1 // SPDX-License-Identifier: GPL-2.0+
3 * This file contains the functions which manage clocksource drivers.
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
24 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25 * @mult: pointer to mult variable
26 * @shift: pointer to shift variable
27 * @from: frequency to convert from
28 * @to: frequency to convert to
29 * @maxsec: guaranteed runtime conversion range in seconds
31 * The function evaluates the shift/mult pair for the scaled math
32 * operations of clocksources and clockevents.
34 * @to and @from are frequency values in HZ. For clock sources @to is
35 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36 * event @to is the counter frequency and @from is NSEC_PER_SEC.
38 * The @maxsec conversion range argument controls the time frame in
39 * seconds which must be covered by the runtime conversion with the
40 * calculated mult and shift factors. This guarantees that no 64bit
41 * overflow happens when the input value of the conversion is
42 * multiplied with the calculated mult factor. Larger ranges may
43 * reduce the conversion accuracy by choosing smaller mult and shift
47 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
53 * Calculate the shift factor which is limiting the conversion
56 tmp = ((u64)maxsec * from) >> 32;
63 * Find the conversion shift/mult pair which has the best
64 * accuracy and fits the maxsec conversion range:
66 for (sft = 32; sft > 0; sft--) {
67 tmp = (u64) to << sft;
70 if ((tmp >> sftacc) == 0)
76 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
78 /*[Clocksource internal variables]---------
80 * currently selected clocksource.
81 * suspend_clocksource:
82 * used to calculate the suspend time.
84 * linked list with the registered clocksources
86 * protects manipulations to curr_clocksource and the clocksource_list
88 * Name of the user-specified clocksource.
90 static struct clocksource *curr_clocksource;
91 static struct clocksource *suspend_clocksource;
92 static LIST_HEAD(clocksource_list);
93 static DEFINE_MUTEX(clocksource_mutex);
94 static char override_name[CS_NAME_LEN];
95 static int finished_booting;
96 static u64 suspend_start;
99 * Threshold: 0.0312s, when doubled: 0.0625s.
100 * Also a default for cs->uncertainty_margin when registering clocks.
102 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
105 * Maximum permissible delay between two readouts of the watchdog
106 * clocksource surrounding a read of the clocksource being validated.
107 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
108 * a lower bound for cs->uncertainty_margin values when registering clocks.
110 #define WATCHDOG_MAX_SKEW (50 * NSEC_PER_USEC)
112 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
113 static void clocksource_watchdog_work(struct work_struct *work);
114 static void clocksource_select(void);
116 static LIST_HEAD(watchdog_list);
117 static struct clocksource *watchdog;
118 static struct timer_list watchdog_timer;
119 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
120 static DEFINE_SPINLOCK(watchdog_lock);
121 static int watchdog_running;
122 static atomic_t watchdog_reset_pending;
124 static inline void clocksource_watchdog_lock(unsigned long *flags)
126 spin_lock_irqsave(&watchdog_lock, *flags);
129 static inline void clocksource_watchdog_unlock(unsigned long *flags)
131 spin_unlock_irqrestore(&watchdog_lock, *flags);
134 static int clocksource_watchdog_kthread(void *data);
135 static void __clocksource_change_rating(struct clocksource *cs, int rating);
140 #define WATCHDOG_INTERVAL (HZ >> 1)
142 static void clocksource_watchdog_work(struct work_struct *work)
145 * We cannot directly run clocksource_watchdog_kthread() here, because
146 * clocksource_select() calls timekeeping_notify() which uses
147 * stop_machine(). One cannot use stop_machine() from a workqueue() due
148 * lock inversions wrt CPU hotplug.
150 * Also, we only ever run this work once or twice during the lifetime
151 * of the kernel, so there is no point in creating a more permanent
154 * If kthread_run fails the next watchdog scan over the
155 * watchdog_list will find the unstable clock again.
157 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
160 static void __clocksource_unstable(struct clocksource *cs)
162 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
163 cs->flags |= CLOCK_SOURCE_UNSTABLE;
166 * If the clocksource is registered clocksource_watchdog_kthread() will
167 * re-rate and re-select.
169 if (list_empty(&cs->list)) {
174 if (cs->mark_unstable)
175 cs->mark_unstable(cs);
177 /* kick clocksource_watchdog_kthread() */
178 if (finished_booting)
179 schedule_work(&watchdog_work);
183 * clocksource_mark_unstable - mark clocksource unstable via watchdog
184 * @cs: clocksource to be marked unstable
186 * This function is called by the x86 TSC code to mark clocksources as unstable;
187 * it defers demotion and re-selection to a kthread.
189 void clocksource_mark_unstable(struct clocksource *cs)
193 spin_lock_irqsave(&watchdog_lock, flags);
194 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
195 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
196 list_add(&cs->wd_list, &watchdog_list);
197 __clocksource_unstable(cs);
199 spin_unlock_irqrestore(&watchdog_lock, flags);
202 ulong max_cswd_read_retries = 3;
203 module_param(max_cswd_read_retries, ulong, 0644);
204 EXPORT_SYMBOL_GPL(max_cswd_read_retries);
205 static int verify_n_cpus = 8;
206 module_param(verify_n_cpus, int, 0644);
208 static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
210 unsigned int nretries;
211 u64 wd_end, wd_delta;
214 for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
216 *wdnow = watchdog->read(watchdog);
217 *csnow = cs->read(cs);
218 wd_end = watchdog->read(watchdog);
221 wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
222 wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
224 if (wd_delay <= WATCHDOG_MAX_SKEW) {
225 if (nretries > 1 || nretries >= max_cswd_read_retries) {
226 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
227 smp_processor_id(), watchdog->name, nretries);
233 pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
234 smp_processor_id(), watchdog->name, wd_delay, nretries);
238 static u64 csnow_mid;
239 static cpumask_t cpus_ahead;
240 static cpumask_t cpus_behind;
241 static cpumask_t cpus_chosen;
243 static void clocksource_verify_choose_cpus(void)
245 int cpu, i, n = verify_n_cpus;
248 /* Check all of the CPUs. */
249 cpumask_copy(&cpus_chosen, cpu_online_mask);
250 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
254 /* If no checking desired, or no other CPU to check, leave. */
255 cpumask_clear(&cpus_chosen);
256 if (n == 0 || num_online_cpus() <= 1)
259 /* Make sure to select at least one CPU other than the current CPU. */
260 cpu = cpumask_next(-1, cpu_online_mask);
261 if (cpu == smp_processor_id())
262 cpu = cpumask_next(cpu, cpu_online_mask);
263 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
265 cpumask_set_cpu(cpu, &cpus_chosen);
267 /* Force a sane value for the boot parameter. */
272 * Randomly select the specified number of CPUs. If the same
273 * CPU is selected multiple times, that CPU is checked only once,
274 * and no replacement CPU is selected. This gracefully handles
275 * situations where verify_n_cpus is greater than the number of
276 * CPUs that are currently online.
278 for (i = 1; i < n; i++) {
279 cpu = prandom_u32() % nr_cpu_ids;
280 cpu = cpumask_next(cpu - 1, cpu_online_mask);
281 if (cpu >= nr_cpu_ids)
282 cpu = cpumask_next(-1, cpu_online_mask);
283 if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
284 cpumask_set_cpu(cpu, &cpus_chosen);
287 /* Don't verify ourselves. */
288 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
291 static void clocksource_verify_one_cpu(void *csin)
293 struct clocksource *cs = (struct clocksource *)csin;
295 csnow_mid = cs->read(cs);
298 void clocksource_verify_percpu(struct clocksource *cs)
300 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
301 u64 csnow_begin, csnow_end;
305 if (verify_n_cpus == 0)
307 cpumask_clear(&cpus_ahead);
308 cpumask_clear(&cpus_behind);
311 clocksource_verify_choose_cpus();
312 if (cpumask_weight(&cpus_chosen) == 0) {
315 pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
318 testcpu = smp_processor_id();
319 pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
320 for_each_cpu(cpu, &cpus_chosen) {
323 csnow_begin = cs->read(cs);
324 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
325 csnow_end = cs->read(cs);
326 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
328 cpumask_set_cpu(cpu, &cpus_behind);
329 delta = (csnow_end - csnow_mid) & cs->mask;
331 cpumask_set_cpu(cpu, &cpus_ahead);
332 delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
333 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
334 if (cs_nsec > cs_nsec_max)
335 cs_nsec_max = cs_nsec;
336 if (cs_nsec < cs_nsec_min)
337 cs_nsec_min = cs_nsec;
341 if (!cpumask_empty(&cpus_ahead))
342 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
343 cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
344 if (!cpumask_empty(&cpus_behind))
345 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
346 cpumask_pr_args(&cpus_behind), testcpu, cs->name);
347 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
348 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
349 testcpu, cs_nsec_min, cs_nsec_max, cs->name);
351 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
353 static void clocksource_watchdog(struct timer_list *unused)
355 u64 csnow, wdnow, cslast, wdlast, delta;
356 int next_cpu, reset_pending;
357 int64_t wd_nsec, cs_nsec;
358 struct clocksource *cs;
361 spin_lock(&watchdog_lock);
362 if (!watchdog_running)
365 reset_pending = atomic_read(&watchdog_reset_pending);
367 list_for_each_entry(cs, &watchdog_list, wd_list) {
369 /* Clocksource already marked unstable? */
370 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
371 if (finished_booting)
372 schedule_work(&watchdog_work);
376 if (!cs_watchdog_read(cs, &csnow, &wdnow)) {
377 /* Clock readout unreliable, so give it up. */
378 __clocksource_unstable(cs);
382 /* Clocksource initialized ? */
383 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
384 atomic_read(&watchdog_reset_pending)) {
385 cs->flags |= CLOCK_SOURCE_WATCHDOG;
391 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
392 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
395 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
396 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
397 wdlast = cs->wd_last; /* save these in case we print them */
398 cslast = cs->cs_last;
402 if (atomic_read(&watchdog_reset_pending))
405 /* Check the deviation from the watchdog clocksource. */
406 md = cs->uncertainty_margin + watchdog->uncertainty_margin;
407 if (abs(cs_nsec - wd_nsec) > md) {
408 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
409 smp_processor_id(), cs->name);
410 pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
411 watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
412 pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
413 cs->name, cs_nsec, csnow, cslast, cs->mask);
414 if (curr_clocksource == cs)
415 pr_warn(" '%s' is current clocksource.\n", cs->name);
416 else if (curr_clocksource)
417 pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
419 pr_warn(" No current clocksource.\n");
420 __clocksource_unstable(cs);
424 if (cs == curr_clocksource && cs->tick_stable)
427 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
428 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
429 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
430 /* Mark it valid for high-res. */
431 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
434 * clocksource_done_booting() will sort it if
435 * finished_booting is not set yet.
437 if (!finished_booting)
441 * If this is not the current clocksource let
442 * the watchdog thread reselect it. Due to the
443 * change to high res this clocksource might
444 * be preferred now. If it is the current
445 * clocksource let the tick code know about
448 if (cs != curr_clocksource) {
449 cs->flags |= CLOCK_SOURCE_RESELECT;
450 schedule_work(&watchdog_work);
458 * We only clear the watchdog_reset_pending, when we did a
459 * full cycle through all clocksources.
462 atomic_dec(&watchdog_reset_pending);
465 * Cycle through CPUs to check if the CPUs stay synchronized
468 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
469 if (next_cpu >= nr_cpu_ids)
470 next_cpu = cpumask_first(cpu_online_mask);
473 * Arm timer if not already pending: could race with concurrent
474 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
476 if (!timer_pending(&watchdog_timer)) {
477 watchdog_timer.expires += WATCHDOG_INTERVAL;
478 add_timer_on(&watchdog_timer, next_cpu);
481 spin_unlock(&watchdog_lock);
484 static inline void clocksource_start_watchdog(void)
486 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
488 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
489 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
490 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
491 watchdog_running = 1;
494 static inline void clocksource_stop_watchdog(void)
496 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
498 del_timer(&watchdog_timer);
499 watchdog_running = 0;
502 static inline void clocksource_reset_watchdog(void)
504 struct clocksource *cs;
506 list_for_each_entry(cs, &watchdog_list, wd_list)
507 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
510 static void clocksource_resume_watchdog(void)
512 atomic_inc(&watchdog_reset_pending);
515 static void clocksource_enqueue_watchdog(struct clocksource *cs)
517 INIT_LIST_HEAD(&cs->wd_list);
519 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
520 /* cs is a clocksource to be watched. */
521 list_add(&cs->wd_list, &watchdog_list);
522 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
524 /* cs is a watchdog. */
525 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
526 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
530 static void clocksource_select_watchdog(bool fallback)
532 struct clocksource *cs, *old_wd;
535 spin_lock_irqsave(&watchdog_lock, flags);
536 /* save current watchdog */
541 list_for_each_entry(cs, &clocksource_list, list) {
542 /* cs is a clocksource to be watched. */
543 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
546 /* Skip current if we were requested for a fallback. */
547 if (fallback && cs == old_wd)
550 /* Pick the best watchdog. */
551 if (!watchdog || cs->rating > watchdog->rating)
554 /* If we failed to find a fallback restore the old one. */
558 /* If we changed the watchdog we need to reset cycles. */
559 if (watchdog != old_wd)
560 clocksource_reset_watchdog();
562 /* Check if the watchdog timer needs to be started. */
563 clocksource_start_watchdog();
564 spin_unlock_irqrestore(&watchdog_lock, flags);
567 static void clocksource_dequeue_watchdog(struct clocksource *cs)
569 if (cs != watchdog) {
570 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
571 /* cs is a watched clocksource. */
572 list_del_init(&cs->wd_list);
573 /* Check if the watchdog timer needs to be stopped. */
574 clocksource_stop_watchdog();
579 static int __clocksource_watchdog_kthread(void)
581 struct clocksource *cs, *tmp;
585 /* Do any required per-CPU skew verification. */
586 if (curr_clocksource &&
587 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
588 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
589 clocksource_verify_percpu(curr_clocksource);
591 spin_lock_irqsave(&watchdog_lock, flags);
592 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
593 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
594 list_del_init(&cs->wd_list);
595 __clocksource_change_rating(cs, 0);
598 if (cs->flags & CLOCK_SOURCE_RESELECT) {
599 cs->flags &= ~CLOCK_SOURCE_RESELECT;
603 /* Check if the watchdog timer needs to be stopped. */
604 clocksource_stop_watchdog();
605 spin_unlock_irqrestore(&watchdog_lock, flags);
610 static int clocksource_watchdog_kthread(void *data)
612 mutex_lock(&clocksource_mutex);
613 if (__clocksource_watchdog_kthread())
614 clocksource_select();
615 mutex_unlock(&clocksource_mutex);
619 static bool clocksource_is_watchdog(struct clocksource *cs)
621 return cs == watchdog;
624 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
626 static void clocksource_enqueue_watchdog(struct clocksource *cs)
628 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
629 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
632 static void clocksource_select_watchdog(bool fallback) { }
633 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
634 static inline void clocksource_resume_watchdog(void) { }
635 static inline int __clocksource_watchdog_kthread(void) { return 0; }
636 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
637 void clocksource_mark_unstable(struct clocksource *cs) { }
639 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
640 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
642 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
644 static bool clocksource_is_suspend(struct clocksource *cs)
646 return cs == suspend_clocksource;
649 static void __clocksource_suspend_select(struct clocksource *cs)
652 * Skip the clocksource which will be stopped in suspend state.
654 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
658 * The nonstop clocksource can be selected as the suspend clocksource to
659 * calculate the suspend time, so it should not supply suspend/resume
660 * interfaces to suspend the nonstop clocksource when system suspends.
662 if (cs->suspend || cs->resume) {
663 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
667 /* Pick the best rating. */
668 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
669 suspend_clocksource = cs;
673 * clocksource_suspend_select - Select the best clocksource for suspend timing
674 * @fallback: if select a fallback clocksource
676 static void clocksource_suspend_select(bool fallback)
678 struct clocksource *cs, *old_suspend;
680 old_suspend = suspend_clocksource;
682 suspend_clocksource = NULL;
684 list_for_each_entry(cs, &clocksource_list, list) {
685 /* Skip current if we were requested for a fallback. */
686 if (fallback && cs == old_suspend)
689 __clocksource_suspend_select(cs);
694 * clocksource_start_suspend_timing - Start measuring the suspend timing
695 * @cs: current clocksource from timekeeping
696 * @start_cycles: current cycles from timekeeping
698 * This function will save the start cycle values of suspend timer to calculate
699 * the suspend time when resuming system.
701 * This function is called late in the suspend process from timekeeping_suspend(),
702 * that means processes are frozen, non-boot cpus and interrupts are disabled
703 * now. It is therefore possible to start the suspend timer without taking the
706 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
708 if (!suspend_clocksource)
712 * If current clocksource is the suspend timer, we should use the
713 * tkr_mono.cycle_last value as suspend_start to avoid same reading
714 * from suspend timer.
716 if (clocksource_is_suspend(cs)) {
717 suspend_start = start_cycles;
721 if (suspend_clocksource->enable &&
722 suspend_clocksource->enable(suspend_clocksource)) {
723 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
727 suspend_start = suspend_clocksource->read(suspend_clocksource);
731 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
732 * @cs: current clocksource from timekeeping
733 * @cycle_now: current cycles from timekeeping
735 * This function will calculate the suspend time from suspend timer.
737 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
739 * This function is called early in the resume process from timekeeping_resume(),
740 * that means there is only one cpu, no processes are running and the interrupts
741 * are disabled. It is therefore possible to stop the suspend timer without
742 * taking the clocksource mutex.
744 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
746 u64 now, delta, nsec = 0;
748 if (!suspend_clocksource)
752 * If current clocksource is the suspend timer, we should use the
753 * tkr_mono.cycle_last value from timekeeping as current cycle to
754 * avoid same reading from suspend timer.
756 if (clocksource_is_suspend(cs))
759 now = suspend_clocksource->read(suspend_clocksource);
761 if (now > suspend_start) {
762 delta = clocksource_delta(now, suspend_start,
763 suspend_clocksource->mask);
764 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
765 suspend_clocksource->shift);
769 * Disable the suspend timer to save power if current clocksource is
770 * not the suspend timer.
772 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
773 suspend_clocksource->disable(suspend_clocksource);
779 * clocksource_suspend - suspend the clocksource(s)
781 void clocksource_suspend(void)
783 struct clocksource *cs;
785 list_for_each_entry_reverse(cs, &clocksource_list, list)
791 * clocksource_resume - resume the clocksource(s)
793 void clocksource_resume(void)
795 struct clocksource *cs;
797 list_for_each_entry(cs, &clocksource_list, list)
801 clocksource_resume_watchdog();
805 * clocksource_touch_watchdog - Update watchdog
807 * Update the watchdog after exception contexts such as kgdb so as not
808 * to incorrectly trip the watchdog. This might fail when the kernel
809 * was stopped in code which holds watchdog_lock.
811 void clocksource_touch_watchdog(void)
813 clocksource_resume_watchdog();
817 * clocksource_max_adjustment- Returns max adjustment amount
818 * @cs: Pointer to clocksource
821 static u32 clocksource_max_adjustment(struct clocksource *cs)
825 * We won't try to correct for more than 11% adjustments (110,000 ppm),
827 ret = (u64)cs->mult * 11;
833 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
834 * @mult: cycle to nanosecond multiplier
835 * @shift: cycle to nanosecond divisor (power of two)
836 * @maxadj: maximum adjustment value to mult (~11%)
837 * @mask: bitmask for two's complement subtraction of non 64 bit counters
838 * @max_cyc: maximum cycle value before potential overflow (does not include
841 * NOTE: This function includes a safety margin of 50%, in other words, we
842 * return half the number of nanoseconds the hardware counter can technically
843 * cover. This is done so that we can potentially detect problems caused by
844 * delayed timers or bad hardware, which might result in time intervals that
845 * are larger than what the math used can handle without overflows.
847 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
849 u64 max_nsecs, max_cycles;
852 * Calculate the maximum number of cycles that we can pass to the
853 * cyc2ns() function without overflowing a 64-bit result.
855 max_cycles = ULLONG_MAX;
856 do_div(max_cycles, mult+maxadj);
859 * The actual maximum number of cycles we can defer the clocksource is
860 * determined by the minimum of max_cycles and mask.
861 * Note: Here we subtract the maxadj to make sure we don't sleep for
862 * too long if there's a large negative adjustment.
864 max_cycles = min(max_cycles, mask);
865 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
867 /* return the max_cycles value as well if requested */
869 *max_cyc = max_cycles;
871 /* Return 50% of the actual maximum, so we can detect bad values */
878 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
879 * @cs: Pointer to clocksource to be updated
882 static inline void clocksource_update_max_deferment(struct clocksource *cs)
884 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
885 cs->maxadj, cs->mask,
889 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
891 struct clocksource *cs;
893 if (!finished_booting || list_empty(&clocksource_list))
897 * We pick the clocksource with the highest rating. If oneshot
898 * mode is active, we pick the highres valid clocksource with
901 list_for_each_entry(cs, &clocksource_list, list) {
902 if (skipcur && cs == curr_clocksource)
904 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
911 static void __clocksource_select(bool skipcur)
913 bool oneshot = tick_oneshot_mode_active();
914 struct clocksource *best, *cs;
916 /* Find the best suitable clocksource */
917 best = clocksource_find_best(oneshot, skipcur);
921 if (!strlen(override_name))
924 /* Check for the override clocksource. */
925 list_for_each_entry(cs, &clocksource_list, list) {
926 if (skipcur && cs == curr_clocksource)
928 if (strcmp(cs->name, override_name) != 0)
931 * Check to make sure we don't switch to a non-highres
932 * capable clocksource if the tick code is in oneshot
933 * mode (highres or nohz)
935 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
936 /* Override clocksource cannot be used. */
937 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
938 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
940 override_name[0] = 0;
943 * The override cannot be currently verified.
944 * Deferring to let the watchdog check.
946 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
950 /* Override clocksource can be used. */
956 if (curr_clocksource != best && !timekeeping_notify(best)) {
957 pr_info("Switched to clocksource %s\n", best->name);
958 curr_clocksource = best;
963 * clocksource_select - Select the best clocksource available
965 * Private function. Must hold clocksource_mutex when called.
967 * Select the clocksource with the best rating, or the clocksource,
968 * which is selected by userspace override.
970 static void clocksource_select(void)
972 __clocksource_select(false);
975 static void clocksource_select_fallback(void)
977 __clocksource_select(true);
981 * clocksource_done_booting - Called near the end of core bootup
983 * Hack to avoid lots of clocksource churn at boot time.
984 * We use fs_initcall because we want this to start before
985 * device_initcall but after subsys_initcall.
987 static int __init clocksource_done_booting(void)
989 mutex_lock(&clocksource_mutex);
990 curr_clocksource = clocksource_default_clock();
991 finished_booting = 1;
993 * Run the watchdog first to eliminate unstable clock sources
995 __clocksource_watchdog_kthread();
996 clocksource_select();
997 mutex_unlock(&clocksource_mutex);
1000 fs_initcall(clocksource_done_booting);
1003 * Enqueue the clocksource sorted by rating
1005 static void clocksource_enqueue(struct clocksource *cs)
1007 struct list_head *entry = &clocksource_list;
1008 struct clocksource *tmp;
1010 list_for_each_entry(tmp, &clocksource_list, list) {
1011 /* Keep track of the place, where to insert */
1012 if (tmp->rating < cs->rating)
1016 list_add(&cs->list, entry);
1020 * __clocksource_update_freq_scale - Used update clocksource with new freq
1021 * @cs: clocksource to be registered
1022 * @scale: Scale factor multiplied against freq to get clocksource hz
1023 * @freq: clocksource frequency (cycles per second) divided by scale
1025 * This should only be called from the clocksource->enable() method.
1027 * This *SHOULD NOT* be called directly! Please use the
1028 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1031 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1036 * Default clocksources are *special* and self-define their mult/shift.
1037 * But, you're not special, so you should specify a freq value.
1041 * Calc the maximum number of seconds which we can run before
1042 * wrapping around. For clocksources which have a mask > 32-bit
1043 * we need to limit the max sleep time to have a good
1044 * conversion precision. 10 minutes is still a reasonable
1045 * amount. That results in a shift value of 24 for a
1046 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1047 * ~ 0.06ppm granularity for NTP.
1054 else if (sec > 600 && cs->mask > UINT_MAX)
1057 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1058 NSEC_PER_SEC / scale, sec * scale);
1062 * If the uncertainty margin is not specified, calculate it.
1063 * If both scale and freq are non-zero, calculate the clock
1064 * period, but bound below at 2*WATCHDOG_MAX_SKEW. However,
1065 * if either of scale or freq is zero, be very conservative and
1066 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1067 * uncertainty margin. Allow stupidly small uncertainty margins
1068 * to be specified by the caller for testing purposes, but warn
1069 * to discourage production use of this capability.
1071 if (scale && freq && !cs->uncertainty_margin) {
1072 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1073 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1074 cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1075 } else if (!cs->uncertainty_margin) {
1076 cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1078 WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1081 * Ensure clocksources that have large 'mult' values don't overflow
1084 cs->maxadj = clocksource_max_adjustment(cs);
1085 while (freq && ((cs->mult + cs->maxadj < cs->mult)
1086 || (cs->mult - cs->maxadj > cs->mult))) {
1089 cs->maxadj = clocksource_max_adjustment(cs);
1093 * Only warn for *special* clocksources that self-define
1094 * their mult/shift values and don't specify a freq.
1096 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1097 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1100 clocksource_update_max_deferment(cs);
1102 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1103 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1105 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1108 * __clocksource_register_scale - Used to install new clocksources
1109 * @cs: clocksource to be registered
1110 * @scale: Scale factor multiplied against freq to get clocksource hz
1111 * @freq: clocksource frequency (cycles per second) divided by scale
1113 * Returns -EBUSY if registration fails, zero otherwise.
1115 * This *SHOULD NOT* be called directly! Please use the
1116 * clocksource_register_hz() or clocksource_register_khz helper functions.
1118 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1120 unsigned long flags;
1122 clocksource_arch_init(cs);
1124 if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1125 cs->id = CSID_GENERIC;
1126 if (cs->vdso_clock_mode < 0 ||
1127 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1128 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1129 cs->name, cs->vdso_clock_mode);
1130 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1133 /* Initialize mult/shift and max_idle_ns */
1134 __clocksource_update_freq_scale(cs, scale, freq);
1136 /* Add clocksource to the clocksource list */
1137 mutex_lock(&clocksource_mutex);
1139 clocksource_watchdog_lock(&flags);
1140 clocksource_enqueue(cs);
1141 clocksource_enqueue_watchdog(cs);
1142 clocksource_watchdog_unlock(&flags);
1144 clocksource_select();
1145 clocksource_select_watchdog(false);
1146 __clocksource_suspend_select(cs);
1147 mutex_unlock(&clocksource_mutex);
1150 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1152 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1154 list_del(&cs->list);
1155 cs->rating = rating;
1156 clocksource_enqueue(cs);
1160 * clocksource_change_rating - Change the rating of a registered clocksource
1161 * @cs: clocksource to be changed
1162 * @rating: new rating
1164 void clocksource_change_rating(struct clocksource *cs, int rating)
1166 unsigned long flags;
1168 mutex_lock(&clocksource_mutex);
1169 clocksource_watchdog_lock(&flags);
1170 __clocksource_change_rating(cs, rating);
1171 clocksource_watchdog_unlock(&flags);
1173 clocksource_select();
1174 clocksource_select_watchdog(false);
1175 clocksource_suspend_select(false);
1176 mutex_unlock(&clocksource_mutex);
1178 EXPORT_SYMBOL(clocksource_change_rating);
1181 * Unbind clocksource @cs. Called with clocksource_mutex held
1183 static int clocksource_unbind(struct clocksource *cs)
1185 unsigned long flags;
1187 if (clocksource_is_watchdog(cs)) {
1188 /* Select and try to install a replacement watchdog. */
1189 clocksource_select_watchdog(true);
1190 if (clocksource_is_watchdog(cs))
1194 if (cs == curr_clocksource) {
1195 /* Select and try to install a replacement clock source */
1196 clocksource_select_fallback();
1197 if (curr_clocksource == cs)
1201 if (clocksource_is_suspend(cs)) {
1203 * Select and try to install a replacement suspend clocksource.
1204 * If no replacement suspend clocksource, we will just let the
1205 * clocksource go and have no suspend clocksource.
1207 clocksource_suspend_select(true);
1210 clocksource_watchdog_lock(&flags);
1211 clocksource_dequeue_watchdog(cs);
1212 list_del_init(&cs->list);
1213 clocksource_watchdog_unlock(&flags);
1219 * clocksource_unregister - remove a registered clocksource
1220 * @cs: clocksource to be unregistered
1222 int clocksource_unregister(struct clocksource *cs)
1226 mutex_lock(&clocksource_mutex);
1227 if (!list_empty(&cs->list))
1228 ret = clocksource_unbind(cs);
1229 mutex_unlock(&clocksource_mutex);
1232 EXPORT_SYMBOL(clocksource_unregister);
1236 * current_clocksource_show - sysfs interface for current clocksource
1239 * @buf: char buffer to be filled with clocksource list
1241 * Provides sysfs interface for listing current clocksource.
1243 static ssize_t current_clocksource_show(struct device *dev,
1244 struct device_attribute *attr,
1249 mutex_lock(&clocksource_mutex);
1250 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1251 mutex_unlock(&clocksource_mutex);
1256 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1260 /* strings from sysfs write are not 0 terminated! */
1261 if (!cnt || cnt >= CS_NAME_LEN)
1265 if (buf[cnt-1] == '\n')
1268 memcpy(dst, buf, cnt);
1274 * current_clocksource_store - interface for manually overriding clocksource
1277 * @buf: name of override clocksource
1278 * @count: length of buffer
1280 * Takes input from sysfs interface for manually overriding the default
1281 * clocksource selection.
1283 static ssize_t current_clocksource_store(struct device *dev,
1284 struct device_attribute *attr,
1285 const char *buf, size_t count)
1289 mutex_lock(&clocksource_mutex);
1291 ret = sysfs_get_uname(buf, override_name, count);
1293 clocksource_select();
1295 mutex_unlock(&clocksource_mutex);
1299 static DEVICE_ATTR_RW(current_clocksource);
1302 * unbind_clocksource_store - interface for manually unbinding clocksource
1306 * @count: length of buffer
1308 * Takes input from sysfs interface for manually unbinding a clocksource.
1310 static ssize_t unbind_clocksource_store(struct device *dev,
1311 struct device_attribute *attr,
1312 const char *buf, size_t count)
1314 struct clocksource *cs;
1315 char name[CS_NAME_LEN];
1318 ret = sysfs_get_uname(buf, name, count);
1323 mutex_lock(&clocksource_mutex);
1324 list_for_each_entry(cs, &clocksource_list, list) {
1325 if (strcmp(cs->name, name))
1327 ret = clocksource_unbind(cs);
1330 mutex_unlock(&clocksource_mutex);
1332 return ret ? ret : count;
1334 static DEVICE_ATTR_WO(unbind_clocksource);
1337 * available_clocksource_show - sysfs interface for listing clocksource
1340 * @buf: char buffer to be filled with clocksource list
1342 * Provides sysfs interface for listing registered clocksources
1344 static ssize_t available_clocksource_show(struct device *dev,
1345 struct device_attribute *attr,
1348 struct clocksource *src;
1351 mutex_lock(&clocksource_mutex);
1352 list_for_each_entry(src, &clocksource_list, list) {
1354 * Don't show non-HRES clocksource if the tick code is
1355 * in one shot mode (highres=on or nohz=on)
1357 if (!tick_oneshot_mode_active() ||
1358 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1359 count += snprintf(buf + count,
1360 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1363 mutex_unlock(&clocksource_mutex);
1365 count += snprintf(buf + count,
1366 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1370 static DEVICE_ATTR_RO(available_clocksource);
1372 static struct attribute *clocksource_attrs[] = {
1373 &dev_attr_current_clocksource.attr,
1374 &dev_attr_unbind_clocksource.attr,
1375 &dev_attr_available_clocksource.attr,
1378 ATTRIBUTE_GROUPS(clocksource);
1380 static struct bus_type clocksource_subsys = {
1381 .name = "clocksource",
1382 .dev_name = "clocksource",
1385 static struct device device_clocksource = {
1387 .bus = &clocksource_subsys,
1388 .groups = clocksource_groups,
1391 static int __init init_clocksource_sysfs(void)
1393 int error = subsys_system_register(&clocksource_subsys, NULL);
1396 error = device_register(&device_clocksource);
1401 device_initcall(init_clocksource_sysfs);
1402 #endif /* CONFIG_SYSFS */
1405 * boot_override_clocksource - boot clock override
1406 * @str: override name
1408 * Takes a clocksource= boot argument and uses it
1409 * as the clocksource override name.
1411 static int __init boot_override_clocksource(char* str)
1413 mutex_lock(&clocksource_mutex);
1415 strlcpy(override_name, str, sizeof(override_name));
1416 mutex_unlock(&clocksource_mutex);
1420 __setup("clocksource=", boot_override_clocksource);
1423 * boot_override_clock - Compatibility layer for deprecated boot option
1424 * @str: override name
1426 * DEPRECATED! Takes a clock= boot argument and uses it
1427 * as the clocksource override name
1429 static int __init boot_override_clock(char* str)
1431 if (!strcmp(str, "pmtmr")) {
1432 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1433 return boot_override_clocksource("acpi_pm");
1435 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1436 return boot_override_clocksource(str);
1439 __setup("clock=", boot_override_clock);