adj;
1994 tk->xtime_interval += interval;
1995 tk->tkr_mono.xtime_nsec -= offset;
1999 * Adjust the timekeeper's multiplier to the correct frequency
2000 * and also to reduce the accumulated error value.
2002 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2007 * Determine the multiplier from the current NTP tick length.
2008 * Avoid expensive division when the tick length doesn't change.
2010 if (likely(tk->ntp_tick == ntp_tick_length())) {
2011 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2013 tk->ntp_tick = ntp_tick_length();
2014 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2015 tk->xtime_remainder, tk->cycle_interval);
2019 * If the clock is behind the NTP time, increase the multiplier by 1
2020 * to catch up with it. If it's ahead and there was a remainder in the
2021 * tick division, the clock will slow down. Otherwise it will stay
2022 * ahead until the tick length changes to a non-divisible value.
2024 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2025 mult += tk->ntp_err_mult;
2027 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2029 if (unlikely(tk->tkr_mono.clock->maxadj &&
2030 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2031 > tk->tkr_mono.clock->maxadj))) {
2032 printk_once(KERN_WARNING
2033 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2034 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2035 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2039 * It may be possible that when we entered this function, xtime_nsec
2040 * was very small. Further, if we're slightly speeding the clocksource
2041 * in the code above, its possible the required corrective factor to
2042 * xtime_nsec could cause it to underflow.
2044 * Now, since we have already accumulated the second and the NTP
2045 * subsystem has been notified via second_overflow(), we need to skip
2048 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2049 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2052 tk->skip_second_overflow = 1;
2057 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2059 * Helper function that accumulates the nsecs greater than a second
2060 * from the xtime_nsec field to the xtime_secs field.
2061 * It also calls into the NTP code to handle leapsecond processing.
2063 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2065 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2066 unsigned int clock_set = 0;
2068 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2071 tk->tkr_mono.xtime_nsec -= nsecps;
2075 * Skip NTP update if this second was accumulated before,
2076 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2078 if (unlikely(tk->skip_second_overflow)) {
2079 tk->skip_second_overflow = 0;
2083 /* Figure out if its a leap sec and apply if needed */
2084 leap = second_overflow(tk->xtime_sec);
2085 if (unlikely(leap)) {
2086 struct timespec64 ts;
2088 tk->xtime_sec += leap;
2092 tk_set_wall_to_mono(tk,
2093 timespec64_sub(tk->wall_to_monotonic, ts));
2095 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2097 clock_set = TK_CLOCK_WAS_SET;
2104 * logarithmic_accumulation - shifted accumulation of cycles
2106 * This functions accumulates a shifted interval of cycles into
2107 * a shifted interval nanoseconds. Allows for O(log) accumulation
2110 * Returns the unconsumed cycles.
2112 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2113 u32 shift, unsigned int *clock_set)
2115 u64 interval = tk->cycle_interval << shift;
2118 /* If the offset is smaller than a shifted interval, do nothing */
2119 if (offset < interval)
2122 /* Accumulate one shifted interval */
2124 tk->tkr_mono.cycle_last += interval;
2125 tk->tkr_raw.cycle_last += interval;
2127 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2128 *clock_set |= accumulate_nsecs_to_secs(tk);
2130 /* Accumulate raw time */
2131 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2132 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2133 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2134 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2138 /* Accumulate error between NTP and clock interval */
2139 tk->ntp_error += tk->ntp_tick << shift;
2140 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2141 (tk->ntp_error_shift + shift);
2147 * timekeeping_advance - Updates the timekeeper to the current time and
2148 * current NTP tick length
2150 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2152 struct timekeeper *real_tk = &tk_core.timekeeper;
2153 struct timekeeper *tk = &shadow_timekeeper;
2155 int shift = 0, maxshift;
2156 unsigned int clock_set = 0;
2157 unsigned long flags;
2159 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2161 /* Make sure we're fully resumed: */
2162 if (unlikely(timekeeping_suspended))
2165 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2166 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2168 /* Check if there's really nothing to do */
2169 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2172 /* Do some additional sanity checking */
2173 timekeeping_check_update(tk, offset);
2176 * With NO_HZ we may have to accumulate many cycle_intervals
2177 * (think "ticks") worth of time at once. To do this efficiently,
2178 * we calculate the largest doubling multiple of cycle_intervals
2179 * that is smaller than the offset. We then accumulate that
2180 * chunk in one go, and then try to consume the next smaller
2183 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2184 shift = max(0, shift);
2185 /* Bound shift to one less than what overflows tick_length */
2186 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2187 shift = min(shift, maxshift);
2188 while (offset >= tk->cycle_interval) {
2189 offset = logarithmic_accumulation(tk, offset, shift,
2191 if (offset < tk->cycle_interval<<shift)
2195 /* Adjust the multiplier to correct NTP error */
2196 timekeeping_adjust(tk, offset);
2199 * Finally, make sure that after the rounding
2200 * xtime_nsec isn't larger than NSEC_PER_SEC
2202 clock_set |= accumulate_nsecs_to_secs(tk);
2204 write_seqcount_begin(&tk_core.seq);
2206 * Update the real timekeeper.
2208 * We could avoid this memcpy by switching pointers, but that
2209 * requires changes to all other timekeeper usage sites as
2210 * well, i.e. move the timekeeper pointer getter into the
2211 * spinlocked/seqcount protected sections. And we trade this
2212 * memcpy under the tk_core.seq against one before we start
2215 timekeeping_update(tk, clock_set);
2216 memcpy(real_tk, tk, sizeof(*tk));
2217 /* The memcpy must come last. Do not put anything here! */
2218 write_seqcount_end(&tk_core.seq);
2220 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2226 * update_wall_time - Uses the current clocksource to increment the wall time
2229 void update_wall_time(void)
2231 if (timekeeping_advance(TK_ADV_TICK))
2232 clock_was_set_delayed();
2236 * getboottime64 - Return the real time of system boot.
2237 * @ts: pointer to the timespec64 to be set
2239 * Returns the wall-time of boot in a timespec64.
2241 * This is based on the wall_to_monotonic offset and the total suspend
2242 * time. Calls to settimeofday will affect the value returned (which
2243 * basically means that however wrong your real time clock is at boot time,
2244 * you get the right time here).
2246 void getboottime64(struct timespec64 *ts)
2248 struct timekeeper *tk = &tk_core.timekeeper;
2249 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2251 *ts = ktime_to_timespec64(t);
2253 EXPORT_SYMBOL_GPL(getboottime64);
2255 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2257 struct timekeeper *tk = &tk_core.timekeeper;
2261 seq = read_seqcount_begin(&tk_core.seq);
2264 } while (read_seqcount_retry(&tk_core.seq, seq));
2266 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2268 void ktime_get_coarse_ts64(struct timespec64 *ts)
2270 struct timekeeper *tk = &tk_core.timekeeper;
2271 struct timespec64 now, mono;
2275 seq = read_seqcount_begin(&tk_core.seq);
2278 mono = tk->wall_to_monotonic;
2279 } while (read_seqcount_retry(&tk_core.seq, seq));
2281 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2282 now.tv_nsec + mono.tv_nsec);
2284 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2287 * Must hold jiffies_lock
2289 void do_timer(unsigned long ticks)
2291 jiffies_64 += ticks;
2296 * ktime_get_update_offsets_now - hrtimer helper
2297 * @cwsseq: pointer to check and store the clock was set sequence number
2298 * @offs_real: pointer to storage for monotonic -> realtime offset
2299 * @offs_boot: pointer to storage for monotonic -> boottime offset
2300 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2302 * Returns current monotonic time and updates the offsets if the
2303 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2306 * Called from hrtimer_interrupt() or retrigger_next_event()
2308 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2309 ktime_t *offs_boot, ktime_t *offs_tai)
2311 struct timekeeper *tk = &tk_core.timekeeper;
2317 seq = read_seqcount_begin(&tk_core.seq);
2319 base = tk->tkr_mono.base;
2320 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2321 base = ktime_add_ns(base, nsecs);
2323 if (*cwsseq != tk->clock_was_set_seq) {
2324 *cwsseq = tk->clock_was_set_seq;
2325 *offs_real = tk->offs_real;
2326 *offs_boot = tk->offs_boot;
2327 *offs_tai = tk->offs_tai;
2330 /* Handle leapsecond insertion adjustments */
2331 if (unlikely(base >= tk->next_leap_ktime))
2332 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2334 } while (read_seqcount_retry(&tk_core.seq, seq));
2340 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2342 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2344 if (txc->modes & ADJ_ADJTIME) {
2345 /* singleshot must not be used with any other mode bits */
2346 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2348 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2349 !capable(CAP_SYS_TIME))
2352 /* In order to modify anything, you gotta be super-user! */
2353 if (txc->modes && !capable(CAP_SYS_TIME))
2356 * if the quartz is off by more than 10% then
2357 * something is VERY wrong!
2359 if (txc->modes & ADJ_TICK &&
2360 (txc->tick < 900000/USER_HZ ||
2361 txc->tick > 1100000/USER_HZ))
2365 if (txc->modes & ADJ_SETOFFSET) {
2366 /* In order to inject time, you gotta be super-user! */
2367 if (!capable(CAP_SYS_TIME))
2371 * Validate if a timespec/timeval used to inject a time
2372 * offset is valid. Offsets can be positive or negative, so
2373 * we don't check tv_sec. The value of the timeval/timespec
2374 * is the sum of its fields,but *NOTE*:
2375 * The field tv_usec/tv_nsec must always be non-negative and
2376 * we can't have more nanoseconds/microseconds than a second.
2378 if (txc->time.tv_usec < 0)
2381 if (txc->modes & ADJ_NANO) {
2382 if (txc->time.tv_usec >= NSEC_PER_SEC)
2385 if (txc->time.tv_usec >= USEC_PER_SEC)
2391 * Check for potential multiplication overflows that can
2392 * only happen on 64-bit systems:
2394 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2395 if (LLONG_MIN / PPM_SCALE > txc->freq)
2397 if (LLONG_MAX / PPM_SCALE < txc->freq)
2405 * random_get_entropy_fallback - Returns the raw clock source value,
2406 * used by random.c for platforms with no valid random_get_entropy().
2408 unsigned long random_get_entropy_fallback(void)
2410 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2411 struct clocksource *clock = READ_ONCE(tkr->clock);
2413 if (unlikely(timekeeping_suspended || !clock))
2415 return clock->read(clock);
2417 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2420 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2422 int do_adjtimex(struct __kernel_timex *txc)
2424 struct timekeeper *tk = &tk_core.timekeeper;
2425 struct audit_ntp_data ad;
2426 bool clock_set = false;
2427 struct timespec64 ts;
2428 unsigned long flags;
2432 /* Validate the data before disabling interrupts */
2433 ret = timekeeping_validate_timex(txc);
2436 add_device_randomness(txc, sizeof(*txc));
2438 if (txc->modes & ADJ_SETOFFSET) {
2439 struct timespec64 delta;
2440 delta.tv_sec = txc->time.tv_sec;
2441 delta.tv_nsec = txc->time.tv_usec;
2442 if (!(txc->modes & ADJ_NANO))
2443 delta.tv_nsec *= 1000;
2444 ret = timekeeping_inject_offset(&delta);
2448 audit_tk_injoffset(delta);
2451 audit_ntp_init(&ad);
2453 ktime_get_real_ts64(&ts);
2454 add_device_randomness(&ts, sizeof(ts));
2456 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2457 write_seqcount_begin(&tk_core.seq);
2459 orig_tai = tai = tk->tai_offset;
2460 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2462 if (tai != orig_tai) {
2463 __timekeeping_set_tai_offset(tk, tai);
2464 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2467 tk_update_leap_state(tk);
2469 write_seqcount_end(&tk_core.seq);
2470 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2474 /* Update the multiplier immediately if frequency was set directly */
2475 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2476 clock_set |= timekeeping_advance(TK_ADV_FREQ);
2479 clock_was_set(CLOCK_REALTIME);
2481 ntp_notify_cmos_timer();
2486 #ifdef CONFIG_NTP_PPS
2488 * hardpps() - Accessor function to NTP __hardpps function
2490 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2492 unsigned long flags;
2494 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2495 write_seqcount_begin(&tk_core.seq);
2497 __hardpps(phase_ts, raw_ts);
2499 write_seqcount_end(&tk_core.seq);
2500 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2502 EXPORT_SYMBOL(hardpps);
2503 #endif /* CONFIG_NTP_PPS */