1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 * No idle tick implementation for low and high resolution timers
9 * Started by: Thomas Gleixner and Ingo Molnar
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
30 #include <asm/irq_regs.h>
32 #include "tick-internal.h"
34 #include <trace/events/timer.h>
37 * Per-CPU nohz control structure
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 struct tick_sched *tick_get_tick_sched(int cpu)
43 return &per_cpu(tick_cpu_sched, cpu);
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48 * The time, when the last jiffy update happened. Write access must hold
49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50 * consistent view of jiffies and last_jiffies_update.
52 static ktime_t last_jiffies_update;
55 * Must be called with interrupts disabled !
57 static void tick_do_update_jiffies64(ktime_t now)
59 unsigned long ticks = 1;
63 * 64bit can do a quick check without holding jiffies lock and
64 * without looking at the sequence count. The smp_load_acquire()
65 * pairs with the update done later in this function.
67 * 32bit cannot do that because the store of tick_next_period
68 * consists of two 32bit stores and the first store could move it
69 * to a random point in the future.
71 if (IS_ENABLED(CONFIG_64BIT)) {
72 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
78 * Avoid contention on jiffies_lock and protect the quick
79 * check with the sequence count.
82 seq = read_seqcount_begin(&jiffies_seq);
83 nextp = tick_next_period;
84 } while (read_seqcount_retry(&jiffies_seq, seq));
86 if (ktime_before(now, nextp))
90 /* Quick check failed, i.e. update is required. */
91 raw_spin_lock(&jiffies_lock);
93 * Reevaluate with the lock held. Another CPU might have done the
96 if (ktime_before(now, tick_next_period)) {
97 raw_spin_unlock(&jiffies_lock);
101 write_seqcount_begin(&jiffies_seq);
103 delta = ktime_sub(now, tick_next_period);
104 if (unlikely(delta >= TICK_NSEC)) {
105 /* Slow path for long idle sleep times */
106 s64 incr = TICK_NSEC;
108 ticks += ktime_divns(delta, incr);
110 last_jiffies_update = ktime_add_ns(last_jiffies_update,
113 last_jiffies_update = ktime_add_ns(last_jiffies_update,
117 /* Advance jiffies to complete the jiffies_seq protected job */
121 * Keep the tick_next_period variable up to date.
123 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
125 if (IS_ENABLED(CONFIG_64BIT)) {
127 * Pairs with smp_load_acquire() in the lockless quick
128 * check above and ensures that the update to jiffies_64 is
129 * not reordered vs. the store to tick_next_period, neither
130 * by the compiler nor by the CPU.
132 smp_store_release(&tick_next_period, nextp);
135 * A plain store is good enough on 32bit as the quick check
136 * above is protected by the sequence count.
138 tick_next_period = nextp;
142 * Release the sequence count. calc_global_load() below is not
143 * protected by it, but jiffies_lock needs to be held to prevent
144 * concurrent invocations.
146 write_seqcount_end(&jiffies_seq);
150 raw_spin_unlock(&jiffies_lock);
155 * Initialize and return retrieve the jiffies update.
157 static ktime_t tick_init_jiffy_update(void)
161 raw_spin_lock(&jiffies_lock);
162 write_seqcount_begin(&jiffies_seq);
163 /* Did we start the jiffies update yet ? */
164 if (last_jiffies_update == 0)
165 last_jiffies_update = tick_next_period;
166 period = last_jiffies_update;
167 write_seqcount_end(&jiffies_seq);
168 raw_spin_unlock(&jiffies_lock);
172 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
174 int cpu = smp_processor_id();
176 #ifdef CONFIG_NO_HZ_COMMON
178 * Check if the do_timer duty was dropped. We don't care about
179 * concurrency: This happens only when the CPU in charge went
180 * into a long sleep. If two CPUs happen to assign themselves to
181 * this duty, then the jiffies update is still serialized by
184 * If nohz_full is enabled, this should not happen because the
185 * tick_do_timer_cpu never relinquishes.
187 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
188 #ifdef CONFIG_NO_HZ_FULL
189 WARN_ON(tick_nohz_full_running);
191 tick_do_timer_cpu = cpu;
195 /* Check, if the jiffies need an update */
196 if (tick_do_timer_cpu == cpu)
197 tick_do_update_jiffies64(now);
200 ts->got_idle_tick = 1;
203 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
205 #ifdef CONFIG_NO_HZ_COMMON
207 * When we are idle and the tick is stopped, we have to touch
208 * the watchdog as we might not schedule for a really long
209 * time. This happens on complete idle SMP systems while
210 * waiting on the login prompt. We also increment the "start of
211 * idle" jiffy stamp so the idle accounting adjustment we do
212 * when we go busy again does not account too much ticks.
214 if (ts->tick_stopped) {
215 touch_softlockup_watchdog_sched();
216 if (is_idle_task(current))
219 * In case the current tick fired too early past its expected
220 * expiration, make sure we don't bypass the next clock reprogramming
221 * to the same deadline.
226 update_process_times(user_mode(regs));
227 profile_tick(CPU_PROFILING);
231 #ifdef CONFIG_NO_HZ_FULL
232 cpumask_var_t tick_nohz_full_mask;
233 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
234 bool tick_nohz_full_running;
235 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
236 static atomic_t tick_dep_mask;
238 static bool check_tick_dependency(atomic_t *dep)
240 int val = atomic_read(dep);
242 if (val & TICK_DEP_MASK_POSIX_TIMER) {
243 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
247 if (val & TICK_DEP_MASK_PERF_EVENTS) {
248 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
252 if (val & TICK_DEP_MASK_SCHED) {
253 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
257 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
258 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
262 if (val & TICK_DEP_MASK_RCU) {
263 trace_tick_stop(0, TICK_DEP_MASK_RCU);
270 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
272 lockdep_assert_irqs_disabled();
274 if (unlikely(!cpu_online(cpu)))
277 if (check_tick_dependency(&tick_dep_mask))
280 if (check_tick_dependency(&ts->tick_dep_mask))
283 if (check_tick_dependency(¤t->tick_dep_mask))
286 if (check_tick_dependency(¤t->signal->tick_dep_mask))
292 static void nohz_full_kick_func(struct irq_work *work)
294 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
297 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
298 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
301 * Kick this CPU if it's full dynticks in order to force it to
302 * re-evaluate its dependency on the tick and restart it if necessary.
303 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
306 static void tick_nohz_full_kick(void)
308 if (!tick_nohz_full_cpu(smp_processor_id()))
311 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
315 * Kick the CPU if it's full dynticks in order to force it to
316 * re-evaluate its dependency on the tick and restart it if necessary.
318 void tick_nohz_full_kick_cpu(int cpu)
320 if (!tick_nohz_full_cpu(cpu))
323 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
327 * Kick all full dynticks CPUs in order to force these to re-evaluate
328 * their dependency on the tick and restart it if necessary.
330 static void tick_nohz_full_kick_all(void)
334 if (!tick_nohz_full_running)
338 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
339 tick_nohz_full_kick_cpu(cpu);
343 static void tick_nohz_dep_set_all(atomic_t *dep,
344 enum tick_dep_bits bit)
348 prev = atomic_fetch_or(BIT(bit), dep);
350 tick_nohz_full_kick_all();
354 * Set a global tick dependency. Used by perf events that rely on freq and
357 void tick_nohz_dep_set(enum tick_dep_bits bit)
359 tick_nohz_dep_set_all(&tick_dep_mask, bit);
362 void tick_nohz_dep_clear(enum tick_dep_bits bit)
364 atomic_andnot(BIT(bit), &tick_dep_mask);
368 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
369 * manage events throttling.
371 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
374 struct tick_sched *ts;
376 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
378 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
381 /* Perf needs local kick that is NMI safe */
382 if (cpu == smp_processor_id()) {
383 tick_nohz_full_kick();
385 /* Remote irq work not NMI-safe */
386 if (!WARN_ON_ONCE(in_nmi()))
387 tick_nohz_full_kick_cpu(cpu);
392 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
394 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
396 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
398 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
400 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
403 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
404 * in order to elapse per task timers.
406 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
408 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
409 if (tsk == current) {
411 tick_nohz_full_kick();
415 * Some future tick_nohz_full_kick_task()
416 * should optimize this.
418 tick_nohz_full_kick_all();
422 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
424 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
426 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
428 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
431 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
432 * per process timers.
434 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
436 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
439 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
441 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
445 * Re-evaluate the need for the tick as we switch the current task.
446 * It might need the tick due to per task/process properties:
447 * perf events, posix CPU timers, ...
449 void __tick_nohz_task_switch(void)
452 struct tick_sched *ts;
454 local_irq_save(flags);
456 if (!tick_nohz_full_cpu(smp_processor_id()))
459 ts = this_cpu_ptr(&tick_cpu_sched);
461 if (ts->tick_stopped) {
462 if (atomic_read(¤t->tick_dep_mask) ||
463 atomic_read(¤t->signal->tick_dep_mask))
464 tick_nohz_full_kick();
467 local_irq_restore(flags);
470 /* Get the boot-time nohz CPU list from the kernel parameters. */
471 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
473 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
474 cpumask_copy(tick_nohz_full_mask, cpumask);
475 tick_nohz_full_running = true;
477 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
479 static int tick_nohz_cpu_down(unsigned int cpu)
482 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
483 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
484 * CPUs. It must remain online when nohz full is enabled.
486 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
491 void __init tick_nohz_init(void)
495 if (!tick_nohz_full_running)
499 * Full dynticks uses irq work to drive the tick rescheduling on safe
500 * locking contexts. But then we need irq work to raise its own
501 * interrupts to avoid circular dependency on the tick
503 if (!arch_irq_work_has_interrupt()) {
504 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
505 cpumask_clear(tick_nohz_full_mask);
506 tick_nohz_full_running = false;
510 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
511 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
512 cpu = smp_processor_id();
514 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
515 pr_warn("NO_HZ: Clearing %d from nohz_full range "
516 "for timekeeping\n", cpu);
517 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
521 for_each_cpu(cpu, tick_nohz_full_mask)
522 context_tracking_cpu_set(cpu);
524 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
525 "kernel/nohz:predown", NULL,
528 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
529 cpumask_pr_args(tick_nohz_full_mask));
534 * NOHZ - aka dynamic tick functionality
536 #ifdef CONFIG_NO_HZ_COMMON
540 bool tick_nohz_enabled __read_mostly = true;
541 unsigned long tick_nohz_active __read_mostly;
543 * Enable / Disable tickless mode
545 static int __init setup_tick_nohz(char *str)
547 return (kstrtobool(str, &tick_nohz_enabled) == 0);
550 __setup("nohz=", setup_tick_nohz);
552 bool tick_nohz_tick_stopped(void)
554 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
556 return ts->tick_stopped;
559 bool tick_nohz_tick_stopped_cpu(int cpu)
561 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
563 return ts->tick_stopped;
567 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
569 * Called from interrupt entry when the CPU was idle
571 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
572 * must be updated. Otherwise an interrupt handler could use a stale jiffy
573 * value. We do this unconditionally on any CPU, as we don't know whether the
574 * CPU, which has the update task assigned is in a long sleep.
576 static void tick_nohz_update_jiffies(ktime_t now)
580 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
582 local_irq_save(flags);
583 tick_do_update_jiffies64(now);
584 local_irq_restore(flags);
586 touch_softlockup_watchdog_sched();
590 * Updates the per-CPU time idle statistics counters
593 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
597 if (ts->idle_active) {
598 delta = ktime_sub(now, ts->idle_entrytime);
599 if (nr_iowait_cpu(cpu) > 0)
600 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
602 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
603 ts->idle_entrytime = now;
606 if (last_update_time)
607 *last_update_time = ktime_to_us(now);
611 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
613 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
616 sched_clock_idle_wakeup_event();
619 static void tick_nohz_start_idle(struct tick_sched *ts)
621 ts->idle_entrytime = ktime_get();
623 sched_clock_idle_sleep_event();
627 * get_cpu_idle_time_us - get the total idle time of a CPU
628 * @cpu: CPU number to query
629 * @last_update_time: variable to store update time in. Do not update
632 * Return the cumulative idle time (since boot) for a given
633 * CPU, in microseconds.
635 * This time is measured via accounting rather than sampling,
636 * and is as accurate as ktime_get() is.
638 * This function returns -1 if NOHZ is not enabled.
640 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
642 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
645 if (!tick_nohz_active)
649 if (last_update_time) {
650 update_ts_time_stats(cpu, ts, now, last_update_time);
651 idle = ts->idle_sleeptime;
653 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
654 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
656 idle = ktime_add(ts->idle_sleeptime, delta);
658 idle = ts->idle_sleeptime;
662 return ktime_to_us(idle);
665 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
668 * get_cpu_iowait_time_us - get the total iowait time of a CPU
669 * @cpu: CPU number to query
670 * @last_update_time: variable to store update time in. Do not update
673 * Return the cumulative iowait time (since boot) for a given
674 * CPU, in microseconds.
676 * This time is measured via accounting rather than sampling,
677 * and is as accurate as ktime_get() is.
679 * This function returns -1 if NOHZ is not enabled.
681 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
683 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
686 if (!tick_nohz_active)
690 if (last_update_time) {
691 update_ts_time_stats(cpu, ts, now, last_update_time);
692 iowait = ts->iowait_sleeptime;
694 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
695 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
697 iowait = ktime_add(ts->iowait_sleeptime, delta);
699 iowait = ts->iowait_sleeptime;
703 return ktime_to_us(iowait);
705 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
707 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
709 hrtimer_cancel(&ts->sched_timer);
710 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
712 /* Forward the time to expire in the future */
713 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
715 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
716 hrtimer_start_expires(&ts->sched_timer,
717 HRTIMER_MODE_ABS_PINNED_HARD);
719 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
723 * Reset to make sure next tick stop doesn't get fooled by past
724 * cached clock deadline.
729 static inline bool local_timer_softirq_pending(void)
731 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
734 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
736 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
737 unsigned long basejiff;
740 /* Read jiffies and the time when jiffies were updated last */
742 seq = read_seqcount_begin(&jiffies_seq);
743 basemono = last_jiffies_update;
745 } while (read_seqcount_retry(&jiffies_seq, seq));
746 ts->last_jiffies = basejiff;
747 ts->timer_expires_base = basemono;
750 * Keep the periodic tick, when RCU, architecture or irq_work
752 * Aside of that check whether the local timer softirq is
753 * pending. If so its a bad idea to call get_next_timer_interrupt()
754 * because there is an already expired timer, so it will request
755 * immediate expiry, which rearms the hardware timer with a
756 * minimal delta which brings us back to this place
757 * immediately. Lather, rinse and repeat...
759 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
760 irq_work_needs_cpu() || local_timer_softirq_pending()) {
761 next_tick = basemono + TICK_NSEC;
764 * Get the next pending timer. If high resolution
765 * timers are enabled this only takes the timer wheel
766 * timers into account. If high resolution timers are
767 * disabled this also looks at the next expiring
770 next_tmr = get_next_timer_interrupt(basejiff, basemono);
771 ts->next_timer = next_tmr;
772 /* Take the next rcu event into account */
773 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
777 * If the tick is due in the next period, keep it ticking or
778 * force prod the timer.
780 delta = next_tick - basemono;
781 if (delta <= (u64)TICK_NSEC) {
783 * Tell the timer code that the base is not idle, i.e. undo
784 * the effect of get_next_timer_interrupt():
788 * We've not stopped the tick yet, and there's a timer in the
789 * next period, so no point in stopping it either, bail.
791 if (!ts->tick_stopped) {
792 ts->timer_expires = 0;
798 * If this CPU is the one which had the do_timer() duty last, we limit
799 * the sleep time to the timekeeping max_deferment value.
800 * Otherwise we can sleep as long as we want.
802 delta = timekeeping_max_deferment();
803 if (cpu != tick_do_timer_cpu &&
804 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
807 /* Calculate the next expiry time */
808 if (delta < (KTIME_MAX - basemono))
809 expires = basemono + delta;
813 ts->timer_expires = min_t(u64, expires, next_tick);
816 return ts->timer_expires;
819 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
821 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
822 u64 basemono = ts->timer_expires_base;
823 u64 expires = ts->timer_expires;
824 ktime_t tick = expires;
826 /* Make sure we won't be trying to stop it twice in a row. */
827 ts->timer_expires_base = 0;
830 * If this CPU is the one which updates jiffies, then give up
831 * the assignment and let it be taken by the CPU which runs
832 * the tick timer next, which might be this CPU as well. If we
833 * don't drop this here the jiffies might be stale and
834 * do_timer() never invoked. Keep track of the fact that it
835 * was the one which had the do_timer() duty last.
837 if (cpu == tick_do_timer_cpu) {
838 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
839 ts->do_timer_last = 1;
840 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
841 ts->do_timer_last = 0;
844 /* Skip reprogram of event if its not changed */
845 if (ts->tick_stopped && (expires == ts->next_tick)) {
846 /* Sanity check: make sure clockevent is actually programmed */
847 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
851 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
852 basemono, ts->next_tick, dev->next_event,
853 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
857 * nohz_stop_sched_tick can be called several times before
858 * the nohz_restart_sched_tick is called. This happens when
859 * interrupts arrive which do not cause a reschedule. In the
860 * first call we save the current tick time, so we can restart
861 * the scheduler tick in nohz_restart_sched_tick.
863 if (!ts->tick_stopped) {
864 calc_load_nohz_start();
867 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
868 ts->tick_stopped = 1;
869 trace_tick_stop(1, TICK_DEP_MASK_NONE);
872 ts->next_tick = tick;
875 * If the expiration time == KTIME_MAX, then we simply stop
878 if (unlikely(expires == KTIME_MAX)) {
879 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
880 hrtimer_cancel(&ts->sched_timer);
884 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
885 hrtimer_start(&ts->sched_timer, tick,
886 HRTIMER_MODE_ABS_PINNED_HARD);
888 hrtimer_set_expires(&ts->sched_timer, tick);
889 tick_program_event(tick, 1);
893 static void tick_nohz_retain_tick(struct tick_sched *ts)
895 ts->timer_expires_base = 0;
898 #ifdef CONFIG_NO_HZ_FULL
899 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
901 if (tick_nohz_next_event(ts, cpu))
902 tick_nohz_stop_tick(ts, cpu);
904 tick_nohz_retain_tick(ts);
906 #endif /* CONFIG_NO_HZ_FULL */
908 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
910 /* Update jiffies first */
911 tick_do_update_jiffies64(now);
914 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
915 * the clock forward checks in the enqueue path:
919 calc_load_nohz_stop();
920 touch_softlockup_watchdog_sched();
922 * Cancel the scheduled timer and restore the tick
924 ts->tick_stopped = 0;
925 ts->idle_exittime = now;
927 tick_nohz_restart(ts, now);
930 static void tick_nohz_full_update_tick(struct tick_sched *ts)
932 #ifdef CONFIG_NO_HZ_FULL
933 int cpu = smp_processor_id();
935 if (!tick_nohz_full_cpu(cpu))
938 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
941 if (can_stop_full_tick(cpu, ts))
942 tick_nohz_stop_sched_tick(ts, cpu);
943 else if (ts->tick_stopped)
944 tick_nohz_restart_sched_tick(ts, ktime_get());
948 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
951 * If this CPU is offline and it is the one which updates
952 * jiffies, then give up the assignment and let it be taken by
953 * the CPU which runs the tick timer next. If we don't drop
954 * this here the jiffies might be stale and do_timer() never
957 if (unlikely(!cpu_online(cpu))) {
958 if (cpu == tick_do_timer_cpu)
959 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
961 * Make sure the CPU doesn't get fooled by obsolete tick
962 * deadline if it comes back online later.
968 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
974 if (unlikely(local_softirq_pending())) {
975 static int ratelimit;
977 if (ratelimit < 10 && !local_bh_blocked() &&
978 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
979 pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
980 (unsigned int) local_softirq_pending());
986 if (tick_nohz_full_enabled()) {
988 * Keep the tick alive to guarantee timekeeping progression
989 * if there are full dynticks CPUs around
991 if (tick_do_timer_cpu == cpu)
994 /* Should not happen for nohz-full */
995 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1002 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1005 int cpu = smp_processor_id();
1008 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1009 * tick timer expiration time is known already.
1011 if (ts->timer_expires_base)
1012 expires = ts->timer_expires;
1013 else if (can_stop_idle_tick(cpu, ts))
1014 expires = tick_nohz_next_event(ts, cpu);
1020 if (expires > 0LL) {
1021 int was_stopped = ts->tick_stopped;
1023 tick_nohz_stop_tick(ts, cpu);
1026 ts->idle_expires = expires;
1028 if (!was_stopped && ts->tick_stopped) {
1029 ts->idle_jiffies = ts->last_jiffies;
1030 nohz_balance_enter_idle(cpu);
1033 tick_nohz_retain_tick(ts);
1038 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1040 * When the next event is more than a tick into the future, stop the idle tick
1042 void tick_nohz_idle_stop_tick(void)
1044 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1047 void tick_nohz_idle_retain_tick(void)
1049 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1051 * Undo the effect of get_next_timer_interrupt() called from
1052 * tick_nohz_next_event().
1058 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1060 * Called when we start the idle loop.
1062 void tick_nohz_idle_enter(void)
1064 struct tick_sched *ts;
1066 lockdep_assert_irqs_enabled();
1068 local_irq_disable();
1070 ts = this_cpu_ptr(&tick_cpu_sched);
1072 WARN_ON_ONCE(ts->timer_expires_base);
1075 tick_nohz_start_idle(ts);
1081 * tick_nohz_irq_exit - update next tick event from interrupt exit
1083 * When an interrupt fires while we are idle and it doesn't cause
1084 * a reschedule, it may still add, modify or delete a timer, enqueue
1085 * an RCU callback, etc...
1086 * So we need to re-calculate and reprogram the next tick event.
1088 void tick_nohz_irq_exit(void)
1090 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1093 tick_nohz_start_idle(ts);
1095 tick_nohz_full_update_tick(ts);
1099 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1101 bool tick_nohz_idle_got_tick(void)
1103 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1105 if (ts->got_idle_tick) {
1106 ts->got_idle_tick = 0;
1113 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1114 * or the tick, whatever that expires first. Note that, if the tick has been
1115 * stopped, it returns the next hrtimer.
1117 * Called from power state control code with interrupts disabled
1119 ktime_t tick_nohz_get_next_hrtimer(void)
1121 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1125 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1126 * @delta_next: duration until the next event if the tick cannot be stopped
1128 * Called from power state control code with interrupts disabled.
1130 * The return value of this function and/or the value returned by it through the
1131 * @delta_next pointer can be negative which must be taken into account by its
1134 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1136 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1137 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1138 int cpu = smp_processor_id();
1140 * The idle entry time is expected to be a sufficient approximation of
1141 * the current time at this point.
1143 ktime_t now = ts->idle_entrytime;
1146 WARN_ON_ONCE(!ts->inidle);
1148 *delta_next = ktime_sub(dev->next_event, now);
1150 if (!can_stop_idle_tick(cpu, ts))
1153 next_event = tick_nohz_next_event(ts, cpu);
1158 * If the next highres timer to expire is earlier than next_event, the
1159 * idle governor needs to know that.
1161 next_event = min_t(u64, next_event,
1162 hrtimer_next_event_without(&ts->sched_timer));
1164 return ktime_sub(next_event, now);
1168 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1169 * for a particular CPU.
1171 * Called from the schedutil frequency scaling governor in scheduler context.
1173 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1175 struct tick_sched *ts = tick_get_tick_sched(cpu);
1177 return ts->idle_calls;
1181 * tick_nohz_get_idle_calls - return the current idle calls counter value
1183 * Called from the schedutil frequency scaling governor in scheduler context.
1185 unsigned long tick_nohz_get_idle_calls(void)
1187 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1189 return ts->idle_calls;
1192 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1194 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1195 unsigned long ticks;
1197 if (vtime_accounting_enabled_this_cpu())
1200 * We stopped the tick in idle. Update process times would miss the
1201 * time we slept as update_process_times does only a 1 tick
1202 * accounting. Enforce that this is accounted to idle !
1204 ticks = jiffies - ts->idle_jiffies;
1206 * We might be one off. Do not randomly account a huge number of ticks!
1208 if (ticks && ticks < LONG_MAX)
1209 account_idle_ticks(ticks);
1213 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1215 tick_nohz_restart_sched_tick(ts, now);
1216 tick_nohz_account_idle_ticks(ts);
1219 void tick_nohz_idle_restart_tick(void)
1221 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1223 if (ts->tick_stopped)
1224 __tick_nohz_idle_restart_tick(ts, ktime_get());
1228 * tick_nohz_idle_exit - restart the idle tick from the idle task
1230 * Restart the idle tick when the CPU is woken up from idle
1231 * This also exit the RCU extended quiescent state. The CPU
1232 * can use RCU again after this function is called.
1234 void tick_nohz_idle_exit(void)
1236 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1237 bool idle_active, tick_stopped;
1240 local_irq_disable();
1242 WARN_ON_ONCE(!ts->inidle);
1243 WARN_ON_ONCE(ts->timer_expires_base);
1246 idle_active = ts->idle_active;
1247 tick_stopped = ts->tick_stopped;
1249 if (idle_active || tick_stopped)
1253 tick_nohz_stop_idle(ts, now);
1256 __tick_nohz_idle_restart_tick(ts, now);
1262 * The nohz low res interrupt handler
1264 static void tick_nohz_handler(struct clock_event_device *dev)
1266 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1267 struct pt_regs *regs = get_irq_regs();
1268 ktime_t now = ktime_get();
1270 dev->next_event = KTIME_MAX;
1272 tick_sched_do_timer(ts, now);
1273 tick_sched_handle(ts, regs);
1275 /* No need to reprogram if we are running tickless */
1276 if (unlikely(ts->tick_stopped))
1279 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1280 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1283 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1285 if (!tick_nohz_enabled)
1287 ts->nohz_mode = mode;
1288 /* One update is enough */
1289 if (!test_and_set_bit(0, &tick_nohz_active))
1290 timers_update_nohz();
1294 * tick_nohz_switch_to_nohz - switch to nohz mode
1296 static void tick_nohz_switch_to_nohz(void)
1298 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1301 if (!tick_nohz_enabled)
1304 if (tick_switch_to_oneshot(tick_nohz_handler))
1308 * Recycle the hrtimer in ts, so we can share the
1309 * hrtimer_forward with the highres code.
1311 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1312 /* Get the next period */
1313 next = tick_init_jiffy_update();
1315 hrtimer_set_expires(&ts->sched_timer, next);
1316 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1317 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1318 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1321 static inline void tick_nohz_irq_enter(void)
1323 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1326 if (!ts->idle_active && !ts->tick_stopped)
1329 if (ts->idle_active)
1330 tick_nohz_stop_idle(ts, now);
1331 if (ts->tick_stopped)
1332 tick_nohz_update_jiffies(now);
1337 static inline void tick_nohz_switch_to_nohz(void) { }
1338 static inline void tick_nohz_irq_enter(void) { }
1339 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1341 #endif /* CONFIG_NO_HZ_COMMON */
1344 * Called from irq_enter to notify about the possible interruption of idle()
1346 void tick_irq_enter(void)
1348 tick_check_oneshot_broadcast_this_cpu();
1349 tick_nohz_irq_enter();
1353 * High resolution timer specific code
1355 #ifdef CONFIG_HIGH_RES_TIMERS
1357 * We rearm the timer until we get disabled by the idle code.
1358 * Called with interrupts disabled.
1360 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1362 struct tick_sched *ts =
1363 container_of(timer, struct tick_sched, sched_timer);
1364 struct pt_regs *regs = get_irq_regs();
1365 ktime_t now = ktime_get();
1367 tick_sched_do_timer(ts, now);
1370 * Do not call, when we are not in irq context and have
1371 * no valid regs pointer
1374 tick_sched_handle(ts, regs);
1378 /* No need to reprogram if we are in idle or full dynticks mode */
1379 if (unlikely(ts->tick_stopped))
1380 return HRTIMER_NORESTART;
1382 hrtimer_forward(timer, now, TICK_NSEC);
1384 return HRTIMER_RESTART;
1387 static int sched_skew_tick;
1389 static int __init skew_tick(char *str)
1391 get_option(&str, &sched_skew_tick);
1395 early_param("skew_tick", skew_tick);
1398 * tick_setup_sched_timer - setup the tick emulation timer
1400 void tick_setup_sched_timer(void)
1402 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1403 ktime_t now = ktime_get();
1406 * Emulate tick processing via per-CPU hrtimers:
1408 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1409 ts->sched_timer.function = tick_sched_timer;
1411 /* Get the next period (per-CPU) */
1412 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1414 /* Offset the tick to avert jiffies_lock contention. */
1415 if (sched_skew_tick) {
1416 u64 offset = TICK_NSEC >> 1;
1417 do_div(offset, num_possible_cpus());
1418 offset *= smp_processor_id();
1419 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1422 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1423 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1424 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1426 #endif /* HIGH_RES_TIMERS */
1428 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1429 void tick_cancel_sched_timer(int cpu)
1431 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1433 # ifdef CONFIG_HIGH_RES_TIMERS
1434 if (ts->sched_timer.base)
1435 hrtimer_cancel(&ts->sched_timer);
1438 memset(ts, 0, sizeof(*ts));
1443 * Async notification about clocksource changes
1445 void tick_clock_notify(void)
1449 for_each_possible_cpu(cpu)
1450 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1454 * Async notification about clock event changes
1456 void tick_oneshot_notify(void)
1458 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1460 set_bit(0, &ts->check_clocks);
1464 * Check, if a change happened, which makes oneshot possible.
1466 * Called cyclic from the hrtimer softirq (driven by the timer
1467 * softirq) allow_nohz signals, that we can switch into low-res nohz
1468 * mode, because high resolution timers are disabled (either compile
1469 * or runtime). Called with interrupts disabled.
1471 int tick_check_oneshot_change(int allow_nohz)
1473 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1475 if (!test_and_clear_bit(0, &ts->check_clocks))
1478 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1481 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1487 tick_nohz_switch_to_nohz();