2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
20 #include "tick-internal.h"
23 * NTP timekeeping variables:
26 DEFINE_RAW_SPINLOCK(ntp_lock);
29 /* USER_HZ period (usecs): */
30 unsigned long tick_usec = TICK_USEC;
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long tick_nsec;
35 static u64 tick_length;
36 static u64 tick_length_base;
38 #define MAX_TICKADJ 500LL /* usecs */
39 #define MAX_TICKADJ_SCALED \
40 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
43 * phase-lock loop variables
47 * clock synchronization status
49 * (TIME_ERROR prevents overwriting the CMOS clock)
51 static int time_state = TIME_OK;
53 /* clock status bits: */
54 static int time_status = STA_UNSYNC;
56 /* TAI offset (secs): */
59 /* time adjustment (nsecs): */
60 static s64 time_offset;
62 /* pll time constant: */
63 static long time_constant = 2;
65 /* maximum error (usecs): */
66 static long time_maxerror = NTP_PHASE_LIMIT;
68 /* estimated error (usecs): */
69 static long time_esterror = NTP_PHASE_LIMIT;
71 /* frequency offset (scaled nsecs/secs): */
74 /* time at last adjustment (secs): */
75 static long time_reftime;
77 static long time_adjust;
79 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
80 static s64 ntp_tick_adj;
85 * The following variables are used when a pulse-per-second (PPS) signal
86 * is available. They establish the engineering parameters of the clock
87 * discipline loop when controlled by the PPS signal.
89 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
90 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
91 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
92 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
93 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
94 increase pps_shift or consecutive bad
95 intervals to decrease it */
96 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
98 static int pps_valid; /* signal watchdog counter */
99 static long pps_tf[3]; /* phase median filter */
100 static long pps_jitter; /* current jitter (ns) */
101 static struct timespec pps_fbase; /* beginning of the last freq interval */
102 static int pps_shift; /* current interval duration (s) (shift) */
103 static int pps_intcnt; /* interval counter */
104 static s64 pps_freq; /* frequency offset (scaled ns/s) */
105 static long pps_stabil; /* current stability (scaled ns/s) */
108 * PPS signal quality monitors
110 static long pps_calcnt; /* calibration intervals */
111 static long pps_jitcnt; /* jitter limit exceeded */
112 static long pps_stbcnt; /* stability limit exceeded */
113 static long pps_errcnt; /* calibration errors */
116 /* PPS kernel consumer compensates the whole phase error immediately.
117 * Otherwise, reduce the offset by a fixed factor times the time constant.
119 static inline s64 ntp_offset_chunk(s64 offset)
121 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
124 return shift_right(offset, SHIFT_PLL + time_constant);
127 static inline void pps_reset_freq_interval(void)
129 /* the PPS calibration interval may end
130 surprisingly early */
131 pps_shift = PPS_INTMIN;
136 * pps_clear - Clears the PPS state variables
138 * Must be called while holding a write on the ntp_lock
140 static inline void pps_clear(void)
142 pps_reset_freq_interval();
146 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
150 /* Decrease pps_valid to indicate that another second has passed since
151 * the last PPS signal. When it reaches 0, indicate that PPS signal is
154 * Must be called while holding a write on the ntp_lock
156 static inline void pps_dec_valid(void)
161 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162 STA_PPSWANDER | STA_PPSERROR);
167 static inline void pps_set_freq(s64 freq)
172 static inline int is_error_status(int status)
174 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
175 /* PPS signal lost when either PPS time or
176 * PPS frequency synchronization requested
178 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
179 && !(time_status & STA_PPSSIGNAL))
180 /* PPS jitter exceeded when
181 * PPS time synchronization requested */
182 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
183 == (STA_PPSTIME|STA_PPSJITTER))
184 /* PPS wander exceeded or calibration error when
185 * PPS frequency synchronization requested
187 || ((time_status & STA_PPSFREQ)
188 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
191 static inline void pps_fill_timex(struct timex *txc)
193 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194 PPM_SCALE_INV, NTP_SCALE_SHIFT);
195 txc->jitter = pps_jitter;
196 if (!(time_status & STA_NANO))
197 txc->jitter /= NSEC_PER_USEC;
198 txc->shift = pps_shift;
199 txc->stabil = pps_stabil;
200 txc->jitcnt = pps_jitcnt;
201 txc->calcnt = pps_calcnt;
202 txc->errcnt = pps_errcnt;
203 txc->stbcnt = pps_stbcnt;
206 #else /* !CONFIG_NTP_PPS */
208 static inline s64 ntp_offset_chunk(s64 offset)
210 return shift_right(offset, SHIFT_PLL + time_constant);
213 static inline void pps_reset_freq_interval(void) {}
214 static inline void pps_clear(void) {}
215 static inline void pps_dec_valid(void) {}
216 static inline void pps_set_freq(s64 freq) {}
218 static inline int is_error_status(int status)
220 return status & (STA_UNSYNC|STA_CLOCKERR);
223 static inline void pps_fill_timex(struct timex *txc)
225 /* PPS is not implemented, so these are zero */
236 #endif /* CONFIG_NTP_PPS */
240 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243 static inline int ntp_synced(void)
245 return !(time_status & STA_UNSYNC);
254 * Update (tick_length, tick_length_base, tick_nsec), based
255 * on (tick_usec, ntp_tick_adj, time_freq):
257 static void ntp_update_frequency(void)
262 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265 second_length += ntp_tick_adj;
266 second_length += time_freq;
268 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
269 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
272 * Don't wait for the next second_overflow, apply
273 * the change to the tick length immediately:
275 tick_length += new_base - tick_length_base;
276 tick_length_base = new_base;
279 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
281 time_status &= ~STA_MODE;
286 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
289 time_status |= STA_MODE;
291 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
294 static void ntp_update_offset(long offset)
300 if (!(time_status & STA_PLL))
303 if (!(time_status & STA_NANO))
304 offset *= NSEC_PER_USEC;
307 * Scale the phase adjustment and
308 * clamp to the operating range.
310 offset = min(offset, MAXPHASE);
311 offset = max(offset, -MAXPHASE);
314 * Select how the frequency is to be controlled
315 * and in which mode (PLL or FLL).
317 secs = get_seconds() - time_reftime;
318 if (unlikely(time_status & STA_FREQHOLD))
321 time_reftime = get_seconds();
324 freq_adj = ntp_update_offset_fll(offset64, secs);
327 * Clamp update interval to reduce PLL gain with low
328 * sampling rate (e.g. intermittent network connection)
329 * to avoid instability.
331 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
332 secs = 1 << (SHIFT_PLL + 1 + time_constant);
334 freq_adj += (offset64 * secs) <<
335 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
337 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
339 time_freq = max(freq_adj, -MAXFREQ_SCALED);
341 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
345 * ntp_clear - Clears the NTP state variables
351 raw_spin_lock_irqsave(&ntp_lock, flags);
353 time_adjust = 0; /* stop active adjtime() */
354 time_status |= STA_UNSYNC;
355 time_maxerror = NTP_PHASE_LIMIT;
356 time_esterror = NTP_PHASE_LIMIT;
358 ntp_update_frequency();
360 tick_length = tick_length_base;
363 /* Clear PPS state variables */
365 raw_spin_unlock_irqrestore(&ntp_lock, flags);
370 u64 ntp_tick_length(void)
375 raw_spin_lock_irqsave(&ntp_lock, flags);
377 raw_spin_unlock_irqrestore(&ntp_lock, flags);
383 * this routine handles the overflow of the microsecond field
385 * The tricky bits of code to handle the accurate clock support
386 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
387 * They were originally developed for SUN and DEC kernels.
388 * All the kudos should go to Dave for this stuff.
390 * Also handles leap second processing, and returns leap offset
392 int second_overflow(unsigned long secs)
398 raw_spin_lock_irqsave(&ntp_lock, flags);
401 * Leap second processing. If in leap-insert state at the end of the
402 * day, the system clock is set back one second; if in leap-delete
403 * state, the system clock is set ahead one second.
405 switch (time_state) {
407 if (time_status & STA_INS)
408 time_state = TIME_INS;
409 else if (time_status & STA_DEL)
410 time_state = TIME_DEL;
413 if (!(time_status & STA_INS))
414 time_state = TIME_OK;
415 else if (secs % 86400 == 0) {
417 time_state = TIME_OOP;
420 "Clock: inserting leap second 23:59:60 UTC\n");
424 if (!(time_status & STA_DEL))
425 time_state = TIME_OK;
426 else if ((secs + 1) % 86400 == 0) {
429 time_state = TIME_WAIT;
431 "Clock: deleting leap second 23:59:59 UTC\n");
435 time_state = TIME_WAIT;
439 if (!(time_status & (STA_INS | STA_DEL)))
440 time_state = TIME_OK;
445 /* Bump the maxerror field */
446 time_maxerror += MAXFREQ / NSEC_PER_USEC;
447 if (time_maxerror > NTP_PHASE_LIMIT) {
448 time_maxerror = NTP_PHASE_LIMIT;
449 time_status |= STA_UNSYNC;
452 /* Compute the phase adjustment for the next second */
453 tick_length = tick_length_base;
455 delta = ntp_offset_chunk(time_offset);
456 time_offset -= delta;
457 tick_length += delta;
459 /* Check PPS signal */
465 if (time_adjust > MAX_TICKADJ) {
466 time_adjust -= MAX_TICKADJ;
467 tick_length += MAX_TICKADJ_SCALED;
471 if (time_adjust < -MAX_TICKADJ) {
472 time_adjust += MAX_TICKADJ;
473 tick_length -= MAX_TICKADJ_SCALED;
477 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
482 raw_spin_unlock_irqrestore(&ntp_lock, flags);
487 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
488 static void sync_cmos_clock(struct work_struct *work);
490 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
492 static void sync_cmos_clock(struct work_struct *work)
494 struct timespec now, next;
498 * If we have an externally synchronized Linux clock, then update
499 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
500 * called as close as possible to 500 ms before the new second starts.
501 * This code is run on a timer. If the clock is set, that timer
502 * may not expire at the correct time. Thus, we adjust...
506 * Not synced, exit, do not restart a timer (if one is
507 * running, let it run out).
512 getnstimeofday(&now);
513 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
514 struct timespec adjust = now;
517 if (persistent_clock_is_local)
518 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
519 #ifdef CONFIG_GENERIC_CMOS_UPDATE
520 fail = update_persistent_clock(adjust);
522 #ifdef CONFIG_RTC_SYSTOHC
524 fail = rtc_set_ntp_time(adjust);
528 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
529 if (next.tv_nsec <= 0)
530 next.tv_nsec += NSEC_PER_SEC;
532 if (!fail || fail == -ENODEV)
537 if (next.tv_nsec >= NSEC_PER_SEC) {
539 next.tv_nsec -= NSEC_PER_SEC;
541 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
544 static void notify_cmos_timer(void)
546 schedule_delayed_work(&sync_cmos_work, 0);
550 static inline void notify_cmos_timer(void) { }
555 * Propagate a new txc->status value into the NTP state:
557 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
559 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
560 time_state = TIME_OK;
561 time_status = STA_UNSYNC;
562 /* restart PPS frequency calibration */
563 pps_reset_freq_interval();
567 * If we turn on PLL adjustments then reset the
568 * reference time to current time.
570 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
571 time_reftime = get_seconds();
573 /* only set allowed bits */
574 time_status &= STA_RONLY;
575 time_status |= txc->status & ~STA_RONLY;
579 * Called with ntp_lock held, so we can access and modify
580 * all the global NTP state:
582 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
584 if (txc->modes & ADJ_STATUS)
585 process_adj_status(txc, ts);
587 if (txc->modes & ADJ_NANO)
588 time_status |= STA_NANO;
590 if (txc->modes & ADJ_MICRO)
591 time_status &= ~STA_NANO;
593 if (txc->modes & ADJ_FREQUENCY) {
594 time_freq = txc->freq * PPM_SCALE;
595 time_freq = min(time_freq, MAXFREQ_SCALED);
596 time_freq = max(time_freq, -MAXFREQ_SCALED);
597 /* update pps_freq */
598 pps_set_freq(time_freq);
601 if (txc->modes & ADJ_MAXERROR)
602 time_maxerror = txc->maxerror;
604 if (txc->modes & ADJ_ESTERROR)
605 time_esterror = txc->esterror;
607 if (txc->modes & ADJ_TIMECONST) {
608 time_constant = txc->constant;
609 if (!(time_status & STA_NANO))
611 time_constant = min(time_constant, (long)MAXTC);
612 time_constant = max(time_constant, 0l);
615 if (txc->modes & ADJ_TAI && txc->constant > 0)
616 time_tai = txc->constant;
618 if (txc->modes & ADJ_OFFSET)
619 ntp_update_offset(txc->offset);
621 if (txc->modes & ADJ_TICK)
622 tick_usec = txc->tick;
624 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
625 ntp_update_frequency();
629 * adjtimex mainly allows reading (and writing, if superuser) of
630 * kernel time-keeping variables. used by xntpd.
632 int do_adjtimex(struct timex *txc)
637 /* Validate the data before disabling interrupts */
638 if (txc->modes & ADJ_ADJTIME) {
639 /* singleshot must not be used with any other mode bits */
640 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
642 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
643 !capable(CAP_SYS_TIME))
646 /* In order to modify anything, you gotta be super-user! */
647 if (txc->modes && !capable(CAP_SYS_TIME))
651 * if the quartz is off by more than 10% then
652 * something is VERY wrong!
654 if (txc->modes & ADJ_TICK &&
655 (txc->tick < 900000/USER_HZ ||
656 txc->tick > 1100000/USER_HZ))
660 if (txc->modes & ADJ_SETOFFSET) {
661 struct timespec delta;
662 delta.tv_sec = txc->time.tv_sec;
663 delta.tv_nsec = txc->time.tv_usec;
664 if (!capable(CAP_SYS_TIME))
666 if (!(txc->modes & ADJ_NANO))
667 delta.tv_nsec *= 1000;
668 result = timekeeping_inject_offset(&delta);
675 raw_spin_lock_irq(&ntp_lock);
677 if (txc->modes & ADJ_ADJTIME) {
678 long save_adjust = time_adjust;
680 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
681 /* adjtime() is independent from ntp_adjtime() */
682 time_adjust = txc->offset;
683 ntp_update_frequency();
685 txc->offset = save_adjust;
688 /* If there are input parameters, then process them: */
690 process_adjtimex_modes(txc, &ts);
692 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
694 if (!(time_status & STA_NANO))
695 txc->offset /= NSEC_PER_USEC;
698 result = time_state; /* mostly `TIME_OK' */
699 /* check for errors */
700 if (is_error_status(time_status))
703 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
704 PPM_SCALE_INV, NTP_SCALE_SHIFT);
705 txc->maxerror = time_maxerror;
706 txc->esterror = time_esterror;
707 txc->status = time_status;
708 txc->constant = time_constant;
710 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
711 txc->tick = tick_usec;
714 /* fill PPS status fields */
717 raw_spin_unlock_irq(&ntp_lock);
719 txc->time.tv_sec = ts.tv_sec;
720 txc->time.tv_usec = ts.tv_nsec;
721 if (!(time_status & STA_NANO))
722 txc->time.tv_usec /= NSEC_PER_USEC;
729 #ifdef CONFIG_NTP_PPS
731 /* actually struct pps_normtime is good old struct timespec, but it is
732 * semantically different (and it is the reason why it was invented):
733 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
734 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
735 struct pps_normtime {
736 __kernel_time_t sec; /* seconds */
737 long nsec; /* nanoseconds */
740 /* normalize the timestamp so that nsec is in the
741 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
742 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
744 struct pps_normtime norm = {
749 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
750 norm.nsec -= NSEC_PER_SEC;
757 /* get current phase correction and jitter */
758 static inline long pps_phase_filter_get(long *jitter)
760 *jitter = pps_tf[0] - pps_tf[1];
764 /* TODO: test various filters */
768 /* add the sample to the phase filter */
769 static inline void pps_phase_filter_add(long err)
771 pps_tf[2] = pps_tf[1];
772 pps_tf[1] = pps_tf[0];
776 /* decrease frequency calibration interval length.
777 * It is halved after four consecutive unstable intervals.
779 static inline void pps_dec_freq_interval(void)
781 if (--pps_intcnt <= -PPS_INTCOUNT) {
782 pps_intcnt = -PPS_INTCOUNT;
783 if (pps_shift > PPS_INTMIN) {
790 /* increase frequency calibration interval length.
791 * It is doubled after four consecutive stable intervals.
793 static inline void pps_inc_freq_interval(void)
795 if (++pps_intcnt >= PPS_INTCOUNT) {
796 pps_intcnt = PPS_INTCOUNT;
797 if (pps_shift < PPS_INTMAX) {
804 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
807 * At the end of the calibration interval the difference between the
808 * first and last MONOTONIC_RAW clock timestamps divided by the length
809 * of the interval becomes the frequency update. If the interval was
810 * too long, the data are discarded.
811 * Returns the difference between old and new frequency values.
813 static long hardpps_update_freq(struct pps_normtime freq_norm)
815 long delta, delta_mod;
818 /* check if the frequency interval was too long */
819 if (freq_norm.sec > (2 << pps_shift)) {
820 time_status |= STA_PPSERROR;
822 pps_dec_freq_interval();
823 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
828 /* here the raw frequency offset and wander (stability) is
829 * calculated. If the wander is less than the wander threshold
830 * the interval is increased; otherwise it is decreased.
832 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
834 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
836 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
837 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
838 time_status |= STA_PPSWANDER;
840 pps_dec_freq_interval();
841 } else { /* good sample */
842 pps_inc_freq_interval();
845 /* the stability metric is calculated as the average of recent
846 * frequency changes, but is used only for performance
851 delta_mod = -delta_mod;
852 pps_stabil += (div_s64(((s64)delta_mod) <<
853 (NTP_SCALE_SHIFT - SHIFT_USEC),
854 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
856 /* if enabled, the system clock frequency is updated */
857 if ((time_status & STA_PPSFREQ) != 0 &&
858 (time_status & STA_FREQHOLD) == 0) {
859 time_freq = pps_freq;
860 ntp_update_frequency();
866 /* correct REALTIME clock phase error against PPS signal */
867 static void hardpps_update_phase(long error)
869 long correction = -error;
872 /* add the sample to the median filter */
873 pps_phase_filter_add(correction);
874 correction = pps_phase_filter_get(&jitter);
876 /* Nominal jitter is due to PPS signal noise. If it exceeds the
877 * threshold, the sample is discarded; otherwise, if so enabled,
878 * the time offset is updated.
880 if (jitter > (pps_jitter << PPS_POPCORN)) {
881 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
882 jitter, (pps_jitter << PPS_POPCORN));
883 time_status |= STA_PPSJITTER;
885 } else if (time_status & STA_PPSTIME) {
886 /* correct the time using the phase offset */
887 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
889 /* cancel running adjtime() */
893 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
897 * hardpps() - discipline CPU clock oscillator to external PPS signal
899 * This routine is called at each PPS signal arrival in order to
900 * discipline the CPU clock oscillator to the PPS signal. It takes two
901 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
902 * is used to correct clock phase error and the latter is used to
903 * correct the frequency.
905 * This code is based on David Mills's reference nanokernel
906 * implementation. It was mostly rewritten but keeps the same idea.
908 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
910 struct pps_normtime pts_norm, freq_norm;
913 pts_norm = pps_normalize_ts(*phase_ts);
915 raw_spin_lock_irqsave(&ntp_lock, flags);
917 /* clear the error bits, they will be set again if needed */
918 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
920 /* indicate signal presence */
921 time_status |= STA_PPSSIGNAL;
922 pps_valid = PPS_VALID;
924 /* when called for the first time,
925 * just start the frequency interval */
926 if (unlikely(pps_fbase.tv_sec == 0)) {
928 raw_spin_unlock_irqrestore(&ntp_lock, flags);
932 /* ok, now we have a base for frequency calculation */
933 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
935 /* check that the signal is in the range
936 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
937 if ((freq_norm.sec == 0) ||
938 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
939 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
940 time_status |= STA_PPSJITTER;
941 /* restart the frequency calibration interval */
943 raw_spin_unlock_irqrestore(&ntp_lock, flags);
944 pr_err("hardpps: PPSJITTER: bad pulse\n");
950 /* check if the current frequency interval is finished */
951 if (freq_norm.sec >= (1 << pps_shift)) {
953 /* restart the frequency calibration interval */
955 hardpps_update_freq(freq_norm);
958 hardpps_update_phase(pts_norm.nsec);
960 raw_spin_unlock_irqrestore(&ntp_lock, flags);
962 EXPORT_SYMBOL(hardpps);
964 #endif /* CONFIG_NTP_PPS */
966 static int __init ntp_tick_adj_setup(char *str)
968 ntp_tick_adj = simple_strtol(str, NULL, 0);
969 ntp_tick_adj <<= NTP_SCALE_SHIFT;
974 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
976 void __init ntp_init(void)