drm/edid/firmware: Add built-in edid/1280x720.bin firmware
[platform/kernel/linux-starfive.git] / kernel / time / tick-broadcast.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains functions which emulate a local clock-event
4  * device via a broadcast event source.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
19
20 #include "tick-internal.h"
21
22 /*
23  * Broadcast support for broken x86 hardware, where the local apic
24  * timer stops in C3 state.
25  */
26
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
32
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34
35 #ifdef CONFIG_TICK_ONESHOT
36 static DEFINE_PER_CPU(struct clock_event_device *, tick_oneshot_wakeup_device);
37
38 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc, bool from_periodic);
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 # ifdef CONFIG_HOTPLUG_CPU
42 static void tick_broadcast_oneshot_offline(unsigned int cpu);
43 # endif
44 #else
45 static inline void
46 tick_broadcast_setup_oneshot(struct clock_event_device *bc, bool from_periodic) { BUG(); }
47 static inline void tick_broadcast_clear_oneshot(int cpu) { }
48 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
49 # ifdef CONFIG_HOTPLUG_CPU
50 static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
51 # endif
52 #endif
53
54 /*
55  * Debugging: see timer_list.c
56  */
57 struct tick_device *tick_get_broadcast_device(void)
58 {
59         return &tick_broadcast_device;
60 }
61
62 struct cpumask *tick_get_broadcast_mask(void)
63 {
64         return tick_broadcast_mask;
65 }
66
67 static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu);
68
69 const struct clock_event_device *tick_get_wakeup_device(int cpu)
70 {
71         return tick_get_oneshot_wakeup_device(cpu);
72 }
73
74 /*
75  * Start the device in periodic mode
76  */
77 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
78 {
79         if (bc)
80                 tick_setup_periodic(bc, 1);
81 }
82
83 /*
84  * Check, if the device can be utilized as broadcast device:
85  */
86 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
87                                         struct clock_event_device *newdev)
88 {
89         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
90             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
91             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
92                 return false;
93
94         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
95             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
96                 return false;
97
98         return !curdev || newdev->rating > curdev->rating;
99 }
100
101 #ifdef CONFIG_TICK_ONESHOT
102 static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
103 {
104         return per_cpu(tick_oneshot_wakeup_device, cpu);
105 }
106
107 static void tick_oneshot_wakeup_handler(struct clock_event_device *wd)
108 {
109         /*
110          * If we woke up early and the tick was reprogrammed in the
111          * meantime then this may be spurious but harmless.
112          */
113         tick_receive_broadcast();
114 }
115
116 static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
117                                            int cpu)
118 {
119         struct clock_event_device *curdev = tick_get_oneshot_wakeup_device(cpu);
120
121         if (!newdev)
122                 goto set_device;
123
124         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
125             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
126                  return false;
127
128         if (!(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
129             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
130                 return false;
131
132         if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
133                 return false;
134
135         if (curdev && newdev->rating <= curdev->rating)
136                 return false;
137
138         if (!try_module_get(newdev->owner))
139                 return false;
140
141         newdev->event_handler = tick_oneshot_wakeup_handler;
142 set_device:
143         clockevents_exchange_device(curdev, newdev);
144         per_cpu(tick_oneshot_wakeup_device, cpu) = newdev;
145         return true;
146 }
147 #else
148 static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
149 {
150         return NULL;
151 }
152
153 static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
154                                            int cpu)
155 {
156         return false;
157 }
158 #endif
159
160 /*
161  * Conditionally install/replace broadcast device
162  */
163 void tick_install_broadcast_device(struct clock_event_device *dev, int cpu)
164 {
165         struct clock_event_device *cur = tick_broadcast_device.evtdev;
166
167         if (tick_set_oneshot_wakeup_device(dev, cpu))
168                 return;
169
170         if (!tick_check_broadcast_device(cur, dev))
171                 return;
172
173         if (!try_module_get(dev->owner))
174                 return;
175
176         clockevents_exchange_device(cur, dev);
177         if (cur)
178                 cur->event_handler = clockevents_handle_noop;
179         tick_broadcast_device.evtdev = dev;
180         if (!cpumask_empty(tick_broadcast_mask))
181                 tick_broadcast_start_periodic(dev);
182
183         if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
184                 return;
185
186         /*
187          * If the system already runs in oneshot mode, switch the newly
188          * registered broadcast device to oneshot mode explicitly.
189          */
190         if (tick_broadcast_oneshot_active()) {
191                 tick_broadcast_switch_to_oneshot();
192                 return;
193         }
194
195         /*
196          * Inform all cpus about this. We might be in a situation
197          * where we did not switch to oneshot mode because the per cpu
198          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
199          * of a oneshot capable broadcast device. Without that
200          * notification the systems stays stuck in periodic mode
201          * forever.
202          */
203         tick_clock_notify();
204 }
205
206 /*
207  * Check, if the device is the broadcast device
208  */
209 int tick_is_broadcast_device(struct clock_event_device *dev)
210 {
211         return (dev && tick_broadcast_device.evtdev == dev);
212 }
213
214 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
215 {
216         int ret = -ENODEV;
217
218         if (tick_is_broadcast_device(dev)) {
219                 raw_spin_lock(&tick_broadcast_lock);
220                 ret = __clockevents_update_freq(dev, freq);
221                 raw_spin_unlock(&tick_broadcast_lock);
222         }
223         return ret;
224 }
225
226
227 static void err_broadcast(const struct cpumask *mask)
228 {
229         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
230 }
231
232 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
233 {
234         if (!dev->broadcast)
235                 dev->broadcast = tick_broadcast;
236         if (!dev->broadcast) {
237                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
238                              dev->name);
239                 dev->broadcast = err_broadcast;
240         }
241 }
242
243 /*
244  * Check, if the device is dysfunctional and a placeholder, which
245  * needs to be handled by the broadcast device.
246  */
247 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
248 {
249         struct clock_event_device *bc = tick_broadcast_device.evtdev;
250         unsigned long flags;
251         int ret = 0;
252
253         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
254
255         /*
256          * Devices might be registered with both periodic and oneshot
257          * mode disabled. This signals, that the device needs to be
258          * operated from the broadcast device and is a placeholder for
259          * the cpu local device.
260          */
261         if (!tick_device_is_functional(dev)) {
262                 dev->event_handler = tick_handle_periodic;
263                 tick_device_setup_broadcast_func(dev);
264                 cpumask_set_cpu(cpu, tick_broadcast_mask);
265                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
266                         tick_broadcast_start_periodic(bc);
267                 else
268                         tick_broadcast_setup_oneshot(bc, false);
269                 ret = 1;
270         } else {
271                 /*
272                  * Clear the broadcast bit for this cpu if the
273                  * device is not power state affected.
274                  */
275                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
276                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
277                 else
278                         tick_device_setup_broadcast_func(dev);
279
280                 /*
281                  * Clear the broadcast bit if the CPU is not in
282                  * periodic broadcast on state.
283                  */
284                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
285                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
286
287                 switch (tick_broadcast_device.mode) {
288                 case TICKDEV_MODE_ONESHOT:
289                         /*
290                          * If the system is in oneshot mode we can
291                          * unconditionally clear the oneshot mask bit,
292                          * because the CPU is running and therefore
293                          * not in an idle state which causes the power
294                          * state affected device to stop. Let the
295                          * caller initialize the device.
296                          */
297                         tick_broadcast_clear_oneshot(cpu);
298                         ret = 0;
299                         break;
300
301                 case TICKDEV_MODE_PERIODIC:
302                         /*
303                          * If the system is in periodic mode, check
304                          * whether the broadcast device can be
305                          * switched off now.
306                          */
307                         if (cpumask_empty(tick_broadcast_mask) && bc)
308                                 clockevents_shutdown(bc);
309                         /*
310                          * If we kept the cpu in the broadcast mask,
311                          * tell the caller to leave the per cpu device
312                          * in shutdown state. The periodic interrupt
313                          * is delivered by the broadcast device, if
314                          * the broadcast device exists and is not
315                          * hrtimer based.
316                          */
317                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
318                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
319                         break;
320                 default:
321                         break;
322                 }
323         }
324         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
325         return ret;
326 }
327
328 int tick_receive_broadcast(void)
329 {
330         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
331         struct clock_event_device *evt = td->evtdev;
332
333         if (!evt)
334                 return -ENODEV;
335
336         if (!evt->event_handler)
337                 return -EINVAL;
338
339         evt->event_handler(evt);
340         return 0;
341 }
342
343 /*
344  * Broadcast the event to the cpus, which are set in the mask (mangled).
345  */
346 static bool tick_do_broadcast(struct cpumask *mask)
347 {
348         int cpu = smp_processor_id();
349         struct tick_device *td;
350         bool local = false;
351
352         /*
353          * Check, if the current cpu is in the mask
354          */
355         if (cpumask_test_cpu(cpu, mask)) {
356                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
357
358                 cpumask_clear_cpu(cpu, mask);
359                 /*
360                  * We only run the local handler, if the broadcast
361                  * device is not hrtimer based. Otherwise we run into
362                  * a hrtimer recursion.
363                  *
364                  * local timer_interrupt()
365                  *   local_handler()
366                  *     expire_hrtimers()
367                  *       bc_handler()
368                  *         local_handler()
369                  *           expire_hrtimers()
370                  */
371                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
372         }
373
374         if (!cpumask_empty(mask)) {
375                 /*
376                  * It might be necessary to actually check whether the devices
377                  * have different broadcast functions. For now, just use the
378                  * one of the first device. This works as long as we have this
379                  * misfeature only on x86 (lapic)
380                  */
381                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
382                 td->evtdev->broadcast(mask);
383         }
384         return local;
385 }
386
387 /*
388  * Periodic broadcast:
389  * - invoke the broadcast handlers
390  */
391 static bool tick_do_periodic_broadcast(void)
392 {
393         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
394         return tick_do_broadcast(tmpmask);
395 }
396
397 /*
398  * Event handler for periodic broadcast ticks
399  */
400 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
401 {
402         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
403         bool bc_local;
404
405         raw_spin_lock(&tick_broadcast_lock);
406
407         /* Handle spurious interrupts gracefully */
408         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
409                 raw_spin_unlock(&tick_broadcast_lock);
410                 return;
411         }
412
413         bc_local = tick_do_periodic_broadcast();
414
415         if (clockevent_state_oneshot(dev)) {
416                 ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC);
417
418                 clockevents_program_event(dev, next, true);
419         }
420         raw_spin_unlock(&tick_broadcast_lock);
421
422         /*
423          * We run the handler of the local cpu after dropping
424          * tick_broadcast_lock because the handler might deadlock when
425          * trying to switch to oneshot mode.
426          */
427         if (bc_local)
428                 td->evtdev->event_handler(td->evtdev);
429 }
430
431 /**
432  * tick_broadcast_control - Enable/disable or force broadcast mode
433  * @mode:       The selected broadcast mode
434  *
435  * Called when the system enters a state where affected tick devices
436  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
437  */
438 void tick_broadcast_control(enum tick_broadcast_mode mode)
439 {
440         struct clock_event_device *bc, *dev;
441         struct tick_device *td;
442         int cpu, bc_stopped;
443         unsigned long flags;
444
445         /* Protects also the local clockevent device. */
446         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
447         td = this_cpu_ptr(&tick_cpu_device);
448         dev = td->evtdev;
449
450         /*
451          * Is the device not affected by the powerstate ?
452          */
453         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
454                 goto out;
455
456         if (!tick_device_is_functional(dev))
457                 goto out;
458
459         cpu = smp_processor_id();
460         bc = tick_broadcast_device.evtdev;
461         bc_stopped = cpumask_empty(tick_broadcast_mask);
462
463         switch (mode) {
464         case TICK_BROADCAST_FORCE:
465                 tick_broadcast_forced = 1;
466                 fallthrough;
467         case TICK_BROADCAST_ON:
468                 cpumask_set_cpu(cpu, tick_broadcast_on);
469                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
470                         /*
471                          * Only shutdown the cpu local device, if:
472                          *
473                          * - the broadcast device exists
474                          * - the broadcast device is not a hrtimer based one
475                          * - the broadcast device is in periodic mode to
476                          *   avoid a hiccup during switch to oneshot mode
477                          */
478                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
479                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
480                                 clockevents_shutdown(dev);
481                 }
482                 break;
483
484         case TICK_BROADCAST_OFF:
485                 if (tick_broadcast_forced)
486                         break;
487                 cpumask_clear_cpu(cpu, tick_broadcast_on);
488                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
489                         if (tick_broadcast_device.mode ==
490                             TICKDEV_MODE_PERIODIC)
491                                 tick_setup_periodic(dev, 0);
492                 }
493                 break;
494         }
495
496         if (bc) {
497                 if (cpumask_empty(tick_broadcast_mask)) {
498                         if (!bc_stopped)
499                                 clockevents_shutdown(bc);
500                 } else if (bc_stopped) {
501                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
502                                 tick_broadcast_start_periodic(bc);
503                         else
504                                 tick_broadcast_setup_oneshot(bc, false);
505                 }
506         }
507 out:
508         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
509 }
510 EXPORT_SYMBOL_GPL(tick_broadcast_control);
511
512 /*
513  * Set the periodic handler depending on broadcast on/off
514  */
515 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
516 {
517         if (!broadcast)
518                 dev->event_handler = tick_handle_periodic;
519         else
520                 dev->event_handler = tick_handle_periodic_broadcast;
521 }
522
523 #ifdef CONFIG_HOTPLUG_CPU
524 static void tick_shutdown_broadcast(void)
525 {
526         struct clock_event_device *bc = tick_broadcast_device.evtdev;
527
528         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
529                 if (bc && cpumask_empty(tick_broadcast_mask))
530                         clockevents_shutdown(bc);
531         }
532 }
533
534 /*
535  * Remove a CPU from broadcasting
536  */
537 void tick_broadcast_offline(unsigned int cpu)
538 {
539         raw_spin_lock(&tick_broadcast_lock);
540         cpumask_clear_cpu(cpu, tick_broadcast_mask);
541         cpumask_clear_cpu(cpu, tick_broadcast_on);
542         tick_broadcast_oneshot_offline(cpu);
543         tick_shutdown_broadcast();
544         raw_spin_unlock(&tick_broadcast_lock);
545 }
546
547 #endif
548
549 void tick_suspend_broadcast(void)
550 {
551         struct clock_event_device *bc;
552         unsigned long flags;
553
554         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
555
556         bc = tick_broadcast_device.evtdev;
557         if (bc)
558                 clockevents_shutdown(bc);
559
560         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
561 }
562
563 /*
564  * This is called from tick_resume_local() on a resuming CPU. That's
565  * called from the core resume function, tick_unfreeze() and the magic XEN
566  * resume hackery.
567  *
568  * In none of these cases the broadcast device mode can change and the
569  * bit of the resuming CPU in the broadcast mask is safe as well.
570  */
571 bool tick_resume_check_broadcast(void)
572 {
573         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
574                 return false;
575         else
576                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
577 }
578
579 void tick_resume_broadcast(void)
580 {
581         struct clock_event_device *bc;
582         unsigned long flags;
583
584         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
585
586         bc = tick_broadcast_device.evtdev;
587
588         if (bc) {
589                 clockevents_tick_resume(bc);
590
591                 switch (tick_broadcast_device.mode) {
592                 case TICKDEV_MODE_PERIODIC:
593                         if (!cpumask_empty(tick_broadcast_mask))
594                                 tick_broadcast_start_periodic(bc);
595                         break;
596                 case TICKDEV_MODE_ONESHOT:
597                         if (!cpumask_empty(tick_broadcast_mask))
598                                 tick_resume_broadcast_oneshot(bc);
599                         break;
600                 }
601         }
602         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
603 }
604
605 #ifdef CONFIG_TICK_ONESHOT
606
607 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
608 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
609 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
610
611 /*
612  * Exposed for debugging: see timer_list.c
613  */
614 struct cpumask *tick_get_broadcast_oneshot_mask(void)
615 {
616         return tick_broadcast_oneshot_mask;
617 }
618
619 /*
620  * Called before going idle with interrupts disabled. Checks whether a
621  * broadcast event from the other core is about to happen. We detected
622  * that in tick_broadcast_oneshot_control(). The callsite can use this
623  * to avoid a deep idle transition as we are about to get the
624  * broadcast IPI right away.
625  */
626 int tick_check_broadcast_expired(void)
627 {
628         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
629 }
630
631 /*
632  * Set broadcast interrupt affinity
633  */
634 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
635                                         const struct cpumask *cpumask)
636 {
637         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
638                 return;
639
640         if (cpumask_equal(bc->cpumask, cpumask))
641                 return;
642
643         bc->cpumask = cpumask;
644         irq_set_affinity(bc->irq, bc->cpumask);
645 }
646
647 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
648                                      ktime_t expires)
649 {
650         if (!clockevent_state_oneshot(bc))
651                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
652
653         clockevents_program_event(bc, expires, 1);
654         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
655 }
656
657 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
658 {
659         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
660 }
661
662 /*
663  * Called from irq_enter() when idle was interrupted to reenable the
664  * per cpu device.
665  */
666 void tick_check_oneshot_broadcast_this_cpu(void)
667 {
668         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
669                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
670
671                 /*
672                  * We might be in the middle of switching over from
673                  * periodic to oneshot. If the CPU has not yet
674                  * switched over, leave the device alone.
675                  */
676                 if (td->mode == TICKDEV_MODE_ONESHOT) {
677                         clockevents_switch_state(td->evtdev,
678                                               CLOCK_EVT_STATE_ONESHOT);
679                 }
680         }
681 }
682
683 /*
684  * Handle oneshot mode broadcasting
685  */
686 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
687 {
688         struct tick_device *td;
689         ktime_t now, next_event;
690         int cpu, next_cpu = 0;
691         bool bc_local;
692
693         raw_spin_lock(&tick_broadcast_lock);
694         dev->next_event = KTIME_MAX;
695         next_event = KTIME_MAX;
696         cpumask_clear(tmpmask);
697         now = ktime_get();
698         /* Find all expired events */
699         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
700                 /*
701                  * Required for !SMP because for_each_cpu() reports
702                  * unconditionally CPU0 as set on UP kernels.
703                  */
704                 if (!IS_ENABLED(CONFIG_SMP) &&
705                     cpumask_empty(tick_broadcast_oneshot_mask))
706                         break;
707
708                 td = &per_cpu(tick_cpu_device, cpu);
709                 if (td->evtdev->next_event <= now) {
710                         cpumask_set_cpu(cpu, tmpmask);
711                         /*
712                          * Mark the remote cpu in the pending mask, so
713                          * it can avoid reprogramming the cpu local
714                          * timer in tick_broadcast_oneshot_control().
715                          */
716                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
717                 } else if (td->evtdev->next_event < next_event) {
718                         next_event = td->evtdev->next_event;
719                         next_cpu = cpu;
720                 }
721         }
722
723         /*
724          * Remove the current cpu from the pending mask. The event is
725          * delivered immediately in tick_do_broadcast() !
726          */
727         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
728
729         /* Take care of enforced broadcast requests */
730         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
731         cpumask_clear(tick_broadcast_force_mask);
732
733         /*
734          * Sanity check. Catch the case where we try to broadcast to
735          * offline cpus.
736          */
737         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
738                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
739
740         /*
741          * Wakeup the cpus which have an expired event.
742          */
743         bc_local = tick_do_broadcast(tmpmask);
744
745         /*
746          * Two reasons for reprogram:
747          *
748          * - The global event did not expire any CPU local
749          * events. This happens in dyntick mode, as the maximum PIT
750          * delta is quite small.
751          *
752          * - There are pending events on sleeping CPUs which were not
753          * in the event mask
754          */
755         if (next_event != KTIME_MAX)
756                 tick_broadcast_set_event(dev, next_cpu, next_event);
757
758         raw_spin_unlock(&tick_broadcast_lock);
759
760         if (bc_local) {
761                 td = this_cpu_ptr(&tick_cpu_device);
762                 td->evtdev->event_handler(td->evtdev);
763         }
764 }
765
766 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
767 {
768         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
769                 return 0;
770         if (bc->next_event == KTIME_MAX)
771                 return 0;
772         return bc->bound_on == cpu ? -EBUSY : 0;
773 }
774
775 static void broadcast_shutdown_local(struct clock_event_device *bc,
776                                      struct clock_event_device *dev)
777 {
778         /*
779          * For hrtimer based broadcasting we cannot shutdown the cpu
780          * local device if our own event is the first one to expire or
781          * if we own the broadcast timer.
782          */
783         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
784                 if (broadcast_needs_cpu(bc, smp_processor_id()))
785                         return;
786                 if (dev->next_event < bc->next_event)
787                         return;
788         }
789         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
790 }
791
792 static int ___tick_broadcast_oneshot_control(enum tick_broadcast_state state,
793                                              struct tick_device *td,
794                                              int cpu)
795 {
796         struct clock_event_device *bc, *dev = td->evtdev;
797         int ret = 0;
798         ktime_t now;
799
800         raw_spin_lock(&tick_broadcast_lock);
801         bc = tick_broadcast_device.evtdev;
802
803         if (state == TICK_BROADCAST_ENTER) {
804                 /*
805                  * If the current CPU owns the hrtimer broadcast
806                  * mechanism, it cannot go deep idle and we do not add
807                  * the CPU to the broadcast mask. We don't have to go
808                  * through the EXIT path as the local timer is not
809                  * shutdown.
810                  */
811                 ret = broadcast_needs_cpu(bc, cpu);
812                 if (ret)
813                         goto out;
814
815                 /*
816                  * If the broadcast device is in periodic mode, we
817                  * return.
818                  */
819                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
820                         /* If it is a hrtimer based broadcast, return busy */
821                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
822                                 ret = -EBUSY;
823                         goto out;
824                 }
825
826                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
827                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
828
829                         /* Conditionally shut down the local timer. */
830                         broadcast_shutdown_local(bc, dev);
831
832                         /*
833                          * We only reprogram the broadcast timer if we
834                          * did not mark ourself in the force mask and
835                          * if the cpu local event is earlier than the
836                          * broadcast event. If the current CPU is in
837                          * the force mask, then we are going to be
838                          * woken by the IPI right away; we return
839                          * busy, so the CPU does not try to go deep
840                          * idle.
841                          */
842                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
843                                 ret = -EBUSY;
844                         } else if (dev->next_event < bc->next_event) {
845                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
846                                 /*
847                                  * In case of hrtimer broadcasts the
848                                  * programming might have moved the
849                                  * timer to this cpu. If yes, remove
850                                  * us from the broadcast mask and
851                                  * return busy.
852                                  */
853                                 ret = broadcast_needs_cpu(bc, cpu);
854                                 if (ret) {
855                                         cpumask_clear_cpu(cpu,
856                                                 tick_broadcast_oneshot_mask);
857                                 }
858                         }
859                 }
860         } else {
861                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
862                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
863                         /*
864                          * The cpu which was handling the broadcast
865                          * timer marked this cpu in the broadcast
866                          * pending mask and fired the broadcast
867                          * IPI. So we are going to handle the expired
868                          * event anyway via the broadcast IPI
869                          * handler. No need to reprogram the timer
870                          * with an already expired event.
871                          */
872                         if (cpumask_test_and_clear_cpu(cpu,
873                                        tick_broadcast_pending_mask))
874                                 goto out;
875
876                         /*
877                          * Bail out if there is no next event.
878                          */
879                         if (dev->next_event == KTIME_MAX)
880                                 goto out;
881                         /*
882                          * If the pending bit is not set, then we are
883                          * either the CPU handling the broadcast
884                          * interrupt or we got woken by something else.
885                          *
886                          * We are no longer in the broadcast mask, so
887                          * if the cpu local expiry time is already
888                          * reached, we would reprogram the cpu local
889                          * timer with an already expired event.
890                          *
891                          * This can lead to a ping-pong when we return
892                          * to idle and therefore rearm the broadcast
893                          * timer before the cpu local timer was able
894                          * to fire. This happens because the forced
895                          * reprogramming makes sure that the event
896                          * will happen in the future and depending on
897                          * the min_delta setting this might be far
898                          * enough out that the ping-pong starts.
899                          *
900                          * If the cpu local next_event has expired
901                          * then we know that the broadcast timer
902                          * next_event has expired as well and
903                          * broadcast is about to be handled. So we
904                          * avoid reprogramming and enforce that the
905                          * broadcast handler, which did not run yet,
906                          * will invoke the cpu local handler.
907                          *
908                          * We cannot call the handler directly from
909                          * here, because we might be in a NOHZ phase
910                          * and we did not go through the irq_enter()
911                          * nohz fixups.
912                          */
913                         now = ktime_get();
914                         if (dev->next_event <= now) {
915                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
916                                 goto out;
917                         }
918                         /*
919                          * We got woken by something else. Reprogram
920                          * the cpu local timer device.
921                          */
922                         tick_program_event(dev->next_event, 1);
923                 }
924         }
925 out:
926         raw_spin_unlock(&tick_broadcast_lock);
927         return ret;
928 }
929
930 static int tick_oneshot_wakeup_control(enum tick_broadcast_state state,
931                                        struct tick_device *td,
932                                        int cpu)
933 {
934         struct clock_event_device *dev, *wd;
935
936         dev = td->evtdev;
937         if (td->mode != TICKDEV_MODE_ONESHOT)
938                 return -EINVAL;
939
940         wd = tick_get_oneshot_wakeup_device(cpu);
941         if (!wd)
942                 return -ENODEV;
943
944         switch (state) {
945         case TICK_BROADCAST_ENTER:
946                 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT_STOPPED);
947                 clockevents_switch_state(wd, CLOCK_EVT_STATE_ONESHOT);
948                 clockevents_program_event(wd, dev->next_event, 1);
949                 break;
950         case TICK_BROADCAST_EXIT:
951                 /* We may have transitioned to oneshot mode while idle */
952                 if (clockevent_get_state(wd) != CLOCK_EVT_STATE_ONESHOT)
953                         return -ENODEV;
954         }
955
956         return 0;
957 }
958
959 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
960 {
961         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
962         int cpu = smp_processor_id();
963
964         if (!tick_oneshot_wakeup_control(state, td, cpu))
965                 return 0;
966
967         if (tick_broadcast_device.evtdev)
968                 return ___tick_broadcast_oneshot_control(state, td, cpu);
969
970         /*
971          * If there is no broadcast or wakeup device, tell the caller not
972          * to go into deep idle.
973          */
974         return -EBUSY;
975 }
976
977 /*
978  * Reset the one shot broadcast for a cpu
979  *
980  * Called with tick_broadcast_lock held
981  */
982 static void tick_broadcast_clear_oneshot(int cpu)
983 {
984         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
985         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
986 }
987
988 static void tick_broadcast_init_next_event(struct cpumask *mask,
989                                            ktime_t expires)
990 {
991         struct tick_device *td;
992         int cpu;
993
994         for_each_cpu(cpu, mask) {
995                 td = &per_cpu(tick_cpu_device, cpu);
996                 if (td->evtdev)
997                         td->evtdev->next_event = expires;
998         }
999 }
1000
1001 static inline ktime_t tick_get_next_period(void)
1002 {
1003         ktime_t next;
1004
1005         /*
1006          * Protect against concurrent updates (store /load tearing on
1007          * 32bit). It does not matter if the time is already in the
1008          * past. The broadcast device which is about to be programmed will
1009          * fire in any case.
1010          */
1011         raw_spin_lock(&jiffies_lock);
1012         next = tick_next_period;
1013         raw_spin_unlock(&jiffies_lock);
1014         return next;
1015 }
1016
1017 /**
1018  * tick_broadcast_setup_oneshot - setup the broadcast device
1019  */
1020 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc,
1021                                          bool from_periodic)
1022 {
1023         int cpu = smp_processor_id();
1024         ktime_t nexttick = 0;
1025
1026         if (!bc)
1027                 return;
1028
1029         /*
1030          * When the broadcast device was switched to oneshot by the first
1031          * CPU handling the NOHZ change, the other CPUs will reach this
1032          * code via hrtimer_run_queues() -> tick_check_oneshot_change()
1033          * too. Set up the broadcast device only once!
1034          */
1035         if (bc->event_handler == tick_handle_oneshot_broadcast) {
1036                 /*
1037                  * The CPU which switched from periodic to oneshot mode
1038                  * set the broadcast oneshot bit for all other CPUs which
1039                  * are in the general (periodic) broadcast mask to ensure
1040                  * that CPUs which wait for the periodic broadcast are
1041                  * woken up.
1042                  *
1043                  * Clear the bit for the local CPU as the set bit would
1044                  * prevent the first tick_broadcast_enter() after this CPU
1045                  * switched to oneshot state to program the broadcast
1046                  * device.
1047                  *
1048                  * This code can also be reached via tick_broadcast_control(),
1049                  * but this cannot avoid the tick_broadcast_clear_oneshot()
1050                  * as that would break the periodic to oneshot transition of
1051                  * secondary CPUs. But that's harmless as the below only
1052                  * clears already cleared bits.
1053                  */
1054                 tick_broadcast_clear_oneshot(cpu);
1055                 return;
1056         }
1057
1058
1059         bc->event_handler = tick_handle_oneshot_broadcast;
1060         bc->next_event = KTIME_MAX;
1061
1062         /*
1063          * When the tick mode is switched from periodic to oneshot it must
1064          * be ensured that CPUs which are waiting for periodic broadcast
1065          * get their wake-up at the next tick.  This is achieved by ORing
1066          * tick_broadcast_mask into tick_broadcast_oneshot_mask.
1067          *
1068          * For other callers, e.g. broadcast device replacement,
1069          * tick_broadcast_oneshot_mask must not be touched as this would
1070          * set bits for CPUs which are already NOHZ, but not idle. Their
1071          * next tick_broadcast_enter() would observe the bit set and fail
1072          * to update the expiry time and the broadcast event device.
1073          */
1074         if (from_periodic) {
1075                 cpumask_copy(tmpmask, tick_broadcast_mask);
1076                 /* Remove the local CPU as it is obviously not idle */
1077                 cpumask_clear_cpu(cpu, tmpmask);
1078                 cpumask_or(tick_broadcast_oneshot_mask, tick_broadcast_oneshot_mask, tmpmask);
1079
1080                 /*
1081                  * Ensure that the oneshot broadcast handler will wake the
1082                  * CPUs which are still waiting for periodic broadcast.
1083                  */
1084                 nexttick = tick_get_next_period();
1085                 tick_broadcast_init_next_event(tmpmask, nexttick);
1086
1087                 /*
1088                  * If the underlying broadcast clock event device is
1089                  * already in oneshot state, then there is nothing to do.
1090                  * The device was already armed for the next tick
1091                  * in tick_handle_broadcast_periodic()
1092                  */
1093                 if (clockevent_state_oneshot(bc))
1094                         return;
1095         }
1096
1097         /*
1098          * When switching from periodic to oneshot mode arm the broadcast
1099          * device for the next tick.
1100          *
1101          * If the broadcast device has been replaced in oneshot mode and
1102          * the oneshot broadcast mask is not empty, then arm it to expire
1103          * immediately in order to reevaluate the next expiring timer.
1104          * @nexttick is 0 and therefore in the past which will cause the
1105          * clockevent code to force an event.
1106          *
1107          * For both cases the programming can be avoided when the oneshot
1108          * broadcast mask is empty.
1109          *
1110          * tick_broadcast_set_event() implicitly switches the broadcast
1111          * device to oneshot state.
1112          */
1113         if (!cpumask_empty(tick_broadcast_oneshot_mask))
1114                 tick_broadcast_set_event(bc, cpu, nexttick);
1115 }
1116
1117 /*
1118  * Select oneshot operating mode for the broadcast device
1119  */
1120 void tick_broadcast_switch_to_oneshot(void)
1121 {
1122         struct clock_event_device *bc;
1123         enum tick_device_mode oldmode;
1124         unsigned long flags;
1125
1126         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1127
1128         oldmode = tick_broadcast_device.mode;
1129         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
1130         bc = tick_broadcast_device.evtdev;
1131         if (bc)
1132                 tick_broadcast_setup_oneshot(bc, oldmode == TICKDEV_MODE_PERIODIC);
1133
1134         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1135 }
1136
1137 #ifdef CONFIG_HOTPLUG_CPU
1138 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
1139 {
1140         struct clock_event_device *bc;
1141         unsigned long flags;
1142
1143         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1144         bc = tick_broadcast_device.evtdev;
1145
1146         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
1147                 /* This moves the broadcast assignment to this CPU: */
1148                 clockevents_program_event(bc, bc->next_event, 1);
1149         }
1150         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1151 }
1152
1153 /*
1154  * Remove a dying CPU from broadcasting
1155  */
1156 static void tick_broadcast_oneshot_offline(unsigned int cpu)
1157 {
1158         if (tick_get_oneshot_wakeup_device(cpu))
1159                 tick_set_oneshot_wakeup_device(NULL, cpu);
1160
1161         /*
1162          * Clear the broadcast masks for the dead cpu, but do not stop
1163          * the broadcast device!
1164          */
1165         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
1166         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
1167         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
1168 }
1169 #endif
1170
1171 /*
1172  * Check, whether the broadcast device is in one shot mode
1173  */
1174 int tick_broadcast_oneshot_active(void)
1175 {
1176         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
1177 }
1178
1179 /*
1180  * Check whether the broadcast device supports oneshot.
1181  */
1182 bool tick_broadcast_oneshot_available(void)
1183 {
1184         struct clock_event_device *bc = tick_broadcast_device.evtdev;
1185
1186         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
1187 }
1188
1189 #else
1190 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
1191 {
1192         struct clock_event_device *bc = tick_broadcast_device.evtdev;
1193
1194         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1195                 return -EBUSY;
1196
1197         return 0;
1198 }
1199 #endif
1200
1201 void __init tick_broadcast_init(void)
1202 {
1203         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1204         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1205         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1206 #ifdef CONFIG_TICK_ONESHOT
1207         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1208         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1209         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1210 #endif
1211 }