tick/common: Align tick period during sched_timer setup
[platform/kernel/linux-starfive.git] / kernel / time / alarmtimer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Alarmtimer interface
4  *
5  * This interface provides a timer which is similar to hrtimers,
6  * but triggers a RTC alarm if the box is suspend.
7  *
8  * This interface is influenced by the Android RTC Alarm timer
9  * interface.
10  *
11  * Copyright (C) 2010 IBM Corporation
12  *
13  * Author: John Stultz <john.stultz@linaro.org>
14  */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 /**
37  * struct alarm_base - Alarm timer bases
38  * @lock:               Lock for syncrhonized access to the base
39  * @timerqueue:         Timerqueue head managing the list of events
40  * @get_ktime:          Function to read the time correlating to the base
41  * @get_timespec:       Function to read the namespace time correlating to the base
42  * @base_clockid:       clockid for the base
43  */
44 static struct alarm_base {
45         spinlock_t              lock;
46         struct timerqueue_head  timerqueue;
47         ktime_t                 (*get_ktime)(void);
48         void                    (*get_timespec)(struct timespec64 *tp);
49         clockid_t               base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer         rtctimer;
63 static struct rtc_device        *rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65
66 /**
67  * alarmtimer_get_rtcdev - Return selected rtcdevice
68  *
69  * This function returns the rtc device to use for wakealarms.
70  */
71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73         unsigned long flags;
74         struct rtc_device *ret;
75
76         spin_lock_irqsave(&rtcdev_lock, flags);
77         ret = rtcdev;
78         spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80         return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
84 static int alarmtimer_rtc_add_device(struct device *dev,
85                                 struct class_interface *class_intf)
86 {
87         unsigned long flags;
88         struct rtc_device *rtc = to_rtc_device(dev);
89         struct platform_device *pdev;
90         int ret = 0;
91
92         if (rtcdev)
93                 return -EBUSY;
94
95         if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
96                 return -1;
97         if (!device_may_wakeup(rtc->dev.parent))
98                 return -1;
99
100         pdev = platform_device_register_data(dev, "alarmtimer",
101                                              PLATFORM_DEVID_AUTO, NULL, 0);
102         if (!IS_ERR(pdev))
103                 device_init_wakeup(&pdev->dev, true);
104
105         spin_lock_irqsave(&rtcdev_lock, flags);
106         if (!IS_ERR(pdev) && !rtcdev) {
107                 if (!try_module_get(rtc->owner)) {
108                         ret = -1;
109                         goto unlock;
110                 }
111
112                 rtcdev = rtc;
113                 /* hold a reference so it doesn't go away */
114                 get_device(dev);
115                 pdev = NULL;
116         } else {
117                 ret = -1;
118         }
119 unlock:
120         spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122         platform_device_unregister(pdev);
123
124         return ret;
125 }
126
127 static inline void alarmtimer_rtc_timer_init(void)
128 {
129         rtc_timer_init(&rtctimer, NULL, NULL);
130 }
131
132 static struct class_interface alarmtimer_rtc_interface = {
133         .add_dev = &alarmtimer_rtc_add_device,
134 };
135
136 static int alarmtimer_rtc_interface_setup(void)
137 {
138         alarmtimer_rtc_interface.class = rtc_class;
139         return class_interface_register(&alarmtimer_rtc_interface);
140 }
141 static void alarmtimer_rtc_interface_remove(void)
142 {
143         class_interface_unregister(&alarmtimer_rtc_interface);
144 }
145 #else
146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147 static inline void alarmtimer_rtc_interface_remove(void) { }
148 static inline void alarmtimer_rtc_timer_init(void) { }
149 #endif
150
151 /**
152  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153  * @base: pointer to the base where the timer is being run
154  * @alarm: pointer to alarm being enqueued.
155  *
156  * Adds alarm to a alarm_base timerqueue
157  *
158  * Must hold base->lock when calling.
159  */
160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161 {
162         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163                 timerqueue_del(&base->timerqueue, &alarm->node);
164
165         timerqueue_add(&base->timerqueue, &alarm->node);
166         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167 }
168
169 /**
170  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171  * @base: pointer to the base where the timer is running
172  * @alarm: pointer to alarm being removed
173  *
174  * Removes alarm to a alarm_base timerqueue
175  *
176  * Must hold base->lock when calling.
177  */
178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179 {
180         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181                 return;
182
183         timerqueue_del(&base->timerqueue, &alarm->node);
184         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185 }
186
187
188 /**
189  * alarmtimer_fired - Handles alarm hrtimer being fired.
190  * @timer: pointer to hrtimer being run
191  *
192  * When a alarm timer fires, this runs through the timerqueue to
193  * see which alarms expired, and runs those. If there are more alarm
194  * timers queued for the future, we set the hrtimer to fire when
195  * the next future alarm timer expires.
196  */
197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198 {
199         struct alarm *alarm = container_of(timer, struct alarm, timer);
200         struct alarm_base *base = &alarm_bases[alarm->type];
201         unsigned long flags;
202         int ret = HRTIMER_NORESTART;
203         int restart = ALARMTIMER_NORESTART;
204
205         spin_lock_irqsave(&base->lock, flags);
206         alarmtimer_dequeue(base, alarm);
207         spin_unlock_irqrestore(&base->lock, flags);
208
209         if (alarm->function)
210                 restart = alarm->function(alarm, base->get_ktime());
211
212         spin_lock_irqsave(&base->lock, flags);
213         if (restart != ALARMTIMER_NORESTART) {
214                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215                 alarmtimer_enqueue(base, alarm);
216                 ret = HRTIMER_RESTART;
217         }
218         spin_unlock_irqrestore(&base->lock, flags);
219
220         trace_alarmtimer_fired(alarm, base->get_ktime());
221         return ret;
222
223 }
224
225 ktime_t alarm_expires_remaining(const struct alarm *alarm)
226 {
227         struct alarm_base *base = &alarm_bases[alarm->type];
228         return ktime_sub(alarm->node.expires, base->get_ktime());
229 }
230 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232 #ifdef CONFIG_RTC_CLASS
233 /**
234  * alarmtimer_suspend - Suspend time callback
235  * @dev: unused
236  *
237  * When we are going into suspend, we look through the bases
238  * to see which is the soonest timer to expire. We then
239  * set an rtc timer to fire that far into the future, which
240  * will wake us from suspend.
241  */
242 static int alarmtimer_suspend(struct device *dev)
243 {
244         ktime_t min, now, expires;
245         int i, ret, type;
246         struct rtc_device *rtc;
247         unsigned long flags;
248         struct rtc_time tm;
249
250         spin_lock_irqsave(&freezer_delta_lock, flags);
251         min = freezer_delta;
252         expires = freezer_expires;
253         type = freezer_alarmtype;
254         freezer_delta = 0;
255         spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257         rtc = alarmtimer_get_rtcdev();
258         /* If we have no rtcdev, just return */
259         if (!rtc)
260                 return 0;
261
262         /* Find the soonest timer to expire*/
263         for (i = 0; i < ALARM_NUMTYPE; i++) {
264                 struct alarm_base *base = &alarm_bases[i];
265                 struct timerqueue_node *next;
266                 ktime_t delta;
267
268                 spin_lock_irqsave(&base->lock, flags);
269                 next = timerqueue_getnext(&base->timerqueue);
270                 spin_unlock_irqrestore(&base->lock, flags);
271                 if (!next)
272                         continue;
273                 delta = ktime_sub(next->expires, base->get_ktime());
274                 if (!min || (delta < min)) {
275                         expires = next->expires;
276                         min = delta;
277                         type = i;
278                 }
279         }
280         if (min == 0)
281                 return 0;
282
283         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284                 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
285                 return -EBUSY;
286         }
287
288         trace_alarmtimer_suspend(expires, type);
289
290         /* Setup an rtc timer to fire that far in the future */
291         rtc_timer_cancel(rtc, &rtctimer);
292         rtc_read_time(rtc, &tm);
293         now = rtc_tm_to_ktime(tm);
294         now = ktime_add(now, min);
295
296         /* Set alarm, if in the past reject suspend briefly to handle */
297         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298         if (ret < 0)
299                 pm_wakeup_event(dev, MSEC_PER_SEC);
300         return ret;
301 }
302
303 static int alarmtimer_resume(struct device *dev)
304 {
305         struct rtc_device *rtc;
306
307         rtc = alarmtimer_get_rtcdev();
308         if (rtc)
309                 rtc_timer_cancel(rtc, &rtctimer);
310         return 0;
311 }
312
313 #else
314 static int alarmtimer_suspend(struct device *dev)
315 {
316         return 0;
317 }
318
319 static int alarmtimer_resume(struct device *dev)
320 {
321         return 0;
322 }
323 #endif
324
325 static void
326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327              enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328 {
329         timerqueue_init(&alarm->node);
330         alarm->timer.function = alarmtimer_fired;
331         alarm->function = function;
332         alarm->type = type;
333         alarm->state = ALARMTIMER_STATE_INACTIVE;
334 }
335
336 /**
337  * alarm_init - Initialize an alarm structure
338  * @alarm: ptr to alarm to be initialized
339  * @type: the type of the alarm
340  * @function: callback that is run when the alarm fires
341  */
342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344 {
345         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346                      HRTIMER_MODE_ABS);
347         __alarm_init(alarm, type, function);
348 }
349 EXPORT_SYMBOL_GPL(alarm_init);
350
351 /**
352  * alarm_start - Sets an absolute alarm to fire
353  * @alarm: ptr to alarm to set
354  * @start: time to run the alarm
355  */
356 void alarm_start(struct alarm *alarm, ktime_t start)
357 {
358         struct alarm_base *base = &alarm_bases[alarm->type];
359         unsigned long flags;
360
361         spin_lock_irqsave(&base->lock, flags);
362         alarm->node.expires = start;
363         alarmtimer_enqueue(base, alarm);
364         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365         spin_unlock_irqrestore(&base->lock, flags);
366
367         trace_alarmtimer_start(alarm, base->get_ktime());
368 }
369 EXPORT_SYMBOL_GPL(alarm_start);
370
371 /**
372  * alarm_start_relative - Sets a relative alarm to fire
373  * @alarm: ptr to alarm to set
374  * @start: time relative to now to run the alarm
375  */
376 void alarm_start_relative(struct alarm *alarm, ktime_t start)
377 {
378         struct alarm_base *base = &alarm_bases[alarm->type];
379
380         start = ktime_add_safe(start, base->get_ktime());
381         alarm_start(alarm, start);
382 }
383 EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385 void alarm_restart(struct alarm *alarm)
386 {
387         struct alarm_base *base = &alarm_bases[alarm->type];
388         unsigned long flags;
389
390         spin_lock_irqsave(&base->lock, flags);
391         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392         hrtimer_restart(&alarm->timer);
393         alarmtimer_enqueue(base, alarm);
394         spin_unlock_irqrestore(&base->lock, flags);
395 }
396 EXPORT_SYMBOL_GPL(alarm_restart);
397
398 /**
399  * alarm_try_to_cancel - Tries to cancel an alarm timer
400  * @alarm: ptr to alarm to be canceled
401  *
402  * Returns 1 if the timer was canceled, 0 if it was not running,
403  * and -1 if the callback was running
404  */
405 int alarm_try_to_cancel(struct alarm *alarm)
406 {
407         struct alarm_base *base = &alarm_bases[alarm->type];
408         unsigned long flags;
409         int ret;
410
411         spin_lock_irqsave(&base->lock, flags);
412         ret = hrtimer_try_to_cancel(&alarm->timer);
413         if (ret >= 0)
414                 alarmtimer_dequeue(base, alarm);
415         spin_unlock_irqrestore(&base->lock, flags);
416
417         trace_alarmtimer_cancel(alarm, base->get_ktime());
418         return ret;
419 }
420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423 /**
424  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425  * @alarm: ptr to alarm to be canceled
426  *
427  * Returns 1 if the timer was canceled, 0 if it was not active.
428  */
429 int alarm_cancel(struct alarm *alarm)
430 {
431         for (;;) {
432                 int ret = alarm_try_to_cancel(alarm);
433                 if (ret >= 0)
434                         return ret;
435                 hrtimer_cancel_wait_running(&alarm->timer);
436         }
437 }
438 EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442 {
443         u64 overrun = 1;
444         ktime_t delta;
445
446         delta = ktime_sub(now, alarm->node.expires);
447
448         if (delta < 0)
449                 return 0;
450
451         if (unlikely(delta >= interval)) {
452                 s64 incr = ktime_to_ns(interval);
453
454                 overrun = ktime_divns(delta, incr);
455
456                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457                                                         incr*overrun);
458
459                 if (alarm->node.expires > now)
460                         return overrun;
461                 /*
462                  * This (and the ktime_add() below) is the
463                  * correction for exact:
464                  */
465                 overrun++;
466         }
467
468         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469         return overrun;
470 }
471 EXPORT_SYMBOL_GPL(alarm_forward);
472
473 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
474 {
475         struct alarm_base *base = &alarm_bases[alarm->type];
476         ktime_t now = base->get_ktime();
477
478         if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
479                 /*
480                  * Same issue as with posix_timer_fn(). Timers which are
481                  * periodic but the signal is ignored can starve the system
482                  * with a very small interval. The real fix which was
483                  * promised in the context of posix_timer_fn() never
484                  * materialized, but someone should really work on it.
485                  *
486                  * To prevent DOS fake @now to be 1 jiffie out which keeps
487                  * the overrun accounting correct but creates an
488                  * inconsistency vs. timer_gettime(2).
489                  */
490                 ktime_t kj = NSEC_PER_SEC / HZ;
491
492                 if (interval < kj)
493                         now = ktime_add(now, kj);
494         }
495
496         return alarm_forward(alarm, now, interval);
497 }
498
499 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
500 {
501         return __alarm_forward_now(alarm, interval, false);
502 }
503 EXPORT_SYMBOL_GPL(alarm_forward_now);
504
505 #ifdef CONFIG_POSIX_TIMERS
506
507 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
508 {
509         struct alarm_base *base;
510         unsigned long flags;
511         ktime_t delta;
512
513         switch(type) {
514         case ALARM_REALTIME:
515                 base = &alarm_bases[ALARM_REALTIME];
516                 type = ALARM_REALTIME_FREEZER;
517                 break;
518         case ALARM_BOOTTIME:
519                 base = &alarm_bases[ALARM_BOOTTIME];
520                 type = ALARM_BOOTTIME_FREEZER;
521                 break;
522         default:
523                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
524                 return;
525         }
526
527         delta = ktime_sub(absexp, base->get_ktime());
528
529         spin_lock_irqsave(&freezer_delta_lock, flags);
530         if (!freezer_delta || (delta < freezer_delta)) {
531                 freezer_delta = delta;
532                 freezer_expires = absexp;
533                 freezer_alarmtype = type;
534         }
535         spin_unlock_irqrestore(&freezer_delta_lock, flags);
536 }
537
538 /**
539  * clock2alarm - helper that converts from clockid to alarmtypes
540  * @clockid: clockid.
541  */
542 static enum alarmtimer_type clock2alarm(clockid_t clockid)
543 {
544         if (clockid == CLOCK_REALTIME_ALARM)
545                 return ALARM_REALTIME;
546         if (clockid == CLOCK_BOOTTIME_ALARM)
547                 return ALARM_BOOTTIME;
548         return -1;
549 }
550
551 /**
552  * alarm_handle_timer - Callback for posix timers
553  * @alarm: alarm that fired
554  * @now: time at the timer expiration
555  *
556  * Posix timer callback for expired alarm timers.
557  *
558  * Return: whether the timer is to be restarted
559  */
560 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
561                                                         ktime_t now)
562 {
563         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
564                                             it.alarm.alarmtimer);
565         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
566         unsigned long flags;
567         int si_private = 0;
568
569         spin_lock_irqsave(&ptr->it_lock, flags);
570
571         ptr->it_active = 0;
572         if (ptr->it_interval)
573                 si_private = ++ptr->it_requeue_pending;
574
575         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
576                 /*
577                  * Handle ignored signals and rearm the timer. This will go
578                  * away once we handle ignored signals proper. Ensure that
579                  * small intervals cannot starve the system.
580                  */
581                 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
582                 ++ptr->it_requeue_pending;
583                 ptr->it_active = 1;
584                 result = ALARMTIMER_RESTART;
585         }
586         spin_unlock_irqrestore(&ptr->it_lock, flags);
587
588         return result;
589 }
590
591 /**
592  * alarm_timer_rearm - Posix timer callback for rearming timer
593  * @timr:       Pointer to the posixtimer data struct
594  */
595 static void alarm_timer_rearm(struct k_itimer *timr)
596 {
597         struct alarm *alarm = &timr->it.alarm.alarmtimer;
598
599         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
600         alarm_start(alarm, alarm->node.expires);
601 }
602
603 /**
604  * alarm_timer_forward - Posix timer callback for forwarding timer
605  * @timr:       Pointer to the posixtimer data struct
606  * @now:        Current time to forward the timer against
607  */
608 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
609 {
610         struct alarm *alarm = &timr->it.alarm.alarmtimer;
611
612         return alarm_forward(alarm, timr->it_interval, now);
613 }
614
615 /**
616  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
617  * @timr:       Pointer to the posixtimer data struct
618  * @now:        Current time to calculate against
619  */
620 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
621 {
622         struct alarm *alarm = &timr->it.alarm.alarmtimer;
623
624         return ktime_sub(alarm->node.expires, now);
625 }
626
627 /**
628  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
629  * @timr:       Pointer to the posixtimer data struct
630  */
631 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
632 {
633         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
634 }
635
636 /**
637  * alarm_timer_wait_running - Posix timer callback to wait for a timer
638  * @timr:       Pointer to the posixtimer data struct
639  *
640  * Called from the core code when timer cancel detected that the callback
641  * is running. @timr is unlocked and rcu read lock is held to prevent it
642  * from being freed.
643  */
644 static void alarm_timer_wait_running(struct k_itimer *timr)
645 {
646         hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
647 }
648
649 /**
650  * alarm_timer_arm - Posix timer callback to arm a timer
651  * @timr:       Pointer to the posixtimer data struct
652  * @expires:    The new expiry time
653  * @absolute:   Expiry value is absolute time
654  * @sigev_none: Posix timer does not deliver signals
655  */
656 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
657                             bool absolute, bool sigev_none)
658 {
659         struct alarm *alarm = &timr->it.alarm.alarmtimer;
660         struct alarm_base *base = &alarm_bases[alarm->type];
661
662         if (!absolute)
663                 expires = ktime_add_safe(expires, base->get_ktime());
664         if (sigev_none)
665                 alarm->node.expires = expires;
666         else
667                 alarm_start(&timr->it.alarm.alarmtimer, expires);
668 }
669
670 /**
671  * alarm_clock_getres - posix getres interface
672  * @which_clock: clockid
673  * @tp: timespec to fill
674  *
675  * Returns the granularity of underlying alarm base clock
676  */
677 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
678 {
679         if (!alarmtimer_get_rtcdev())
680                 return -EINVAL;
681
682         tp->tv_sec = 0;
683         tp->tv_nsec = hrtimer_resolution;
684         return 0;
685 }
686
687 /**
688  * alarm_clock_get_timespec - posix clock_get_timespec interface
689  * @which_clock: clockid
690  * @tp: timespec to fill.
691  *
692  * Provides the underlying alarm base time in a tasks time namespace.
693  */
694 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
695 {
696         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
697
698         if (!alarmtimer_get_rtcdev())
699                 return -EINVAL;
700
701         base->get_timespec(tp);
702
703         return 0;
704 }
705
706 /**
707  * alarm_clock_get_ktime - posix clock_get_ktime interface
708  * @which_clock: clockid
709  *
710  * Provides the underlying alarm base time in the root namespace.
711  */
712 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
713 {
714         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
715
716         if (!alarmtimer_get_rtcdev())
717                 return -EINVAL;
718
719         return base->get_ktime();
720 }
721
722 /**
723  * alarm_timer_create - posix timer_create interface
724  * @new_timer: k_itimer pointer to manage
725  *
726  * Initializes the k_itimer structure.
727  */
728 static int alarm_timer_create(struct k_itimer *new_timer)
729 {
730         enum  alarmtimer_type type;
731
732         if (!alarmtimer_get_rtcdev())
733                 return -EOPNOTSUPP;
734
735         if (!capable(CAP_WAKE_ALARM))
736                 return -EPERM;
737
738         type = clock2alarm(new_timer->it_clock);
739         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
740         return 0;
741 }
742
743 /**
744  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
745  * @alarm: ptr to alarm that fired
746  * @now: time at the timer expiration
747  *
748  * Wakes up the task that set the alarmtimer
749  *
750  * Return: ALARMTIMER_NORESTART
751  */
752 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
753                                                                 ktime_t now)
754 {
755         struct task_struct *task = (struct task_struct *)alarm->data;
756
757         alarm->data = NULL;
758         if (task)
759                 wake_up_process(task);
760         return ALARMTIMER_NORESTART;
761 }
762
763 /**
764  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
765  * @alarm: ptr to alarmtimer
766  * @absexp: absolute expiration time
767  * @type: alarm type (BOOTTIME/REALTIME).
768  *
769  * Sets the alarm timer and sleeps until it is fired or interrupted.
770  */
771 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
772                                 enum alarmtimer_type type)
773 {
774         struct restart_block *restart;
775         alarm->data = (void *)current;
776         do {
777                 set_current_state(TASK_INTERRUPTIBLE);
778                 alarm_start(alarm, absexp);
779                 if (likely(alarm->data))
780                         schedule();
781
782                 alarm_cancel(alarm);
783         } while (alarm->data && !signal_pending(current));
784
785         __set_current_state(TASK_RUNNING);
786
787         destroy_hrtimer_on_stack(&alarm->timer);
788
789         if (!alarm->data)
790                 return 0;
791
792         if (freezing(current))
793                 alarmtimer_freezerset(absexp, type);
794         restart = &current->restart_block;
795         if (restart->nanosleep.type != TT_NONE) {
796                 struct timespec64 rmt;
797                 ktime_t rem;
798
799                 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
800
801                 if (rem <= 0)
802                         return 0;
803                 rmt = ktime_to_timespec64(rem);
804
805                 return nanosleep_copyout(restart, &rmt);
806         }
807         return -ERESTART_RESTARTBLOCK;
808 }
809
810 static void
811 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
812                     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
813 {
814         hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
815                               HRTIMER_MODE_ABS);
816         __alarm_init(alarm, type, function);
817 }
818
819 /**
820  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
821  * @restart: ptr to restart block
822  *
823  * Handles restarted clock_nanosleep calls
824  */
825 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
826 {
827         enum  alarmtimer_type type = restart->nanosleep.clockid;
828         ktime_t exp = restart->nanosleep.expires;
829         struct alarm alarm;
830
831         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
832
833         return alarmtimer_do_nsleep(&alarm, exp, type);
834 }
835
836 /**
837  * alarm_timer_nsleep - alarmtimer nanosleep
838  * @which_clock: clockid
839  * @flags: determines abstime or relative
840  * @tsreq: requested sleep time (abs or rel)
841  *
842  * Handles clock_nanosleep calls against _ALARM clockids
843  */
844 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
845                               const struct timespec64 *tsreq)
846 {
847         enum  alarmtimer_type type = clock2alarm(which_clock);
848         struct restart_block *restart = &current->restart_block;
849         struct alarm alarm;
850         ktime_t exp;
851         int ret = 0;
852
853         if (!alarmtimer_get_rtcdev())
854                 return -EOPNOTSUPP;
855
856         if (flags & ~TIMER_ABSTIME)
857                 return -EINVAL;
858
859         if (!capable(CAP_WAKE_ALARM))
860                 return -EPERM;
861
862         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
863
864         exp = timespec64_to_ktime(*tsreq);
865         /* Convert (if necessary) to absolute time */
866         if (flags != TIMER_ABSTIME) {
867                 ktime_t now = alarm_bases[type].get_ktime();
868
869                 exp = ktime_add_safe(now, exp);
870         } else {
871                 exp = timens_ktime_to_host(which_clock, exp);
872         }
873
874         ret = alarmtimer_do_nsleep(&alarm, exp, type);
875         if (ret != -ERESTART_RESTARTBLOCK)
876                 return ret;
877
878         /* abs timers don't set remaining time or restart */
879         if (flags == TIMER_ABSTIME)
880                 return -ERESTARTNOHAND;
881
882         restart->nanosleep.clockid = type;
883         restart->nanosleep.expires = exp;
884         set_restart_fn(restart, alarm_timer_nsleep_restart);
885         return ret;
886 }
887
888 const struct k_clock alarm_clock = {
889         .clock_getres           = alarm_clock_getres,
890         .clock_get_ktime        = alarm_clock_get_ktime,
891         .clock_get_timespec     = alarm_clock_get_timespec,
892         .timer_create           = alarm_timer_create,
893         .timer_set              = common_timer_set,
894         .timer_del              = common_timer_del,
895         .timer_get              = common_timer_get,
896         .timer_arm              = alarm_timer_arm,
897         .timer_rearm            = alarm_timer_rearm,
898         .timer_forward          = alarm_timer_forward,
899         .timer_remaining        = alarm_timer_remaining,
900         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
901         .timer_wait_running     = alarm_timer_wait_running,
902         .nsleep                 = alarm_timer_nsleep,
903 };
904 #endif /* CONFIG_POSIX_TIMERS */
905
906
907 /* Suspend hook structures */
908 static const struct dev_pm_ops alarmtimer_pm_ops = {
909         .suspend = alarmtimer_suspend,
910         .resume = alarmtimer_resume,
911 };
912
913 static struct platform_driver alarmtimer_driver = {
914         .driver = {
915                 .name = "alarmtimer",
916                 .pm = &alarmtimer_pm_ops,
917         }
918 };
919
920 static void get_boottime_timespec(struct timespec64 *tp)
921 {
922         ktime_get_boottime_ts64(tp);
923         timens_add_boottime(tp);
924 }
925
926 /**
927  * alarmtimer_init - Initialize alarm timer code
928  *
929  * This function initializes the alarm bases and registers
930  * the posix clock ids.
931  */
932 static int __init alarmtimer_init(void)
933 {
934         int error;
935         int i;
936
937         alarmtimer_rtc_timer_init();
938
939         /* Initialize alarm bases */
940         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
941         alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
942         alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
943         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
944         alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
945         alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
946         for (i = 0; i < ALARM_NUMTYPE; i++) {
947                 timerqueue_init_head(&alarm_bases[i].timerqueue);
948                 spin_lock_init(&alarm_bases[i].lock);
949         }
950
951         error = alarmtimer_rtc_interface_setup();
952         if (error)
953                 return error;
954
955         error = platform_driver_register(&alarmtimer_driver);
956         if (error)
957                 goto out_if;
958
959         return 0;
960 out_if:
961         alarmtimer_rtc_interface_remove();
962         return error;
963 }
964 device_initcall(alarmtimer_init);