1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 * High-resolution kernel timers
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
13 * Started by: Thomas Gleixner and Ingo Molnar
16 * Based on the original timer wheel code
18 * Help, testing, suggestions, bugfixes, improvements were
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
45 #include <linux/uaccess.h>
47 #include <trace/events/timer.h>
49 #include "tick-internal.h"
52 * Masks for selecting the soft and hard context timers from
55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
89 .index = HRTIMER_BASE_TAI,
91 .get_time = &ktime_get_clocktai,
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
127 * Functions and macros which are different for UP/SMP systems are kept in a
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
137 static struct hrtimer_cpu_base migration_cpu_base = {
139 .cpu_base = &migration_cpu_base,
140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 &migration_cpu_base.lock),
145 #define migration_base migration_cpu_base.clock_base[0]
147 static inline bool is_migration_base(struct hrtimer_clock_base *base)
149 return base == &migration_base;
153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154 * means that all timers which are tied to this base via timer->base are
155 * locked, and the base itself is locked too.
157 * So __run_timers/migrate_timers can safely modify all timers which could
158 * be found on the lists/queues.
160 * When the timer's base is locked, and the timer removed from list, it is
161 * possible to set timer->base = &migration_base and drop the lock: the timer
165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 unsigned long *flags)
168 struct hrtimer_clock_base *base;
171 base = READ_ONCE(timer->base);
172 if (likely(base != &migration_base)) {
173 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
174 if (likely(base == timer->base))
176 /* The timer has migrated to another CPU: */
177 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
184 * We do not migrate the timer when it is expiring before the next
185 * event on the target cpu. When high resolution is enabled, we cannot
186 * reprogram the target cpu hardware and we would cause it to fire
187 * late. To keep it simple, we handle the high resolution enabled and
188 * disabled case similar.
190 * Called with cpu_base->lock of target cpu held.
193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
197 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
198 return expires < new_base->cpu_base->expires_next;
202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
213 * We switch the timer base to a power-optimized selected CPU target,
215 * - NO_HZ_COMMON is enabled
216 * - timer migration is enabled
217 * - the timer callback is not running
218 * - the timer is not the first expiring timer on the new target
220 * If one of the above requirements is not fulfilled we move the timer
221 * to the current CPU or leave it on the previously assigned CPU if
222 * the timer callback is currently running.
224 static inline struct hrtimer_clock_base *
225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
228 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
229 struct hrtimer_clock_base *new_base;
230 int basenum = base->index;
232 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 new_cpu_base = get_target_base(this_cpu_base, pinned);
235 new_base = &new_cpu_base->clock_base[basenum];
237 if (base != new_base) {
239 * We are trying to move timer to new_base.
240 * However we can't change timer's base while it is running,
241 * so we keep it on the same CPU. No hassle vs. reprogramming
242 * the event source in the high resolution case. The softirq
243 * code will take care of this when the timer function has
244 * completed. There is no conflict as we hold the lock until
245 * the timer is enqueued.
247 if (unlikely(hrtimer_callback_running(timer)))
250 /* See the comment in lock_hrtimer_base() */
251 WRITE_ONCE(timer->base, &migration_base);
252 raw_spin_unlock(&base->cpu_base->lock);
253 raw_spin_lock(&new_base->cpu_base->lock);
255 if (new_cpu_base != this_cpu_base &&
256 hrtimer_check_target(timer, new_base)) {
257 raw_spin_unlock(&new_base->cpu_base->lock);
258 raw_spin_lock(&base->cpu_base->lock);
259 new_cpu_base = this_cpu_base;
260 WRITE_ONCE(timer->base, base);
263 WRITE_ONCE(timer->base, new_base);
265 if (new_cpu_base != this_cpu_base &&
266 hrtimer_check_target(timer, new_base)) {
267 new_cpu_base = this_cpu_base;
274 #else /* CONFIG_SMP */
276 static inline bool is_migration_base(struct hrtimer_clock_base *base)
281 static inline struct hrtimer_clock_base *
282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
284 struct hrtimer_clock_base *base = timer->base;
286 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
291 # define switch_hrtimer_base(t, b, p) (b)
293 #endif /* !CONFIG_SMP */
296 * Functions for the union type storage format of ktime_t which are
297 * too large for inlining:
299 #if BITS_PER_LONG < 64
301 * Divide a ktime value by a nanosecond value
303 s64 __ktime_divns(const ktime_t kt, s64 div)
309 dclc = ktime_to_ns(kt);
310 tmp = dclc < 0 ? -dclc : dclc;
312 /* Make sure the divisor is less than 2^32: */
318 do_div(tmp, (u32) div);
319 return dclc < 0 ? -tmp : tmp;
321 EXPORT_SYMBOL_GPL(__ktime_divns);
322 #endif /* BITS_PER_LONG >= 64 */
325 * Add two ktime values and do a safety check for overflow:
327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
329 ktime_t res = ktime_add_unsafe(lhs, rhs);
332 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 * return to user space in a timespec:
335 if (res < 0 || res < lhs || res < rhs)
336 res = ktime_set(KTIME_SEC_MAX, 0);
341 EXPORT_SYMBOL_GPL(ktime_add_safe);
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
345 static const struct debug_obj_descr hrtimer_debug_descr;
347 static void *hrtimer_debug_hint(void *addr)
349 return ((struct hrtimer *) addr)->function;
353 * fixup_init is called when:
354 * - an active object is initialized
356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
358 struct hrtimer *timer = addr;
361 case ODEBUG_STATE_ACTIVE:
362 hrtimer_cancel(timer);
363 debug_object_init(timer, &hrtimer_debug_descr);
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown non-static object is activated
375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
378 case ODEBUG_STATE_ACTIVE:
387 * fixup_free is called when:
388 * - an active object is freed
390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
392 struct hrtimer *timer = addr;
395 case ODEBUG_STATE_ACTIVE:
396 hrtimer_cancel(timer);
397 debug_object_free(timer, &hrtimer_debug_descr);
404 static const struct debug_obj_descr hrtimer_debug_descr = {
406 .debug_hint = hrtimer_debug_hint,
407 .fixup_init = hrtimer_fixup_init,
408 .fixup_activate = hrtimer_fixup_activate,
409 .fixup_free = hrtimer_fixup_free,
412 static inline void debug_hrtimer_init(struct hrtimer *timer)
414 debug_object_init(timer, &hrtimer_debug_descr);
417 static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 enum hrtimer_mode mode)
420 debug_object_activate(timer, &hrtimer_debug_descr);
423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
425 debug_object_deactivate(timer, &hrtimer_debug_descr);
428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode);
431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
432 enum hrtimer_mode mode)
434 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
435 __hrtimer_init(timer, clock_id, mode);
437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
440 clockid_t clock_id, enum hrtimer_mode mode);
442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
443 clockid_t clock_id, enum hrtimer_mode mode)
445 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
446 __hrtimer_init_sleeper(sl, clock_id, mode);
448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
450 void destroy_hrtimer_on_stack(struct hrtimer *timer)
452 debug_object_free(timer, &hrtimer_debug_descr);
454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
458 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
459 static inline void debug_hrtimer_activate(struct hrtimer *timer,
460 enum hrtimer_mode mode) { }
461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
465 debug_init(struct hrtimer *timer, clockid_t clockid,
466 enum hrtimer_mode mode)
468 debug_hrtimer_init(timer);
469 trace_hrtimer_init(timer, clockid, mode);
472 static inline void debug_activate(struct hrtimer *timer,
473 enum hrtimer_mode mode)
475 debug_hrtimer_activate(timer, mode);
476 trace_hrtimer_start(timer, mode);
479 static inline void debug_deactivate(struct hrtimer *timer)
481 debug_hrtimer_deactivate(timer);
482 trace_hrtimer_cancel(timer);
485 static struct hrtimer_clock_base *
486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
493 idx = __ffs(*active);
494 *active &= ~(1U << idx);
496 return &cpu_base->clock_base[idx];
499 #define for_each_active_base(base, cpu_base, active) \
500 while ((base = __next_base((cpu_base), &(active))))
502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
503 const struct hrtimer *exclude,
505 ktime_t expires_next)
507 struct hrtimer_clock_base *base;
510 for_each_active_base(base, cpu_base, active) {
511 struct timerqueue_node *next;
512 struct hrtimer *timer;
514 next = timerqueue_getnext(&base->active);
515 timer = container_of(next, struct hrtimer, node);
516 if (timer == exclude) {
517 /* Get to the next timer in the queue. */
518 next = timerqueue_iterate_next(next);
522 timer = container_of(next, struct hrtimer, node);
524 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 if (expires < expires_next) {
526 expires_next = expires;
528 /* Skip cpu_base update if a timer is being excluded. */
533 cpu_base->softirq_next_timer = timer;
535 cpu_base->next_timer = timer;
539 * clock_was_set() might have changed base->offset of any of
540 * the clock bases so the result might be negative. Fix it up
541 * to prevent a false positive in clockevents_program_event().
543 if (expires_next < 0)
549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
550 * but does not set cpu_base::*expires_next, that is done by
551 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
552 * cpu_base::*expires_next right away, reprogramming logic would no longer
555 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
556 * those timers will get run whenever the softirq gets handled, at the end of
557 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
559 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
560 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
561 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
563 * @active_mask must be one of:
564 * - HRTIMER_ACTIVE_ALL,
565 * - HRTIMER_ACTIVE_SOFT, or
566 * - HRTIMER_ACTIVE_HARD.
569 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
572 struct hrtimer *next_timer = NULL;
573 ktime_t expires_next = KTIME_MAX;
575 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
576 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
577 cpu_base->softirq_next_timer = NULL;
578 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
581 next_timer = cpu_base->softirq_next_timer;
584 if (active_mask & HRTIMER_ACTIVE_HARD) {
585 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
586 cpu_base->next_timer = next_timer;
587 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
594 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
596 ktime_t expires_next, soft = KTIME_MAX;
599 * If the soft interrupt has already been activated, ignore the
600 * soft bases. They will be handled in the already raised soft
603 if (!cpu_base->softirq_activated) {
604 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
606 * Update the soft expiry time. clock_settime() might have
609 cpu_base->softirq_expires_next = soft;
612 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
614 * If a softirq timer is expiring first, update cpu_base->next_timer
615 * and program the hardware with the soft expiry time.
617 if (expires_next > soft) {
618 cpu_base->next_timer = cpu_base->softirq_next_timer;
625 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
627 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
628 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
629 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
631 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
632 offs_real, offs_boot, offs_tai);
634 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
635 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
636 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
642 * Is the high resolution mode active ?
644 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
646 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
647 cpu_base->hres_active : 0;
650 static inline int hrtimer_hres_active(void)
652 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
656 * Reprogram the event source with checking both queues for the
658 * Called with interrupts disabled and base->lock held
661 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
663 ktime_t expires_next;
665 expires_next = hrtimer_update_next_event(cpu_base);
667 if (skip_equal && expires_next == cpu_base->expires_next)
670 cpu_base->expires_next = expires_next;
673 * If hres is not active, hardware does not have to be
676 * If a hang was detected in the last timer interrupt then we
677 * leave the hang delay active in the hardware. We want the
678 * system to make progress. That also prevents the following
680 * T1 expires 50ms from now
681 * T2 expires 5s from now
683 * T1 is removed, so this code is called and would reprogram
684 * the hardware to 5s from now. Any hrtimer_start after that
685 * will not reprogram the hardware due to hang_detected being
686 * set. So we'd effectively block all timers until the T2 event
689 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
692 tick_program_event(cpu_base->expires_next, 1);
695 /* High resolution timer related functions */
696 #ifdef CONFIG_HIGH_RES_TIMERS
699 * High resolution timer enabled ?
701 static bool hrtimer_hres_enabled __read_mostly = true;
702 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
703 EXPORT_SYMBOL_GPL(hrtimer_resolution);
706 * Enable / Disable high resolution mode
708 static int __init setup_hrtimer_hres(char *str)
710 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
713 __setup("highres=", setup_hrtimer_hres);
716 * hrtimer_high_res_enabled - query, if the highres mode is enabled
718 static inline int hrtimer_is_hres_enabled(void)
720 return hrtimer_hres_enabled;
724 * Retrigger next event is called after clock was set
726 * Called with interrupts disabled via on_each_cpu()
728 static void retrigger_next_event(void *arg)
730 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
732 if (!__hrtimer_hres_active(base))
735 raw_spin_lock(&base->lock);
736 hrtimer_update_base(base);
737 hrtimer_force_reprogram(base, 0);
738 raw_spin_unlock(&base->lock);
742 * Switch to high resolution mode
744 static void hrtimer_switch_to_hres(void)
746 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
748 if (tick_init_highres()) {
749 pr_warn("Could not switch to high resolution mode on CPU %u\n",
753 base->hres_active = 1;
754 hrtimer_resolution = HIGH_RES_NSEC;
756 tick_setup_sched_timer();
757 /* "Retrigger" the interrupt to get things going */
758 retrigger_next_event(NULL);
761 static void clock_was_set_work(struct work_struct *work)
766 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
769 * Called from timekeeping and resume code to reprogram the hrtimer
770 * interrupt device on all cpus.
772 void clock_was_set_delayed(void)
774 schedule_work(&hrtimer_work);
779 static inline int hrtimer_is_hres_enabled(void) { return 0; }
780 static inline void hrtimer_switch_to_hres(void) { }
781 static inline void retrigger_next_event(void *arg) { }
783 #endif /* CONFIG_HIGH_RES_TIMERS */
786 * When a timer is enqueued and expires earlier than the already enqueued
787 * timers, we have to check, whether it expires earlier than the timer for
788 * which the clock event device was armed.
790 * Called with interrupts disabled and base->cpu_base.lock held
792 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
794 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
795 struct hrtimer_clock_base *base = timer->base;
796 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
798 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
801 * CLOCK_REALTIME timer might be requested with an absolute
802 * expiry time which is less than base->offset. Set it to 0.
807 if (timer->is_soft) {
809 * soft hrtimer could be started on a remote CPU. In this
810 * case softirq_expires_next needs to be updated on the
811 * remote CPU. The soft hrtimer will not expire before the
812 * first hard hrtimer on the remote CPU -
813 * hrtimer_check_target() prevents this case.
815 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
817 if (timer_cpu_base->softirq_activated)
820 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
823 timer_cpu_base->softirq_next_timer = timer;
824 timer_cpu_base->softirq_expires_next = expires;
826 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
832 * If the timer is not on the current cpu, we cannot reprogram
833 * the other cpus clock event device.
835 if (base->cpu_base != cpu_base)
839 * If the hrtimer interrupt is running, then it will
840 * reevaluate the clock bases and reprogram the clock event
841 * device. The callbacks are always executed in hard interrupt
842 * context so we don't need an extra check for a running
845 if (cpu_base->in_hrtirq)
848 if (expires >= cpu_base->expires_next)
851 /* Update the pointer to the next expiring timer */
852 cpu_base->next_timer = timer;
853 cpu_base->expires_next = expires;
856 * If hres is not active, hardware does not have to be
859 * If a hang was detected in the last timer interrupt then we
860 * do not schedule a timer which is earlier than the expiry
861 * which we enforced in the hang detection. We want the system
864 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
868 * Program the timer hardware. We enforce the expiry for
869 * events which are already in the past.
871 tick_program_event(expires, 1);
875 * Clock realtime was set
877 * Change the offset of the realtime clock vs. the monotonic
880 * We might have to reprogram the high resolution timer interrupt. On
881 * SMP we call the architecture specific code to retrigger _all_ high
882 * resolution timer interrupts. On UP we just disable interrupts and
883 * call the high resolution interrupt code.
885 void clock_was_set(void)
887 #ifdef CONFIG_HIGH_RES_TIMERS
888 /* Retrigger the CPU local events everywhere */
889 on_each_cpu(retrigger_next_event, NULL, 1);
891 timerfd_clock_was_set();
895 * During resume we might have to reprogram the high resolution timer
896 * interrupt on all online CPUs. However, all other CPUs will be
897 * stopped with IRQs interrupts disabled so the clock_was_set() call
900 void hrtimers_resume(void)
902 lockdep_assert_irqs_disabled();
903 /* Retrigger on the local CPU */
904 retrigger_next_event(NULL);
905 /* And schedule a retrigger for all others */
906 clock_was_set_delayed();
910 * Counterpart to lock_hrtimer_base above:
913 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
915 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
919 * hrtimer_forward - forward the timer expiry
920 * @timer: hrtimer to forward
921 * @now: forward past this time
922 * @interval: the interval to forward
924 * Forward the timer expiry so it will expire in the future.
925 * Returns the number of overruns.
927 * Can be safely called from the callback function of @timer. If
928 * called from other contexts @timer must neither be enqueued nor
929 * running the callback and the caller needs to take care of
932 * Note: This only updates the timer expiry value and does not requeue
935 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
940 delta = ktime_sub(now, hrtimer_get_expires(timer));
945 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
948 if (interval < hrtimer_resolution)
949 interval = hrtimer_resolution;
951 if (unlikely(delta >= interval)) {
952 s64 incr = ktime_to_ns(interval);
954 orun = ktime_divns(delta, incr);
955 hrtimer_add_expires_ns(timer, incr * orun);
956 if (hrtimer_get_expires_tv64(timer) > now)
959 * This (and the ktime_add() below) is the
960 * correction for exact:
964 hrtimer_add_expires(timer, interval);
968 EXPORT_SYMBOL_GPL(hrtimer_forward);
971 * enqueue_hrtimer - internal function to (re)start a timer
973 * The timer is inserted in expiry order. Insertion into the
974 * red black tree is O(log(n)). Must hold the base lock.
976 * Returns 1 when the new timer is the leftmost timer in the tree.
978 static int enqueue_hrtimer(struct hrtimer *timer,
979 struct hrtimer_clock_base *base,
980 enum hrtimer_mode mode)
982 debug_activate(timer, mode);
984 base->cpu_base->active_bases |= 1 << base->index;
986 /* Pairs with the lockless read in hrtimer_is_queued() */
987 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
989 return timerqueue_add(&base->active, &timer->node);
993 * __remove_hrtimer - internal function to remove a timer
995 * Caller must hold the base lock.
997 * High resolution timer mode reprograms the clock event device when the
998 * timer is the one which expires next. The caller can disable this by setting
999 * reprogram to zero. This is useful, when the context does a reprogramming
1000 * anyway (e.g. timer interrupt)
1002 static void __remove_hrtimer(struct hrtimer *timer,
1003 struct hrtimer_clock_base *base,
1004 u8 newstate, int reprogram)
1006 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1007 u8 state = timer->state;
1009 /* Pairs with the lockless read in hrtimer_is_queued() */
1010 WRITE_ONCE(timer->state, newstate);
1011 if (!(state & HRTIMER_STATE_ENQUEUED))
1014 if (!timerqueue_del(&base->active, &timer->node))
1015 cpu_base->active_bases &= ~(1 << base->index);
1018 * Note: If reprogram is false we do not update
1019 * cpu_base->next_timer. This happens when we remove the first
1020 * timer on a remote cpu. No harm as we never dereference
1021 * cpu_base->next_timer. So the worst thing what can happen is
1022 * an superfluous call to hrtimer_force_reprogram() on the
1023 * remote cpu later on if the same timer gets enqueued again.
1025 if (reprogram && timer == cpu_base->next_timer)
1026 hrtimer_force_reprogram(cpu_base, 1);
1030 * remove hrtimer, called with base lock held
1033 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1035 u8 state = timer->state;
1037 if (state & HRTIMER_STATE_ENQUEUED) {
1041 * Remove the timer and force reprogramming when high
1042 * resolution mode is active and the timer is on the current
1043 * CPU. If we remove a timer on another CPU, reprogramming is
1044 * skipped. The interrupt event on this CPU is fired and
1045 * reprogramming happens in the interrupt handler. This is a
1046 * rare case and less expensive than a smp call.
1048 debug_deactivate(timer);
1049 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1052 state = HRTIMER_STATE_INACTIVE;
1054 __remove_hrtimer(timer, base, state, reprogram);
1060 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1061 const enum hrtimer_mode mode)
1063 #ifdef CONFIG_TIME_LOW_RES
1065 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1066 * granular time values. For relative timers we add hrtimer_resolution
1067 * (i.e. one jiffie) to prevent short timeouts.
1069 timer->is_rel = mode & HRTIMER_MODE_REL;
1071 tim = ktime_add_safe(tim, hrtimer_resolution);
1077 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1082 * Find the next SOFT expiration.
1084 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1087 * reprogramming needs to be triggered, even if the next soft
1088 * hrtimer expires at the same time than the next hard
1089 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1091 if (expires == KTIME_MAX)
1095 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1096 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1098 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1101 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1102 u64 delta_ns, const enum hrtimer_mode mode,
1103 struct hrtimer_clock_base *base)
1105 struct hrtimer_clock_base *new_base;
1107 /* Remove an active timer from the queue: */
1108 remove_hrtimer(timer, base, true);
1110 if (mode & HRTIMER_MODE_REL)
1111 tim = ktime_add_safe(tim, base->get_time());
1113 tim = hrtimer_update_lowres(timer, tim, mode);
1115 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1117 /* Switch the timer base, if necessary: */
1118 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1120 return enqueue_hrtimer(timer, new_base, mode);
1124 * hrtimer_start_range_ns - (re)start an hrtimer
1125 * @timer: the timer to be added
1127 * @delta_ns: "slack" range for the timer
1128 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1129 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1130 * softirq based mode is considered for debug purpose only!
1132 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1133 u64 delta_ns, const enum hrtimer_mode mode)
1135 struct hrtimer_clock_base *base;
1136 unsigned long flags;
1139 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1140 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1141 * expiry mode because unmarked timers are moved to softirq expiry.
1143 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1144 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1146 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1148 base = lock_hrtimer_base(timer, &flags);
1150 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1151 hrtimer_reprogram(timer, true);
1153 unlock_hrtimer_base(timer, &flags);
1155 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1158 * hrtimer_try_to_cancel - try to deactivate a timer
1159 * @timer: hrtimer to stop
1163 * * 0 when the timer was not active
1164 * * 1 when the timer was active
1165 * * -1 when the timer is currently executing the callback function and
1168 int hrtimer_try_to_cancel(struct hrtimer *timer)
1170 struct hrtimer_clock_base *base;
1171 unsigned long flags;
1175 * Check lockless first. If the timer is not active (neither
1176 * enqueued nor running the callback, nothing to do here. The
1177 * base lock does not serialize against a concurrent enqueue,
1178 * so we can avoid taking it.
1180 if (!hrtimer_active(timer))
1183 base = lock_hrtimer_base(timer, &flags);
1185 if (!hrtimer_callback_running(timer))
1186 ret = remove_hrtimer(timer, base, false);
1188 unlock_hrtimer_base(timer, &flags);
1193 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1195 #ifdef CONFIG_PREEMPT_RT
1196 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1198 spin_lock_init(&base->softirq_expiry_lock);
1201 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1203 spin_lock(&base->softirq_expiry_lock);
1206 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1208 spin_unlock(&base->softirq_expiry_lock);
1212 * The counterpart to hrtimer_cancel_wait_running().
1214 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1215 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1216 * allows the waiter to acquire the lock and make progress.
1218 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1219 unsigned long flags)
1221 if (atomic_read(&cpu_base->timer_waiters)) {
1222 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1223 spin_unlock(&cpu_base->softirq_expiry_lock);
1224 spin_lock(&cpu_base->softirq_expiry_lock);
1225 raw_spin_lock_irq(&cpu_base->lock);
1230 * This function is called on PREEMPT_RT kernels when the fast path
1231 * deletion of a timer failed because the timer callback function was
1234 * This prevents priority inversion: if the soft irq thread is preempted
1235 * in the middle of a timer callback, then calling del_timer_sync() can
1236 * lead to two issues:
1238 * - If the caller is on a remote CPU then it has to spin wait for the timer
1239 * handler to complete. This can result in unbound priority inversion.
1241 * - If the caller originates from the task which preempted the timer
1242 * handler on the same CPU, then spin waiting for the timer handler to
1243 * complete is never going to end.
1245 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1247 /* Lockless read. Prevent the compiler from reloading it below */
1248 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1251 * Just relax if the timer expires in hard interrupt context or if
1252 * it is currently on the migration base.
1254 if (!timer->is_soft || is_migration_base(base)) {
1260 * Mark the base as contended and grab the expiry lock, which is
1261 * held by the softirq across the timer callback. Drop the lock
1262 * immediately so the softirq can expire the next timer. In theory
1263 * the timer could already be running again, but that's more than
1264 * unlikely and just causes another wait loop.
1266 atomic_inc(&base->cpu_base->timer_waiters);
1267 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1268 atomic_dec(&base->cpu_base->timer_waiters);
1269 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1273 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1275 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1277 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1278 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1279 unsigned long flags) { }
1283 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1284 * @timer: the timer to be cancelled
1287 * 0 when the timer was not active
1288 * 1 when the timer was active
1290 int hrtimer_cancel(struct hrtimer *timer)
1295 ret = hrtimer_try_to_cancel(timer);
1298 hrtimer_cancel_wait_running(timer);
1302 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1305 * __hrtimer_get_remaining - get remaining time for the timer
1306 * @timer: the timer to read
1307 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1309 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1311 unsigned long flags;
1314 lock_hrtimer_base(timer, &flags);
1315 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1316 rem = hrtimer_expires_remaining_adjusted(timer);
1318 rem = hrtimer_expires_remaining(timer);
1319 unlock_hrtimer_base(timer, &flags);
1323 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1325 #ifdef CONFIG_NO_HZ_COMMON
1327 * hrtimer_get_next_event - get the time until next expiry event
1329 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1331 u64 hrtimer_get_next_event(void)
1333 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1334 u64 expires = KTIME_MAX;
1335 unsigned long flags;
1337 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1339 if (!__hrtimer_hres_active(cpu_base))
1340 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1342 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1348 * hrtimer_next_event_without - time until next expiry event w/o one timer
1349 * @exclude: timer to exclude
1351 * Returns the next expiry time over all timers except for the @exclude one or
1352 * KTIME_MAX if none of them is pending.
1354 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1356 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1357 u64 expires = KTIME_MAX;
1358 unsigned long flags;
1360 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1362 if (__hrtimer_hres_active(cpu_base)) {
1363 unsigned int active;
1365 if (!cpu_base->softirq_activated) {
1366 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1367 expires = __hrtimer_next_event_base(cpu_base, exclude,
1370 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1371 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1375 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1381 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1383 if (likely(clock_id < MAX_CLOCKS)) {
1384 int base = hrtimer_clock_to_base_table[clock_id];
1386 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1389 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1390 return HRTIMER_BASE_MONOTONIC;
1393 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1394 enum hrtimer_mode mode)
1396 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1397 struct hrtimer_cpu_base *cpu_base;
1401 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1402 * marked for hard interrupt expiry mode are moved into soft
1403 * interrupt context for latency reasons and because the callbacks
1404 * can invoke functions which might sleep on RT, e.g. spin_lock().
1406 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1409 memset(timer, 0, sizeof(struct hrtimer));
1411 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1414 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1415 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1416 * ensure POSIX compliance.
1418 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1419 clock_id = CLOCK_MONOTONIC;
1421 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1422 base += hrtimer_clockid_to_base(clock_id);
1423 timer->is_soft = softtimer;
1424 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1425 timer->base = &cpu_base->clock_base[base];
1426 timerqueue_init(&timer->node);
1430 * hrtimer_init - initialize a timer to the given clock
1431 * @timer: the timer to be initialized
1432 * @clock_id: the clock to be used
1433 * @mode: The modes which are relevant for initialization:
1434 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1435 * HRTIMER_MODE_REL_SOFT
1437 * The PINNED variants of the above can be handed in,
1438 * but the PINNED bit is ignored as pinning happens
1439 * when the hrtimer is started
1441 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1442 enum hrtimer_mode mode)
1444 debug_init(timer, clock_id, mode);
1445 __hrtimer_init(timer, clock_id, mode);
1447 EXPORT_SYMBOL_GPL(hrtimer_init);
1450 * A timer is active, when it is enqueued into the rbtree or the
1451 * callback function is running or it's in the state of being migrated
1454 * It is important for this function to not return a false negative.
1456 bool hrtimer_active(const struct hrtimer *timer)
1458 struct hrtimer_clock_base *base;
1462 base = READ_ONCE(timer->base);
1463 seq = raw_read_seqcount_begin(&base->seq);
1465 if (timer->state != HRTIMER_STATE_INACTIVE ||
1466 base->running == timer)
1469 } while (read_seqcount_retry(&base->seq, seq) ||
1470 base != READ_ONCE(timer->base));
1474 EXPORT_SYMBOL_GPL(hrtimer_active);
1477 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1478 * distinct sections:
1480 * - queued: the timer is queued
1481 * - callback: the timer is being ran
1482 * - post: the timer is inactive or (re)queued
1484 * On the read side we ensure we observe timer->state and cpu_base->running
1485 * from the same section, if anything changed while we looked at it, we retry.
1486 * This includes timer->base changing because sequence numbers alone are
1487 * insufficient for that.
1489 * The sequence numbers are required because otherwise we could still observe
1490 * a false negative if the read side got smeared over multiple consecutive
1491 * __run_hrtimer() invocations.
1494 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1495 struct hrtimer_clock_base *base,
1496 struct hrtimer *timer, ktime_t *now,
1497 unsigned long flags) __must_hold(&cpu_base->lock)
1499 enum hrtimer_restart (*fn)(struct hrtimer *);
1500 bool expires_in_hardirq;
1503 lockdep_assert_held(&cpu_base->lock);
1505 debug_deactivate(timer);
1506 base->running = timer;
1509 * Separate the ->running assignment from the ->state assignment.
1511 * As with a regular write barrier, this ensures the read side in
1512 * hrtimer_active() cannot observe base->running == NULL &&
1513 * timer->state == INACTIVE.
1515 raw_write_seqcount_barrier(&base->seq);
1517 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1518 fn = timer->function;
1521 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1522 * timer is restarted with a period then it becomes an absolute
1523 * timer. If its not restarted it does not matter.
1525 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1526 timer->is_rel = false;
1529 * The timer is marked as running in the CPU base, so it is
1530 * protected against migration to a different CPU even if the lock
1533 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1534 trace_hrtimer_expire_entry(timer, now);
1535 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1537 restart = fn(timer);
1539 lockdep_hrtimer_exit(expires_in_hardirq);
1540 trace_hrtimer_expire_exit(timer);
1541 raw_spin_lock_irq(&cpu_base->lock);
1544 * Note: We clear the running state after enqueue_hrtimer and
1545 * we do not reprogram the event hardware. Happens either in
1546 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1548 * Note: Because we dropped the cpu_base->lock above,
1549 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1552 if (restart != HRTIMER_NORESTART &&
1553 !(timer->state & HRTIMER_STATE_ENQUEUED))
1554 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1557 * Separate the ->running assignment from the ->state assignment.
1559 * As with a regular write barrier, this ensures the read side in
1560 * hrtimer_active() cannot observe base->running.timer == NULL &&
1561 * timer->state == INACTIVE.
1563 raw_write_seqcount_barrier(&base->seq);
1565 WARN_ON_ONCE(base->running != timer);
1566 base->running = NULL;
1569 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1570 unsigned long flags, unsigned int active_mask)
1572 struct hrtimer_clock_base *base;
1573 unsigned int active = cpu_base->active_bases & active_mask;
1575 for_each_active_base(base, cpu_base, active) {
1576 struct timerqueue_node *node;
1579 basenow = ktime_add(now, base->offset);
1581 while ((node = timerqueue_getnext(&base->active))) {
1582 struct hrtimer *timer;
1584 timer = container_of(node, struct hrtimer, node);
1587 * The immediate goal for using the softexpires is
1588 * minimizing wakeups, not running timers at the
1589 * earliest interrupt after their soft expiration.
1590 * This allows us to avoid using a Priority Search
1591 * Tree, which can answer a stabbing query for
1592 * overlapping intervals and instead use the simple
1593 * BST we already have.
1594 * We don't add extra wakeups by delaying timers that
1595 * are right-of a not yet expired timer, because that
1596 * timer will have to trigger a wakeup anyway.
1598 if (basenow < hrtimer_get_softexpires_tv64(timer))
1601 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1602 if (active_mask == HRTIMER_ACTIVE_SOFT)
1603 hrtimer_sync_wait_running(cpu_base, flags);
1608 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1610 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1611 unsigned long flags;
1614 hrtimer_cpu_base_lock_expiry(cpu_base);
1615 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1617 now = hrtimer_update_base(cpu_base);
1618 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1620 cpu_base->softirq_activated = 0;
1621 hrtimer_update_softirq_timer(cpu_base, true);
1623 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1624 hrtimer_cpu_base_unlock_expiry(cpu_base);
1627 #ifdef CONFIG_HIGH_RES_TIMERS
1630 * High resolution timer interrupt
1631 * Called with interrupts disabled
1633 void hrtimer_interrupt(struct clock_event_device *dev)
1635 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1636 ktime_t expires_next, now, entry_time, delta;
1637 unsigned long flags;
1640 BUG_ON(!cpu_base->hres_active);
1641 cpu_base->nr_events++;
1642 dev->next_event = KTIME_MAX;
1644 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1645 entry_time = now = hrtimer_update_base(cpu_base);
1647 cpu_base->in_hrtirq = 1;
1649 * We set expires_next to KTIME_MAX here with cpu_base->lock
1650 * held to prevent that a timer is enqueued in our queue via
1651 * the migration code. This does not affect enqueueing of
1652 * timers which run their callback and need to be requeued on
1655 cpu_base->expires_next = KTIME_MAX;
1657 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1658 cpu_base->softirq_expires_next = KTIME_MAX;
1659 cpu_base->softirq_activated = 1;
1660 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1663 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1665 /* Reevaluate the clock bases for the [soft] next expiry */
1666 expires_next = hrtimer_update_next_event(cpu_base);
1668 * Store the new expiry value so the migration code can verify
1671 cpu_base->expires_next = expires_next;
1672 cpu_base->in_hrtirq = 0;
1673 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1675 /* Reprogramming necessary ? */
1676 if (!tick_program_event(expires_next, 0)) {
1677 cpu_base->hang_detected = 0;
1682 * The next timer was already expired due to:
1684 * - long lasting callbacks
1685 * - being scheduled away when running in a VM
1687 * We need to prevent that we loop forever in the hrtimer
1688 * interrupt routine. We give it 3 attempts to avoid
1689 * overreacting on some spurious event.
1691 * Acquire base lock for updating the offsets and retrieving
1694 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1695 now = hrtimer_update_base(cpu_base);
1696 cpu_base->nr_retries++;
1700 * Give the system a chance to do something else than looping
1701 * here. We stored the entry time, so we know exactly how long
1702 * we spent here. We schedule the next event this amount of
1705 cpu_base->nr_hangs++;
1706 cpu_base->hang_detected = 1;
1707 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1709 delta = ktime_sub(now, entry_time);
1710 if ((unsigned int)delta > cpu_base->max_hang_time)
1711 cpu_base->max_hang_time = (unsigned int) delta;
1713 * Limit it to a sensible value as we enforce a longer
1714 * delay. Give the CPU at least 100ms to catch up.
1716 if (delta > 100 * NSEC_PER_MSEC)
1717 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1719 expires_next = ktime_add(now, delta);
1720 tick_program_event(expires_next, 1);
1721 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1724 /* called with interrupts disabled */
1725 static inline void __hrtimer_peek_ahead_timers(void)
1727 struct tick_device *td;
1729 if (!hrtimer_hres_active())
1732 td = this_cpu_ptr(&tick_cpu_device);
1733 if (td && td->evtdev)
1734 hrtimer_interrupt(td->evtdev);
1737 #else /* CONFIG_HIGH_RES_TIMERS */
1739 static inline void __hrtimer_peek_ahead_timers(void) { }
1741 #endif /* !CONFIG_HIGH_RES_TIMERS */
1744 * Called from run_local_timers in hardirq context every jiffy
1746 void hrtimer_run_queues(void)
1748 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1749 unsigned long flags;
1752 if (__hrtimer_hres_active(cpu_base))
1756 * This _is_ ugly: We have to check periodically, whether we
1757 * can switch to highres and / or nohz mode. The clocksource
1758 * switch happens with xtime_lock held. Notification from
1759 * there only sets the check bit in the tick_oneshot code,
1760 * otherwise we might deadlock vs. xtime_lock.
1762 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1763 hrtimer_switch_to_hres();
1767 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1768 now = hrtimer_update_base(cpu_base);
1770 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1771 cpu_base->softirq_expires_next = KTIME_MAX;
1772 cpu_base->softirq_activated = 1;
1773 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1776 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1777 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1781 * Sleep related functions:
1783 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1785 struct hrtimer_sleeper *t =
1786 container_of(timer, struct hrtimer_sleeper, timer);
1787 struct task_struct *task = t->task;
1791 wake_up_process(task);
1793 return HRTIMER_NORESTART;
1797 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1798 * @sl: sleeper to be started
1799 * @mode: timer mode abs/rel
1801 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1802 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1804 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1805 enum hrtimer_mode mode)
1808 * Make the enqueue delivery mode check work on RT. If the sleeper
1809 * was initialized for hard interrupt delivery, force the mode bit.
1810 * This is a special case for hrtimer_sleepers because
1811 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1812 * fiddling with this decision is avoided at the call sites.
1814 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1815 mode |= HRTIMER_MODE_HARD;
1817 hrtimer_start_expires(&sl->timer, mode);
1819 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1821 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1822 clockid_t clock_id, enum hrtimer_mode mode)
1825 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1826 * marked for hard interrupt expiry mode are moved into soft
1827 * interrupt context either for latency reasons or because the
1828 * hrtimer callback takes regular spinlocks or invokes other
1829 * functions which are not suitable for hard interrupt context on
1832 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1833 * context, but there is a latency concern: Untrusted userspace can
1834 * spawn many threads which arm timers for the same expiry time on
1835 * the same CPU. That causes a latency spike due to the wakeup of
1836 * a gazillion threads.
1838 * OTOH, privileged real-time user space applications rely on the
1839 * low latency of hard interrupt wakeups. If the current task is in
1840 * a real-time scheduling class, mark the mode for hard interrupt
1843 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1844 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1845 mode |= HRTIMER_MODE_HARD;
1848 __hrtimer_init(&sl->timer, clock_id, mode);
1849 sl->timer.function = hrtimer_wakeup;
1854 * hrtimer_init_sleeper - initialize sleeper to the given clock
1855 * @sl: sleeper to be initialized
1856 * @clock_id: the clock to be used
1857 * @mode: timer mode abs/rel
1859 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1860 enum hrtimer_mode mode)
1862 debug_init(&sl->timer, clock_id, mode);
1863 __hrtimer_init_sleeper(sl, clock_id, mode);
1866 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1868 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1870 switch(restart->nanosleep.type) {
1871 #ifdef CONFIG_COMPAT_32BIT_TIME
1873 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1878 if (put_timespec64(ts, restart->nanosleep.rmtp))
1884 return -ERESTART_RESTARTBLOCK;
1887 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1889 struct restart_block *restart;
1892 set_current_state(TASK_INTERRUPTIBLE);
1893 hrtimer_sleeper_start_expires(t, mode);
1895 if (likely(t->task))
1896 freezable_schedule();
1898 hrtimer_cancel(&t->timer);
1899 mode = HRTIMER_MODE_ABS;
1901 } while (t->task && !signal_pending(current));
1903 __set_current_state(TASK_RUNNING);
1908 restart = ¤t->restart_block;
1909 if (restart->nanosleep.type != TT_NONE) {
1910 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1911 struct timespec64 rmt;
1915 rmt = ktime_to_timespec64(rem);
1917 return nanosleep_copyout(restart, &rmt);
1919 return -ERESTART_RESTARTBLOCK;
1922 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1924 struct hrtimer_sleeper t;
1927 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1929 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1930 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1931 destroy_hrtimer_on_stack(&t.timer);
1935 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1936 const clockid_t clockid)
1938 struct restart_block *restart;
1939 struct hrtimer_sleeper t;
1943 slack = current->timer_slack_ns;
1944 if (dl_task(current) || rt_task(current))
1947 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1948 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1949 ret = do_nanosleep(&t, mode);
1950 if (ret != -ERESTART_RESTARTBLOCK)
1953 /* Absolute timers do not update the rmtp value and restart: */
1954 if (mode == HRTIMER_MODE_ABS) {
1955 ret = -ERESTARTNOHAND;
1959 restart = ¤t->restart_block;
1960 restart->nanosleep.clockid = t.timer.base->clockid;
1961 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1962 set_restart_fn(restart, hrtimer_nanosleep_restart);
1964 destroy_hrtimer_on_stack(&t.timer);
1970 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1971 struct __kernel_timespec __user *, rmtp)
1973 struct timespec64 tu;
1975 if (get_timespec64(&tu, rqtp))
1978 if (!timespec64_valid(&tu))
1981 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1982 current->restart_block.nanosleep.rmtp = rmtp;
1983 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1989 #ifdef CONFIG_COMPAT_32BIT_TIME
1991 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1992 struct old_timespec32 __user *, rmtp)
1994 struct timespec64 tu;
1996 if (get_old_timespec32(&tu, rqtp))
1999 if (!timespec64_valid(&tu))
2002 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2003 current->restart_block.nanosleep.compat_rmtp = rmtp;
2004 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2010 * Functions related to boot-time initialization:
2012 int hrtimers_prepare_cpu(unsigned int cpu)
2014 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2017 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2018 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2020 clock_b->cpu_base = cpu_base;
2021 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2022 timerqueue_init_head(&clock_b->active);
2025 cpu_base->cpu = cpu;
2026 cpu_base->active_bases = 0;
2027 cpu_base->hres_active = 0;
2028 cpu_base->hang_detected = 0;
2029 cpu_base->next_timer = NULL;
2030 cpu_base->softirq_next_timer = NULL;
2031 cpu_base->expires_next = KTIME_MAX;
2032 cpu_base->softirq_expires_next = KTIME_MAX;
2033 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2037 #ifdef CONFIG_HOTPLUG_CPU
2039 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2040 struct hrtimer_clock_base *new_base)
2042 struct hrtimer *timer;
2043 struct timerqueue_node *node;
2045 while ((node = timerqueue_getnext(&old_base->active))) {
2046 timer = container_of(node, struct hrtimer, node);
2047 BUG_ON(hrtimer_callback_running(timer));
2048 debug_deactivate(timer);
2051 * Mark it as ENQUEUED not INACTIVE otherwise the
2052 * timer could be seen as !active and just vanish away
2053 * under us on another CPU
2055 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2056 timer->base = new_base;
2058 * Enqueue the timers on the new cpu. This does not
2059 * reprogram the event device in case the timer
2060 * expires before the earliest on this CPU, but we run
2061 * hrtimer_interrupt after we migrated everything to
2062 * sort out already expired timers and reprogram the
2065 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2069 int hrtimers_dead_cpu(unsigned int scpu)
2071 struct hrtimer_cpu_base *old_base, *new_base;
2074 BUG_ON(cpu_online(scpu));
2075 tick_cancel_sched_timer(scpu);
2078 * this BH disable ensures that raise_softirq_irqoff() does
2079 * not wakeup ksoftirqd (and acquire the pi-lock) while
2080 * holding the cpu_base lock
2083 local_irq_disable();
2084 old_base = &per_cpu(hrtimer_bases, scpu);
2085 new_base = this_cpu_ptr(&hrtimer_bases);
2087 * The caller is globally serialized and nobody else
2088 * takes two locks at once, deadlock is not possible.
2090 raw_spin_lock(&new_base->lock);
2091 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2093 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2094 migrate_hrtimer_list(&old_base->clock_base[i],
2095 &new_base->clock_base[i]);
2099 * The migration might have changed the first expiring softirq
2100 * timer on this CPU. Update it.
2102 hrtimer_update_softirq_timer(new_base, false);
2104 raw_spin_unlock(&old_base->lock);
2105 raw_spin_unlock(&new_base->lock);
2107 /* Check, if we got expired work to do */
2108 __hrtimer_peek_ahead_timers();
2114 #endif /* CONFIG_HOTPLUG_CPU */
2116 void __init hrtimers_init(void)
2118 hrtimers_prepare_cpu(smp_processor_id());
2119 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2123 * schedule_hrtimeout_range_clock - sleep until timeout
2124 * @expires: timeout value (ktime_t)
2125 * @delta: slack in expires timeout (ktime_t)
2127 * @clock_id: timer clock to be used
2130 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2131 const enum hrtimer_mode mode, clockid_t clock_id)
2133 struct hrtimer_sleeper t;
2136 * Optimize when a zero timeout value is given. It does not
2137 * matter whether this is an absolute or a relative time.
2139 if (expires && *expires == 0) {
2140 __set_current_state(TASK_RUNNING);
2145 * A NULL parameter means "infinite"
2152 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2153 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2154 hrtimer_sleeper_start_expires(&t, mode);
2159 hrtimer_cancel(&t.timer);
2160 destroy_hrtimer_on_stack(&t.timer);
2162 __set_current_state(TASK_RUNNING);
2164 return !t.task ? 0 : -EINTR;
2168 * schedule_hrtimeout_range - sleep until timeout
2169 * @expires: timeout value (ktime_t)
2170 * @delta: slack in expires timeout (ktime_t)
2173 * Make the current task sleep until the given expiry time has
2174 * elapsed. The routine will return immediately unless
2175 * the current task state has been set (see set_current_state()).
2177 * The @delta argument gives the kernel the freedom to schedule the
2178 * actual wakeup to a time that is both power and performance friendly.
2179 * The kernel give the normal best effort behavior for "@expires+@delta",
2180 * but may decide to fire the timer earlier, but no earlier than @expires.
2182 * You can set the task state as follows -
2184 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2185 * pass before the routine returns unless the current task is explicitly
2186 * woken up, (e.g. by wake_up_process()).
2188 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2189 * delivered to the current task or the current task is explicitly woken
2192 * The current task state is guaranteed to be TASK_RUNNING when this
2195 * Returns 0 when the timer has expired. If the task was woken before the
2196 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2197 * by an explicit wakeup, it returns -EINTR.
2199 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2200 const enum hrtimer_mode mode)
2202 return schedule_hrtimeout_range_clock(expires, delta, mode,
2205 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2208 * schedule_hrtimeout - sleep until timeout
2209 * @expires: timeout value (ktime_t)
2212 * Make the current task sleep until the given expiry time has
2213 * elapsed. The routine will return immediately unless
2214 * the current task state has been set (see set_current_state()).
2216 * You can set the task state as follows -
2218 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2219 * pass before the routine returns unless the current task is explicitly
2220 * woken up, (e.g. by wake_up_process()).
2222 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2223 * delivered to the current task or the current task is explicitly woken
2226 * The current task state is guaranteed to be TASK_RUNNING when this
2229 * Returns 0 when the timer has expired. If the task was woken before the
2230 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2231 * by an explicit wakeup, it returns -EINTR.
2233 int __sched schedule_hrtimeout(ktime_t *expires,
2234 const enum hrtimer_mode mode)
2236 return schedule_hrtimeout_range(expires, 0, mode);
2238 EXPORT_SYMBOL_GPL(schedule_hrtimeout);