Merge tag 'm68k-for-v4.9-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[platform/kernel/linux-exynos.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         cycle_t now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         cycle_t cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         cycle_t interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         ++tk->cs_was_changed_seq;
237         old_clock = tk->tkr_mono.clock;
238         tk->tkr_mono.clock = clock;
239         tk->tkr_mono.read = clock->read;
240         tk->tkr_mono.mask = clock->mask;
241         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243         tk->tkr_raw.clock = clock;
244         tk->tkr_raw.read = clock->read;
245         tk->tkr_raw.mask = clock->mask;
246         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248         /* Do the ns -> cycle conversion first, using original mult */
249         tmp = NTP_INTERVAL_LENGTH;
250         tmp <<= clock->shift;
251         ntpinterval = tmp;
252         tmp += clock->mult/2;
253         do_div(tmp, clock->mult);
254         if (tmp == 0)
255                 tmp = 1;
256
257         interval = (cycle_t) tmp;
258         tk->cycle_interval = interval;
259
260         /* Go back from cycles -> shifted ns */
261         tk->xtime_interval = (u64) interval * clock->mult;
262         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263         tk->raw_interval =
264                 ((u64) interval * clock->mult) >> clock->shift;
265
266          /* if changing clocks, convert xtime_nsec shift units */
267         if (old_clock) {
268                 int shift_change = clock->shift - old_clock->shift;
269                 if (shift_change < 0)
270                         tk->tkr_mono.xtime_nsec >>= -shift_change;
271                 else
272                         tk->tkr_mono.xtime_nsec <<= shift_change;
273         }
274         tk->tkr_raw.xtime_nsec = 0;
275
276         tk->tkr_mono.shift = clock->shift;
277         tk->tkr_raw.shift = clock->shift;
278
279         tk->ntp_error = 0;
280         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282
283         /*
284          * The timekeeper keeps its own mult values for the currently
285          * active clocksource. These value will be adjusted via NTP
286          * to counteract clock drifting.
287          */
288         tk->tkr_mono.mult = clock->mult;
289         tk->tkr_raw.mult = clock->mult;
290         tk->ntp_err_mult = 0;
291 }
292
293 /* Timekeeper helper functions. */
294
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
301
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303                                           cycle_t delta)
304 {
305         s64 nsec;
306
307         nsec = delta * tkr->mult + tkr->xtime_nsec;
308         nsec >>= tkr->shift;
309
310         /* If arch requires, add in get_arch_timeoffset() */
311         return nsec + arch_gettimeoffset();
312 }
313
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316         cycle_t delta;
317
318         delta = timekeeping_get_delta(tkr);
319         return timekeeping_delta_to_ns(tkr, delta);
320 }
321
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323                                             cycle_t cycles)
324 {
325         cycle_t delta;
326
327         /* calculate the delta since the last update_wall_time */
328         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329         return timekeeping_delta_to_ns(tkr, delta);
330 }
331
332 /**
333  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334  * @tkr: Timekeeping readout base from which we take the update
335  *
336  * We want to use this from any context including NMI and tracing /
337  * instrumenting the timekeeping code itself.
338  *
339  * Employ the latch technique; see @raw_write_seqcount_latch.
340  *
341  * So if a NMI hits the update of base[0] then it will use base[1]
342  * which is still consistent. In the worst case this can result is a
343  * slightly wrong timestamp (a few nanoseconds). See
344  * @ktime_get_mono_fast_ns.
345  */
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 {
348         struct tk_read_base *base = tkf->base;
349
350         /* Force readers off to base[1] */
351         raw_write_seqcount_latch(&tkf->seq);
352
353         /* Update base[0] */
354         memcpy(base, tkr, sizeof(*base));
355
356         /* Force readers back to base[0] */
357         raw_write_seqcount_latch(&tkf->seq);
358
359         /* Update base[1] */
360         memcpy(base + 1, base, sizeof(*base));
361 }
362
363 /**
364  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365  *
366  * This timestamp is not guaranteed to be monotonic across an update.
367  * The timestamp is calculated by:
368  *
369  *      now = base_mono + clock_delta * slope
370  *
371  * So if the update lowers the slope, readers who are forced to the
372  * not yet updated second array are still using the old steeper slope.
373  *
374  * tmono
375  * ^
376  * |    o  n
377  * |   o n
378  * |  u
379  * | o
380  * |o
381  * |12345678---> reader order
382  *
383  * o = old slope
384  * u = update
385  * n = new slope
386  *
387  * So reader 6 will observe time going backwards versus reader 5.
388  *
389  * While other CPUs are likely to be able observe that, the only way
390  * for a CPU local observation is when an NMI hits in the middle of
391  * the update. Timestamps taken from that NMI context might be ahead
392  * of the following timestamps. Callers need to be aware of that and
393  * deal with it.
394  */
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 {
397         struct tk_read_base *tkr;
398         unsigned int seq;
399         u64 now;
400
401         do {
402                 seq = raw_read_seqcount_latch(&tkf->seq);
403                 tkr = tkf->base + (seq & 0x01);
404                 now = ktime_to_ns(tkr->base);
405
406                 now += clocksource_delta(tkr->read(tkr->clock),
407                                          tkr->cycle_last, tkr->mask);
408         } while (read_seqcount_retry(&tkf->seq, seq));
409
410         return now;
411 }
412
413 u64 ktime_get_mono_fast_ns(void)
414 {
415         return __ktime_get_fast_ns(&tk_fast_mono);
416 }
417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
418
419 u64 ktime_get_raw_fast_ns(void)
420 {
421         return __ktime_get_fast_ns(&tk_fast_raw);
422 }
423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
424
425 /* Suspend-time cycles value for halted fast timekeeper. */
426 static cycle_t cycles_at_suspend;
427
428 static cycle_t dummy_clock_read(struct clocksource *cs)
429 {
430         return cycles_at_suspend;
431 }
432
433 /**
434  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
435  * @tk: Timekeeper to snapshot.
436  *
437  * It generally is unsafe to access the clocksource after timekeeping has been
438  * suspended, so take a snapshot of the readout base of @tk and use it as the
439  * fast timekeeper's readout base while suspended.  It will return the same
440  * number of cycles every time until timekeeping is resumed at which time the
441  * proper readout base for the fast timekeeper will be restored automatically.
442  */
443 static void halt_fast_timekeeper(struct timekeeper *tk)
444 {
445         static struct tk_read_base tkr_dummy;
446         struct tk_read_base *tkr = &tk->tkr_mono;
447
448         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
449         cycles_at_suspend = tkr->read(tkr->clock);
450         tkr_dummy.read = dummy_clock_read;
451         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
452
453         tkr = &tk->tkr_raw;
454         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
455         tkr_dummy.read = dummy_clock_read;
456         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
457 }
458
459 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
460
461 static inline void update_vsyscall(struct timekeeper *tk)
462 {
463         struct timespec xt, wm;
464
465         xt = timespec64_to_timespec(tk_xtime(tk));
466         wm = timespec64_to_timespec(tk->wall_to_monotonic);
467         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
468                             tk->tkr_mono.cycle_last);
469 }
470
471 static inline void old_vsyscall_fixup(struct timekeeper *tk)
472 {
473         s64 remainder;
474
475         /*
476         * Store only full nanoseconds into xtime_nsec after rounding
477         * it up and add the remainder to the error difference.
478         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
479         * by truncating the remainder in vsyscalls. However, it causes
480         * additional work to be done in timekeeping_adjust(). Once
481         * the vsyscall implementations are converted to use xtime_nsec
482         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
483         * users are removed, this can be killed.
484         */
485         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
486         if (remainder != 0) {
487                 tk->tkr_mono.xtime_nsec -= remainder;
488                 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
489                 tk->ntp_error += remainder << tk->ntp_error_shift;
490                 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
491         }
492 }
493 #else
494 #define old_vsyscall_fixup(tk)
495 #endif
496
497 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
498
499 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
500 {
501         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
502 }
503
504 /**
505  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
506  */
507 int pvclock_gtod_register_notifier(struct notifier_block *nb)
508 {
509         struct timekeeper *tk = &tk_core.timekeeper;
510         unsigned long flags;
511         int ret;
512
513         raw_spin_lock_irqsave(&timekeeper_lock, flags);
514         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
515         update_pvclock_gtod(tk, true);
516         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
517
518         return ret;
519 }
520 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
521
522 /**
523  * pvclock_gtod_unregister_notifier - unregister a pvclock
524  * timedata update listener
525  */
526 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
527 {
528         unsigned long flags;
529         int ret;
530
531         raw_spin_lock_irqsave(&timekeeper_lock, flags);
532         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
533         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
534
535         return ret;
536 }
537 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
538
539 /*
540  * tk_update_leap_state - helper to update the next_leap_ktime
541  */
542 static inline void tk_update_leap_state(struct timekeeper *tk)
543 {
544         tk->next_leap_ktime = ntp_get_next_leap();
545         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
546                 /* Convert to monotonic time */
547                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
548 }
549
550 /*
551  * Update the ktime_t based scalar nsec members of the timekeeper
552  */
553 static inline void tk_update_ktime_data(struct timekeeper *tk)
554 {
555         u64 seconds;
556         u32 nsec;
557
558         /*
559          * The xtime based monotonic readout is:
560          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
561          * The ktime based monotonic readout is:
562          *      nsec = base_mono + now();
563          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
564          */
565         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
566         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
567         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
568
569         /* Update the monotonic raw base */
570         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
571
572         /*
573          * The sum of the nanoseconds portions of xtime and
574          * wall_to_monotonic can be greater/equal one second. Take
575          * this into account before updating tk->ktime_sec.
576          */
577         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
578         if (nsec >= NSEC_PER_SEC)
579                 seconds++;
580         tk->ktime_sec = seconds;
581 }
582
583 /* must hold timekeeper_lock */
584 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
585 {
586         if (action & TK_CLEAR_NTP) {
587                 tk->ntp_error = 0;
588                 ntp_clear();
589         }
590
591         tk_update_leap_state(tk);
592         tk_update_ktime_data(tk);
593
594         update_vsyscall(tk);
595         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
596
597         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
598         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
599
600         if (action & TK_CLOCK_WAS_SET)
601                 tk->clock_was_set_seq++;
602         /*
603          * The mirroring of the data to the shadow-timekeeper needs
604          * to happen last here to ensure we don't over-write the
605          * timekeeper structure on the next update with stale data
606          */
607         if (action & TK_MIRROR)
608                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
609                        sizeof(tk_core.timekeeper));
610 }
611
612 /**
613  * timekeeping_forward_now - update clock to the current time
614  *
615  * Forward the current clock to update its state since the last call to
616  * update_wall_time(). This is useful before significant clock changes,
617  * as it avoids having to deal with this time offset explicitly.
618  */
619 static void timekeeping_forward_now(struct timekeeper *tk)
620 {
621         struct clocksource *clock = tk->tkr_mono.clock;
622         cycle_t cycle_now, delta;
623         s64 nsec;
624
625         cycle_now = tk->tkr_mono.read(clock);
626         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
627         tk->tkr_mono.cycle_last = cycle_now;
628         tk->tkr_raw.cycle_last  = cycle_now;
629
630         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
631
632         /* If arch requires, add in get_arch_timeoffset() */
633         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
634
635         tk_normalize_xtime(tk);
636
637         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
638         timespec64_add_ns(&tk->raw_time, nsec);
639 }
640
641 /**
642  * __getnstimeofday64 - Returns the time of day in a timespec64.
643  * @ts:         pointer to the timespec to be set
644  *
645  * Updates the time of day in the timespec.
646  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
647  */
648 int __getnstimeofday64(struct timespec64 *ts)
649 {
650         struct timekeeper *tk = &tk_core.timekeeper;
651         unsigned long seq;
652         s64 nsecs = 0;
653
654         do {
655                 seq = read_seqcount_begin(&tk_core.seq);
656
657                 ts->tv_sec = tk->xtime_sec;
658                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
659
660         } while (read_seqcount_retry(&tk_core.seq, seq));
661
662         ts->tv_nsec = 0;
663         timespec64_add_ns(ts, nsecs);
664
665         /*
666          * Do not bail out early, in case there were callers still using
667          * the value, even in the face of the WARN_ON.
668          */
669         if (unlikely(timekeeping_suspended))
670                 return -EAGAIN;
671         return 0;
672 }
673 EXPORT_SYMBOL(__getnstimeofday64);
674
675 /**
676  * getnstimeofday64 - Returns the time of day in a timespec64.
677  * @ts:         pointer to the timespec64 to be set
678  *
679  * Returns the time of day in a timespec64 (WARN if suspended).
680  */
681 void getnstimeofday64(struct timespec64 *ts)
682 {
683         WARN_ON(__getnstimeofday64(ts));
684 }
685 EXPORT_SYMBOL(getnstimeofday64);
686
687 ktime_t ktime_get(void)
688 {
689         struct timekeeper *tk = &tk_core.timekeeper;
690         unsigned int seq;
691         ktime_t base;
692         s64 nsecs;
693
694         WARN_ON(timekeeping_suspended);
695
696         do {
697                 seq = read_seqcount_begin(&tk_core.seq);
698                 base = tk->tkr_mono.base;
699                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
700
701         } while (read_seqcount_retry(&tk_core.seq, seq));
702
703         return ktime_add_ns(base, nsecs);
704 }
705 EXPORT_SYMBOL_GPL(ktime_get);
706
707 u32 ktime_get_resolution_ns(void)
708 {
709         struct timekeeper *tk = &tk_core.timekeeper;
710         unsigned int seq;
711         u32 nsecs;
712
713         WARN_ON(timekeeping_suspended);
714
715         do {
716                 seq = read_seqcount_begin(&tk_core.seq);
717                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
718         } while (read_seqcount_retry(&tk_core.seq, seq));
719
720         return nsecs;
721 }
722 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
723
724 static ktime_t *offsets[TK_OFFS_MAX] = {
725         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
726         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
727         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
728 };
729
730 ktime_t ktime_get_with_offset(enum tk_offsets offs)
731 {
732         struct timekeeper *tk = &tk_core.timekeeper;
733         unsigned int seq;
734         ktime_t base, *offset = offsets[offs];
735         s64 nsecs;
736
737         WARN_ON(timekeeping_suspended);
738
739         do {
740                 seq = read_seqcount_begin(&tk_core.seq);
741                 base = ktime_add(tk->tkr_mono.base, *offset);
742                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
743
744         } while (read_seqcount_retry(&tk_core.seq, seq));
745
746         return ktime_add_ns(base, nsecs);
747
748 }
749 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
750
751 /**
752  * ktime_mono_to_any() - convert mononotic time to any other time
753  * @tmono:      time to convert.
754  * @offs:       which offset to use
755  */
756 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
757 {
758         ktime_t *offset = offsets[offs];
759         unsigned long seq;
760         ktime_t tconv;
761
762         do {
763                 seq = read_seqcount_begin(&tk_core.seq);
764                 tconv = ktime_add(tmono, *offset);
765         } while (read_seqcount_retry(&tk_core.seq, seq));
766
767         return tconv;
768 }
769 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
770
771 /**
772  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
773  */
774 ktime_t ktime_get_raw(void)
775 {
776         struct timekeeper *tk = &tk_core.timekeeper;
777         unsigned int seq;
778         ktime_t base;
779         s64 nsecs;
780
781         do {
782                 seq = read_seqcount_begin(&tk_core.seq);
783                 base = tk->tkr_raw.base;
784                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
785
786         } while (read_seqcount_retry(&tk_core.seq, seq));
787
788         return ktime_add_ns(base, nsecs);
789 }
790 EXPORT_SYMBOL_GPL(ktime_get_raw);
791
792 /**
793  * ktime_get_ts64 - get the monotonic clock in timespec64 format
794  * @ts:         pointer to timespec variable
795  *
796  * The function calculates the monotonic clock from the realtime
797  * clock and the wall_to_monotonic offset and stores the result
798  * in normalized timespec64 format in the variable pointed to by @ts.
799  */
800 void ktime_get_ts64(struct timespec64 *ts)
801 {
802         struct timekeeper *tk = &tk_core.timekeeper;
803         struct timespec64 tomono;
804         s64 nsec;
805         unsigned int seq;
806
807         WARN_ON(timekeeping_suspended);
808
809         do {
810                 seq = read_seqcount_begin(&tk_core.seq);
811                 ts->tv_sec = tk->xtime_sec;
812                 nsec = timekeeping_get_ns(&tk->tkr_mono);
813                 tomono = tk->wall_to_monotonic;
814
815         } while (read_seqcount_retry(&tk_core.seq, seq));
816
817         ts->tv_sec += tomono.tv_sec;
818         ts->tv_nsec = 0;
819         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
820 }
821 EXPORT_SYMBOL_GPL(ktime_get_ts64);
822
823 /**
824  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
825  *
826  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
827  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
828  * works on both 32 and 64 bit systems. On 32 bit systems the readout
829  * covers ~136 years of uptime which should be enough to prevent
830  * premature wrap arounds.
831  */
832 time64_t ktime_get_seconds(void)
833 {
834         struct timekeeper *tk = &tk_core.timekeeper;
835
836         WARN_ON(timekeeping_suspended);
837         return tk->ktime_sec;
838 }
839 EXPORT_SYMBOL_GPL(ktime_get_seconds);
840
841 /**
842  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
843  *
844  * Returns the wall clock seconds since 1970. This replaces the
845  * get_seconds() interface which is not y2038 safe on 32bit systems.
846  *
847  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
848  * 32bit systems the access must be protected with the sequence
849  * counter to provide "atomic" access to the 64bit tk->xtime_sec
850  * value.
851  */
852 time64_t ktime_get_real_seconds(void)
853 {
854         struct timekeeper *tk = &tk_core.timekeeper;
855         time64_t seconds;
856         unsigned int seq;
857
858         if (IS_ENABLED(CONFIG_64BIT))
859                 return tk->xtime_sec;
860
861         do {
862                 seq = read_seqcount_begin(&tk_core.seq);
863                 seconds = tk->xtime_sec;
864
865         } while (read_seqcount_retry(&tk_core.seq, seq));
866
867         return seconds;
868 }
869 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
870
871 /**
872  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
873  * but without the sequence counter protect. This internal function
874  * is called just when timekeeping lock is already held.
875  */
876 time64_t __ktime_get_real_seconds(void)
877 {
878         struct timekeeper *tk = &tk_core.timekeeper;
879
880         return tk->xtime_sec;
881 }
882
883 /**
884  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
885  * @systime_snapshot:   pointer to struct receiving the system time snapshot
886  */
887 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
888 {
889         struct timekeeper *tk = &tk_core.timekeeper;
890         unsigned long seq;
891         ktime_t base_raw;
892         ktime_t base_real;
893         s64 nsec_raw;
894         s64 nsec_real;
895         cycle_t now;
896
897         WARN_ON_ONCE(timekeeping_suspended);
898
899         do {
900                 seq = read_seqcount_begin(&tk_core.seq);
901
902                 now = tk->tkr_mono.read(tk->tkr_mono.clock);
903                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
904                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
905                 base_real = ktime_add(tk->tkr_mono.base,
906                                       tk_core.timekeeper.offs_real);
907                 base_raw = tk->tkr_raw.base;
908                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
909                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
910         } while (read_seqcount_retry(&tk_core.seq, seq));
911
912         systime_snapshot->cycles = now;
913         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
914         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
915 }
916 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
917
918 /* Scale base by mult/div checking for overflow */
919 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
920 {
921         u64 tmp, rem;
922
923         tmp = div64_u64_rem(*base, div, &rem);
924
925         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
926             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
927                 return -EOVERFLOW;
928         tmp *= mult;
929         rem *= mult;
930
931         do_div(rem, div);
932         *base = tmp + rem;
933         return 0;
934 }
935
936 /**
937  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
938  * @history:                    Snapshot representing start of history
939  * @partial_history_cycles:     Cycle offset into history (fractional part)
940  * @total_history_cycles:       Total history length in cycles
941  * @discontinuity:              True indicates clock was set on history period
942  * @ts:                         Cross timestamp that should be adjusted using
943  *      partial/total ratio
944  *
945  * Helper function used by get_device_system_crosststamp() to correct the
946  * crosstimestamp corresponding to the start of the current interval to the
947  * system counter value (timestamp point) provided by the driver. The
948  * total_history_* quantities are the total history starting at the provided
949  * reference point and ending at the start of the current interval. The cycle
950  * count between the driver timestamp point and the start of the current
951  * interval is partial_history_cycles.
952  */
953 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
954                                          cycle_t partial_history_cycles,
955                                          cycle_t total_history_cycles,
956                                          bool discontinuity,
957                                          struct system_device_crosststamp *ts)
958 {
959         struct timekeeper *tk = &tk_core.timekeeper;
960         u64 corr_raw, corr_real;
961         bool interp_forward;
962         int ret;
963
964         if (total_history_cycles == 0 || partial_history_cycles == 0)
965                 return 0;
966
967         /* Interpolate shortest distance from beginning or end of history */
968         interp_forward = partial_history_cycles > total_history_cycles/2 ?
969                 true : false;
970         partial_history_cycles = interp_forward ?
971                 total_history_cycles - partial_history_cycles :
972                 partial_history_cycles;
973
974         /*
975          * Scale the monotonic raw time delta by:
976          *      partial_history_cycles / total_history_cycles
977          */
978         corr_raw = (u64)ktime_to_ns(
979                 ktime_sub(ts->sys_monoraw, history->raw));
980         ret = scale64_check_overflow(partial_history_cycles,
981                                      total_history_cycles, &corr_raw);
982         if (ret)
983                 return ret;
984
985         /*
986          * If there is a discontinuity in the history, scale monotonic raw
987          *      correction by:
988          *      mult(real)/mult(raw) yielding the realtime correction
989          * Otherwise, calculate the realtime correction similar to monotonic
990          *      raw calculation
991          */
992         if (discontinuity) {
993                 corr_real = mul_u64_u32_div
994                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
995         } else {
996                 corr_real = (u64)ktime_to_ns(
997                         ktime_sub(ts->sys_realtime, history->real));
998                 ret = scale64_check_overflow(partial_history_cycles,
999                                              total_history_cycles, &corr_real);
1000                 if (ret)
1001                         return ret;
1002         }
1003
1004         /* Fixup monotonic raw and real time time values */
1005         if (interp_forward) {
1006                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1007                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1008         } else {
1009                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1010                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1011         }
1012
1013         return 0;
1014 }
1015
1016 /*
1017  * cycle_between - true if test occurs chronologically between before and after
1018  */
1019 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1020 {
1021         if (test > before && test < after)
1022                 return true;
1023         if (test < before && before > after)
1024                 return true;
1025         return false;
1026 }
1027
1028 /**
1029  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1030  * @get_time_fn:        Callback to get simultaneous device time and
1031  *      system counter from the device driver
1032  * @ctx:                Context passed to get_time_fn()
1033  * @history_begin:      Historical reference point used to interpolate system
1034  *      time when counter provided by the driver is before the current interval
1035  * @xtstamp:            Receives simultaneously captured system and device time
1036  *
1037  * Reads a timestamp from a device and correlates it to system time
1038  */
1039 int get_device_system_crosststamp(int (*get_time_fn)
1040                                   (ktime_t *device_time,
1041                                    struct system_counterval_t *sys_counterval,
1042                                    void *ctx),
1043                                   void *ctx,
1044                                   struct system_time_snapshot *history_begin,
1045                                   struct system_device_crosststamp *xtstamp)
1046 {
1047         struct system_counterval_t system_counterval;
1048         struct timekeeper *tk = &tk_core.timekeeper;
1049         cycle_t cycles, now, interval_start;
1050         unsigned int clock_was_set_seq = 0;
1051         ktime_t base_real, base_raw;
1052         s64 nsec_real, nsec_raw;
1053         u8 cs_was_changed_seq;
1054         unsigned long seq;
1055         bool do_interp;
1056         int ret;
1057
1058         do {
1059                 seq = read_seqcount_begin(&tk_core.seq);
1060                 /*
1061                  * Try to synchronously capture device time and a system
1062                  * counter value calling back into the device driver
1063                  */
1064                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1065                 if (ret)
1066                         return ret;
1067
1068                 /*
1069                  * Verify that the clocksource associated with the captured
1070                  * system counter value is the same as the currently installed
1071                  * timekeeper clocksource
1072                  */
1073                 if (tk->tkr_mono.clock != system_counterval.cs)
1074                         return -ENODEV;
1075                 cycles = system_counterval.cycles;
1076
1077                 /*
1078                  * Check whether the system counter value provided by the
1079                  * device driver is on the current timekeeping interval.
1080                  */
1081                 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1082                 interval_start = tk->tkr_mono.cycle_last;
1083                 if (!cycle_between(interval_start, cycles, now)) {
1084                         clock_was_set_seq = tk->clock_was_set_seq;
1085                         cs_was_changed_seq = tk->cs_was_changed_seq;
1086                         cycles = interval_start;
1087                         do_interp = true;
1088                 } else {
1089                         do_interp = false;
1090                 }
1091
1092                 base_real = ktime_add(tk->tkr_mono.base,
1093                                       tk_core.timekeeper.offs_real);
1094                 base_raw = tk->tkr_raw.base;
1095
1096                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1097                                                      system_counterval.cycles);
1098                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1099                                                     system_counterval.cycles);
1100         } while (read_seqcount_retry(&tk_core.seq, seq));
1101
1102         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1103         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1104
1105         /*
1106          * Interpolate if necessary, adjusting back from the start of the
1107          * current interval
1108          */
1109         if (do_interp) {
1110                 cycle_t partial_history_cycles, total_history_cycles;
1111                 bool discontinuity;
1112
1113                 /*
1114                  * Check that the counter value occurs after the provided
1115                  * history reference and that the history doesn't cross a
1116                  * clocksource change
1117                  */
1118                 if (!history_begin ||
1119                     !cycle_between(history_begin->cycles,
1120                                    system_counterval.cycles, cycles) ||
1121                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1122                         return -EINVAL;
1123                 partial_history_cycles = cycles - system_counterval.cycles;
1124                 total_history_cycles = cycles - history_begin->cycles;
1125                 discontinuity =
1126                         history_begin->clock_was_set_seq != clock_was_set_seq;
1127
1128                 ret = adjust_historical_crosststamp(history_begin,
1129                                                     partial_history_cycles,
1130                                                     total_history_cycles,
1131                                                     discontinuity, xtstamp);
1132                 if (ret)
1133                         return ret;
1134         }
1135
1136         return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1139
1140 /**
1141  * do_gettimeofday - Returns the time of day in a timeval
1142  * @tv:         pointer to the timeval to be set
1143  *
1144  * NOTE: Users should be converted to using getnstimeofday()
1145  */
1146 void do_gettimeofday(struct timeval *tv)
1147 {
1148         struct timespec64 now;
1149
1150         getnstimeofday64(&now);
1151         tv->tv_sec = now.tv_sec;
1152         tv->tv_usec = now.tv_nsec/1000;
1153 }
1154 EXPORT_SYMBOL(do_gettimeofday);
1155
1156 /**
1157  * do_settimeofday64 - Sets the time of day.
1158  * @ts:     pointer to the timespec64 variable containing the new time
1159  *
1160  * Sets the time of day to the new time and update NTP and notify hrtimers
1161  */
1162 int do_settimeofday64(const struct timespec64 *ts)
1163 {
1164         struct timekeeper *tk = &tk_core.timekeeper;
1165         struct timespec64 ts_delta, xt;
1166         unsigned long flags;
1167         int ret = 0;
1168
1169         if (!timespec64_valid_strict(ts))
1170                 return -EINVAL;
1171
1172         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1173         write_seqcount_begin(&tk_core.seq);
1174
1175         timekeeping_forward_now(tk);
1176
1177         xt = tk_xtime(tk);
1178         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1179         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1180
1181         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1182                 ret = -EINVAL;
1183                 goto out;
1184         }
1185
1186         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1187
1188         tk_set_xtime(tk, ts);
1189 out:
1190         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1191
1192         write_seqcount_end(&tk_core.seq);
1193         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1194
1195         /* signal hrtimers about time change */
1196         clock_was_set();
1197
1198         return ret;
1199 }
1200 EXPORT_SYMBOL(do_settimeofday64);
1201
1202 /**
1203  * timekeeping_inject_offset - Adds or subtracts from the current time.
1204  * @tv:         pointer to the timespec variable containing the offset
1205  *
1206  * Adds or subtracts an offset value from the current time.
1207  */
1208 int timekeeping_inject_offset(struct timespec *ts)
1209 {
1210         struct timekeeper *tk = &tk_core.timekeeper;
1211         unsigned long flags;
1212         struct timespec64 ts64, tmp;
1213         int ret = 0;
1214
1215         if (!timespec_inject_offset_valid(ts))
1216                 return -EINVAL;
1217
1218         ts64 = timespec_to_timespec64(*ts);
1219
1220         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1221         write_seqcount_begin(&tk_core.seq);
1222
1223         timekeeping_forward_now(tk);
1224
1225         /* Make sure the proposed value is valid */
1226         tmp = timespec64_add(tk_xtime(tk),  ts64);
1227         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1228             !timespec64_valid_strict(&tmp)) {
1229                 ret = -EINVAL;
1230                 goto error;
1231         }
1232
1233         tk_xtime_add(tk, &ts64);
1234         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1235
1236 error: /* even if we error out, we forwarded the time, so call update */
1237         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1238
1239         write_seqcount_end(&tk_core.seq);
1240         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1241
1242         /* signal hrtimers about time change */
1243         clock_was_set();
1244
1245         return ret;
1246 }
1247 EXPORT_SYMBOL(timekeeping_inject_offset);
1248
1249
1250 /**
1251  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1252  *
1253  */
1254 s32 timekeeping_get_tai_offset(void)
1255 {
1256         struct timekeeper *tk = &tk_core.timekeeper;
1257         unsigned int seq;
1258         s32 ret;
1259
1260         do {
1261                 seq = read_seqcount_begin(&tk_core.seq);
1262                 ret = tk->tai_offset;
1263         } while (read_seqcount_retry(&tk_core.seq, seq));
1264
1265         return ret;
1266 }
1267
1268 /**
1269  * __timekeeping_set_tai_offset - Lock free worker function
1270  *
1271  */
1272 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1273 {
1274         tk->tai_offset = tai_offset;
1275         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1276 }
1277
1278 /**
1279  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1280  *
1281  */
1282 void timekeeping_set_tai_offset(s32 tai_offset)
1283 {
1284         struct timekeeper *tk = &tk_core.timekeeper;
1285         unsigned long flags;
1286
1287         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1288         write_seqcount_begin(&tk_core.seq);
1289         __timekeeping_set_tai_offset(tk, tai_offset);
1290         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1291         write_seqcount_end(&tk_core.seq);
1292         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1293         clock_was_set();
1294 }
1295
1296 /**
1297  * change_clocksource - Swaps clocksources if a new one is available
1298  *
1299  * Accumulates current time interval and initializes new clocksource
1300  */
1301 static int change_clocksource(void *data)
1302 {
1303         struct timekeeper *tk = &tk_core.timekeeper;
1304         struct clocksource *new, *old;
1305         unsigned long flags;
1306
1307         new = (struct clocksource *) data;
1308
1309         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1310         write_seqcount_begin(&tk_core.seq);
1311
1312         timekeeping_forward_now(tk);
1313         /*
1314          * If the cs is in module, get a module reference. Succeeds
1315          * for built-in code (owner == NULL) as well.
1316          */
1317         if (try_module_get(new->owner)) {
1318                 if (!new->enable || new->enable(new) == 0) {
1319                         old = tk->tkr_mono.clock;
1320                         tk_setup_internals(tk, new);
1321                         if (old->disable)
1322                                 old->disable(old);
1323                         module_put(old->owner);
1324                 } else {
1325                         module_put(new->owner);
1326                 }
1327         }
1328         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1329
1330         write_seqcount_end(&tk_core.seq);
1331         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1332
1333         return 0;
1334 }
1335
1336 /**
1337  * timekeeping_notify - Install a new clock source
1338  * @clock:              pointer to the clock source
1339  *
1340  * This function is called from clocksource.c after a new, better clock
1341  * source has been registered. The caller holds the clocksource_mutex.
1342  */
1343 int timekeeping_notify(struct clocksource *clock)
1344 {
1345         struct timekeeper *tk = &tk_core.timekeeper;
1346
1347         if (tk->tkr_mono.clock == clock)
1348                 return 0;
1349         stop_machine(change_clocksource, clock, NULL);
1350         tick_clock_notify();
1351         return tk->tkr_mono.clock == clock ? 0 : -1;
1352 }
1353
1354 /**
1355  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1356  * @ts:         pointer to the timespec64 to be set
1357  *
1358  * Returns the raw monotonic time (completely un-modified by ntp)
1359  */
1360 void getrawmonotonic64(struct timespec64 *ts)
1361 {
1362         struct timekeeper *tk = &tk_core.timekeeper;
1363         struct timespec64 ts64;
1364         unsigned long seq;
1365         s64 nsecs;
1366
1367         do {
1368                 seq = read_seqcount_begin(&tk_core.seq);
1369                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1370                 ts64 = tk->raw_time;
1371
1372         } while (read_seqcount_retry(&tk_core.seq, seq));
1373
1374         timespec64_add_ns(&ts64, nsecs);
1375         *ts = ts64;
1376 }
1377 EXPORT_SYMBOL(getrawmonotonic64);
1378
1379
1380 /**
1381  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1382  */
1383 int timekeeping_valid_for_hres(void)
1384 {
1385         struct timekeeper *tk = &tk_core.timekeeper;
1386         unsigned long seq;
1387         int ret;
1388
1389         do {
1390                 seq = read_seqcount_begin(&tk_core.seq);
1391
1392                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1393
1394         } while (read_seqcount_retry(&tk_core.seq, seq));
1395
1396         return ret;
1397 }
1398
1399 /**
1400  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1401  */
1402 u64 timekeeping_max_deferment(void)
1403 {
1404         struct timekeeper *tk = &tk_core.timekeeper;
1405         unsigned long seq;
1406         u64 ret;
1407
1408         do {
1409                 seq = read_seqcount_begin(&tk_core.seq);
1410
1411                 ret = tk->tkr_mono.clock->max_idle_ns;
1412
1413         } while (read_seqcount_retry(&tk_core.seq, seq));
1414
1415         return ret;
1416 }
1417
1418 /**
1419  * read_persistent_clock -  Return time from the persistent clock.
1420  *
1421  * Weak dummy function for arches that do not yet support it.
1422  * Reads the time from the battery backed persistent clock.
1423  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1424  *
1425  *  XXX - Do be sure to remove it once all arches implement it.
1426  */
1427 void __weak read_persistent_clock(struct timespec *ts)
1428 {
1429         ts->tv_sec = 0;
1430         ts->tv_nsec = 0;
1431 }
1432
1433 void __weak read_persistent_clock64(struct timespec64 *ts64)
1434 {
1435         struct timespec ts;
1436
1437         read_persistent_clock(&ts);
1438         *ts64 = timespec_to_timespec64(ts);
1439 }
1440
1441 /**
1442  * read_boot_clock64 -  Return time of the system start.
1443  *
1444  * Weak dummy function for arches that do not yet support it.
1445  * Function to read the exact time the system has been started.
1446  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1447  *
1448  *  XXX - Do be sure to remove it once all arches implement it.
1449  */
1450 void __weak read_boot_clock64(struct timespec64 *ts)
1451 {
1452         ts->tv_sec = 0;
1453         ts->tv_nsec = 0;
1454 }
1455
1456 /* Flag for if timekeeping_resume() has injected sleeptime */
1457 static bool sleeptime_injected;
1458
1459 /* Flag for if there is a persistent clock on this platform */
1460 static bool persistent_clock_exists;
1461
1462 /*
1463  * timekeeping_init - Initializes the clocksource and common timekeeping values
1464  */
1465 void __init timekeeping_init(void)
1466 {
1467         struct timekeeper *tk = &tk_core.timekeeper;
1468         struct clocksource *clock;
1469         unsigned long flags;
1470         struct timespec64 now, boot, tmp;
1471
1472         read_persistent_clock64(&now);
1473         if (!timespec64_valid_strict(&now)) {
1474                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1475                         "         Check your CMOS/BIOS settings.\n");
1476                 now.tv_sec = 0;
1477                 now.tv_nsec = 0;
1478         } else if (now.tv_sec || now.tv_nsec)
1479                 persistent_clock_exists = true;
1480
1481         read_boot_clock64(&boot);
1482         if (!timespec64_valid_strict(&boot)) {
1483                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1484                         "         Check your CMOS/BIOS settings.\n");
1485                 boot.tv_sec = 0;
1486                 boot.tv_nsec = 0;
1487         }
1488
1489         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1490         write_seqcount_begin(&tk_core.seq);
1491         ntp_init();
1492
1493         clock = clocksource_default_clock();
1494         if (clock->enable)
1495                 clock->enable(clock);
1496         tk_setup_internals(tk, clock);
1497
1498         tk_set_xtime(tk, &now);
1499         tk->raw_time.tv_sec = 0;
1500         tk->raw_time.tv_nsec = 0;
1501         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1502                 boot = tk_xtime(tk);
1503
1504         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1505         tk_set_wall_to_mono(tk, tmp);
1506
1507         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1508
1509         write_seqcount_end(&tk_core.seq);
1510         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1511 }
1512
1513 /* time in seconds when suspend began for persistent clock */
1514 static struct timespec64 timekeeping_suspend_time;
1515
1516 /**
1517  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1518  * @delta: pointer to a timespec delta value
1519  *
1520  * Takes a timespec offset measuring a suspend interval and properly
1521  * adds the sleep offset to the timekeeping variables.
1522  */
1523 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1524                                            struct timespec64 *delta)
1525 {
1526         if (!timespec64_valid_strict(delta)) {
1527                 printk_deferred(KERN_WARNING
1528                                 "__timekeeping_inject_sleeptime: Invalid "
1529                                 "sleep delta value!\n");
1530                 return;
1531         }
1532         tk_xtime_add(tk, delta);
1533         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1534         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1535         tk_debug_account_sleep_time(delta);
1536 }
1537
1538 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1539 /**
1540  * We have three kinds of time sources to use for sleep time
1541  * injection, the preference order is:
1542  * 1) non-stop clocksource
1543  * 2) persistent clock (ie: RTC accessible when irqs are off)
1544  * 3) RTC
1545  *
1546  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1547  * If system has neither 1) nor 2), 3) will be used finally.
1548  *
1549  *
1550  * If timekeeping has injected sleeptime via either 1) or 2),
1551  * 3) becomes needless, so in this case we don't need to call
1552  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1553  * means.
1554  */
1555 bool timekeeping_rtc_skipresume(void)
1556 {
1557         return sleeptime_injected;
1558 }
1559
1560 /**
1561  * 1) can be determined whether to use or not only when doing
1562  * timekeeping_resume() which is invoked after rtc_suspend(),
1563  * so we can't skip rtc_suspend() surely if system has 1).
1564  *
1565  * But if system has 2), 2) will definitely be used, so in this
1566  * case we don't need to call rtc_suspend(), and this is what
1567  * timekeeping_rtc_skipsuspend() means.
1568  */
1569 bool timekeeping_rtc_skipsuspend(void)
1570 {
1571         return persistent_clock_exists;
1572 }
1573
1574 /**
1575  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1576  * @delta: pointer to a timespec64 delta value
1577  *
1578  * This hook is for architectures that cannot support read_persistent_clock64
1579  * because their RTC/persistent clock is only accessible when irqs are enabled.
1580  * and also don't have an effective nonstop clocksource.
1581  *
1582  * This function should only be called by rtc_resume(), and allows
1583  * a suspend offset to be injected into the timekeeping values.
1584  */
1585 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1586 {
1587         struct timekeeper *tk = &tk_core.timekeeper;
1588         unsigned long flags;
1589
1590         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1591         write_seqcount_begin(&tk_core.seq);
1592
1593         timekeeping_forward_now(tk);
1594
1595         __timekeeping_inject_sleeptime(tk, delta);
1596
1597         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1598
1599         write_seqcount_end(&tk_core.seq);
1600         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1601
1602         /* signal hrtimers about time change */
1603         clock_was_set();
1604 }
1605 #endif
1606
1607 /**
1608  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1609  */
1610 void timekeeping_resume(void)
1611 {
1612         struct timekeeper *tk = &tk_core.timekeeper;
1613         struct clocksource *clock = tk->tkr_mono.clock;
1614         unsigned long flags;
1615         struct timespec64 ts_new, ts_delta;
1616         cycle_t cycle_now, cycle_delta;
1617
1618         sleeptime_injected = false;
1619         read_persistent_clock64(&ts_new);
1620
1621         clockevents_resume();
1622         clocksource_resume();
1623
1624         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1625         write_seqcount_begin(&tk_core.seq);
1626
1627         /*
1628          * After system resumes, we need to calculate the suspended time and
1629          * compensate it for the OS time. There are 3 sources that could be
1630          * used: Nonstop clocksource during suspend, persistent clock and rtc
1631          * device.
1632          *
1633          * One specific platform may have 1 or 2 or all of them, and the
1634          * preference will be:
1635          *      suspend-nonstop clocksource -> persistent clock -> rtc
1636          * The less preferred source will only be tried if there is no better
1637          * usable source. The rtc part is handled separately in rtc core code.
1638          */
1639         cycle_now = tk->tkr_mono.read(clock);
1640         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1641                 cycle_now > tk->tkr_mono.cycle_last) {
1642                 u64 num, max = ULLONG_MAX;
1643                 u32 mult = clock->mult;
1644                 u32 shift = clock->shift;
1645                 s64 nsec = 0;
1646
1647                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1648                                                 tk->tkr_mono.mask);
1649
1650                 /*
1651                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1652                  * suspended time is too long. In that case we need do the
1653                  * 64 bits math carefully
1654                  */
1655                 do_div(max, mult);
1656                 if (cycle_delta > max) {
1657                         num = div64_u64(cycle_delta, max);
1658                         nsec = (((u64) max * mult) >> shift) * num;
1659                         cycle_delta -= num * max;
1660                 }
1661                 nsec += ((u64) cycle_delta * mult) >> shift;
1662
1663                 ts_delta = ns_to_timespec64(nsec);
1664                 sleeptime_injected = true;
1665         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1666                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1667                 sleeptime_injected = true;
1668         }
1669
1670         if (sleeptime_injected)
1671                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1672
1673         /* Re-base the last cycle value */
1674         tk->tkr_mono.cycle_last = cycle_now;
1675         tk->tkr_raw.cycle_last  = cycle_now;
1676
1677         tk->ntp_error = 0;
1678         timekeeping_suspended = 0;
1679         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1680         write_seqcount_end(&tk_core.seq);
1681         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1682
1683         touch_softlockup_watchdog();
1684
1685         tick_resume();
1686         hrtimers_resume();
1687 }
1688
1689 int timekeeping_suspend(void)
1690 {
1691         struct timekeeper *tk = &tk_core.timekeeper;
1692         unsigned long flags;
1693         struct timespec64               delta, delta_delta;
1694         static struct timespec64        old_delta;
1695
1696         read_persistent_clock64(&timekeeping_suspend_time);
1697
1698         /*
1699          * On some systems the persistent_clock can not be detected at
1700          * timekeeping_init by its return value, so if we see a valid
1701          * value returned, update the persistent_clock_exists flag.
1702          */
1703         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1704                 persistent_clock_exists = true;
1705
1706         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1707         write_seqcount_begin(&tk_core.seq);
1708         timekeeping_forward_now(tk);
1709         timekeeping_suspended = 1;
1710
1711         if (persistent_clock_exists) {
1712                 /*
1713                  * To avoid drift caused by repeated suspend/resumes,
1714                  * which each can add ~1 second drift error,
1715                  * try to compensate so the difference in system time
1716                  * and persistent_clock time stays close to constant.
1717                  */
1718                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1719                 delta_delta = timespec64_sub(delta, old_delta);
1720                 if (abs(delta_delta.tv_sec) >= 2) {
1721                         /*
1722                          * if delta_delta is too large, assume time correction
1723                          * has occurred and set old_delta to the current delta.
1724                          */
1725                         old_delta = delta;
1726                 } else {
1727                         /* Otherwise try to adjust old_system to compensate */
1728                         timekeeping_suspend_time =
1729                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1730                 }
1731         }
1732
1733         timekeeping_update(tk, TK_MIRROR);
1734         halt_fast_timekeeper(tk);
1735         write_seqcount_end(&tk_core.seq);
1736         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1737
1738         tick_suspend();
1739         clocksource_suspend();
1740         clockevents_suspend();
1741
1742         return 0;
1743 }
1744
1745 /* sysfs resume/suspend bits for timekeeping */
1746 static struct syscore_ops timekeeping_syscore_ops = {
1747         .resume         = timekeeping_resume,
1748         .suspend        = timekeeping_suspend,
1749 };
1750
1751 static int __init timekeeping_init_ops(void)
1752 {
1753         register_syscore_ops(&timekeeping_syscore_ops);
1754         return 0;
1755 }
1756 device_initcall(timekeeping_init_ops);
1757
1758 /*
1759  * Apply a multiplier adjustment to the timekeeper
1760  */
1761 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1762                                                          s64 offset,
1763                                                          bool negative,
1764                                                          int adj_scale)
1765 {
1766         s64 interval = tk->cycle_interval;
1767         s32 mult_adj = 1;
1768
1769         if (negative) {
1770                 mult_adj = -mult_adj;
1771                 interval = -interval;
1772                 offset  = -offset;
1773         }
1774         mult_adj <<= adj_scale;
1775         interval <<= adj_scale;
1776         offset <<= adj_scale;
1777
1778         /*
1779          * So the following can be confusing.
1780          *
1781          * To keep things simple, lets assume mult_adj == 1 for now.
1782          *
1783          * When mult_adj != 1, remember that the interval and offset values
1784          * have been appropriately scaled so the math is the same.
1785          *
1786          * The basic idea here is that we're increasing the multiplier
1787          * by one, this causes the xtime_interval to be incremented by
1788          * one cycle_interval. This is because:
1789          *      xtime_interval = cycle_interval * mult
1790          * So if mult is being incremented by one:
1791          *      xtime_interval = cycle_interval * (mult + 1)
1792          * Its the same as:
1793          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1794          * Which can be shortened to:
1795          *      xtime_interval += cycle_interval
1796          *
1797          * So offset stores the non-accumulated cycles. Thus the current
1798          * time (in shifted nanoseconds) is:
1799          *      now = (offset * adj) + xtime_nsec
1800          * Now, even though we're adjusting the clock frequency, we have
1801          * to keep time consistent. In other words, we can't jump back
1802          * in time, and we also want to avoid jumping forward in time.
1803          *
1804          * So given the same offset value, we need the time to be the same
1805          * both before and after the freq adjustment.
1806          *      now = (offset * adj_1) + xtime_nsec_1
1807          *      now = (offset * adj_2) + xtime_nsec_2
1808          * So:
1809          *      (offset * adj_1) + xtime_nsec_1 =
1810          *              (offset * adj_2) + xtime_nsec_2
1811          * And we know:
1812          *      adj_2 = adj_1 + 1
1813          * So:
1814          *      (offset * adj_1) + xtime_nsec_1 =
1815          *              (offset * (adj_1+1)) + xtime_nsec_2
1816          *      (offset * adj_1) + xtime_nsec_1 =
1817          *              (offset * adj_1) + offset + xtime_nsec_2
1818          * Canceling the sides:
1819          *      xtime_nsec_1 = offset + xtime_nsec_2
1820          * Which gives us:
1821          *      xtime_nsec_2 = xtime_nsec_1 - offset
1822          * Which simplfies to:
1823          *      xtime_nsec -= offset
1824          *
1825          * XXX - TODO: Doc ntp_error calculation.
1826          */
1827         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1828                 /* NTP adjustment caused clocksource mult overflow */
1829                 WARN_ON_ONCE(1);
1830                 return;
1831         }
1832
1833         tk->tkr_mono.mult += mult_adj;
1834         tk->xtime_interval += interval;
1835         tk->tkr_mono.xtime_nsec -= offset;
1836         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1837 }
1838
1839 /*
1840  * Calculate the multiplier adjustment needed to match the frequency
1841  * specified by NTP
1842  */
1843 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1844                                                         s64 offset)
1845 {
1846         s64 interval = tk->cycle_interval;
1847         s64 xinterval = tk->xtime_interval;
1848         u32 base = tk->tkr_mono.clock->mult;
1849         u32 max = tk->tkr_mono.clock->maxadj;
1850         u32 cur_adj = tk->tkr_mono.mult;
1851         s64 tick_error;
1852         bool negative;
1853         u32 adj_scale;
1854
1855         /* Remove any current error adj from freq calculation */
1856         if (tk->ntp_err_mult)
1857                 xinterval -= tk->cycle_interval;
1858
1859         tk->ntp_tick = ntp_tick_length();
1860
1861         /* Calculate current error per tick */
1862         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1863         tick_error -= (xinterval + tk->xtime_remainder);
1864
1865         /* Don't worry about correcting it if its small */
1866         if (likely((tick_error >= 0) && (tick_error <= interval)))
1867                 return;
1868
1869         /* preserve the direction of correction */
1870         negative = (tick_error < 0);
1871
1872         /* If any adjustment would pass the max, just return */
1873         if (negative && (cur_adj - 1) <= (base - max))
1874                 return;
1875         if (!negative && (cur_adj + 1) >= (base + max))
1876                 return;
1877         /*
1878          * Sort out the magnitude of the correction, but
1879          * avoid making so large a correction that we go
1880          * over the max adjustment.
1881          */
1882         adj_scale = 0;
1883         tick_error = abs(tick_error);
1884         while (tick_error > interval) {
1885                 u32 adj = 1 << (adj_scale + 1);
1886
1887                 /* Check if adjustment gets us within 1 unit from the max */
1888                 if (negative && (cur_adj - adj) <= (base - max))
1889                         break;
1890                 if (!negative && (cur_adj + adj) >= (base + max))
1891                         break;
1892
1893                 adj_scale++;
1894                 tick_error >>= 1;
1895         }
1896
1897         /* scale the corrections */
1898         timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1899 }
1900
1901 /*
1902  * Adjust the timekeeper's multiplier to the correct frequency
1903  * and also to reduce the accumulated error value.
1904  */
1905 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1906 {
1907         /* Correct for the current frequency error */
1908         timekeeping_freqadjust(tk, offset);
1909
1910         /* Next make a small adjustment to fix any cumulative error */
1911         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1912                 tk->ntp_err_mult = 1;
1913                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1914         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1915                 /* Undo any existing error adjustment */
1916                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1917                 tk->ntp_err_mult = 0;
1918         }
1919
1920         if (unlikely(tk->tkr_mono.clock->maxadj &&
1921                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1922                         > tk->tkr_mono.clock->maxadj))) {
1923                 printk_once(KERN_WARNING
1924                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1925                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1926                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1927         }
1928
1929         /*
1930          * It may be possible that when we entered this function, xtime_nsec
1931          * was very small.  Further, if we're slightly speeding the clocksource
1932          * in the code above, its possible the required corrective factor to
1933          * xtime_nsec could cause it to underflow.
1934          *
1935          * Now, since we already accumulated the second, cannot simply roll
1936          * the accumulated second back, since the NTP subsystem has been
1937          * notified via second_overflow. So instead we push xtime_nsec forward
1938          * by the amount we underflowed, and add that amount into the error.
1939          *
1940          * We'll correct this error next time through this function, when
1941          * xtime_nsec is not as small.
1942          */
1943         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1944                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1945                 tk->tkr_mono.xtime_nsec = 0;
1946                 tk->ntp_error += neg << tk->ntp_error_shift;
1947         }
1948 }
1949
1950 /**
1951  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1952  *
1953  * Helper function that accumulates the nsecs greater than a second
1954  * from the xtime_nsec field to the xtime_secs field.
1955  * It also calls into the NTP code to handle leapsecond processing.
1956  *
1957  */
1958 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1959 {
1960         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1961         unsigned int clock_set = 0;
1962
1963         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1964                 int leap;
1965
1966                 tk->tkr_mono.xtime_nsec -= nsecps;
1967                 tk->xtime_sec++;
1968
1969                 /* Figure out if its a leap sec and apply if needed */
1970                 leap = second_overflow(tk->xtime_sec);
1971                 if (unlikely(leap)) {
1972                         struct timespec64 ts;
1973
1974                         tk->xtime_sec += leap;
1975
1976                         ts.tv_sec = leap;
1977                         ts.tv_nsec = 0;
1978                         tk_set_wall_to_mono(tk,
1979                                 timespec64_sub(tk->wall_to_monotonic, ts));
1980
1981                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1982
1983                         clock_set = TK_CLOCK_WAS_SET;
1984                 }
1985         }
1986         return clock_set;
1987 }
1988
1989 /**
1990  * logarithmic_accumulation - shifted accumulation of cycles
1991  *
1992  * This functions accumulates a shifted interval of cycles into
1993  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1994  * loop.
1995  *
1996  * Returns the unconsumed cycles.
1997  */
1998 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1999                                                 u32 shift,
2000                                                 unsigned int *clock_set)
2001 {
2002         cycle_t interval = tk->cycle_interval << shift;
2003         u64 raw_nsecs;
2004
2005         /* If the offset is smaller than a shifted interval, do nothing */
2006         if (offset < interval)
2007                 return offset;
2008
2009         /* Accumulate one shifted interval */
2010         offset -= interval;
2011         tk->tkr_mono.cycle_last += interval;
2012         tk->tkr_raw.cycle_last  += interval;
2013
2014         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2015         *clock_set |= accumulate_nsecs_to_secs(tk);
2016
2017         /* Accumulate raw time */
2018         raw_nsecs = (u64)tk->raw_interval << shift;
2019         raw_nsecs += tk->raw_time.tv_nsec;
2020         if (raw_nsecs >= NSEC_PER_SEC) {
2021                 u64 raw_secs = raw_nsecs;
2022                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2023                 tk->raw_time.tv_sec += raw_secs;
2024         }
2025         tk->raw_time.tv_nsec = raw_nsecs;
2026
2027         /* Accumulate error between NTP and clock interval */
2028         tk->ntp_error += tk->ntp_tick << shift;
2029         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2030                                                 (tk->ntp_error_shift + shift);
2031
2032         return offset;
2033 }
2034
2035 /**
2036  * update_wall_time - Uses the current clocksource to increment the wall time
2037  *
2038  */
2039 void update_wall_time(void)
2040 {
2041         struct timekeeper *real_tk = &tk_core.timekeeper;
2042         struct timekeeper *tk = &shadow_timekeeper;
2043         cycle_t offset;
2044         int shift = 0, maxshift;
2045         unsigned int clock_set = 0;
2046         unsigned long flags;
2047
2048         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2049
2050         /* Make sure we're fully resumed: */
2051         if (unlikely(timekeeping_suspended))
2052                 goto out;
2053
2054 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2055         offset = real_tk->cycle_interval;
2056 #else
2057         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2058                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2059 #endif
2060
2061         /* Check if there's really nothing to do */
2062         if (offset < real_tk->cycle_interval)
2063                 goto out;
2064
2065         /* Do some additional sanity checking */
2066         timekeeping_check_update(real_tk, offset);
2067
2068         /*
2069          * With NO_HZ we may have to accumulate many cycle_intervals
2070          * (think "ticks") worth of time at once. To do this efficiently,
2071          * we calculate the largest doubling multiple of cycle_intervals
2072          * that is smaller than the offset.  We then accumulate that
2073          * chunk in one go, and then try to consume the next smaller
2074          * doubled multiple.
2075          */
2076         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2077         shift = max(0, shift);
2078         /* Bound shift to one less than what overflows tick_length */
2079         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2080         shift = min(shift, maxshift);
2081         while (offset >= tk->cycle_interval) {
2082                 offset = logarithmic_accumulation(tk, offset, shift,
2083                                                         &clock_set);
2084                 if (offset < tk->cycle_interval<<shift)
2085                         shift--;
2086         }
2087
2088         /* correct the clock when NTP error is too big */
2089         timekeeping_adjust(tk, offset);
2090
2091         /*
2092          * XXX This can be killed once everyone converts
2093          * to the new update_vsyscall.
2094          */
2095         old_vsyscall_fixup(tk);
2096
2097         /*
2098          * Finally, make sure that after the rounding
2099          * xtime_nsec isn't larger than NSEC_PER_SEC
2100          */
2101         clock_set |= accumulate_nsecs_to_secs(tk);
2102
2103         write_seqcount_begin(&tk_core.seq);
2104         /*
2105          * Update the real timekeeper.
2106          *
2107          * We could avoid this memcpy by switching pointers, but that
2108          * requires changes to all other timekeeper usage sites as
2109          * well, i.e. move the timekeeper pointer getter into the
2110          * spinlocked/seqcount protected sections. And we trade this
2111          * memcpy under the tk_core.seq against one before we start
2112          * updating.
2113          */
2114         timekeeping_update(tk, clock_set);
2115         memcpy(real_tk, tk, sizeof(*tk));
2116         /* The memcpy must come last. Do not put anything here! */
2117         write_seqcount_end(&tk_core.seq);
2118 out:
2119         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2120         if (clock_set)
2121                 /* Have to call _delayed version, since in irq context*/
2122                 clock_was_set_delayed();
2123 }
2124
2125 /**
2126  * getboottime64 - Return the real time of system boot.
2127  * @ts:         pointer to the timespec64 to be set
2128  *
2129  * Returns the wall-time of boot in a timespec64.
2130  *
2131  * This is based on the wall_to_monotonic offset and the total suspend
2132  * time. Calls to settimeofday will affect the value returned (which
2133  * basically means that however wrong your real time clock is at boot time,
2134  * you get the right time here).
2135  */
2136 void getboottime64(struct timespec64 *ts)
2137 {
2138         struct timekeeper *tk = &tk_core.timekeeper;
2139         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2140
2141         *ts = ktime_to_timespec64(t);
2142 }
2143 EXPORT_SYMBOL_GPL(getboottime64);
2144
2145 unsigned long get_seconds(void)
2146 {
2147         struct timekeeper *tk = &tk_core.timekeeper;
2148
2149         return tk->xtime_sec;
2150 }
2151 EXPORT_SYMBOL(get_seconds);
2152
2153 struct timespec __current_kernel_time(void)
2154 {
2155         struct timekeeper *tk = &tk_core.timekeeper;
2156
2157         return timespec64_to_timespec(tk_xtime(tk));
2158 }
2159
2160 struct timespec64 current_kernel_time64(void)
2161 {
2162         struct timekeeper *tk = &tk_core.timekeeper;
2163         struct timespec64 now;
2164         unsigned long seq;
2165
2166         do {
2167                 seq = read_seqcount_begin(&tk_core.seq);
2168
2169                 now = tk_xtime(tk);
2170         } while (read_seqcount_retry(&tk_core.seq, seq));
2171
2172         return now;
2173 }
2174 EXPORT_SYMBOL(current_kernel_time64);
2175
2176 struct timespec64 get_monotonic_coarse64(void)
2177 {
2178         struct timekeeper *tk = &tk_core.timekeeper;
2179         struct timespec64 now, mono;
2180         unsigned long seq;
2181
2182         do {
2183                 seq = read_seqcount_begin(&tk_core.seq);
2184
2185                 now = tk_xtime(tk);
2186                 mono = tk->wall_to_monotonic;
2187         } while (read_seqcount_retry(&tk_core.seq, seq));
2188
2189         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2190                                 now.tv_nsec + mono.tv_nsec);
2191
2192         return now;
2193 }
2194 EXPORT_SYMBOL(get_monotonic_coarse64);
2195
2196 /*
2197  * Must hold jiffies_lock
2198  */
2199 void do_timer(unsigned long ticks)
2200 {
2201         jiffies_64 += ticks;
2202         calc_global_load(ticks);
2203 }
2204
2205 /**
2206  * ktime_get_update_offsets_now - hrtimer helper
2207  * @cwsseq:     pointer to check and store the clock was set sequence number
2208  * @offs_real:  pointer to storage for monotonic -> realtime offset
2209  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2210  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2211  *
2212  * Returns current monotonic time and updates the offsets if the
2213  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2214  * different.
2215  *
2216  * Called from hrtimer_interrupt() or retrigger_next_event()
2217  */
2218 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2219                                      ktime_t *offs_boot, ktime_t *offs_tai)
2220 {
2221         struct timekeeper *tk = &tk_core.timekeeper;
2222         unsigned int seq;
2223         ktime_t base;
2224         u64 nsecs;
2225
2226         do {
2227                 seq = read_seqcount_begin(&tk_core.seq);
2228
2229                 base = tk->tkr_mono.base;
2230                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2231                 base = ktime_add_ns(base, nsecs);
2232
2233                 if (*cwsseq != tk->clock_was_set_seq) {
2234                         *cwsseq = tk->clock_was_set_seq;
2235                         *offs_real = tk->offs_real;
2236                         *offs_boot = tk->offs_boot;
2237                         *offs_tai = tk->offs_tai;
2238                 }
2239
2240                 /* Handle leapsecond insertion adjustments */
2241                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2242                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2243
2244         } while (read_seqcount_retry(&tk_core.seq, seq));
2245
2246         return base;
2247 }
2248
2249 /**
2250  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2251  */
2252 int do_adjtimex(struct timex *txc)
2253 {
2254         struct timekeeper *tk = &tk_core.timekeeper;
2255         unsigned long flags;
2256         struct timespec64 ts;
2257         s32 orig_tai, tai;
2258         int ret;
2259
2260         /* Validate the data before disabling interrupts */
2261         ret = ntp_validate_timex(txc);
2262         if (ret)
2263                 return ret;
2264
2265         if (txc->modes & ADJ_SETOFFSET) {
2266                 struct timespec delta;
2267                 delta.tv_sec  = txc->time.tv_sec;
2268                 delta.tv_nsec = txc->time.tv_usec;
2269                 if (!(txc->modes & ADJ_NANO))
2270                         delta.tv_nsec *= 1000;
2271                 ret = timekeeping_inject_offset(&delta);
2272                 if (ret)
2273                         return ret;
2274         }
2275
2276         getnstimeofday64(&ts);
2277
2278         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2279         write_seqcount_begin(&tk_core.seq);
2280
2281         orig_tai = tai = tk->tai_offset;
2282         ret = __do_adjtimex(txc, &ts, &tai);
2283
2284         if (tai != orig_tai) {
2285                 __timekeeping_set_tai_offset(tk, tai);
2286                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2287         }
2288         tk_update_leap_state(tk);
2289
2290         write_seqcount_end(&tk_core.seq);
2291         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2292
2293         if (tai != orig_tai)
2294                 clock_was_set();
2295
2296         ntp_notify_cmos_timer();
2297
2298         return ret;
2299 }
2300
2301 #ifdef CONFIG_NTP_PPS
2302 /**
2303  * hardpps() - Accessor function to NTP __hardpps function
2304  */
2305 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2306 {
2307         unsigned long flags;
2308
2309         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2310         write_seqcount_begin(&tk_core.seq);
2311
2312         __hardpps(phase_ts, raw_ts);
2313
2314         write_seqcount_end(&tk_core.seq);
2315         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2316 }
2317 EXPORT_SYMBOL(hardpps);
2318 #endif
2319
2320 /**
2321  * xtime_update() - advances the timekeeping infrastructure
2322  * @ticks:      number of ticks, that have elapsed since the last call.
2323  *
2324  * Must be called with interrupts disabled.
2325  */
2326 void xtime_update(unsigned long ticks)
2327 {
2328         write_seqlock(&jiffies_lock);
2329         do_timer(ticks);
2330         write_sequnlock(&jiffies_lock);
2331         update_wall_time();
2332 }