1 // SPDX-License-Identifier: GPL-2.0
3 * Generic sched_clock() support, to extend low level hardware time
4 * counters to full 64-bit ns values.
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/moduleparam.h>
12 #include <linux/sched.h>
13 #include <linux/sched/clock.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/hrtimer.h>
16 #include <linux/sched_clock.h>
17 #include <linux/seqlock.h>
18 #include <linux/bitops.h>
20 #include "timekeeping.h"
23 * struct clock_data - all data needed for sched_clock() (including
24 * registration of a new clock source)
26 * @seq: Sequence counter for protecting updates. The lowest
27 * bit is the index for @read_data.
28 * @read_data: Data required to read from sched_clock.
29 * @wrap_kt: Duration for which clock can run before wrapping.
30 * @rate: Tick rate of the registered clock.
31 * @actual_read_sched_clock: Registered hardware level clock read function.
33 * The ordering of this structure has been chosen to optimize cache
34 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
35 * into a single 64-byte cache line.
39 struct clock_read_data read_data[2];
43 u64 (*actual_read_sched_clock)(void);
46 static struct hrtimer sched_clock_timer;
47 static int irqtime = -1;
49 core_param(irqtime, irqtime, int, 0400);
51 static u64 notrace jiffy_sched_clock_read(void)
54 * We don't need to use get_jiffies_64 on 32-bit arches here
55 * because we register with BITS_PER_LONG
57 return (u64)(jiffies - INITIAL_JIFFIES);
60 static struct clock_data cd ____cacheline_aligned = {
61 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
62 .read_sched_clock = jiffy_sched_clock_read, },
63 .actual_read_sched_clock = jiffy_sched_clock_read,
66 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
68 return (cyc * mult) >> shift;
71 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
73 *seq = raw_read_seqcount_latch(&cd.seq);
74 return cd.read_data + (*seq & 1);
77 notrace int sched_clock_read_retry(unsigned int seq)
79 return read_seqcount_latch_retry(&cd.seq, seq);
82 unsigned long long notrace sched_clock(void)
86 struct clock_read_data *rd;
89 rd = sched_clock_read_begin(&seq);
91 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
93 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
94 } while (sched_clock_read_retry(seq));
100 * Updating the data required to read the clock.
102 * sched_clock() will never observe mis-matched data even if called from
103 * an NMI. We do this by maintaining an odd/even copy of the data and
104 * steering sched_clock() to one or the other using a sequence counter.
105 * In order to preserve the data cache profile of sched_clock() as much
106 * as possible the system reverts back to the even copy when the update
107 * completes; the odd copy is used *only* during an update.
109 static void update_clock_read_data(struct clock_read_data *rd)
111 /* update the backup (odd) copy with the new data */
112 cd.read_data[1] = *rd;
114 /* steer readers towards the odd copy */
115 raw_write_seqcount_latch(&cd.seq);
117 /* now its safe for us to update the normal (even) copy */
118 cd.read_data[0] = *rd;
120 /* switch readers back to the even copy */
121 raw_write_seqcount_latch(&cd.seq);
125 * Atomically update the sched_clock() epoch.
127 static void update_sched_clock(void)
131 struct clock_read_data rd;
133 rd = cd.read_data[0];
135 cyc = cd.actual_read_sched_clock();
136 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
141 update_clock_read_data(&rd);
144 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
146 update_sched_clock();
147 hrtimer_forward_now(hrt, cd.wrap_kt);
149 return HRTIMER_RESTART;
153 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
155 u64 res, wrap, new_mask, new_epoch, cyc, ns;
156 u32 new_mult, new_shift;
157 unsigned long r, flags;
159 struct clock_read_data rd;
164 /* Cannot register a sched_clock with interrupts on */
165 local_irq_save(flags);
167 /* Calculate the mult/shift to convert counter ticks to ns. */
168 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
170 new_mask = CLOCKSOURCE_MASK(bits);
173 /* Calculate how many nanosecs until we risk wrapping */
174 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
175 cd.wrap_kt = ns_to_ktime(wrap);
177 rd = cd.read_data[0];
179 /* Update epoch for new counter and update 'epoch_ns' from old counter*/
181 cyc = cd.actual_read_sched_clock();
182 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
183 cd.actual_read_sched_clock = read;
185 rd.read_sched_clock = read;
186 rd.sched_clock_mask = new_mask;
188 rd.shift = new_shift;
189 rd.epoch_cyc = new_epoch;
192 update_clock_read_data(&rd);
194 if (sched_clock_timer.function != NULL) {
195 /* update timeout for clock wrap */
196 hrtimer_start(&sched_clock_timer, cd.wrap_kt,
197 HRTIMER_MODE_REL_HARD);
213 /* Calculate the ns resolution of this counter */
214 res = cyc_to_ns(1ULL, new_mult, new_shift);
216 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
217 bits, r, r_unit, res, wrap);
219 /* Enable IRQ time accounting if we have a fast enough sched_clock() */
220 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
221 enable_sched_clock_irqtime();
223 local_irq_restore(flags);
225 pr_debug("Registered %pS as sched_clock source\n", read);
228 void __init generic_sched_clock_init(void)
231 * If no sched_clock() function has been provided at that point,
232 * make it the final one.
234 if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
235 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
237 update_sched_clock();
240 * Start the timer to keep sched_clock() properly updated and
241 * sets the initial epoch.
243 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
244 sched_clock_timer.function = sched_clock_poll;
245 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
249 * Clock read function for use when the clock is suspended.
251 * This function makes it appear to sched_clock() as if the clock
252 * stopped counting at its last update.
254 * This function must only be called from the critical
255 * section in sched_clock(). It relies on the read_seqcount_retry()
256 * at the end of the critical section to be sure we observe the
257 * correct copy of 'epoch_cyc'.
259 static u64 notrace suspended_sched_clock_read(void)
261 unsigned int seq = raw_read_seqcount_latch(&cd.seq);
263 return cd.read_data[seq & 1].epoch_cyc;
266 int sched_clock_suspend(void)
268 struct clock_read_data *rd = &cd.read_data[0];
270 update_sched_clock();
271 hrtimer_cancel(&sched_clock_timer);
272 rd->read_sched_clock = suspended_sched_clock_read;
277 void sched_clock_resume(void)
279 struct clock_read_data *rd = &cd.read_data[0];
281 rd->epoch_cyc = cd.actual_read_sched_clock();
282 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
283 rd->read_sched_clock = cd.actual_read_sched_clock;
286 static struct syscore_ops sched_clock_ops = {
287 .suspend = sched_clock_suspend,
288 .resume = sched_clock_resume,
291 static int __init sched_clock_syscore_init(void)
293 register_syscore_ops(&sched_clock_ops);
297 device_initcall(sched_clock_syscore_init);