2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
27 #include <asm/irq_regs.h>
29 #include "tick-internal.h"
31 #include <trace/events/timer.h>
34 * Per-CPU nohz control structure
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 struct tick_sched *tick_get_tick_sched(int cpu)
40 return &per_cpu(tick_cpu_sched, cpu);
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
47 static ktime_t last_jiffies_update;
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now)
54 unsigned long ticks = 0;
58 * Do a quick check without holding jiffies_lock:
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
64 /* Reevaluate with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
78 ticks = ktime_divns(delta, incr);
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
88 write_sequnlock(&jiffies_lock);
91 write_sequnlock(&jiffies_lock);
96 * Initialize and return retrieve the jiffies update.
98 static ktime_t tick_init_jiffy_update(void)
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
112 static void tick_sched_do_timer(ktime_t now)
114 int cpu = smp_processor_id();
116 #ifdef CONFIG_NO_HZ_COMMON
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the CPU in charge went
120 * into a long sleep. If two CPUs happen to assign themselves to
121 * this duty, then the jiffies update is still serialized by
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
136 #ifdef CONFIG_NO_HZ_COMMON
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog_sched();
147 if (is_idle_task(current))
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static atomic_t tick_dep_mask;
162 static bool check_tick_dependency(atomic_t *dep)
164 int val = atomic_read(dep);
166 if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
171 if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
176 if (val & TICK_DEP_MASK_SCHED) {
177 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
181 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
189 static bool can_stop_full_tick(struct tick_sched *ts)
191 WARN_ON_ONCE(!irqs_disabled());
193 if (check_tick_dependency(&tick_dep_mask))
196 if (check_tick_dependency(&ts->tick_dep_mask))
199 if (check_tick_dependency(¤t->tick_dep_mask))
202 if (check_tick_dependency(¤t->signal->tick_dep_mask))
208 static void nohz_full_kick_func(struct irq_work *work)
210 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
213 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
214 .func = nohz_full_kick_func,
218 * Kick this CPU if it's full dynticks in order to force it to
219 * re-evaluate its dependency on the tick and restart it if necessary.
220 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
223 static void tick_nohz_full_kick(void)
225 if (!tick_nohz_full_cpu(smp_processor_id()))
228 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
232 * Kick the CPU if it's full dynticks in order to force it to
233 * re-evaluate its dependency on the tick and restart it if necessary.
235 void tick_nohz_full_kick_cpu(int cpu)
237 if (!tick_nohz_full_cpu(cpu))
240 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
244 * Kick all full dynticks CPUs in order to force these to re-evaluate
245 * their dependency on the tick and restart it if necessary.
247 static void tick_nohz_full_kick_all(void)
251 if (!tick_nohz_full_running)
255 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
256 tick_nohz_full_kick_cpu(cpu);
260 static void tick_nohz_dep_set_all(atomic_t *dep,
261 enum tick_dep_bits bit)
265 prev = atomic_fetch_or(BIT(bit), dep);
267 tick_nohz_full_kick_all();
271 * Set a global tick dependency. Used by perf events that rely on freq and
274 void tick_nohz_dep_set(enum tick_dep_bits bit)
276 tick_nohz_dep_set_all(&tick_dep_mask, bit);
279 void tick_nohz_dep_clear(enum tick_dep_bits bit)
281 atomic_andnot(BIT(bit), &tick_dep_mask);
285 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
286 * manage events throttling.
288 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
291 struct tick_sched *ts;
293 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
295 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
298 /* Perf needs local kick that is NMI safe */
299 if (cpu == smp_processor_id()) {
300 tick_nohz_full_kick();
302 /* Remote irq work not NMI-safe */
303 if (!WARN_ON_ONCE(in_nmi()))
304 tick_nohz_full_kick_cpu(cpu);
310 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
312 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
314 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
318 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
321 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
324 * We could optimize this with just kicking the target running the task
325 * if that noise matters for nohz full users.
327 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
330 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
332 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
336 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
337 * per process timers.
339 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
341 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
344 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
346 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
350 * Re-evaluate the need for the tick as we switch the current task.
351 * It might need the tick due to per task/process properties:
352 * perf events, posix CPU timers, ...
354 void __tick_nohz_task_switch(void)
357 struct tick_sched *ts;
359 local_irq_save(flags);
361 if (!tick_nohz_full_cpu(smp_processor_id()))
364 ts = this_cpu_ptr(&tick_cpu_sched);
366 if (ts->tick_stopped) {
367 if (atomic_read(¤t->tick_dep_mask) ||
368 atomic_read(¤t->signal->tick_dep_mask))
369 tick_nohz_full_kick();
372 local_irq_restore(flags);
375 /* Parse the boot-time nohz CPU list from the kernel parameters. */
376 static int __init tick_nohz_full_setup(char *str)
378 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
379 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
380 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
381 free_bootmem_cpumask_var(tick_nohz_full_mask);
384 tick_nohz_full_running = true;
388 __setup("nohz_full=", tick_nohz_full_setup);
390 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
391 unsigned long action,
394 unsigned int cpu = (unsigned long)hcpu;
396 switch (action & ~CPU_TASKS_FROZEN) {
397 case CPU_DOWN_PREPARE:
399 * The boot CPU handles housekeeping duty (unbound timers,
400 * workqueues, timekeeping, ...) on behalf of full dynticks
401 * CPUs. It must remain online when nohz full is enabled.
403 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
410 static int tick_nohz_init_all(void)
414 #ifdef CONFIG_NO_HZ_FULL_ALL
415 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
416 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
420 cpumask_setall(tick_nohz_full_mask);
421 tick_nohz_full_running = true;
426 void __init tick_nohz_init(void)
430 if (!tick_nohz_full_running) {
431 if (tick_nohz_init_all() < 0)
435 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
436 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
437 cpumask_clear(tick_nohz_full_mask);
438 tick_nohz_full_running = false;
443 * Full dynticks uses irq work to drive the tick rescheduling on safe
444 * locking contexts. But then we need irq work to raise its own
445 * interrupts to avoid circular dependency on the tick
447 if (!arch_irq_work_has_interrupt()) {
448 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
449 cpumask_clear(tick_nohz_full_mask);
450 cpumask_copy(housekeeping_mask, cpu_possible_mask);
451 tick_nohz_full_running = false;
455 cpu = smp_processor_id();
457 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
458 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
460 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
463 cpumask_andnot(housekeeping_mask,
464 cpu_possible_mask, tick_nohz_full_mask);
466 for_each_cpu(cpu, tick_nohz_full_mask)
467 context_tracking_cpu_set(cpu);
469 cpu_notifier(tick_nohz_cpu_down_callback, 0);
470 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
471 cpumask_pr_args(tick_nohz_full_mask));
474 * We need at least one CPU to handle housekeeping work such
475 * as timekeeping, unbound timers, workqueues, ...
477 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
482 * NOHZ - aka dynamic tick functionality
484 #ifdef CONFIG_NO_HZ_COMMON
488 bool tick_nohz_enabled __read_mostly = true;
489 unsigned long tick_nohz_active __read_mostly;
491 * Enable / Disable tickless mode
493 static int __init setup_tick_nohz(char *str)
495 return (kstrtobool(str, &tick_nohz_enabled) == 0);
498 __setup("nohz=", setup_tick_nohz);
500 int tick_nohz_tick_stopped(void)
502 return __this_cpu_read(tick_cpu_sched.tick_stopped);
506 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
508 * Called from interrupt entry when the CPU was idle
510 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
511 * must be updated. Otherwise an interrupt handler could use a stale jiffy
512 * value. We do this unconditionally on any CPU, as we don't know whether the
513 * CPU, which has the update task assigned is in a long sleep.
515 static void tick_nohz_update_jiffies(ktime_t now)
519 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
521 local_irq_save(flags);
522 tick_do_update_jiffies64(now);
523 local_irq_restore(flags);
525 touch_softlockup_watchdog_sched();
529 * Updates the per-CPU time idle statistics counters
532 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
536 if (ts->idle_active) {
537 delta = ktime_sub(now, ts->idle_entrytime);
538 if (nr_iowait_cpu(cpu) > 0)
539 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
541 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
542 ts->idle_entrytime = now;
545 if (last_update_time)
546 *last_update_time = ktime_to_us(now);
550 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
552 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
555 sched_clock_idle_wakeup_event(0);
558 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
560 ktime_t now = ktime_get();
562 ts->idle_entrytime = now;
564 sched_clock_idle_sleep_event();
569 * get_cpu_idle_time_us - get the total idle time of a CPU
570 * @cpu: CPU number to query
571 * @last_update_time: variable to store update time in. Do not update
574 * Return the cumulative idle time (since boot) for a given
575 * CPU, in microseconds.
577 * This time is measured via accounting rather than sampling,
578 * and is as accurate as ktime_get() is.
580 * This function returns -1 if NOHZ is not enabled.
582 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
584 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
587 if (!tick_nohz_active)
591 if (last_update_time) {
592 update_ts_time_stats(cpu, ts, now, last_update_time);
593 idle = ts->idle_sleeptime;
595 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
596 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
598 idle = ktime_add(ts->idle_sleeptime, delta);
600 idle = ts->idle_sleeptime;
604 return ktime_to_us(idle);
607 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
610 * get_cpu_iowait_time_us - get the total iowait time of a CPU
611 * @cpu: CPU number to query
612 * @last_update_time: variable to store update time in. Do not update
615 * Return the cumulative iowait time (since boot) for a given
616 * CPU, in microseconds.
618 * This time is measured via accounting rather than sampling,
619 * and is as accurate as ktime_get() is.
621 * This function returns -1 if NOHZ is not enabled.
623 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
625 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
628 if (!tick_nohz_active)
632 if (last_update_time) {
633 update_ts_time_stats(cpu, ts, now, last_update_time);
634 iowait = ts->iowait_sleeptime;
636 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
637 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
639 iowait = ktime_add(ts->iowait_sleeptime, delta);
641 iowait = ts->iowait_sleeptime;
645 return ktime_to_us(iowait);
647 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
649 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
651 hrtimer_cancel(&ts->sched_timer);
652 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
654 /* Forward the time to expire in the future */
655 hrtimer_forward(&ts->sched_timer, now, tick_period);
657 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
658 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
660 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
663 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
664 ktime_t now, int cpu)
666 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
667 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
668 unsigned long seq, basejiff;
671 /* Read jiffies and the time when jiffies were updated last */
673 seq = read_seqbegin(&jiffies_lock);
674 basemono = last_jiffies_update.tv64;
676 } while (read_seqretry(&jiffies_lock, seq));
677 ts->last_jiffies = basejiff;
679 if (rcu_needs_cpu(basemono, &next_rcu) ||
680 arch_needs_cpu() || irq_work_needs_cpu()) {
681 next_tick = basemono + TICK_NSEC;
684 * Get the next pending timer. If high resolution
685 * timers are enabled this only takes the timer wheel
686 * timers into account. If high resolution timers are
687 * disabled this also looks at the next expiring
690 next_tmr = get_next_timer_interrupt(basejiff, basemono);
691 ts->next_timer = next_tmr;
692 /* Take the next rcu event into account */
693 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
697 * If the tick is due in the next period, keep it ticking or
698 * force prod the timer.
700 delta = next_tick - basemono;
701 if (delta <= (u64)TICK_NSEC) {
705 * Tell the timer code that the base is not idle, i.e. undo
706 * the effect of get_next_timer_interrupt():
710 * We've not stopped the tick yet, and there's a timer in the
711 * next period, so no point in stopping it either, bail.
713 if (!ts->tick_stopped)
717 * If, OTOH, we did stop it, but there's a pending (expired)
718 * timer reprogram the timer hardware to fire now.
720 * We will not restart the tick proper, just prod the timer
721 * hardware into firing an interrupt to process the pending
722 * timers. Just like tick_irq_exit() will not restart the tick
723 * for 'normal' interrupts.
725 * Only once we exit the idle loop will we re-enable the tick,
726 * see tick_nohz_idle_exit().
729 tick_nohz_restart(ts, now);
735 * If this CPU is the one which updates jiffies, then give up
736 * the assignment and let it be taken by the CPU which runs
737 * the tick timer next, which might be this CPU as well. If we
738 * don't drop this here the jiffies might be stale and
739 * do_timer() never invoked. Keep track of the fact that it
740 * was the one which had the do_timer() duty last. If this CPU
741 * is the one which had the do_timer() duty last, we limit the
742 * sleep time to the timekeeping max_deferment value.
743 * Otherwise we can sleep as long as we want.
745 delta = timekeeping_max_deferment();
746 if (cpu == tick_do_timer_cpu) {
747 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
748 ts->do_timer_last = 1;
749 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
751 ts->do_timer_last = 0;
752 } else if (!ts->do_timer_last) {
756 #ifdef CONFIG_NO_HZ_FULL
757 /* Limit the tick delta to the maximum scheduler deferment */
759 delta = min(delta, scheduler_tick_max_deferment());
762 /* Calculate the next expiry time */
763 if (delta < (KTIME_MAX - basemono))
764 expires = basemono + delta;
768 expires = min_t(u64, expires, next_tick);
771 /* Skip reprogram of event if its not changed */
772 if (ts->tick_stopped && (expires == dev->next_event.tv64))
776 * nohz_stop_sched_tick can be called several times before
777 * the nohz_restart_sched_tick is called. This happens when
778 * interrupts arrive which do not cause a reschedule. In the
779 * first call we save the current tick time, so we can restart
780 * the scheduler tick in nohz_restart_sched_tick.
782 if (!ts->tick_stopped) {
783 nohz_balance_enter_idle(cpu);
784 calc_load_enter_idle();
785 cpu_load_update_nohz_start();
787 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
788 ts->tick_stopped = 1;
789 trace_tick_stop(1, TICK_DEP_MASK_NONE);
793 * If the expiration time == KTIME_MAX, then we simply stop
796 if (unlikely(expires == KTIME_MAX)) {
797 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
798 hrtimer_cancel(&ts->sched_timer);
802 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
805 tick_program_event(tick, 1);
807 /* Update the estimated sleep length */
808 ts->sleep_length = ktime_sub(dev->next_event, now);
812 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
814 /* Update jiffies first */
815 tick_do_update_jiffies64(now);
816 cpu_load_update_nohz_stop();
819 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
820 * the clock forward checks in the enqueue path:
824 calc_load_exit_idle();
825 touch_softlockup_watchdog_sched();
827 * Cancel the scheduled timer and restore the tick
829 ts->tick_stopped = 0;
830 ts->idle_exittime = now;
832 tick_nohz_restart(ts, now);
835 static void tick_nohz_full_update_tick(struct tick_sched *ts)
837 #ifdef CONFIG_NO_HZ_FULL
838 int cpu = smp_processor_id();
840 if (!tick_nohz_full_cpu(cpu))
843 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
846 if (can_stop_full_tick(ts))
847 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
848 else if (ts->tick_stopped)
849 tick_nohz_restart_sched_tick(ts, ktime_get());
853 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
856 * If this CPU is offline and it is the one which updates
857 * jiffies, then give up the assignment and let it be taken by
858 * the CPU which runs the tick timer next. If we don't drop
859 * this here the jiffies might be stale and do_timer() never
862 if (unlikely(!cpu_online(cpu))) {
863 if (cpu == tick_do_timer_cpu)
864 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
868 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
869 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
876 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
877 static int ratelimit;
879 if (ratelimit < 10 &&
880 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
881 pr_warn("NOHZ: local_softirq_pending %02x\n",
882 (unsigned int) local_softirq_pending());
888 if (tick_nohz_full_enabled()) {
890 * Keep the tick alive to guarantee timekeeping progression
891 * if there are full dynticks CPUs around
893 if (tick_do_timer_cpu == cpu)
896 * Boot safety: make sure the timekeeping duty has been
897 * assigned before entering dyntick-idle mode,
899 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
906 static void __tick_nohz_idle_enter(struct tick_sched *ts)
908 ktime_t now, expires;
909 int cpu = smp_processor_id();
911 if (can_stop_idle_tick(cpu, ts)) {
912 int was_stopped = ts->tick_stopped;
914 now = tick_nohz_start_idle(ts);
917 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
918 if (expires.tv64 > 0LL) {
920 ts->idle_expires = expires;
923 if (!was_stopped && ts->tick_stopped)
924 ts->idle_jiffies = ts->last_jiffies;
929 * tick_nohz_idle_enter - stop the idle tick from the idle task
931 * When the next event is more than a tick into the future, stop the idle tick
932 * Called when we start the idle loop.
934 * The arch is responsible of calling:
936 * - rcu_idle_enter() after its last use of RCU before the CPU is put
938 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
940 void tick_nohz_idle_enter(void)
942 struct tick_sched *ts;
944 WARN_ON_ONCE(irqs_disabled());
947 * Update the idle state in the scheduler domain hierarchy
948 * when tick_nohz_stop_sched_tick() is called from the idle loop.
949 * State will be updated to busy during the first busy tick after
952 set_cpu_sd_state_idle();
956 ts = this_cpu_ptr(&tick_cpu_sched);
958 __tick_nohz_idle_enter(ts);
964 * tick_nohz_irq_exit - update next tick event from interrupt exit
966 * When an interrupt fires while we are idle and it doesn't cause
967 * a reschedule, it may still add, modify or delete a timer, enqueue
968 * an RCU callback, etc...
969 * So we need to re-calculate and reprogram the next tick event.
971 void tick_nohz_irq_exit(void)
973 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
976 __tick_nohz_idle_enter(ts);
978 tick_nohz_full_update_tick(ts);
982 * tick_nohz_get_sleep_length - return the length of the current sleep
984 * Called from power state control code with interrupts disabled
986 ktime_t tick_nohz_get_sleep_length(void)
988 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
990 return ts->sleep_length;
993 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
995 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
998 if (vtime_accounting_cpu_enabled())
1001 * We stopped the tick in idle. Update process times would miss the
1002 * time we slept as update_process_times does only a 1 tick
1003 * accounting. Enforce that this is accounted to idle !
1005 ticks = jiffies - ts->idle_jiffies;
1007 * We might be one off. Do not randomly account a huge number of ticks!
1009 if (ticks && ticks < LONG_MAX)
1010 account_idle_ticks(ticks);
1015 * tick_nohz_idle_exit - restart the idle tick from the idle task
1017 * Restart the idle tick when the CPU is woken up from idle
1018 * This also exit the RCU extended quiescent state. The CPU
1019 * can use RCU again after this function is called.
1021 void tick_nohz_idle_exit(void)
1023 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1026 local_irq_disable();
1028 WARN_ON_ONCE(!ts->inidle);
1032 if (ts->idle_active || ts->tick_stopped)
1035 if (ts->idle_active)
1036 tick_nohz_stop_idle(ts, now);
1038 if (ts->tick_stopped) {
1039 tick_nohz_restart_sched_tick(ts, now);
1040 tick_nohz_account_idle_ticks(ts);
1047 * The nohz low res interrupt handler
1049 static void tick_nohz_handler(struct clock_event_device *dev)
1051 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1052 struct pt_regs *regs = get_irq_regs();
1053 ktime_t now = ktime_get();
1055 dev->next_event.tv64 = KTIME_MAX;
1057 tick_sched_do_timer(now);
1058 tick_sched_handle(ts, regs);
1060 /* No need to reprogram if we are running tickless */
1061 if (unlikely(ts->tick_stopped))
1064 hrtimer_forward(&ts->sched_timer, now, tick_period);
1065 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1068 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1070 if (!tick_nohz_enabled)
1072 ts->nohz_mode = mode;
1073 /* One update is enough */
1074 if (!test_and_set_bit(0, &tick_nohz_active))
1075 timers_update_migration(true);
1079 * tick_nohz_switch_to_nohz - switch to nohz mode
1081 static void tick_nohz_switch_to_nohz(void)
1083 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1086 if (!tick_nohz_enabled)
1089 if (tick_switch_to_oneshot(tick_nohz_handler))
1093 * Recycle the hrtimer in ts, so we can share the
1094 * hrtimer_forward with the highres code.
1096 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1097 /* Get the next period */
1098 next = tick_init_jiffy_update();
1100 hrtimer_set_expires(&ts->sched_timer, next);
1101 hrtimer_forward_now(&ts->sched_timer, tick_period);
1102 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1103 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1106 static inline void tick_nohz_irq_enter(void)
1108 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1111 if (!ts->idle_active && !ts->tick_stopped)
1114 if (ts->idle_active)
1115 tick_nohz_stop_idle(ts, now);
1116 if (ts->tick_stopped)
1117 tick_nohz_update_jiffies(now);
1122 static inline void tick_nohz_switch_to_nohz(void) { }
1123 static inline void tick_nohz_irq_enter(void) { }
1124 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1126 #endif /* CONFIG_NO_HZ_COMMON */
1129 * Called from irq_enter to notify about the possible interruption of idle()
1131 void tick_irq_enter(void)
1133 tick_check_oneshot_broadcast_this_cpu();
1134 tick_nohz_irq_enter();
1138 * High resolution timer specific code
1140 #ifdef CONFIG_HIGH_RES_TIMERS
1142 * We rearm the timer until we get disabled by the idle code.
1143 * Called with interrupts disabled.
1145 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1147 struct tick_sched *ts =
1148 container_of(timer, struct tick_sched, sched_timer);
1149 struct pt_regs *regs = get_irq_regs();
1150 ktime_t now = ktime_get();
1152 tick_sched_do_timer(now);
1155 * Do not call, when we are not in irq context and have
1156 * no valid regs pointer
1159 tick_sched_handle(ts, regs);
1161 /* No need to reprogram if we are in idle or full dynticks mode */
1162 if (unlikely(ts->tick_stopped))
1163 return HRTIMER_NORESTART;
1165 hrtimer_forward(timer, now, tick_period);
1167 return HRTIMER_RESTART;
1170 static int sched_skew_tick;
1172 static int __init skew_tick(char *str)
1174 get_option(&str, &sched_skew_tick);
1178 early_param("skew_tick", skew_tick);
1181 * tick_setup_sched_timer - setup the tick emulation timer
1183 void tick_setup_sched_timer(void)
1185 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1186 ktime_t now = ktime_get();
1189 * Emulate tick processing via per-CPU hrtimers:
1191 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1192 ts->sched_timer.function = tick_sched_timer;
1194 /* Get the next period (per-CPU) */
1195 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1197 /* Offset the tick to avert jiffies_lock contention. */
1198 if (sched_skew_tick) {
1199 u64 offset = ktime_to_ns(tick_period) >> 1;
1200 do_div(offset, num_possible_cpus());
1201 offset *= smp_processor_id();
1202 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1205 hrtimer_forward(&ts->sched_timer, now, tick_period);
1206 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1207 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1209 #endif /* HIGH_RES_TIMERS */
1211 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1212 void tick_cancel_sched_timer(int cpu)
1214 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1216 # ifdef CONFIG_HIGH_RES_TIMERS
1217 if (ts->sched_timer.base)
1218 hrtimer_cancel(&ts->sched_timer);
1221 memset(ts, 0, sizeof(*ts));
1226 * Async notification about clocksource changes
1228 void tick_clock_notify(void)
1232 for_each_possible_cpu(cpu)
1233 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1237 * Async notification about clock event changes
1239 void tick_oneshot_notify(void)
1241 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1243 set_bit(0, &ts->check_clocks);
1247 * Check, if a change happened, which makes oneshot possible.
1249 * Called cyclic from the hrtimer softirq (driven by the timer
1250 * softirq) allow_nohz signals, that we can switch into low-res nohz
1251 * mode, because high resolution timers are disabled (either compile
1252 * or runtime). Called with interrupts disabled.
1254 int tick_check_oneshot_change(int allow_nohz)
1256 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1258 if (!test_and_clear_bit(0, &ts->check_clocks))
1261 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1264 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1270 tick_nohz_switch_to_nohz();