2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
24 #include "tick-internal.h"
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_force;
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
41 static inline void tick_broadcast_clear_oneshot(int cpu) { }
45 * Debugging: see timer_list.c
47 struct tick_device *tick_get_broadcast_device(void)
49 return &tick_broadcast_device;
52 struct cpumask *tick_get_broadcast_mask(void)
54 return tick_broadcast_mask;
58 * Start the device in periodic mode
60 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 tick_setup_periodic(bc, 1);
67 * Check, if the device can be utilized as broadcast device:
69 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
70 struct clock_event_device *newdev)
72 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
73 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
74 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
78 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 return !curdev || newdev->rating > curdev->rating;
85 * Conditionally install/replace broadcast device
87 void tick_install_broadcast_device(struct clock_event_device *dev)
89 struct clock_event_device *cur = tick_broadcast_device.evtdev;
91 if (!tick_check_broadcast_device(cur, dev))
94 if (!try_module_get(dev->owner))
97 clockevents_exchange_device(cur, dev);
99 cur->event_handler = clockevents_handle_noop;
100 tick_broadcast_device.evtdev = dev;
101 if (!cpumask_empty(tick_broadcast_mask))
102 tick_broadcast_start_periodic(dev);
104 * Inform all cpus about this. We might be in a situation
105 * where we did not switch to oneshot mode because the per cpu
106 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
107 * of a oneshot capable broadcast device. Without that
108 * notification the systems stays stuck in periodic mode
111 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
116 * Check, if the device is the broadcast device
118 int tick_is_broadcast_device(struct clock_event_device *dev)
120 return (dev && tick_broadcast_device.evtdev == dev);
123 static void err_broadcast(const struct cpumask *mask)
125 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
128 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
131 dev->broadcast = tick_broadcast;
132 if (!dev->broadcast) {
133 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
135 dev->broadcast = err_broadcast;
140 * Check, if the device is disfunctional and a place holder, which
141 * needs to be handled by the broadcast device.
143 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
145 struct clock_event_device *bc = tick_broadcast_device.evtdev;
149 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
152 * Devices might be registered with both periodic and oneshot
153 * mode disabled. This signals, that the device needs to be
154 * operated from the broadcast device and is a placeholder for
155 * the cpu local device.
157 if (!tick_device_is_functional(dev)) {
158 dev->event_handler = tick_handle_periodic;
159 tick_device_setup_broadcast_func(dev);
160 cpumask_set_cpu(cpu, tick_broadcast_mask);
161 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
162 tick_broadcast_start_periodic(bc);
164 tick_broadcast_setup_oneshot(bc);
168 * Clear the broadcast bit for this cpu if the
169 * device is not power state affected.
171 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
172 cpumask_clear_cpu(cpu, tick_broadcast_mask);
174 tick_device_setup_broadcast_func(dev);
177 * Clear the broadcast bit if the CPU is not in
178 * periodic broadcast on state.
180 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
181 cpumask_clear_cpu(cpu, tick_broadcast_mask);
183 switch (tick_broadcast_device.mode) {
184 case TICKDEV_MODE_ONESHOT:
186 * If the system is in oneshot mode we can
187 * unconditionally clear the oneshot mask bit,
188 * because the CPU is running and therefore
189 * not in an idle state which causes the power
190 * state affected device to stop. Let the
191 * caller initialize the device.
193 tick_broadcast_clear_oneshot(cpu);
197 case TICKDEV_MODE_PERIODIC:
199 * If the system is in periodic mode, check
200 * whether the broadcast device can be
203 if (cpumask_empty(tick_broadcast_mask) && bc)
204 clockevents_shutdown(bc);
206 * If we kept the cpu in the broadcast mask,
207 * tell the caller to leave the per cpu device
208 * in shutdown state. The periodic interrupt
209 * is delivered by the broadcast device.
211 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
219 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
223 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
224 int tick_receive_broadcast(void)
226 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
227 struct clock_event_device *evt = td->evtdev;
232 if (!evt->event_handler)
235 evt->event_handler(evt);
241 * Broadcast the event to the cpus, which are set in the mask (mangled).
243 static void tick_do_broadcast(struct cpumask *mask)
245 int cpu = smp_processor_id();
246 struct tick_device *td;
249 * Check, if the current cpu is in the mask
251 if (cpumask_test_cpu(cpu, mask)) {
252 cpumask_clear_cpu(cpu, mask);
253 td = &per_cpu(tick_cpu_device, cpu);
254 td->evtdev->event_handler(td->evtdev);
257 if (!cpumask_empty(mask)) {
259 * It might be necessary to actually check whether the devices
260 * have different broadcast functions. For now, just use the
261 * one of the first device. This works as long as we have this
262 * misfeature only on x86 (lapic)
264 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
265 td->evtdev->broadcast(mask);
270 * Periodic broadcast:
271 * - invoke the broadcast handlers
273 static void tick_do_periodic_broadcast(void)
275 raw_spin_lock(&tick_broadcast_lock);
277 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
278 tick_do_broadcast(tmpmask);
280 raw_spin_unlock(&tick_broadcast_lock);
284 * Event handler for periodic broadcast ticks
286 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
290 tick_do_periodic_broadcast();
293 * The device is in periodic mode. No reprogramming necessary:
295 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
299 * Setup the next period for devices, which do not have
300 * periodic mode. We read dev->next_event first and add to it
301 * when the event already expired. clockevents_program_event()
302 * sets dev->next_event only when the event is really
303 * programmed to the device.
305 for (next = dev->next_event; ;) {
306 next = ktime_add(next, tick_period);
308 if (!clockevents_program_event(dev, next, false))
310 tick_do_periodic_broadcast();
315 * Powerstate information: The system enters/leaves a state, where
316 * affected devices might stop
318 static void tick_do_broadcast_on_off(unsigned long *reason)
320 struct clock_event_device *bc, *dev;
321 struct tick_device *td;
325 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
327 cpu = smp_processor_id();
328 td = &per_cpu(tick_cpu_device, cpu);
330 bc = tick_broadcast_device.evtdev;
333 * Is the device not affected by the powerstate ?
335 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
338 if (!tick_device_is_functional(dev))
341 bc_stopped = cpumask_empty(tick_broadcast_mask);
344 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
345 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
346 cpumask_set_cpu(cpu, tick_broadcast_on);
347 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
348 if (tick_broadcast_device.mode ==
349 TICKDEV_MODE_PERIODIC)
350 clockevents_shutdown(dev);
352 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
353 tick_broadcast_force = 1;
355 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
356 if (tick_broadcast_force)
358 cpumask_clear_cpu(cpu, tick_broadcast_on);
359 if (!tick_device_is_functional(dev))
361 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
362 if (tick_broadcast_device.mode ==
363 TICKDEV_MODE_PERIODIC)
364 tick_setup_periodic(dev, 0);
369 if (cpumask_empty(tick_broadcast_mask)) {
371 clockevents_shutdown(bc);
372 } else if (bc_stopped) {
373 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
374 tick_broadcast_start_periodic(bc);
376 tick_broadcast_setup_oneshot(bc);
379 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
383 * Powerstate information: The system enters/leaves a state, where
384 * affected devices might stop.
386 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
388 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
389 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
390 "offline CPU #%d\n", *oncpu);
392 tick_do_broadcast_on_off(&reason);
396 * Set the periodic handler depending on broadcast on/off
398 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
401 dev->event_handler = tick_handle_periodic;
403 dev->event_handler = tick_handle_periodic_broadcast;
407 * Remove a CPU from broadcasting
409 void tick_shutdown_broadcast(unsigned int *cpup)
411 struct clock_event_device *bc;
413 unsigned int cpu = *cpup;
415 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
417 bc = tick_broadcast_device.evtdev;
418 cpumask_clear_cpu(cpu, tick_broadcast_mask);
419 cpumask_clear_cpu(cpu, tick_broadcast_on);
421 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
422 if (bc && cpumask_empty(tick_broadcast_mask))
423 clockevents_shutdown(bc);
426 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
429 void tick_suspend_broadcast(void)
431 struct clock_event_device *bc;
434 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
436 bc = tick_broadcast_device.evtdev;
438 clockevents_shutdown(bc);
440 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
443 int tick_resume_broadcast(void)
445 struct clock_event_device *bc;
449 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
451 bc = tick_broadcast_device.evtdev;
454 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
456 switch (tick_broadcast_device.mode) {
457 case TICKDEV_MODE_PERIODIC:
458 if (!cpumask_empty(tick_broadcast_mask))
459 tick_broadcast_start_periodic(bc);
460 broadcast = cpumask_test_cpu(smp_processor_id(),
461 tick_broadcast_mask);
463 case TICKDEV_MODE_ONESHOT:
464 if (!cpumask_empty(tick_broadcast_mask))
465 broadcast = tick_resume_broadcast_oneshot(bc);
469 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
475 #ifdef CONFIG_TICK_ONESHOT
477 static cpumask_var_t tick_broadcast_oneshot_mask;
478 static cpumask_var_t tick_broadcast_pending_mask;
479 static cpumask_var_t tick_broadcast_force_mask;
482 * Exposed for debugging: see timer_list.c
484 struct cpumask *tick_get_broadcast_oneshot_mask(void)
486 return tick_broadcast_oneshot_mask;
490 * Called before going idle with interrupts disabled. Checks whether a
491 * broadcast event from the other core is about to happen. We detected
492 * that in tick_broadcast_oneshot_control(). The callsite can use this
493 * to avoid a deep idle transition as we are about to get the
494 * broadcast IPI right away.
496 int tick_check_broadcast_expired(void)
498 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
502 * Set broadcast interrupt affinity
504 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
505 const struct cpumask *cpumask)
507 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
510 if (cpumask_equal(bc->cpumask, cpumask))
513 bc->cpumask = cpumask;
514 irq_set_affinity(bc->irq, bc->cpumask);
517 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
518 ktime_t expires, int force)
522 if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
523 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
525 ret = clockevents_program_event(bc, expires, force);
527 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
531 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
533 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
538 * Called from irq_enter() when idle was interrupted to reenable the
541 void tick_check_oneshot_broadcast(int cpu)
543 if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
544 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
547 * We might be in the middle of switching over from
548 * periodic to oneshot. If the CPU has not yet
549 * switched over, leave the device alone.
551 if (td->mode == TICKDEV_MODE_ONESHOT) {
552 clockevents_set_mode(td->evtdev,
553 CLOCK_EVT_MODE_ONESHOT);
559 * Handle oneshot mode broadcasting
561 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
563 struct tick_device *td;
564 ktime_t now, next_event;
565 int cpu, next_cpu = 0;
567 raw_spin_lock(&tick_broadcast_lock);
569 dev->next_event.tv64 = KTIME_MAX;
570 next_event.tv64 = KTIME_MAX;
571 cpumask_clear(tmpmask);
573 /* Find all expired events */
574 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
575 td = &per_cpu(tick_cpu_device, cpu);
576 if (td->evtdev->next_event.tv64 <= now.tv64) {
577 cpumask_set_cpu(cpu, tmpmask);
579 * Mark the remote cpu in the pending mask, so
580 * it can avoid reprogramming the cpu local
581 * timer in tick_broadcast_oneshot_control().
583 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
584 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
585 next_event.tv64 = td->evtdev->next_event.tv64;
591 * Remove the current cpu from the pending mask. The event is
592 * delivered immediately in tick_do_broadcast() !
594 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
596 /* Take care of enforced broadcast requests */
597 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
598 cpumask_clear(tick_broadcast_force_mask);
601 * Sanity check. Catch the case where we try to broadcast to
604 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
605 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
608 * Wakeup the cpus which have an expired event.
610 tick_do_broadcast(tmpmask);
613 * Two reasons for reprogram:
615 * - The global event did not expire any CPU local
616 * events. This happens in dyntick mode, as the maximum PIT
617 * delta is quite small.
619 * - There are pending events on sleeping CPUs which were not
622 if (next_event.tv64 != KTIME_MAX) {
624 * Rearm the broadcast device. If event expired,
627 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
630 raw_spin_unlock(&tick_broadcast_lock);
634 * Powerstate information: The system enters/leaves a state, where
635 * affected devices might stop
637 void tick_broadcast_oneshot_control(unsigned long reason)
639 struct clock_event_device *bc, *dev;
640 struct tick_device *td;
646 * Periodic mode does not care about the enter/exit of power
649 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
653 * We are called with preemtion disabled from the depth of the
654 * idle code, so we can't be moved away.
656 cpu = smp_processor_id();
657 td = &per_cpu(tick_cpu_device, cpu);
660 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
663 bc = tick_broadcast_device.evtdev;
665 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
666 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
667 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
668 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
669 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
671 * We only reprogram the broadcast timer if we
672 * did not mark ourself in the force mask and
673 * if the cpu local event is earlier than the
674 * broadcast event. If the current CPU is in
675 * the force mask, then we are going to be
676 * woken by the IPI right away.
678 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
679 dev->next_event.tv64 < bc->next_event.tv64)
680 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
683 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
684 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
686 * The cpu which was handling the broadcast
687 * timer marked this cpu in the broadcast
688 * pending mask and fired the broadcast
689 * IPI. So we are going to handle the expired
690 * event anyway via the broadcast IPI
691 * handler. No need to reprogram the timer
692 * with an already expired event.
694 if (cpumask_test_and_clear_cpu(cpu,
695 tick_broadcast_pending_mask))
699 * Bail out if there is no next event.
701 if (dev->next_event.tv64 == KTIME_MAX)
704 * If the pending bit is not set, then we are
705 * either the CPU handling the broadcast
706 * interrupt or we got woken by something else.
708 * We are not longer in the broadcast mask, so
709 * if the cpu local expiry time is already
710 * reached, we would reprogram the cpu local
711 * timer with an already expired event.
713 * This can lead to a ping-pong when we return
714 * to idle and therefor rearm the broadcast
715 * timer before the cpu local timer was able
716 * to fire. This happens because the forced
717 * reprogramming makes sure that the event
718 * will happen in the future and depending on
719 * the min_delta setting this might be far
720 * enough out that the ping-pong starts.
722 * If the cpu local next_event has expired
723 * then we know that the broadcast timer
724 * next_event has expired as well and
725 * broadcast is about to be handled. So we
726 * avoid reprogramming and enforce that the
727 * broadcast handler, which did not run yet,
728 * will invoke the cpu local handler.
730 * We cannot call the handler directly from
731 * here, because we might be in a NOHZ phase
732 * and we did not go through the irq_enter()
736 if (dev->next_event.tv64 <= now.tv64) {
737 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
741 * We got woken by something else. Reprogram
742 * the cpu local timer device.
744 tick_program_event(dev->next_event, 1);
748 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
752 * Reset the one shot broadcast for a cpu
754 * Called with tick_broadcast_lock held
756 static void tick_broadcast_clear_oneshot(int cpu)
758 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
761 static void tick_broadcast_init_next_event(struct cpumask *mask,
764 struct tick_device *td;
767 for_each_cpu(cpu, mask) {
768 td = &per_cpu(tick_cpu_device, cpu);
770 td->evtdev->next_event = expires;
775 * tick_broadcast_setup_oneshot - setup the broadcast device
777 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
779 int cpu = smp_processor_id();
781 /* Set it up only once ! */
782 if (bc->event_handler != tick_handle_oneshot_broadcast) {
783 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
785 bc->event_handler = tick_handle_oneshot_broadcast;
788 * We must be careful here. There might be other CPUs
789 * waiting for periodic broadcast. We need to set the
790 * oneshot_mask bits for those and program the
791 * broadcast device to fire.
793 cpumask_copy(tmpmask, tick_broadcast_mask);
794 cpumask_clear_cpu(cpu, tmpmask);
795 cpumask_or(tick_broadcast_oneshot_mask,
796 tick_broadcast_oneshot_mask, tmpmask);
798 if (was_periodic && !cpumask_empty(tmpmask)) {
799 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
800 tick_broadcast_init_next_event(tmpmask,
802 tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
804 bc->next_event.tv64 = KTIME_MAX;
807 * The first cpu which switches to oneshot mode sets
808 * the bit for all other cpus which are in the general
809 * (periodic) broadcast mask. So the bit is set and
810 * would prevent the first broadcast enter after this
811 * to program the bc device.
813 tick_broadcast_clear_oneshot(cpu);
818 * Select oneshot operating mode for the broadcast device
820 void tick_broadcast_switch_to_oneshot(void)
822 struct clock_event_device *bc;
825 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
827 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
828 bc = tick_broadcast_device.evtdev;
830 tick_broadcast_setup_oneshot(bc);
832 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
837 * Remove a dead CPU from broadcasting
839 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
842 unsigned int cpu = *cpup;
844 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
847 * Clear the broadcast masks for the dead cpu, but do not stop
848 * the broadcast device!
850 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
851 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
852 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
854 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
858 * Check, whether the broadcast device is in one shot mode
860 int tick_broadcast_oneshot_active(void)
862 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
866 * Check whether the broadcast device supports oneshot.
868 bool tick_broadcast_oneshot_available(void)
870 struct clock_event_device *bc = tick_broadcast_device.evtdev;
872 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
877 void __init tick_broadcast_init(void)
879 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
880 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
881 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
882 #ifdef CONFIG_TICK_ONESHOT
883 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
884 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
885 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);